|
| 1 | +""" |
| 2 | +
|
| 3 | +\eta^3 polynomials planner |
| 4 | +
|
| 5 | +author: Joe Dinius, Ph.D (https://jwdinius.github.io) |
| 6 | +
|
| 7 | +Ref: |
| 8 | +
|
| 9 | +- [\eta^3-Splines for the Smooth Path Generation of Wheeled Mobile Robots](https://ieeexplore.ieee.org/document/4339545/) |
| 10 | +
|
| 11 | +""" |
| 12 | + |
| 13 | +import numpy as np |
| 14 | +import matplotlib.pyplot as plt |
| 15 | + |
| 16 | +# NOTE: *_pose is a 3-array: 0 - x coord, 1 - y coord, 2 - orientation angle \theta |
| 17 | +class eta3_path(object): |
| 18 | + """ |
| 19 | + eta3_path |
| 20 | +
|
| 21 | + input |
| 22 | + segments: list of `eta3_path_segment` instances definining a continuous path |
| 23 | + """ |
| 24 | + def __init__(self, segments): |
| 25 | + # ensure input has the correct form |
| 26 | + assert(isinstance(segments, list) and isinstance(segments[0], eta3_path_segment)) |
| 27 | + # ensure that each segment begins from the previous segment's end (continuity) |
| 28 | + for r,s in zip(segments[:-1], segments[1:]): |
| 29 | + assert(np.array_equal(r.end_pose, s.start_pose)) |
| 30 | + self.segments = segments |
| 31 | + """ |
| 32 | + eta3_path::calc_path_point |
| 33 | +
|
| 34 | + input |
| 35 | + normalized interpolation point along path object, 0 <= u <= len(self.segments) |
| 36 | + returns |
| 37 | + 2d (x,y) position vector |
| 38 | + """ |
| 39 | + def calc_path_point(self, u): |
| 40 | + assert(u >= 0 and u <= len(self.segments)) |
| 41 | + if np.isclose(u, len(self.segments)): |
| 42 | + segment_idx = len(self.segments)-1 |
| 43 | + u = 1. |
| 44 | + else: |
| 45 | + segment_idx = int(np.floor(u)) |
| 46 | + u -= segment_idx |
| 47 | + return self.segments[segment_idx].calc_point(u) |
| 48 | + |
| 49 | + |
| 50 | +class eta3_path_segment(object): |
| 51 | + """ |
| 52 | + eta3_path_segment - constructs an eta^3 path segment based on desired shaping, eta, and curvature vector, kappa. |
| 53 | + If either, or both, of eta and kappa are not set during initialization, they will |
| 54 | + default to zeros. |
| 55 | +
|
| 56 | + input |
| 57 | + start_pose - starting pose array (x, y, \theta) |
| 58 | + end_pose - ending pose array (x, y, \theta) |
| 59 | + eta - shaping parameters, default=None |
| 60 | + kappa - curvature parameters, default=None |
| 61 | + """ |
| 62 | + def __init__(self, start_pose, end_pose, eta=None, kappa=None): |
| 63 | + # make sure inputs are of the correct size |
| 64 | + assert(len(start_pose) == 3 and len(start_pose) == len(end_pose)) |
| 65 | + self.start_pose = start_pose |
| 66 | + self.end_pose = end_pose |
| 67 | + # if no eta is passed, initialize it to array of zeros |
| 68 | + if not eta: |
| 69 | + eta = np.zeros((6,)) |
| 70 | + else: |
| 71 | + # make sure that eta has correct size |
| 72 | + assert(len(eta) == 6) |
| 73 | + # if no kappa is passed, initialize to array of zeros |
| 74 | + if not kappa: |
| 75 | + kappa = np.zeros((4,)) |
| 76 | + else: |
| 77 | + assert(len(kappa) == 4) |
| 78 | + # set up angle cosines and sines for simpler computations below |
| 79 | + ca = np.cos(start_pose[2]) |
| 80 | + sa = np.sin(start_pose[2]) |
| 81 | + cb = np.cos(end_pose[2]) |
| 82 | + sb = np.sin(end_pose[2]) |
| 83 | + # 2 dimensions (x,y) x 8 coefficients per dimension |
| 84 | + self.coeffs = np.empty((2, 8)) |
| 85 | + # constant terms (u^0) |
| 86 | + self.coeffs[0, 0] = start_pose[0] |
| 87 | + self.coeffs[1, 0] = start_pose[1] |
| 88 | + # linear (u^1) |
| 89 | + self.coeffs[0, 1] = eta[0] * ca |
| 90 | + self.coeffs[1, 1] = eta[0] * sa |
| 91 | + # quadratic (u^2) |
| 92 | + self.coeffs[0, 2] = 1./2 * eta[2] * ca - 1./2 * eta[0]**2 * kappa[0] * sa |
| 93 | + self.coeffs[1, 2] = 1./2 * eta[2] * sa + 1./2 * eta[0]**2 * kappa[0] * ca |
| 94 | + # cubic (u^3) |
| 95 | + self.coeffs[0, 3] = 1./6 * eta[4] * ca - 1./6 * (eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * sa |
| 96 | + self.coeffs[1, 3] = 1./6 * eta[4] * sa + 1./6 * (eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * ca |
| 97 | + # quartic (u^4) |
| 98 | + self.coeffs[0, 4] = 35. * (end_pose[0] - start_pose[0]) - (20. * eta[0] + 5 * eta[2] + 2./3 * eta[4]) * ca \ |
| 99 | + + (5. * eta[0]**2 * kappa[0] + 2./3 * eta[0]**3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * sa \ |
| 100 | + - (15. * eta[1] - 5./2 * eta[3] + 1./6 * eta[5]) * cb \ |
| 101 | + - (5./2 * eta[1]**2 * kappa[2] - 1./6 * eta[1]**3 * kappa[3] - 1./2 * eta[1] * eta[3] * kappa[2]) * sb |
| 102 | + self.coeffs[1, 4] = 35. * (end_pose[1] - start_pose[1]) - (20. * eta[0] + 5. * eta[2] + 2./3 * eta[4]) * sa \ |
| 103 | + - (5. * eta[0]**2 * kappa[0] + 2./3 * eta[0]**3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * ca \ |
| 104 | + - (15. * eta[1] - 5./2 * eta[3] + 1./6 * eta[5]) * sb \ |
| 105 | + + (5./2 * eta[1]**2 * kappa[2] - 1./6 * eta[1]**3 * kappa[3] - 1./2 * eta[1] * eta[3] * kappa[2]) * cb |
| 106 | + # quintic (u^5) |
| 107 | + self.coeffs[0, 5] = -84. * (end_pose[0] - start_pose[0]) + (45. * eta[0] + 10. * eta[2] + eta[4]) * ca \ |
| 108 | + - (10. * eta[0]**2 * kappa[0] + eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * sa \ |
| 109 | + + (39. * eta[1] - 7. * eta[3] + 1./2 * eta[5]) * cb \ |
| 110 | + + (7. * eta[1]**2 * kappa[2] - 1./2 * eta[1]**3 * kappa[3] - 3./2 * eta[1] * eta[3] * kappa[2]) * sb |
| 111 | + self.coeffs[1, 5] = -84. * (end_pose[1] - start_pose[1]) + (45. * eta[0] + 10. * eta[2] + eta[4]) * sa \ |
| 112 | + + (10. * eta[0]**2 * kappa[0] + eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * ca \ |
| 113 | + + (39. * eta[1] - 7. * eta[3] + 1./2 * eta[5]) * sb \ |
| 114 | + - (7. * eta[1]**2 * kappa[2] - 1./2 * eta[1]**3 * kappa[3] - 3./2 * eta[1] * eta[3] * kappa[2]) * cb |
| 115 | + # sextic (u^6) |
| 116 | + self.coeffs[0, 6] = 70. * (end_pose[0] - start_pose[0]) - (36. * eta[0] + 15./2 * eta[2] + 2./3 * eta[4]) * ca \ |
| 117 | + + (15./2 * eta[0]**2 * kappa[0] + 2./3 * eta[0]**3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * sa \ |
| 118 | + - (34. * eta[1] - 13./2 * eta[3] + 1./2 * eta[5]) * cb \ |
| 119 | + - (13./2 * eta[1]**2 * kappa[2] - 1./2 * eta[1]**3 * kappa[3] - 3./2 * eta[1] * eta[3] * kappa[2]) * sb |
| 120 | + self.coeffs[1, 6] = 70. * (end_pose[1] - start_pose[1]) - (36. * eta[0] + 15./2 * eta[2] + 2./3 * eta[4]) * sa \ |
| 121 | + - (15./2 * eta[0]**2 * kappa[0] + 2./3 * eta[0]**3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * ca \ |
| 122 | + - (34. * eta[1] - 13./2 * eta[3] + 1./2 * eta[5]) * sb \ |
| 123 | + + (13./2 * eta[1]**2 * kappa[2] - 1./2 * eta[1]**3 * kappa[3] - 3./2 * eta[1] * eta[3] * kappa[2]) * cb |
| 124 | + # septic (u^7) |
| 125 | + self.coeffs[0, 7] = -20. * (end_pose[0] - start_pose[0]) + (10. * eta[0] + 2. * eta[2] + 1./6 * eta[4]) * ca \ |
| 126 | + - (2. * eta[0]**2 * kappa[0] + 1./6 * eta[0]**3 * kappa[1] + 1./2 * eta[0] * eta[2] * kappa[0]) * sa \ |
| 127 | + + (10. * eta[1] - 2. * eta[3] + 1./6 * eta[5]) * cb \ |
| 128 | + + (2. * eta[1]**2 * kappa[2] - 1./6 * eta[1]**3 * kappa[3] - 1./2 * eta[1] * eta[3] * kappa[2]) * sb |
| 129 | + self.coeffs[1, 7] = -20. * (end_pose[1] - start_pose[1]) + (10. * eta[0] + 2. * eta[2] + 1./6 * eta[4]) * sa \ |
| 130 | + + (2. * eta[0]**2 * kappa[0] + 1./6 * eta[0]**3 * kappa[1] + 1./2 * eta[0] * eta[2] * kappa[0]) * ca \ |
| 131 | + + (10. * eta[1] - 2. * eta[3] + 1./6 * eta[5]) * sb \ |
| 132 | + - (2. * eta[1]**2 * kappa[2] - 1./6 * eta[1]**3 * kappa[3] - 1./2 * eta[1] * eta[3] * kappa[2]) * cb |
| 133 | + """ |
| 134 | + eta3_path_segment::calc_point |
| 135 | + |
| 136 | + input |
| 137 | + u - parametric representation of a point along the segment, 0 <= u <= 1 |
| 138 | + returns |
| 139 | + (x,y) of point along the segment |
| 140 | + """ |
| 141 | + def calc_point(self, u): |
| 142 | + assert(u >= 0 and u <= 1) |
| 143 | + return self.coeffs.dot(np.array([1, u, u**2, u**3, u**4, u**5, u**6, u**7])) |
| 144 | + |
| 145 | + |
| 146 | +def main(): |
| 147 | + """ |
| 148 | + recreate path from reference (see Table 1) |
| 149 | + """ |
| 150 | + path_segments = [] |
| 151 | + |
| 152 | + # segment 1: lane-change curve |
| 153 | + start_pose = [0, 0, 0] |
| 154 | + end_pose = [4, 1.5, 0] |
| 155 | + # NOTE: The ordering on kappa is [kappa_A, kappad_A, kappa_B, kappad_B], with kappad_* being the curvature derivative |
| 156 | + kappa = [0, 0, 0, 0] |
| 157 | + eta = [4.27, 4.27, 0, 0, 0, 0] |
| 158 | + path_segments.append(eta3_path_segment(start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) |
| 159 | + |
| 160 | + # segment 2: line segment |
| 161 | + start_pose = [4, 1.5, 0] |
| 162 | + end_pose = [5.5, 1.5, 0] |
| 163 | + kappa = [0, 0, 0, 0] |
| 164 | + eta = [0, 0, 0, 0, 0, 0] |
| 165 | + path_segments.append(eta3_path_segment(start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) |
| 166 | + |
| 167 | + # segment 3: cubic spiral |
| 168 | + start_pose = [5.5, 1.5, 0] |
| 169 | + end_pose = [7.4377, 1.8235, 0.6667] |
| 170 | + kappa = [0, 0, 1, 1] |
| 171 | + eta = [1.88, 1.88, 0, 0, 0, 0] |
| 172 | + path_segments.append(eta3_path_segment(start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) |
| 173 | + |
| 174 | + # segment 4: generic twirl arc |
| 175 | + start_pose = [7.4377, 1.8235, 0.6667] |
| 176 | + end_pose = [7.8, 4.3, 1.8] |
| 177 | + kappa = [1, 1, 0.5, 0] |
| 178 | + eta = [7, 10, 10, -10, 4, 4] |
| 179 | + path_segments.append(eta3_path_segment(start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) |
| 180 | + |
| 181 | + # segment 5: circular arc |
| 182 | + start_pose = [7.8, 4.3, 1.8] |
| 183 | + end_pose = [5.4581, 5.8064, 3.3416] |
| 184 | + kappa = [0.5, 0, 0.5, 0] |
| 185 | + eta = [2.98, 2.98, 0, 0, 0, 0] |
| 186 | + path_segments.append(eta3_path_segment(start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) |
| 187 | + |
| 188 | + # construct the whole path |
| 189 | + path = eta3_path(path_segments) |
| 190 | + |
| 191 | + # interpolate at several points along the path |
| 192 | + ui = np.linspace(0, len(path_segments), 1001) |
| 193 | + pos = np.empty((2, ui.size)) |
| 194 | + for i,u in enumerate(ui): |
| 195 | + pos[:, i] = path.calc_path_point(u) |
| 196 | + |
| 197 | + # plot the path |
| 198 | + plt.figure('Path from Reference') |
| 199 | + plt.plot(pos[0, :], pos[1, :]) |
| 200 | + plt.xlabel('x') |
| 201 | + plt.ylabel('y') |
| 202 | + plt.title('Path') |
| 203 | + plt.show() |
| 204 | + |
| 205 | +if __name__ == '__main__': |
| 206 | + main() |
0 commit comments