Skip to content

Commit 009a98d

Browse files
committed
Add \eta^3 spline path to PathPlanning
1 parent 52d0e35 commit 009a98d

File tree

1 file changed

+206
-0
lines changed

1 file changed

+206
-0
lines changed
Lines changed: 206 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,206 @@
1+
"""
2+
3+
\eta^3 polynomials planner
4+
5+
author: Joe Dinius, Ph.D (https://jwdinius.github.io)
6+
7+
Ref:
8+
9+
- [\eta^3-Splines for the Smooth Path Generation of Wheeled Mobile Robots](https://ieeexplore.ieee.org/document/4339545/)
10+
11+
"""
12+
13+
import numpy as np
14+
import matplotlib.pyplot as plt
15+
16+
# NOTE: *_pose is a 3-array: 0 - x coord, 1 - y coord, 2 - orientation angle \theta
17+
class eta3_path(object):
18+
"""
19+
eta3_path
20+
21+
input
22+
segments: list of `eta3_path_segment` instances definining a continuous path
23+
"""
24+
def __init__(self, segments):
25+
# ensure input has the correct form
26+
assert(isinstance(segments, list) and isinstance(segments[0], eta3_path_segment))
27+
# ensure that each segment begins from the previous segment's end (continuity)
28+
for r,s in zip(segments[:-1], segments[1:]):
29+
assert(np.array_equal(r.end_pose, s.start_pose))
30+
self.segments = segments
31+
"""
32+
eta3_path::calc_path_point
33+
34+
input
35+
normalized interpolation point along path object, 0 <= u <= len(self.segments)
36+
returns
37+
2d (x,y) position vector
38+
"""
39+
def calc_path_point(self, u):
40+
assert(u >= 0 and u <= len(self.segments))
41+
if np.isclose(u, len(self.segments)):
42+
segment_idx = len(self.segments)-1
43+
u = 1.
44+
else:
45+
segment_idx = int(np.floor(u))
46+
u -= segment_idx
47+
return self.segments[segment_idx].calc_point(u)
48+
49+
50+
class eta3_path_segment(object):
51+
"""
52+
eta3_path_segment - constructs an eta^3 path segment based on desired shaping, eta, and curvature vector, kappa.
53+
If either, or both, of eta and kappa are not set during initialization, they will
54+
default to zeros.
55+
56+
input
57+
start_pose - starting pose array (x, y, \theta)
58+
end_pose - ending pose array (x, y, \theta)
59+
eta - shaping parameters, default=None
60+
kappa - curvature parameters, default=None
61+
"""
62+
def __init__(self, start_pose, end_pose, eta=None, kappa=None):
63+
# make sure inputs are of the correct size
64+
assert(len(start_pose) == 3 and len(start_pose) == len(end_pose))
65+
self.start_pose = start_pose
66+
self.end_pose = end_pose
67+
# if no eta is passed, initialize it to array of zeros
68+
if not eta:
69+
eta = np.zeros((6,))
70+
else:
71+
# make sure that eta has correct size
72+
assert(len(eta) == 6)
73+
# if no kappa is passed, initialize to array of zeros
74+
if not kappa:
75+
kappa = np.zeros((4,))
76+
else:
77+
assert(len(kappa) == 4)
78+
# set up angle cosines and sines for simpler computations below
79+
ca = np.cos(start_pose[2])
80+
sa = np.sin(start_pose[2])
81+
cb = np.cos(end_pose[2])
82+
sb = np.sin(end_pose[2])
83+
# 2 dimensions (x,y) x 8 coefficients per dimension
84+
self.coeffs = np.empty((2, 8))
85+
# constant terms (u^0)
86+
self.coeffs[0, 0] = start_pose[0]
87+
self.coeffs[1, 0] = start_pose[1]
88+
# linear (u^1)
89+
self.coeffs[0, 1] = eta[0] * ca
90+
self.coeffs[1, 1] = eta[0] * sa
91+
# quadratic (u^2)
92+
self.coeffs[0, 2] = 1./2 * eta[2] * ca - 1./2 * eta[0]**2 * kappa[0] * sa
93+
self.coeffs[1, 2] = 1./2 * eta[2] * sa + 1./2 * eta[0]**2 * kappa[0] * ca
94+
# cubic (u^3)
95+
self.coeffs[0, 3] = 1./6 * eta[4] * ca - 1./6 * (eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * sa
96+
self.coeffs[1, 3] = 1./6 * eta[4] * sa + 1./6 * (eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * ca
97+
# quartic (u^4)
98+
self.coeffs[0, 4] = 35. * (end_pose[0] - start_pose[0]) - (20. * eta[0] + 5 * eta[2] + 2./3 * eta[4]) * ca \
99+
+ (5. * eta[0]**2 * kappa[0] + 2./3 * eta[0]**3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * sa \
100+
- (15. * eta[1] - 5./2 * eta[3] + 1./6 * eta[5]) * cb \
101+
- (5./2 * eta[1]**2 * kappa[2] - 1./6 * eta[1]**3 * kappa[3] - 1./2 * eta[1] * eta[3] * kappa[2]) * sb
102+
self.coeffs[1, 4] = 35. * (end_pose[1] - start_pose[1]) - (20. * eta[0] + 5. * eta[2] + 2./3 * eta[4]) * sa \
103+
- (5. * eta[0]**2 * kappa[0] + 2./3 * eta[0]**3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * ca \
104+
- (15. * eta[1] - 5./2 * eta[3] + 1./6 * eta[5]) * sb \
105+
+ (5./2 * eta[1]**2 * kappa[2] - 1./6 * eta[1]**3 * kappa[3] - 1./2 * eta[1] * eta[3] * kappa[2]) * cb
106+
# quintic (u^5)
107+
self.coeffs[0, 5] = -84. * (end_pose[0] - start_pose[0]) + (45. * eta[0] + 10. * eta[2] + eta[4]) * ca \
108+
- (10. * eta[0]**2 * kappa[0] + eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * sa \
109+
+ (39. * eta[1] - 7. * eta[3] + 1./2 * eta[5]) * cb \
110+
+ (7. * eta[1]**2 * kappa[2] - 1./2 * eta[1]**3 * kappa[3] - 3./2 * eta[1] * eta[3] * kappa[2]) * sb
111+
self.coeffs[1, 5] = -84. * (end_pose[1] - start_pose[1]) + (45. * eta[0] + 10. * eta[2] + eta[4]) * sa \
112+
+ (10. * eta[0]**2 * kappa[0] + eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * ca \
113+
+ (39. * eta[1] - 7. * eta[3] + 1./2 * eta[5]) * sb \
114+
- (7. * eta[1]**2 * kappa[2] - 1./2 * eta[1]**3 * kappa[3] - 3./2 * eta[1] * eta[3] * kappa[2]) * cb
115+
# sextic (u^6)
116+
self.coeffs[0, 6] = 70. * (end_pose[0] - start_pose[0]) - (36. * eta[0] + 15./2 * eta[2] + 2./3 * eta[4]) * ca \
117+
+ (15./2 * eta[0]**2 * kappa[0] + 2./3 * eta[0]**3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * sa \
118+
- (34. * eta[1] - 13./2 * eta[3] + 1./2 * eta[5]) * cb \
119+
- (13./2 * eta[1]**2 * kappa[2] - 1./2 * eta[1]**3 * kappa[3] - 3./2 * eta[1] * eta[3] * kappa[2]) * sb
120+
self.coeffs[1, 6] = 70. * (end_pose[1] - start_pose[1]) - (36. * eta[0] + 15./2 * eta[2] + 2./3 * eta[4]) * sa \
121+
- (15./2 * eta[0]**2 * kappa[0] + 2./3 * eta[0]**3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * ca \
122+
- (34. * eta[1] - 13./2 * eta[3] + 1./2 * eta[5]) * sb \
123+
+ (13./2 * eta[1]**2 * kappa[2] - 1./2 * eta[1]**3 * kappa[3] - 3./2 * eta[1] * eta[3] * kappa[2]) * cb
124+
# septic (u^7)
125+
self.coeffs[0, 7] = -20. * (end_pose[0] - start_pose[0]) + (10. * eta[0] + 2. * eta[2] + 1./6 * eta[4]) * ca \
126+
- (2. * eta[0]**2 * kappa[0] + 1./6 * eta[0]**3 * kappa[1] + 1./2 * eta[0] * eta[2] * kappa[0]) * sa \
127+
+ (10. * eta[1] - 2. * eta[3] + 1./6 * eta[5]) * cb \
128+
+ (2. * eta[1]**2 * kappa[2] - 1./6 * eta[1]**3 * kappa[3] - 1./2 * eta[1] * eta[3] * kappa[2]) * sb
129+
self.coeffs[1, 7] = -20. * (end_pose[1] - start_pose[1]) + (10. * eta[0] + 2. * eta[2] + 1./6 * eta[4]) * sa \
130+
+ (2. * eta[0]**2 * kappa[0] + 1./6 * eta[0]**3 * kappa[1] + 1./2 * eta[0] * eta[2] * kappa[0]) * ca \
131+
+ (10. * eta[1] - 2. * eta[3] + 1./6 * eta[5]) * sb \
132+
- (2. * eta[1]**2 * kappa[2] - 1./6 * eta[1]**3 * kappa[3] - 1./2 * eta[1] * eta[3] * kappa[2]) * cb
133+
"""
134+
eta3_path_segment::calc_point
135+
136+
input
137+
u - parametric representation of a point along the segment, 0 <= u <= 1
138+
returns
139+
(x,y) of point along the segment
140+
"""
141+
def calc_point(self, u):
142+
assert(u >= 0 and u <= 1)
143+
return self.coeffs.dot(np.array([1, u, u**2, u**3, u**4, u**5, u**6, u**7]))
144+
145+
146+
def main():
147+
"""
148+
recreate path from reference (see Table 1)
149+
"""
150+
path_segments = []
151+
152+
# segment 1: lane-change curve
153+
start_pose = [0, 0, 0]
154+
end_pose = [4, 1.5, 0]
155+
# NOTE: The ordering on kappa is [kappa_A, kappad_A, kappa_B, kappad_B], with kappad_* being the curvature derivative
156+
kappa = [0, 0, 0, 0]
157+
eta = [4.27, 4.27, 0, 0, 0, 0]
158+
path_segments.append(eta3_path_segment(start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa))
159+
160+
# segment 2: line segment
161+
start_pose = [4, 1.5, 0]
162+
end_pose = [5.5, 1.5, 0]
163+
kappa = [0, 0, 0, 0]
164+
eta = [0, 0, 0, 0, 0, 0]
165+
path_segments.append(eta3_path_segment(start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa))
166+
167+
# segment 3: cubic spiral
168+
start_pose = [5.5, 1.5, 0]
169+
end_pose = [7.4377, 1.8235, 0.6667]
170+
kappa = [0, 0, 1, 1]
171+
eta = [1.88, 1.88, 0, 0, 0, 0]
172+
path_segments.append(eta3_path_segment(start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa))
173+
174+
# segment 4: generic twirl arc
175+
start_pose = [7.4377, 1.8235, 0.6667]
176+
end_pose = [7.8, 4.3, 1.8]
177+
kappa = [1, 1, 0.5, 0]
178+
eta = [7, 10, 10, -10, 4, 4]
179+
path_segments.append(eta3_path_segment(start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa))
180+
181+
# segment 5: circular arc
182+
start_pose = [7.8, 4.3, 1.8]
183+
end_pose = [5.4581, 5.8064, 3.3416]
184+
kappa = [0.5, 0, 0.5, 0]
185+
eta = [2.98, 2.98, 0, 0, 0, 0]
186+
path_segments.append(eta3_path_segment(start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa))
187+
188+
# construct the whole path
189+
path = eta3_path(path_segments)
190+
191+
# interpolate at several points along the path
192+
ui = np.linspace(0, len(path_segments), 1001)
193+
pos = np.empty((2, ui.size))
194+
for i,u in enumerate(ui):
195+
pos[:, i] = path.calc_path_point(u)
196+
197+
# plot the path
198+
plt.figure('Path from Reference')
199+
plt.plot(pos[0, :], pos[1, :])
200+
plt.xlabel('x')
201+
plt.ylabel('y')
202+
plt.title('Path')
203+
plt.show()
204+
205+
if __name__ == '__main__':
206+
main()

0 commit comments

Comments
 (0)