-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtest_problem.py
197 lines (183 loc) · 7.01 KB
/
test_problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Copyright (c) 2022 AIRBUS and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import random
from collections.abc import Hashable
import pytest
from discrete_optimization.rcpsp_multiskill.parser_imopse import (
get_data_available,
parse_file,
)
from discrete_optimization.rcpsp_multiskill.problem import (
MultiskillRcpspProblem,
TaskDetails,
TaskDetailsPreemptive,
VariantMultiskillRcpspSolution,
VariantPreemptiveMultiskillRcpspSolution,
)
files_rcpsp = get_data_available()
@pytest.mark.parametrize("rcpsp_problem_file", files_rcpsp)
def test_multiskill(rcpsp_problem_file):
rcpsp_problem: MultiskillRcpspProblem = parse_file(rcpsp_problem_file)[0]
rcpsp_problem = rcpsp_problem.to_variant_model()
assert rcpsp_problem.is_rcpsp_multimode() is False
assert rcpsp_problem.is_varying_resource() is False
# Create solution (mode = 1 for each task, identity permutation)
permutation = [i for i in range(rcpsp_problem.n_jobs_non_dummy)]
random.shuffle(permutation)
mode_list = [1 for i in range(rcpsp_problem.n_jobs_non_dummy)]
# This is actually the dummy solution !
rcpsp_sol = VariantMultiskillRcpspSolution(
problem=rcpsp_problem,
priority_list_task=permutation,
priority_worker_per_task=[
[w for w in rcpsp_problem.employees]
for i in range(rcpsp_problem.n_jobs_non_dummy)
],
modes_vector=mode_list,
fast=True,
)
rcpsp_problem.evaluate(rcpsp_sol)
assert rcpsp_problem.satisfy(rcpsp_sol)
def create_task_details_classic(
solution: VariantMultiskillRcpspSolution, time_to_cut: int
) -> tuple[dict[Hashable, TaskDetails], dict[Hashable, TaskDetails]]:
finished = set(
[t for t in solution.schedule if solution.get_end_time(t) <= time_to_cut]
)
completed = {
t: TaskDetails(
solution.get_start_time(t),
solution.get_end_time(t),
resource_units_used=list(solution.employee_usage.get(t, {}).keys()),
)
for t in finished
}
ongoing = {
t: TaskDetails(
solution.get_start_time(t),
solution.get_end_time(t),
resource_units_used=list(solution.employee_usage.get(t, {}).keys()),
)
for t in solution.schedule
if solution.get_start_time(t) <= time_to_cut < solution.get_end_time(t)
}
return completed, ongoing
def create_task_details_preemptive(
solution: VariantPreemptiveMultiskillRcpspSolution, time_to_cut: int
) -> tuple[
dict[Hashable, TaskDetailsPreemptive], dict[Hashable, TaskDetailsPreemptive]
]:
finished = set(
[t for t in solution.schedule if solution.get_end_time(t) <= time_to_cut]
)
completed = {}
for t in finished:
completed[t] = TaskDetailsPreemptive(
solution.get_start_times_list(t),
solution.get_end_times_list(t),
resource_units_used=[
list(
solution.employee_usage.get(
t, [{} for m in range(len(solution.get_start_times_list(t)))]
)[k].keys()
)
for k in range(len(solution.get_start_times_list(t)))
],
)
ongoing = {
t: TaskDetailsPreemptive(
solution.get_start_times_list(t),
solution.get_end_times_list(t),
resource_units_used=[
list(
solution.employee_usage.get(
t, [{} for m in range(len(solution.get_start_times_list(t)))]
)[k].keys()
)
for k in range(len(solution.employee_usage[t]))
],
)
for t in solution.schedule
if solution.schedule[t]["starts"][0]
<= time_to_cut
< solution.schedule[t]["ends"][-1]
}
return completed, ongoing
@pytest.mark.parametrize("rcpsp_problem_file", files_rcpsp)
@pytest.mark.parametrize("preemptive_version", [True, False])
def test_partial_sgs(rcpsp_problem_file, preemptive_version):
rcpsp_problem: MultiskillRcpspProblem = parse_file(
rcpsp_problem_file, preemptive=preemptive_version
)[0]
rcpsp_problem = rcpsp_problem.to_variant_model()
class_solution = (
VariantMultiskillRcpspSolution
if not preemptive_version
else VariantPreemptiveMultiskillRcpspSolution
)
dummy_solution: class_solution = rcpsp_problem.get_dummy_solution()
dummy_solution.priority_list_task
dummy_solution.priority_worker_per_task
dummy_solution.modes_vector
rcpsp_problem.evaluate(dummy_solution)
assert rcpsp_problem.satisfy(dummy_solution)
timesgs2 = int(dummy_solution.get_end_time(rcpsp_problem.sink_task) / 2)
for i in range(2):
dummy_solution.do_recompute(fast=False)
rcpsp_problem.evaluate(dummy_solution)
dummy_solution.do_recompute(fast=True)
rcpsp_problem.evaluate(dummy_solution)
if preemptive_version:
completed, ongoing = create_task_details_preemptive(
solution=dummy_solution, time_to_cut=timesgs2
)
else:
completed, ongoing = create_task_details_classic(
solution=dummy_solution, time_to_cut=timesgs2
)
for i in range(2):
dummy_solution.run_sgs_partial(
current_t=timesgs2,
completed_tasks=completed,
scheduled_tasks_start_times=ongoing,
fast=False,
)
dummy_solution.run_sgs_partial(
current_t=timesgs2,
completed_tasks=completed,
scheduled_tasks_start_times=ongoing,
fast=True,
)
if preemptive_version:
for dict_ in [ongoing, completed]:
for o in dict_:
(
dummy_solution.schedule[o],
dummy_solution.employee_usage.get(o, {}),
dict_[o],
)
starts = dummy_solution.get_start_times_list(o)
ends = dummy_solution.get_end_times_list(o)
employees = dummy_solution.employee_usage.get(o, [{}])
for i in range(len(starts)):
assert starts[i] == dict_[o].starts[i]
assert ends[i] == dict_[o].ends[i]
for i in range(len(employees)):
assert all(
e in dict_[o].resource_units_used[i] for e in employees[i]
)
else:
for dict_ in [ongoing, completed]:
for o in dict_:
(
dummy_solution.schedule[o],
dummy_solution.employee_usage.get(o, {}),
dict_[o],
)
assert dummy_solution.get_start_time(o) == dict_[o].start
assert dummy_solution.get_end_time(o) == dict_[o].end
assert all(
e in dict_[o].resource_units_used
for e in dummy_solution.employee_usage.get(o, {})
)