|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Chapter 9 - Data Science\n", |
| 8 | + "## Data Preparation" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "markdown", |
| 13 | + "metadata": {}, |
| 14 | + "source": [ |
| 15 | + "## 0 - Setting up the notebook" |
| 16 | + ] |
| 17 | + }, |
| 18 | + { |
| 19 | + "cell_type": "code", |
| 20 | + "execution_count": 1, |
| 21 | + "metadata": {}, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "import json\n", |
| 25 | + "import random\n", |
| 26 | + "from datetime import date, timedelta\n", |
| 27 | + "\n", |
| 28 | + "import faker" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "markdown", |
| 33 | + "metadata": {}, |
| 34 | + "source": [ |
| 35 | + "## 1 - Preparing the Data" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": 2, |
| 41 | + "metadata": {}, |
| 42 | + "outputs": [], |
| 43 | + "source": [ |
| 44 | + "# create the faker to populate the data\n", |
| 45 | + "fake = faker.Faker()" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": 3, |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "usernames = set()\n", |
| 55 | + "usernames_no = 1000\n", |
| 56 | + "\n", |
| 57 | + "# populate the set with 1000 unique usernames\n", |
| 58 | + "while len(usernames) < usernames_no:\n", |
| 59 | + " usernames.add(fake.user_name())" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "code", |
| 64 | + "execution_count": 4, |
| 65 | + "metadata": {}, |
| 66 | + "outputs": [ |
| 67 | + { |
| 68 | + "data": { |
| 69 | + "text/plain": [ |
| 70 | + "['{\"username\": \"susan42\", \"name\": \"Emily Smith\", \"gender\": \"F\", \"email\": \"[email protected]\", \"age\": 53, \"address\": \"66537 Riley Mission Apt. 337\\\\nNorth Jennifer, NH 95781\"}',\n", |
| 71 | + " '{\"username\": \"sarahcarpenter\", \"name\": \"Michael Kane\", \"gender\": \"M\", \"email\": \"[email protected]\", \"age\": 58, \"address\": \"7129 Patrick Walks Suite 215\\\\nLaurenside, LA 97179\"}',\n", |
| 72 | + " '{\"username\": \"kevin37\", \"name\": \"Nathaniel Miller\", \"gender\": \"M\", \"email\": \"[email protected]\", \"age\": 36, \"address\": \"8247 Manning Burgs Suite 806\\\\nLopezshire, MS 06606\"}']" |
| 73 | + ] |
| 74 | + }, |
| 75 | + "execution_count": 4, |
| 76 | + "metadata": {}, |
| 77 | + "output_type": "execute_result" |
| 78 | + } |
| 79 | + ], |
| 80 | + "source": [ |
| 81 | + "def get_random_name_and_gender():\n", |
| 82 | + " skew = .6 # 60% of users will be female\n", |
| 83 | + " male = random.random() > skew\n", |
| 84 | + " if male:\n", |
| 85 | + " return fake.name_male(), 'M'\n", |
| 86 | + " else:\n", |
| 87 | + " return fake.name_female(), 'F'\n", |
| 88 | + "\n", |
| 89 | + "# for each username, create a complete user profile\n", |
| 90 | + "# simulate user data coming from an API. It is a list\n", |
| 91 | + "# of JSON strings (users).\n", |
| 92 | + "def get_users(usernames):\n", |
| 93 | + " users = []\n", |
| 94 | + " for username in usernames:\n", |
| 95 | + " name, gender = get_random_name_and_gender()\n", |
| 96 | + " user = {\n", |
| 97 | + " 'username': username,\n", |
| 98 | + " 'name': name,\n", |
| 99 | + " 'gender': gender,\n", |
| 100 | + " 'email': fake.email(),\n", |
| 101 | + " 'age': fake.random_int(min=18, max=90),\n", |
| 102 | + " 'address': fake.address(),\n", |
| 103 | + " }\n", |
| 104 | + " users.append(json.dumps(user))\n", |
| 105 | + " return users\n", |
| 106 | + "\n", |
| 107 | + "users = get_users(usernames)\n", |
| 108 | + "users[:3]" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "code", |
| 113 | + "execution_count": 5, |
| 114 | + "metadata": {}, |
| 115 | + "outputs": [], |
| 116 | + "source": [ |
| 117 | + "# campaign name format:\n", |
| 118 | + "# InternalType_StartDate_EndDate_TargetAge_TargetGender_Currency\n", |
| 119 | + "def get_type():\n", |
| 120 | + " # just some gibberish internal codes\n", |
| 121 | + " types = ['AKX', 'BYU', 'GRZ', 'KTR']\n", |
| 122 | + " return random.choice(types)\n", |
| 123 | + "\n", |
| 124 | + "def get_start_end_dates():\n", |
| 125 | + " duration = random.randint(1, 2 * 365)\n", |
| 126 | + " offset = random.randint(-365, 365)\n", |
| 127 | + " start = date.today() - timedelta(days=offset)\n", |
| 128 | + " end = start + timedelta(days=duration)\n", |
| 129 | + " \n", |
| 130 | + " def _format_date(date_):\n", |
| 131 | + " return date_.strftime(\"%Y%m%d\")\n", |
| 132 | + " \n", |
| 133 | + " return _format_date(start), _format_date(end)\n", |
| 134 | + "\n", |
| 135 | + "def get_age():\n", |
| 136 | + " age = random.randrange(20, 46, 5)\n", |
| 137 | + " diff = random.randrange(5, 26, 5)\n", |
| 138 | + " return '{}-{}'.format(age, age + diff)\n", |
| 139 | + "\n", |
| 140 | + "def get_gender():\n", |
| 141 | + " return random.choice(('M', 'F', 'B'))\n", |
| 142 | + "\n", |
| 143 | + "def get_currency():\n", |
| 144 | + " return random.choice(('GBP', 'EUR', 'USD'))\n", |
| 145 | + "\n", |
| 146 | + "def get_campaign_name():\n", |
| 147 | + " separator = '_'\n", |
| 148 | + " type_ = get_type()\n", |
| 149 | + " start, end = get_start_end_dates()\n", |
| 150 | + " age = get_age()\n", |
| 151 | + " gender = get_gender()\n", |
| 152 | + " currency = get_currency()\n", |
| 153 | + " return separator.join(\n", |
| 154 | + " (type_, start, end, age, gender, currency))" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "code", |
| 159 | + "execution_count": 6, |
| 160 | + "metadata": {}, |
| 161 | + "outputs": [], |
| 162 | + "source": [ |
| 163 | + "# campaign data:\n", |
| 164 | + "# name, budget, spent, clicks, impressions\n", |
| 165 | + "def get_campaign_data():\n", |
| 166 | + " name = get_campaign_name()\n", |
| 167 | + " budget = random.randint(10**3, 10**6)\n", |
| 168 | + " spent = random.randint(10**2, budget) \n", |
| 169 | + " clicks = int(random.triangular(10**2, 10**5, 0.2 * 10**5)) \n", |
| 170 | + " impressions = int(random.gauss(0.5 * 10**6, 2))\n", |
| 171 | + " return {\n", |
| 172 | + " 'cmp_name': name,\n", |
| 173 | + " 'cmp_bgt': budget,\n", |
| 174 | + " 'cmp_spent': spent,\n", |
| 175 | + " 'cmp_clicks': clicks,\n", |
| 176 | + " 'cmp_impr': impressions\n", |
| 177 | + " }" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "code", |
| 182 | + "execution_count": 7, |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [], |
| 185 | + "source": [ |
| 186 | + "# assemble the logic to get the final version of the rough data\n", |
| 187 | + "# data will be a list of dictionaries. Each dictionary will follow\n", |
| 188 | + "# this structure:\n", |
| 189 | + "# {'user': user_json, 'campaigns': [c1, c2, ...]}\n", |
| 190 | + "# where user_json is the JSON string version of a user data dict\n", |
| 191 | + "# and c1, c2, ... are campaign dicts as returned by\n", |
| 192 | + "# get_campaign_data\n", |
| 193 | + "\n", |
| 194 | + "def get_data(users):\n", |
| 195 | + " data = []\n", |
| 196 | + " for user in users:\n", |
| 197 | + " campaigns = [get_campaign_data()\n", |
| 198 | + " for _ in range(random.randint(2, 8))]\n", |
| 199 | + " data.append({'user': user, 'campaigns': campaigns})\n", |
| 200 | + " return data" |
| 201 | + ] |
| 202 | + }, |
| 203 | + { |
| 204 | + "cell_type": "markdown", |
| 205 | + "metadata": {}, |
| 206 | + "source": [ |
| 207 | + "## 2 - Cleaning the data" |
| 208 | + ] |
| 209 | + }, |
| 210 | + { |
| 211 | + "cell_type": "code", |
| 212 | + "execution_count": 8, |
| 213 | + "metadata": {}, |
| 214 | + "outputs": [ |
| 215 | + { |
| 216 | + "data": { |
| 217 | + "text/plain": [ |
| 218 | + "[{'user': '{\"username\": \"susan42\", \"name\": \"Emily Smith\", \"gender\": \"F\", \"email\": \"[email protected]\", \"age\": 53, \"address\": \"66537 Riley Mission Apt. 337\\\\nNorth Jennifer, NH 95781\"}',\n", |
| 219 | + " 'campaigns': [{'cmp_name': 'GRZ_20210131_20210411_30-40_F_GBP',\n", |
| 220 | + " 'cmp_bgt': 253951,\n", |
| 221 | + " 'cmp_spent': 17953,\n", |
| 222 | + " 'cmp_clicks': 52573,\n", |
| 223 | + " 'cmp_impr': 500001},\n", |
| 224 | + " {'cmp_name': 'BYU_20210109_20221204_30-35_M_GBP',\n", |
| 225 | + " 'cmp_bgt': 150314,\n", |
| 226 | + " 'cmp_spent': 125884,\n", |
| 227 | + " 'cmp_clicks': 24575,\n", |
| 228 | + " 'cmp_impr': 499999},\n", |
| 229 | + " {'cmp_name': 'GRZ_20211124_20220921_20-35_B_EUR',\n", |
| 230 | + " 'cmp_bgt': 791397,\n", |
| 231 | + " 'cmp_spent': 480963,\n", |
| 232 | + " 'cmp_clicks': 39668,\n", |
| 233 | + " 'cmp_impr': 499999},\n", |
| 234 | + " {'cmp_name': 'GRZ_20210727_20220211_35-45_B_EUR',\n", |
| 235 | + " 'cmp_bgt': 910204,\n", |
| 236 | + " 'cmp_spent': 339997,\n", |
| 237 | + " 'cmp_clicks': 16698,\n", |
| 238 | + " 'cmp_impr': 500000},\n", |
| 239 | + " {'cmp_name': 'BYU_20220216_20220407_20-25_F_EUR',\n", |
| 240 | + " 'cmp_bgt': 393134,\n", |
| 241 | + " 'cmp_spent': 158930,\n", |
| 242 | + " 'cmp_clicks': 46631,\n", |
| 243 | + " 'cmp_impr': 500000}]},\n", |
| 244 | + " {'user': '{\"username\": \"sarahcarpenter\", \"name\": \"Michael Kane\", \"gender\": \"M\", \"email\": \"[email protected]\", \"age\": 58, \"address\": \"7129 Patrick Walks Suite 215\\\\nLaurenside, LA 97179\"}',\n", |
| 245 | + " 'campaigns': [{'cmp_name': 'BYU_20220324_20221230_20-45_B_USD',\n", |
| 246 | + " 'cmp_bgt': 819948,\n", |
| 247 | + " 'cmp_spent': 105178,\n", |
| 248 | + " 'cmp_clicks': 27755,\n", |
| 249 | + " 'cmp_impr': 500004},\n", |
| 250 | + " {'cmp_name': 'GRZ_20201008_20210604_30-40_B_GBP',\n", |
| 251 | + " 'cmp_bgt': 829698,\n", |
| 252 | + " 'cmp_spent': 143193,\n", |
| 253 | + " 'cmp_clicks': 88114,\n", |
| 254 | + " 'cmp_impr': 499998},\n", |
| 255 | + " {'cmp_name': 'GRZ_20210710_20211130_25-30_B_USD',\n", |
| 256 | + " 'cmp_bgt': 815470,\n", |
| 257 | + " 'cmp_spent': 79377,\n", |
| 258 | + " 'cmp_clicks': 28283,\n", |
| 259 | + " 'cmp_impr': 500002},\n", |
| 260 | + " {'cmp_name': 'AKX_20211028_20220112_25-35_F_USD',\n", |
| 261 | + " 'cmp_bgt': 944028,\n", |
| 262 | + " 'cmp_spent': 657427,\n", |
| 263 | + " 'cmp_clicks': 6668,\n", |
| 264 | + " 'cmp_impr': 499999},\n", |
| 265 | + " {'cmp_name': 'AKX_20211025_20220314_25-35_M_EUR',\n", |
| 266 | + " 'cmp_bgt': 39136,\n", |
| 267 | + " 'cmp_spent': 29326,\n", |
| 268 | + " 'cmp_clicks': 20927,\n", |
| 269 | + " 'cmp_impr': 499998},\n", |
| 270 | + " {'cmp_name': 'BYU_20211227_20220615_20-35_F_USD',\n", |
| 271 | + " 'cmp_bgt': 940412,\n", |
| 272 | + " 'cmp_spent': 131757,\n", |
| 273 | + " 'cmp_clicks': 57384,\n", |
| 274 | + " 'cmp_impr': 500001},\n", |
| 275 | + " {'cmp_name': 'AKX_20220323_20230602_35-55_M_GBP',\n", |
| 276 | + " 'cmp_bgt': 545483,\n", |
| 277 | + " 'cmp_spent': 96427,\n", |
| 278 | + " 'cmp_clicks': 43290,\n", |
| 279 | + " 'cmp_impr': 499999},\n", |
| 280 | + " {'cmp_name': 'AKX_20210917_20220912_35-55_B_USD',\n", |
| 281 | + " 'cmp_bgt': 129347,\n", |
| 282 | + " 'cmp_spent': 4747,\n", |
| 283 | + " 'cmp_clicks': 88217,\n", |
| 284 | + " 'cmp_impr': 499999}]}]" |
| 285 | + ] |
| 286 | + }, |
| 287 | + "execution_count": 8, |
| 288 | + "metadata": {}, |
| 289 | + "output_type": "execute_result" |
| 290 | + } |
| 291 | + ], |
| 292 | + "source": [ |
| 293 | + "# fetch simulated rough data\n", |
| 294 | + "rough_data = get_data(users)\n", |
| 295 | + "\n", |
| 296 | + "rough_data[:2] # let's take a peek" |
| 297 | + ] |
| 298 | + }, |
| 299 | + { |
| 300 | + "cell_type": "code", |
| 301 | + "execution_count": 9, |
| 302 | + "metadata": {}, |
| 303 | + "outputs": [ |
| 304 | + { |
| 305 | + "data": { |
| 306 | + "text/plain": [ |
| 307 | + "[{'cmp_name': 'GRZ_20210131_20210411_30-40_F_GBP',\n", |
| 308 | + " 'cmp_bgt': 253951,\n", |
| 309 | + " 'cmp_spent': 17953,\n", |
| 310 | + " 'cmp_clicks': 52573,\n", |
| 311 | + " 'cmp_impr': 500001,\n", |
| 312 | + " 'user': '{\"username\": \"susan42\", \"name\": \"Emily Smith\", \"gender\": \"F\", \"email\": \"[email protected]\", \"age\": 53, \"address\": \"66537 Riley Mission Apt. 337\\\\nNorth Jennifer, NH 95781\"}'},\n", |
| 313 | + " {'cmp_name': 'BYU_20210109_20221204_30-35_M_GBP',\n", |
| 314 | + " 'cmp_bgt': 150314,\n", |
| 315 | + " 'cmp_spent': 125884,\n", |
| 316 | + " 'cmp_clicks': 24575,\n", |
| 317 | + " 'cmp_impr': 499999,\n", |
| 318 | + " 'user': '{\"username\": \"susan42\", \"name\": \"Emily Smith\", \"gender\": \"F\", \"email\": \"[email protected]\", \"age\": 53, \"address\": \"66537 Riley Mission Apt. 337\\\\nNorth Jennifer, NH 95781\"}'}]" |
| 319 | + ] |
| 320 | + }, |
| 321 | + "execution_count": 9, |
| 322 | + "metadata": {}, |
| 323 | + "output_type": "execute_result" |
| 324 | + } |
| 325 | + ], |
| 326 | + "source": [ |
| 327 | + "# Let's start from having a different version of the data\n", |
| 328 | + "# I want a list whose items will be dicts. Each dict is \n", |
| 329 | + "# the original campaign dict plus the user JSON\n", |
| 330 | + "\n", |
| 331 | + "data = []\n", |
| 332 | + "for datum in rough_data:\n", |
| 333 | + " for campaign in datum['campaigns']:\n", |
| 334 | + " campaign.update({'user': datum['user']})\n", |
| 335 | + " data.append(campaign)\n", |
| 336 | + "data[:2] # let's take another peek" |
| 337 | + ] |
| 338 | + }, |
| 339 | + { |
| 340 | + "cell_type": "code", |
| 341 | + "execution_count": 10, |
| 342 | + "metadata": {}, |
| 343 | + "outputs": [], |
| 344 | + "source": [ |
| 345 | + "# Warning: Uncommenting and executing this cell will overwrite data.json\n", |
| 346 | + "#with open('data.json', 'w') as stream:\n", |
| 347 | + "# stream.write(json.dumps(data))" |
| 348 | + ] |
| 349 | + } |
| 350 | + ], |
| 351 | + "metadata": { |
| 352 | + "kernelspec": { |
| 353 | + "display_name": "Python 3 (ipykernel)", |
| 354 | + "language": "python", |
| 355 | + "name": "python3" |
| 356 | + }, |
| 357 | + "language_info": { |
| 358 | + "codemirror_mode": { |
| 359 | + "name": "ipython", |
| 360 | + "version": 3 |
| 361 | + }, |
| 362 | + "file_extension": ".py", |
| 363 | + "mimetype": "text/x-python", |
| 364 | + "name": "python", |
| 365 | + "nbconvert_exporter": "python", |
| 366 | + "pygments_lexer": "ipython3", |
| 367 | + "version": "3.9.7" |
| 368 | + } |
| 369 | + }, |
| 370 | + "nbformat": 4, |
| 371 | + "nbformat_minor": 4 |
| 372 | +} |
0 commit comments