|  | 
|  | 1 | +# Author: OMKAR PATHAK | 
|  | 2 | + | 
|  | 3 | +# Time Complexity: O(|V| + |E|) | 
|  | 4 | +# One important point to remember is that topological sort can be applied only to acyclic graph. | 
|  | 5 | + | 
|  | 6 | +class Graph(): | 
|  | 7 | +    def __init__(self, count): | 
|  | 8 | +        self.vertex = {} | 
|  | 9 | +        self.count = count          # vertex count | 
|  | 10 | + | 
|  | 11 | +    # for printing the Graph vertexes | 
|  | 12 | +    def printGraph(self): | 
|  | 13 | +        for i in self.vertex.keys(): | 
|  | 14 | +            print(i,' -> ', ' -> '.join([str(j) for j in self.vertex[i]])) | 
|  | 15 | + | 
|  | 16 | +    # for adding the edge beween two vertexes | 
|  | 17 | +    def addEdge(self, fromVertex, toVertex): | 
|  | 18 | +        # check if vertex is already present, | 
|  | 19 | +        if fromVertex in self.vertex.keys(): | 
|  | 20 | +            self.vertex[fromVertex].append(toVertex) | 
|  | 21 | +        else: | 
|  | 22 | +            # else make a new vertex | 
|  | 23 | +            self.vertex[fromVertex] = [toVertex] | 
|  | 24 | +            self.vertex[toVertex] = [] | 
|  | 25 | + | 
|  | 26 | +    def topologicalSort(self): | 
|  | 27 | +        visited = [False] * self.count           # Marking all vertices as not visited | 
|  | 28 | +        stack = []                               # Stack for storing the vertex | 
|  | 29 | +        for vertex in range(self.count): | 
|  | 30 | +            # Call the recursive function only if not visited | 
|  | 31 | +            if visited[vertex] == False: | 
|  | 32 | +                self.topologicalSortRec(vertex, visited, stack) | 
|  | 33 | + | 
|  | 34 | +        print(' '.join([str(i) for i in stack])) | 
|  | 35 | +        # print(stack) | 
|  | 36 | + | 
|  | 37 | +    # Recursive function for topological Sort | 
|  | 38 | +    def topologicalSortRec(self, vertex, visited, stack): | 
|  | 39 | + | 
|  | 40 | +        # Mark the current node in visited | 
|  | 41 | +        visited[vertex] = True | 
|  | 42 | + | 
|  | 43 | +        # mark all adjacent nodes of the current node | 
|  | 44 | +        try: | 
|  | 45 | +            for adjacentNode in self.vertex[vertex]: | 
|  | 46 | +                if visited[adjacentNode] == False: | 
|  | 47 | +                    self.topologicalSortRec(adjacentNode, visited, stack) | 
|  | 48 | +        except KeyError: | 
|  | 49 | +            return | 
|  | 50 | + | 
|  | 51 | +        # Push current vertex to stack which stores the result | 
|  | 52 | +        stack.insert(0,vertex) | 
|  | 53 | + | 
|  | 54 | +if __name__ == '__main__': | 
|  | 55 | +    g= Graph(6) | 
|  | 56 | +    g.addEdge(5, 2) | 
|  | 57 | +    g.addEdge(5, 0) | 
|  | 58 | +    g.addEdge(4, 0) | 
|  | 59 | +    g.addEdge(4, 1) | 
|  | 60 | +    g.addEdge(2, 3) | 
|  | 61 | +    g.addEdge(3, 1) | 
|  | 62 | +    # g.printGraph() | 
|  | 63 | +    g.topologicalSort() | 
|  | 64 | + | 
|  | 65 | +    # OUTPUT: | 
|  | 66 | +    # 5 4 2 3 1 0 | 
0 commit comments