|
| 1 | +""" |
| 2 | +Linear regression is the most basic type of regression commonly used for |
| 3 | +predictive analysis. The idea is preety simple, we have a dataset and we have |
| 4 | +a feature's associated with it. The Features should be choose very cautiously |
| 5 | +as they determine, how much our model will be able to make future predictions. |
| 6 | +We try to set these Feature weights, over many iterations, so that they best |
| 7 | +fits our dataset. In this particular code, i had used a CSGO dataset (ADR vs |
| 8 | +Rating). We try to best fit a line through dataset and estimate the parameters. |
| 9 | +""" |
| 10 | + |
| 11 | +import requests |
| 12 | +import numpy as np |
| 13 | + |
| 14 | + |
| 15 | +def collect_dataset(): |
| 16 | + """ Collect dataset of CSGO |
| 17 | + The dataset contains ADR vs Rating of a Player |
| 18 | + :return : dataset obtained from the link, as matrix |
| 19 | + """ |
| 20 | + response = requests.get('https://raw.githubusercontent.com/yashLadha/' + |
| 21 | + 'The_Math_of_Intelligence/master/Week1/ADRvs' + |
| 22 | + 'Rating.csv') |
| 23 | + lines = response.text.splitlines() |
| 24 | + data = [] |
| 25 | + for item in lines: |
| 26 | + item = item.split(',') |
| 27 | + data.append(item) |
| 28 | + data.pop(0) # This is for removing the labels from the list |
| 29 | + dataset = np.matrix(data) |
| 30 | + return dataset |
| 31 | + |
| 32 | + |
| 33 | +def run_steep_gradient_descent(data_x, data_y, |
| 34 | + len_data, alpha, theta): |
| 35 | + """ Run steep gradient descent and updates the Feature vector accordingly_ |
| 36 | + :param data_x : contains the dataset |
| 37 | + :param data_y : contains the output associated with each data-entry |
| 38 | + :param len_data : length of the data_ |
| 39 | + :param alpha : Learning rate of the model |
| 40 | + :param theta : Feature vector (weight's for our model) |
| 41 | + ;param return : Updated Feature's, using |
| 42 | + curr_features - alpha_ * gradient(w.r.t. feature) |
| 43 | + """ |
| 44 | + n = len_data |
| 45 | + |
| 46 | + prod = np.dot(theta, data_x.transpose()) |
| 47 | + prod -= data_y.transpose() |
| 48 | + sum_grad = np.dot(prod, data_x) |
| 49 | + theta = theta - (alpha / n) * sum_grad |
| 50 | + return theta |
| 51 | + |
| 52 | + |
| 53 | +def sum_of_square_error(data_x, data_y, len_data, theta): |
| 54 | + """ Return sum of square error for error calculation |
| 55 | + :param data_x : contains our dataset |
| 56 | + :param data_y : contains the output (result vector) |
| 57 | + :param len_data : len of the dataset |
| 58 | + :param theta : contains the feature vector |
| 59 | + :return : sum of square error computed from given feature's |
| 60 | + """ |
| 61 | + error = 0.0 |
| 62 | + prod = np.dot(theta, data_x.transpose()) |
| 63 | + prod -= data_y.transpose() |
| 64 | + sum_elem = np.sum(np.square(prod)) |
| 65 | + error = sum_elem / (2 * len_data) |
| 66 | + return error |
| 67 | + |
| 68 | + |
| 69 | +def run_linear_regression(data_x, data_y): |
| 70 | + """ Implement Linear regression over the dataset |
| 71 | + :param data_x : contains our dataset |
| 72 | + :param data_y : contains the output (result vector) |
| 73 | + :return : feature for line of best fit (Feature vector) |
| 74 | + """ |
| 75 | + iterations = 100000 |
| 76 | + alpha = 0.0001550 |
| 77 | + |
| 78 | + no_features = data_x.shape[1] |
| 79 | + len_data = data_x.shape[0] - 1 |
| 80 | + |
| 81 | + theta = np.zeros((1, no_features)) |
| 82 | + |
| 83 | + for i in range(0, iterations): |
| 84 | + theta = run_steep_gradient_descent(data_x, data_y, |
| 85 | + len_data, alpha, theta) |
| 86 | + error = sum_of_square_error(data_x, data_y, len_data, theta) |
| 87 | + print('At Iteration %d - Error is %.5f ' % (i + 1, error)) |
| 88 | + |
| 89 | + return theta |
| 90 | + |
| 91 | + |
| 92 | +def main(): |
| 93 | + """ Driver function """ |
| 94 | + data = collect_dataset() |
| 95 | + |
| 96 | + len_data = data.shape[0] |
| 97 | + data_x = np.c_[np.ones(len_data), data[:, :-1]].astype(float) |
| 98 | + data_y = data[:, -1].astype(float) |
| 99 | + |
| 100 | + theta = run_linear_regression(data_x, data_y) |
| 101 | + len_result = theta.shape[1] |
| 102 | + print('Resultant Feature vector : ') |
| 103 | + for i in range(0, len_result): |
| 104 | + print('%.5f' % (theta[0, i])) |
| 105 | + |
| 106 | + |
| 107 | +if __name__ == '__main__': |
| 108 | + main() |
0 commit comments