| 
5 | 5 | author: Atsushi Sakai (@Atsushi_twi)  | 
6 | 6 | 
  | 
7 | 7 | """  | 
 | 8 | +import sys  | 
 | 9 | +import pathlib  | 
 | 10 | +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent))  | 
8 | 11 | 
 
  | 
9 | 12 | import numpy as np  | 
10 | 13 | import matplotlib.pyplot as plt  | 
11 |  | -import scipy.interpolate as scipy_interpolate  | 
 | 14 | +import scipy.interpolate as interpolate  | 
12 | 15 | 
 
  | 
 | 16 | +from utils.plot import plot_curvature  | 
13 | 17 | 
 
  | 
14 |  | -def approximate_b_spline_path(x: list, y: list, n_path_points: int,  | 
15 |  | -                              degree: int = 3) -> tuple:  | 
16 |  | -    """  | 
17 |  | -    approximate points with a B-Spline path  | 
18 | 18 | 
 
  | 
19 |  | -    :param x: x position list of approximated points  | 
20 |  | -    :param y: y position list of approximated points  | 
21 |  | -    :param n_path_points: number of path points  | 
22 |  | -    :param degree: (Optional) B Spline curve degree  | 
23 |  | -    :return: x and y position list of the result path  | 
 | 19 | +def approximate_b_spline_path(x: list,  | 
 | 20 | +                              y: list,  | 
 | 21 | +                              n_path_points: int,  | 
 | 22 | +                              degree: int = 3,  | 
 | 23 | +                              s=None,  | 
 | 24 | +                              ) -> tuple:  | 
24 | 25 |     """  | 
25 |  | -    t = range(len(x))  | 
26 |  | -    x_tup = scipy_interpolate.splrep(t, x, k=degree)  | 
27 |  | -    y_tup = scipy_interpolate.splrep(t, y, k=degree)  | 
 | 26 | +    Approximate points with a B-Spline path  | 
 | 27 | +
  | 
 | 28 | +    Parameters  | 
 | 29 | +    ----------  | 
 | 30 | +    x : array_like  | 
 | 31 | +        x position list of approximated points  | 
 | 32 | +    y : array_like  | 
 | 33 | +        y position list of approximated points  | 
 | 34 | +    n_path_points : int  | 
 | 35 | +        number of path points  | 
 | 36 | +    degree : int, optional  | 
 | 37 | +        B Spline curve degree. Must be 2<= k <= 5. Default: 3.  | 
 | 38 | +    s : int, optional  | 
 | 39 | +        smoothing parameter. If this value is bigger, the path will be  | 
 | 40 | +        smoother, but it will be less accurate. If this value is smaller,  | 
 | 41 | +        the path will be more accurate, but it will be less smooth.  | 
 | 42 | +        When `s` is 0, it is equivalent to the interpolation. Default is None,  | 
 | 43 | +        in this case `s` will be `len(x)`.  | 
 | 44 | +
  | 
 | 45 | +    Returns  | 
 | 46 | +    -------  | 
 | 47 | +    x : array  | 
 | 48 | +        x positions of the result path  | 
 | 49 | +    y : array  | 
 | 50 | +        y positions of the result path  | 
 | 51 | +    heading : array  | 
 | 52 | +        heading of the result path  | 
 | 53 | +    curvature : array  | 
 | 54 | +        curvature of the result path  | 
28 | 55 | 
  | 
29 |  | -    x_list = list(x_tup)  | 
30 |  | -    x_list[1] = x + [0.0, 0.0, 0.0, 0.0]  | 
31 |  | - | 
32 |  | -    y_list = list(y_tup)  | 
33 |  | -    y_list[1] = y + [0.0, 0.0, 0.0, 0.0]  | 
 | 56 | +    """  | 
 | 57 | +    distances = _calc_distance_vector(x, y)  | 
34 | 58 | 
 
  | 
35 |  | -    ipl_t = np.linspace(0.0, len(x) - 1, n_path_points)  | 
36 |  | -    rx = scipy_interpolate.splev(ipl_t, x_list)  | 
37 |  | -    ry = scipy_interpolate.splev(ipl_t, y_list)  | 
 | 59 | +    spl_i_x = interpolate.UnivariateSpline(distances, x, k=degree, s=s)  | 
 | 60 | +    spl_i_y = interpolate.UnivariateSpline(distances, y, k=degree, s=s)  | 
38 | 61 | 
 
  | 
39 |  | -    return rx, ry  | 
 | 62 | +    sampled = np.linspace(0.0, distances[-1], n_path_points)  | 
 | 63 | +    return _evaluate_spline(sampled, spl_i_x, spl_i_y)  | 
40 | 64 | 
 
  | 
41 | 65 | 
 
  | 
42 |  | -def interpolate_b_spline_path(x: list, y: list, n_path_points: int,  | 
 | 66 | +def interpolate_b_spline_path(x, y,  | 
 | 67 | +                              n_path_points: int,  | 
43 | 68 |                               degree: int = 3) -> tuple:  | 
44 | 69 |     """  | 
45 |  | -    interpolate points with a B-Spline path  | 
 | 70 | +    Interpolate x-y points with a B-Spline path  | 
 | 71 | +
  | 
 | 72 | +    Parameters  | 
 | 73 | +    ----------  | 
 | 74 | +    x : array_like  | 
 | 75 | +        x positions of interpolated points  | 
 | 76 | +    y : array_like  | 
 | 77 | +        y positions of interpolated points  | 
 | 78 | +    n_path_points : int  | 
 | 79 | +        number of path points  | 
 | 80 | +    degree : int, optional  | 
 | 81 | +        B-Spline degree. Must be 2<= k <= 5. Default: 3  | 
 | 82 | +
  | 
 | 83 | +    Returns  | 
 | 84 | +    -------  | 
 | 85 | +    x : array  | 
 | 86 | +        x positions of the result path  | 
 | 87 | +    y : array  | 
 | 88 | +        y positions of the result path  | 
 | 89 | +    heading : array  | 
 | 90 | +        heading of the result path  | 
 | 91 | +    curvature : array  | 
 | 92 | +        curvature of the result path  | 
46 | 93 | 
  | 
47 |  | -    :param x: x positions of interpolated points  | 
48 |  | -    :param y: y positions of interpolated points  | 
49 |  | -    :param n_path_points: number of path points  | 
50 |  | -    :param degree: B-Spline degree  | 
51 |  | -    :return: x and y position list of the result path  | 
52 | 94 |     """  | 
53 |  | -    ipl_t = np.linspace(0.0, len(x) - 1, len(x))  | 
54 |  | -    spl_i_x = scipy_interpolate.make_interp_spline(ipl_t, x, k=degree)  | 
55 |  | -    spl_i_y = scipy_interpolate.make_interp_spline(ipl_t, y, k=degree)  | 
 | 95 | +    return approximate_b_spline_path(x, y, n_path_points, degree, s=0.0)  | 
56 | 96 | 
 
  | 
57 |  | -    travel = np.linspace(0.0, len(x) - 1, n_path_points)  | 
58 |  | -    return spl_i_x(travel), spl_i_y(travel)  | 
 | 97 | + | 
 | 98 | +def _calc_distance_vector(x, y):  | 
 | 99 | +    dx, dy = np.diff(x), np.diff(y)  | 
 | 100 | +    distances = np.cumsum([np.hypot(idx, idy) for idx, idy in zip(dx, dy)])  | 
 | 101 | +    distances = np.concatenate(([0.0], distances))  | 
 | 102 | +    distances /= distances[-1]  | 
 | 103 | +    return distances  | 
 | 104 | + | 
 | 105 | + | 
 | 106 | +def _evaluate_spline(sampled, spl_i_x, spl_i_y):  | 
 | 107 | +    x = spl_i_x(sampled)  | 
 | 108 | +    y = spl_i_y(sampled)  | 
 | 109 | +    dx = spl_i_x.derivative(1)(sampled)  | 
 | 110 | +    dy = spl_i_y.derivative(1)(sampled)  | 
 | 111 | +    heading = np.arctan2(dy, dx)  | 
 | 112 | +    ddx = spl_i_x.derivative(2)(sampled)  | 
 | 113 | +    ddy = spl_i_y.derivative(2)(sampled)  | 
 | 114 | +    curvature = (ddy * dx - ddx * dy) / np.power(dx * dx + dy * dy, 2.0 / 3.0)  | 
 | 115 | +    return np.array(x), y, heading, curvature,  | 
59 | 116 | 
 
  | 
60 | 117 | 
 
  | 
61 | 118 | def main():  | 
62 | 119 |     print(__file__ + " start!!")  | 
63 | 120 |     # way points  | 
64 | 121 |     way_point_x = [-1.0, 3.0, 4.0, 2.0, 1.0]  | 
65 | 122 |     way_point_y = [0.0, -3.0, 1.0, 1.0, 3.0]  | 
66 |  | -    n_course_point = 100  # sampling number  | 
 | 123 | +    n_course_point = 50  # sampling number  | 
67 | 124 | 
 
  | 
68 |  | -    rax, ray = approximate_b_spline_path(way_point_x, way_point_y,  | 
69 |  | -                                         n_course_point)  | 
70 |  | -    rix, riy = interpolate_b_spline_path(way_point_x, way_point_y,  | 
71 |  | -                                         n_course_point)  | 
 | 125 | +    plt.subplots()  | 
 | 126 | +    rax, ray, heading, curvature = approximate_b_spline_path(  | 
 | 127 | +        way_point_x, way_point_y, n_course_point, s=0.5)  | 
 | 128 | +    plt.plot(rax, ray, '-r', label="Approximated B-Spline path")  | 
 | 129 | +    plot_curvature(rax, ray, heading, curvature)  | 
72 | 130 | 
 
  | 
73 |  | -    # show results  | 
 | 131 | +    plt.title("B-Spline approximation")  | 
74 | 132 |     plt.plot(way_point_x, way_point_y, '-og', label="way points")  | 
75 |  | -    plt.plot(rax, ray, '-r', label="Approximated B-Spline path")  | 
 | 133 | +    plt.grid(True)  | 
 | 134 | +    plt.legend()  | 
 | 135 | +    plt.axis("equal")  | 
 | 136 | + | 
 | 137 | +    plt.subplots()  | 
 | 138 | +    rix, riy, heading, curvature = interpolate_b_spline_path(  | 
 | 139 | +        way_point_x, way_point_y, n_course_point)  | 
76 | 140 |     plt.plot(rix, riy, '-b', label="Interpolated B-Spline path")  | 
 | 141 | +    plot_curvature(rix, riy, heading, curvature)  | 
 | 142 | + | 
 | 143 | +    plt.title("B-Spline interpolation")  | 
 | 144 | +    plt.plot(way_point_x, way_point_y, '-og', label="way points")  | 
77 | 145 |     plt.grid(True)  | 
78 | 146 |     plt.legend()  | 
79 | 147 |     plt.axis("equal")  | 
 | 
0 commit comments