From a3c252217ab86c77b0e2a0c404426c83fe5e6d36 Mon Sep 17 00:00:00 2001 From: Chelsea Lin Date: Thu, 25 Sep 2025 13:39:53 -0700 Subject: [PATCH 1/8] refactor: add agg_ops.QuantileOp, ApproxQuartilesOp and ApproxTopCountOp to sqlglot compiler (#2110) --- .../sqlglot/aggregations/op_registration.py | 20 +++---- .../sqlglot/aggregations/unary_compiler.py | 58 +++++++++++++++++-- .../test_approx_quartiles/out.sql | 16 +++++ .../test_approx_top_count/out.sql | 12 ++++ .../test_unary_compiler/test_quantile/out.sql | 14 +++++ .../aggregations/test_op_registration.py | 1 - .../aggregations/test_unary_compiler.py | 40 +++++++++++++ 7 files changed, 143 insertions(+), 18 deletions(-) create mode 100644 tests/unit/core/compile/sqlglot/aggregations/snapshots/test_unary_compiler/test_approx_quartiles/out.sql create mode 100644 tests/unit/core/compile/sqlglot/aggregations/snapshots/test_unary_compiler/test_approx_top_count/out.sql create mode 100644 tests/unit/core/compile/sqlglot/aggregations/snapshots/test_unary_compiler/test_quantile/out.sql diff --git a/bigframes/core/compile/sqlglot/aggregations/op_registration.py b/bigframes/core/compile/sqlglot/aggregations/op_registration.py index 996bf5b362..eb02b8bd50 100644 --- a/bigframes/core/compile/sqlglot/aggregations/op_registration.py +++ b/bigframes/core/compile/sqlglot/aggregations/op_registration.py @@ -41,22 +41,16 @@ def arg_checker(*args, **kwargs): ) return item(*args, **kwargs) - if hasattr(op, "name"): - key = typing.cast(str, op.name) - if key in self._registered_ops: - raise ValueError(f"{key} is already registered") - else: - raise ValueError(f"The operator must have a 'name' attribute. Got {op}") + key = str(op) + if key in self._registered_ops: + raise ValueError(f"{key} is already registered") self._registered_ops[key] = item return arg_checker return decorator def __getitem__(self, op: str | agg_ops.WindowOp) -> CompilationFunc: - if isinstance(op, agg_ops.WindowOp): - if not hasattr(op, "name"): - raise ValueError(f"The operator must have a 'name' attribute. Got {op}") - else: - key = typing.cast(str, op.name) - return self._registered_ops[key] - return self._registered_ops[op] + key = op if isinstance(op, type) else type(op) + if str(key) not in self._registered_ops: + raise ValueError(f"{key} is already not registered") + return self._registered_ops[str(key)] diff --git a/bigframes/core/compile/sqlglot/aggregations/unary_compiler.py b/bigframes/core/compile/sqlglot/aggregations/unary_compiler.py index 598a89e4eb..11d53cdd4c 100644 --- a/bigframes/core/compile/sqlglot/aggregations/unary_compiler.py +++ b/bigframes/core/compile/sqlglot/aggregations/unary_compiler.py @@ -38,6 +38,37 @@ def compile( return UNARY_OP_REGISTRATION[op](op, column, window=window) +@UNARY_OP_REGISTRATION.register(agg_ops.ApproxQuartilesOp) +def _( + op: agg_ops.ApproxQuartilesOp, + column: typed_expr.TypedExpr, + window: typing.Optional[window_spec.WindowSpec] = None, +) -> sge.Expression: + if window is not None: + raise NotImplementedError("Approx Quartiles with windowing is not supported.") + # APPROX_QUANTILES returns an array of the quartiles, so we need to index it. + # The op.quartile is 1-based for the quartile, but array is 0-indexed. + # The quartiles are Q0, Q1, Q2, Q3, Q4. op.quartile is 1, 2, or 3. + # The array has 5 elements (for N=4 intervals). + # So we want the element at index `op.quartile`. + approx_quantiles_expr = sge.func("APPROX_QUANTILES", column.expr, sge.convert(4)) + return sge.Bracket( + this=approx_quantiles_expr, + expressions=[sge.func("OFFSET", sge.convert(op.quartile))], + ) + + +@UNARY_OP_REGISTRATION.register(agg_ops.ApproxTopCountOp) +def _( + op: agg_ops.ApproxTopCountOp, + column: typed_expr.TypedExpr, + window: typing.Optional[window_spec.WindowSpec] = None, +) -> sge.Expression: + if window is not None: + raise NotImplementedError("Approx top count with windowing is not supported.") + return sge.func("APPROX_TOP_COUNT", column.expr, sge.convert(op.number)) + + @UNARY_OP_REGISTRATION.register(agg_ops.CountOp) def _( op: agg_ops.CountOp, @@ -109,13 +140,23 @@ def _( return apply_window_if_present(sge.func("MIN", column.expr), window) -@UNARY_OP_REGISTRATION.register(agg_ops.SizeUnaryOp) +@UNARY_OP_REGISTRATION.register(agg_ops.QuantileOp) def _( - op: agg_ops.SizeUnaryOp, - _, + op: agg_ops.QuantileOp, + column: typed_expr.TypedExpr, window: typing.Optional[window_spec.WindowSpec] = None, ) -> sge.Expression: - return apply_window_if_present(sge.func("COUNT", sge.convert(1)), window) + # TODO: Support interpolation argument + # TODO: Support percentile_disc + result: sge.Expression = sge.func("PERCENTILE_CONT", column.expr, sge.convert(op.q)) + if window is None: + # PERCENTILE_CONT is a navigation function, not an aggregate function, so it always needs an OVER clause. + result = sge.Window(this=result) + else: + result = apply_window_if_present(result, window) + if op.should_floor_result: + result = sge.Cast(this=sge.func("FLOOR", result), to="INT64") + return result @UNARY_OP_REGISTRATION.register(agg_ops.RankOp) @@ -130,6 +171,15 @@ def _( ) +@UNARY_OP_REGISTRATION.register(agg_ops.SizeUnaryOp) +def _( + op: agg_ops.SizeUnaryOp, + _, + window: typing.Optional[window_spec.WindowSpec] = None, +) -> sge.Expression: + return apply_window_if_present(sge.func("COUNT", sge.convert(1)), window) + + @UNARY_OP_REGISTRATION.register(agg_ops.SumOp) def _( op: agg_ops.SumOp, diff --git a/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_unary_compiler/test_approx_quartiles/out.sql b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_unary_compiler/test_approx_quartiles/out.sql new file mode 100644 index 0000000000..e7bb16e57c --- /dev/null +++ b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_unary_compiler/test_approx_quartiles/out.sql @@ -0,0 +1,16 @@ +WITH `bfcte_0` AS ( + SELECT + `int64_col` AS `bfcol_0` + FROM `bigframes-dev`.`sqlglot_test`.`scalar_types` +), `bfcte_1` AS ( + SELECT + APPROX_QUANTILES(`bfcol_0`, 4)[OFFSET(1)] AS `bfcol_1`, + APPROX_QUANTILES(`bfcol_0`, 4)[OFFSET(2)] AS `bfcol_2`, + APPROX_QUANTILES(`bfcol_0`, 4)[OFFSET(3)] AS `bfcol_3` + FROM `bfcte_0` +) +SELECT + `bfcol_1` AS `q1`, + `bfcol_2` AS `q2`, + `bfcol_3` AS `q3` +FROM `bfcte_1` \ No newline at end of file diff --git a/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_unary_compiler/test_approx_top_count/out.sql b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_unary_compiler/test_approx_top_count/out.sql new file mode 100644 index 0000000000..b61a72d1b2 --- /dev/null +++ b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_unary_compiler/test_approx_top_count/out.sql @@ -0,0 +1,12 @@ +WITH `bfcte_0` AS ( + SELECT + `int64_col` AS `bfcol_0` + FROM `bigframes-dev`.`sqlglot_test`.`scalar_types` +), `bfcte_1` AS ( + SELECT + APPROX_TOP_COUNT(`bfcol_0`, 10) AS `bfcol_1` + FROM `bfcte_0` +) +SELECT + `bfcol_1` AS `int64_col` +FROM `bfcte_1` \ No newline at end of file diff --git a/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_unary_compiler/test_quantile/out.sql b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_unary_compiler/test_quantile/out.sql new file mode 100644 index 0000000000..c1b3d1fffa --- /dev/null +++ b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_unary_compiler/test_quantile/out.sql @@ -0,0 +1,14 @@ +WITH `bfcte_0` AS ( + SELECT + `int64_col` AS `bfcol_0` + FROM `bigframes-dev`.`sqlglot_test`.`scalar_types` +), `bfcte_1` AS ( + SELECT + PERCENTILE_CONT(`bfcol_0`, 0.5) OVER () AS `bfcol_1`, + CAST(FLOOR(PERCENTILE_CONT(`bfcol_0`, 0.5) OVER ()) AS INT64) AS `bfcol_2` + FROM `bfcte_0` +) +SELECT + `bfcol_1` AS `quantile`, + `bfcol_2` AS `quantile_floor` +FROM `bfcte_1` \ No newline at end of file diff --git a/tests/unit/core/compile/sqlglot/aggregations/test_op_registration.py b/tests/unit/core/compile/sqlglot/aggregations/test_op_registration.py index e3688f19df..dbdeb2307e 100644 --- a/tests/unit/core/compile/sqlglot/aggregations/test_op_registration.py +++ b/tests/unit/core/compile/sqlglot/aggregations/test_op_registration.py @@ -29,7 +29,6 @@ def test_func(op: agg_ops.SizeOp, input: sge.Expression) -> sge.Expression: return input assert reg[agg_ops.SizeOp()](op, input) == test_func(op, input) - assert reg[agg_ops.SizeOp.name](op, input) == test_func(op, input) def test_register_function_first_argument_is_not_agg_op_raise_error(): diff --git a/tests/unit/core/compile/sqlglot/aggregations/test_unary_compiler.py b/tests/unit/core/compile/sqlglot/aggregations/test_unary_compiler.py index bf2523930f..4abf80df19 100644 --- a/tests/unit/core/compile/sqlglot/aggregations/test_unary_compiler.py +++ b/tests/unit/core/compile/sqlglot/aggregations/test_unary_compiler.py @@ -63,6 +63,30 @@ def _apply_unary_window_op( return sql +def test_approx_quartiles(scalar_types_df: bpd.DataFrame, snapshot): + col_name = "int64_col" + bf_df = scalar_types_df[[col_name]] + agg_ops_map = { + "q1": agg_ops.ApproxQuartilesOp(quartile=1).as_expr(col_name), + "q2": agg_ops.ApproxQuartilesOp(quartile=2).as_expr(col_name), + "q3": agg_ops.ApproxQuartilesOp(quartile=3).as_expr(col_name), + } + sql = _apply_unary_agg_ops( + bf_df, list(agg_ops_map.values()), list(agg_ops_map.keys()) + ) + + snapshot.assert_match(sql, "out.sql") + + +def test_approx_top_count(scalar_types_df: bpd.DataFrame, snapshot): + col_name = "int64_col" + bf_df = scalar_types_df[[col_name]] + agg_expr = agg_ops.ApproxTopCountOp(number=10).as_expr(col_name) + sql = _apply_unary_agg_ops(bf_df, [agg_expr], [col_name]) + + snapshot.assert_match(sql, "out.sql") + + def test_count(scalar_types_df: bpd.DataFrame, snapshot): col_name = "int64_col" bf_df = scalar_types_df[[col_name]] @@ -141,6 +165,22 @@ def test_min(scalar_types_df: bpd.DataFrame, snapshot): snapshot.assert_match(sql, "out.sql") +def test_quantile(scalar_types_df: bpd.DataFrame, snapshot): + col_name = "int64_col" + bf_df = scalar_types_df[[col_name]] + agg_ops_map = { + "quantile": agg_ops.QuantileOp(q=0.5).as_expr(col_name), + "quantile_floor": agg_ops.QuantileOp(q=0.5, should_floor_result=True).as_expr( + col_name + ), + } + sql = _apply_unary_agg_ops( + bf_df, list(agg_ops_map.values()), list(agg_ops_map.keys()) + ) + + snapshot.assert_match(sql, "out.sql") + + def test_rank(scalar_types_df: bpd.DataFrame, snapshot): col_name = "int64_col" bf_df = scalar_types_df[[col_name]] From 1e5918ba0a6817ada4a91e8b41c48923c2f9cd2c Mon Sep 17 00:00:00 2001 From: Chelsea Lin Date: Thu, 25 Sep 2025 15:57:54 -0700 Subject: [PATCH 2/8] refactor: support agg_ops.CovOp and CorrOp in sqlglot compiler (#2116) --- .../sqlglot/aggregations/binary_compiler.py | 23 ++++++++ .../test_binary_compiler/test_corr/out.sql | 13 +++++ .../test_binary_compiler/test_cov/out.sql | 13 +++++ .../aggregations/test_binary_compiler.py | 54 +++++++++++++++++++ 4 files changed, 103 insertions(+) create mode 100644 tests/unit/core/compile/sqlglot/aggregations/snapshots/test_binary_compiler/test_corr/out.sql create mode 100644 tests/unit/core/compile/sqlglot/aggregations/snapshots/test_binary_compiler/test_cov/out.sql create mode 100644 tests/unit/core/compile/sqlglot/aggregations/test_binary_compiler.py diff --git a/bigframes/core/compile/sqlglot/aggregations/binary_compiler.py b/bigframes/core/compile/sqlglot/aggregations/binary_compiler.py index a162a9c18a..856b5e2f3a 100644 --- a/bigframes/core/compile/sqlglot/aggregations/binary_compiler.py +++ b/bigframes/core/compile/sqlglot/aggregations/binary_compiler.py @@ -20,6 +20,7 @@ from bigframes.core import window_spec import bigframes.core.compile.sqlglot.aggregations.op_registration as reg +from bigframes.core.compile.sqlglot.aggregations.windows import apply_window_if_present import bigframes.core.compile.sqlglot.expressions.typed_expr as typed_expr from bigframes.operations import aggregations as agg_ops @@ -33,3 +34,25 @@ def compile( window: typing.Optional[window_spec.WindowSpec] = None, ) -> sge.Expression: return BINARY_OP_REGISTRATION[op](op, left, right, window=window) + + +@BINARY_OP_REGISTRATION.register(agg_ops.CorrOp) +def _( + op: agg_ops.CorrOp, + left: typed_expr.TypedExpr, + right: typed_expr.TypedExpr, + window: typing.Optional[window_spec.WindowSpec] = None, +) -> sge.Expression: + result = sge.func("CORR", left.expr, right.expr) + return apply_window_if_present(result, window) + + +@BINARY_OP_REGISTRATION.register(agg_ops.CovOp) +def _( + op: agg_ops.CovOp, + left: typed_expr.TypedExpr, + right: typed_expr.TypedExpr, + window: typing.Optional[window_spec.WindowSpec] = None, +) -> sge.Expression: + result = sge.func("COVAR_SAMP", left.expr, right.expr) + return apply_window_if_present(result, window) diff --git a/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_binary_compiler/test_corr/out.sql b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_binary_compiler/test_corr/out.sql new file mode 100644 index 0000000000..8922a71de4 --- /dev/null +++ b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_binary_compiler/test_corr/out.sql @@ -0,0 +1,13 @@ +WITH `bfcte_0` AS ( + SELECT + `int64_col` AS `bfcol_0`, + `float64_col` AS `bfcol_1` + FROM `bigframes-dev`.`sqlglot_test`.`scalar_types` +), `bfcte_1` AS ( + SELECT + CORR(`bfcol_0`, `bfcol_1`) AS `bfcol_2` + FROM `bfcte_0` +) +SELECT + `bfcol_2` AS `corr_col` +FROM `bfcte_1` \ No newline at end of file diff --git a/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_binary_compiler/test_cov/out.sql b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_binary_compiler/test_cov/out.sql new file mode 100644 index 0000000000..6cf189da31 --- /dev/null +++ b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_binary_compiler/test_cov/out.sql @@ -0,0 +1,13 @@ +WITH `bfcte_0` AS ( + SELECT + `int64_col` AS `bfcol_0`, + `float64_col` AS `bfcol_1` + FROM `bigframes-dev`.`sqlglot_test`.`scalar_types` +), `bfcte_1` AS ( + SELECT + COVAR_SAMP(`bfcol_0`, `bfcol_1`) AS `bfcol_2` + FROM `bfcte_0` +) +SELECT + `bfcol_2` AS `cov_col` +FROM `bfcte_1` \ No newline at end of file diff --git a/tests/unit/core/compile/sqlglot/aggregations/test_binary_compiler.py b/tests/unit/core/compile/sqlglot/aggregations/test_binary_compiler.py new file mode 100644 index 0000000000..0897b535be --- /dev/null +++ b/tests/unit/core/compile/sqlglot/aggregations/test_binary_compiler.py @@ -0,0 +1,54 @@ +# Copyright 2025 Google LLC +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import typing + +import pytest + +from bigframes.core import agg_expressions as agg_exprs +from bigframes.core import array_value, identifiers, nodes +from bigframes.operations import aggregations as agg_ops +import bigframes.pandas as bpd + +pytest.importorskip("pytest_snapshot") + + +def _apply_binary_agg_ops( + obj: bpd.DataFrame, + ops_list: typing.Sequence[agg_exprs.BinaryAggregation], + new_names: typing.Sequence[str], +) -> str: + aggs = [(op, identifiers.ColumnId(name)) for op, name in zip(ops_list, new_names)] + + agg_node = nodes.AggregateNode(obj._block.expr.node, aggregations=tuple(aggs)) + result = array_value.ArrayValue(agg_node) + + sql = result.session._executor.to_sql(result, enable_cache=False) + return sql + + +def test_corr(scalar_types_df: bpd.DataFrame, snapshot): + bf_df = scalar_types_df[["int64_col", "float64_col"]] + agg_expr = agg_ops.CorrOp().as_expr("int64_col", "float64_col") + sql = _apply_binary_agg_ops(bf_df, [agg_expr], ["corr_col"]) + + snapshot.assert_match(sql, "out.sql") + + +def test_cov(scalar_types_df: bpd.DataFrame, snapshot): + bf_df = scalar_types_df[["int64_col", "float64_col"]] + agg_expr = agg_ops.CovOp().as_expr("int64_col", "float64_col") + sql = _apply_binary_agg_ops(bf_df, [agg_expr], ["cov_col"]) + + snapshot.assert_match(sql, "out.sql") From 1fc563c45288002d79b70a84176141714ad64f1a Mon Sep 17 00:00:00 2001 From: Chelsea Lin Date: Thu, 25 Sep 2025 16:01:29 -0700 Subject: [PATCH 3/8] refactor: support agg_ops.RowNumberOp for sqlglot compiler (#2118) --- .../compile/sqlglot/aggregate_compiler.py | 2 +- .../sqlglot/aggregations/nullary_compiler.py | 12 +++ .../sqlglot/aggregations/unary_compiler.py | 10 +-- .../compile/sqlglot/aggregations/windows.py | 3 +- .../test_row_number/out.sql | 13 +++ .../test_row_number_with_window/out.sql | 13 +++ .../test_nullary_compiler/test_size/out.sql | 12 +++ .../aggregations/test_nullary_compiler.py | 85 +++++++++++++++++++ 8 files changed, 139 insertions(+), 11 deletions(-) create mode 100644 tests/unit/core/compile/sqlglot/aggregations/snapshots/test_nullary_compiler/test_row_number/out.sql create mode 100644 tests/unit/core/compile/sqlglot/aggregations/snapshots/test_nullary_compiler/test_row_number_with_window/out.sql create mode 100644 tests/unit/core/compile/sqlglot/aggregations/snapshots/test_nullary_compiler/test_size/out.sql create mode 100644 tests/unit/core/compile/sqlglot/aggregations/test_nullary_compiler.py diff --git a/bigframes/core/compile/sqlglot/aggregate_compiler.py b/bigframes/core/compile/sqlglot/aggregate_compiler.py index 08bca535a8..b86ae196f6 100644 --- a/bigframes/core/compile/sqlglot/aggregate_compiler.py +++ b/bigframes/core/compile/sqlglot/aggregate_compiler.py @@ -63,7 +63,7 @@ def compile_analytic( window: window_spec.WindowSpec, ) -> sge.Expression: if isinstance(aggregate, agg_expressions.NullaryAggregation): - return nullary_compiler.compile(aggregate.op) + return nullary_compiler.compile(aggregate.op, window) if isinstance(aggregate, agg_expressions.UnaryAggregation): column = typed_expr.TypedExpr( scalar_compiler.scalar_op_compiler.compile_expression(aggregate.arg), diff --git a/bigframes/core/compile/sqlglot/aggregations/nullary_compiler.py b/bigframes/core/compile/sqlglot/aggregations/nullary_compiler.py index 99e3562b42..c6418591ba 100644 --- a/bigframes/core/compile/sqlglot/aggregations/nullary_compiler.py +++ b/bigframes/core/compile/sqlglot/aggregations/nullary_compiler.py @@ -39,3 +39,15 @@ def _( window: typing.Optional[window_spec.WindowSpec] = None, ) -> sge.Expression: return apply_window_if_present(sge.func("COUNT", sge.convert(1)), window) + + +@NULLARY_OP_REGISTRATION.register(agg_ops.RowNumberOp) +def _( + op: agg_ops.RowNumberOp, + window: typing.Optional[window_spec.WindowSpec] = None, +) -> sge.Expression: + result: sge.Expression = sge.func("ROW_NUMBER") + if window is None: + # ROW_NUMBER always needs an OVER clause. + return sge.Window(this=result) + return apply_window_if_present(result, window) diff --git a/bigframes/core/compile/sqlglot/aggregations/unary_compiler.py b/bigframes/core/compile/sqlglot/aggregations/unary_compiler.py index 11d53cdd4c..e8baa15bce 100644 --- a/bigframes/core/compile/sqlglot/aggregations/unary_compiler.py +++ b/bigframes/core/compile/sqlglot/aggregations/unary_compiler.py @@ -84,10 +84,7 @@ def _( column: typed_expr.TypedExpr, window: typing.Optional[window_spec.WindowSpec] = None, ) -> sge.Expression: - # Ranking functions do not support window framing clauses. - return apply_window_if_present( - sge.func("DENSE_RANK"), window, include_framing_clauses=False - ) + return apply_window_if_present(sge.func("DENSE_RANK"), window) @UNARY_OP_REGISTRATION.register(agg_ops.MaxOp) @@ -165,10 +162,7 @@ def _( column: typed_expr.TypedExpr, window: typing.Optional[window_spec.WindowSpec] = None, ) -> sge.Expression: - # Ranking functions do not support window framing clauses. - return apply_window_if_present( - sge.func("RANK"), window, include_framing_clauses=False - ) + return apply_window_if_present(sge.func("RANK"), window) @UNARY_OP_REGISTRATION.register(agg_ops.SizeUnaryOp) diff --git a/bigframes/core/compile/sqlglot/aggregations/windows.py b/bigframes/core/compile/sqlglot/aggregations/windows.py index 1bfa72b878..5e38bf120e 100644 --- a/bigframes/core/compile/sqlglot/aggregations/windows.py +++ b/bigframes/core/compile/sqlglot/aggregations/windows.py @@ -25,7 +25,6 @@ def apply_window_if_present( value: sge.Expression, window: typing.Optional[window_spec.WindowSpec] = None, - include_framing_clauses: bool = True, ) -> sge.Expression: if window is None: return value @@ -65,7 +64,7 @@ def apply_window_if_present( if not window.bounds and not order: return sge.Window(this=value, partition_by=group_by) - if not window.bounds and not include_framing_clauses: + if not window.bounds: return sge.Window(this=value, partition_by=group_by, order=order) kind = ( diff --git a/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_nullary_compiler/test_row_number/out.sql b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_nullary_compiler/test_row_number/out.sql new file mode 100644 index 0000000000..d20a635e3d --- /dev/null +++ b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_nullary_compiler/test_row_number/out.sql @@ -0,0 +1,13 @@ +WITH `bfcte_0` AS ( + SELECT + `bool_col` AS `bfcol_0` + FROM `bigframes-dev`.`sqlglot_test`.`scalar_types` +), `bfcte_1` AS ( + SELECT + *, + ROW_NUMBER() OVER () AS `bfcol_1` + FROM `bfcte_0` +) +SELECT + `bfcol_1` AS `row_number` +FROM `bfcte_1` \ No newline at end of file diff --git a/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_nullary_compiler/test_row_number_with_window/out.sql b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_nullary_compiler/test_row_number_with_window/out.sql new file mode 100644 index 0000000000..2cee8a228f --- /dev/null +++ b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_nullary_compiler/test_row_number_with_window/out.sql @@ -0,0 +1,13 @@ +WITH `bfcte_0` AS ( + SELECT + `int64_col` AS `bfcol_0` + FROM `bigframes-dev`.`sqlglot_test`.`scalar_types` +), `bfcte_1` AS ( + SELECT + *, + ROW_NUMBER() OVER (ORDER BY `bfcol_0` IS NULL ASC NULLS LAST, `bfcol_0` ASC NULLS LAST) AS `bfcol_1` + FROM `bfcte_0` +) +SELECT + `bfcol_1` AS `row_number` +FROM `bfcte_1` \ No newline at end of file diff --git a/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_nullary_compiler/test_size/out.sql b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_nullary_compiler/test_size/out.sql new file mode 100644 index 0000000000..19ae8aa3fd --- /dev/null +++ b/tests/unit/core/compile/sqlglot/aggregations/snapshots/test_nullary_compiler/test_size/out.sql @@ -0,0 +1,12 @@ +WITH `bfcte_0` AS ( + SELECT + `rowindex` AS `bfcol_0` + FROM `bigframes-dev`.`sqlglot_test`.`scalar_types` +), `bfcte_1` AS ( + SELECT + COUNT(1) AS `bfcol_2` + FROM `bfcte_0` +) +SELECT + `bfcol_2` AS `size` +FROM `bfcte_1` \ No newline at end of file diff --git a/tests/unit/core/compile/sqlglot/aggregations/test_nullary_compiler.py b/tests/unit/core/compile/sqlglot/aggregations/test_nullary_compiler.py new file mode 100644 index 0000000000..2348b95496 --- /dev/null +++ b/tests/unit/core/compile/sqlglot/aggregations/test_nullary_compiler.py @@ -0,0 +1,85 @@ +# Copyright 2025 Google LLC +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import typing + +import pytest + +from bigframes.core import agg_expressions as agg_exprs +from bigframes.core import array_value, identifiers, nodes, ordering, window_spec +from bigframes.operations import aggregations as agg_ops +import bigframes.pandas as bpd + +pytest.importorskip("pytest_snapshot") + + +def _apply_nullary_agg_ops( + obj: bpd.DataFrame, + ops_list: typing.Sequence[agg_exprs.NullaryAggregation], + new_names: typing.Sequence[str], +) -> str: + aggs = [(op, identifiers.ColumnId(name)) for op, name in zip(ops_list, new_names)] + + agg_node = nodes.AggregateNode(obj._block.expr.node, aggregations=tuple(aggs)) + result = array_value.ArrayValue(agg_node) + + sql = result.session._executor.to_sql(result, enable_cache=False) + return sql + + +def _apply_nullary_window_op( + obj: bpd.DataFrame, + op: agg_exprs.NullaryAggregation, + window_spec: window_spec.WindowSpec, + new_name: str, +) -> str: + win_node = nodes.WindowOpNode( + obj._block.expr.node, + expression=op, + window_spec=window_spec, + output_name=identifiers.ColumnId(new_name), + ) + result = array_value.ArrayValue(win_node).select_columns([new_name]) + + sql = result.session._executor.to_sql(result, enable_cache=False) + return sql + + +def test_size(scalar_types_df: bpd.DataFrame, snapshot): + bf_df = scalar_types_df + agg_expr = agg_ops.SizeOp().as_expr() + sql = _apply_nullary_agg_ops(bf_df, [agg_expr], ["size"]) + + snapshot.assert_match(sql, "out.sql") + + +def test_row_number(scalar_types_df: bpd.DataFrame, snapshot): + bf_df = scalar_types_df + agg_expr = agg_exprs.NullaryAggregation(agg_ops.RowNumberOp()) + window = window_spec.WindowSpec() + sql = _apply_nullary_window_op(bf_df, agg_expr, window, "row_number") + + snapshot.assert_match(sql, "out.sql") + + +def test_row_number_with_window(scalar_types_df: bpd.DataFrame, snapshot): + col_name = "int64_col" + bf_df = scalar_types_df[[col_name, "int64_too"]] + agg_expr = agg_exprs.NullaryAggregation(agg_ops.RowNumberOp()) + + window = window_spec.WindowSpec(ordering=(ordering.ascending_over(col_name),)) + # window = window_spec.unbound(ordering=(ordering.ascending_over(col_name),ordering.ascending_over("int64_too"))) + sql = _apply_nullary_window_op(bf_df, agg_expr, window, "row_number") + + snapshot.assert_match(sql, "out.sql") From 6b8154c578bb1a276e9cf8fe494d91f8cd6260f2 Mon Sep 17 00:00:00 2001 From: Shenyang Cai Date: Fri, 26 Sep 2025 15:54:22 -0700 Subject: [PATCH 4/8] feat: add ai.generate_double to bigframes.bigquery package (#2111) * feat: add ai.generate_double to bigframes.bigquery package * fix lint * fix doctest --- bigframes/bigquery/_operations/ai.py | 75 +++++++++++++++++++ .../ibis_compiler/scalar_op_registry.py | 16 +++- .../compile/sqlglot/expressions/ai_ops.py | 7 ++ bigframes/operations/__init__.py | 3 +- bigframes/operations/ai_ops.py | 22 ++++++ tests/system/small/bigquery/test_ai.py | 39 ++++++++++ .../test_ai_generate_double/out.sql | 18 +++++ .../out.sql | 18 +++++ .../sqlglot/expressions/test_ai_ops.py | 45 +++++++++++ .../sql/compilers/bigquery/__init__.py | 3 + .../ibis/expr/operations/ai_ops.py | 23 ++++++ 11 files changed, 267 insertions(+), 2 deletions(-) create mode 100644 tests/unit/core/compile/sqlglot/expressions/snapshots/test_ai_ops/test_ai_generate_double/out.sql create mode 100644 tests/unit/core/compile/sqlglot/expressions/snapshots/test_ai_ops/test_ai_generate_double_with_model_param/out.sql diff --git a/bigframes/bigquery/_operations/ai.py b/bigframes/bigquery/_operations/ai.py index f0b4f51611..5c7a4d682e 100644 --- a/bigframes/bigquery/_operations/ai.py +++ b/bigframes/bigquery/_operations/ai.py @@ -188,6 +188,81 @@ def generate_int( return series_list[0]._apply_nary_op(operator, series_list[1:]) +@log_adapter.method_logger(custom_base_name="bigquery_ai") +def generate_double( + prompt: PROMPT_TYPE, + *, + connection_id: str | None = None, + endpoint: str | None = None, + request_type: Literal["dedicated", "shared", "unspecified"] = "unspecified", + model_params: Mapping[Any, Any] | None = None, +) -> series.Series: + """ + Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data. + + **Examples:** + + >>> import bigframes.pandas as bpd + >>> import bigframes.bigquery as bbq + >>> bpd.options.display.progress_bar = None + >>> animal = bpd.Series(["Kangaroo", "Rabbit", "Spider"]) + >>> bbq.ai.generate_double(("How many legs does a ", animal, " have?")) + 0 {'result': 2.0, 'full_response': '{"candidates... + 1 {'result': 4.0, 'full_response': '{"candidates... + 2 {'result': 8.0, 'full_response': '{"candidates... + dtype: struct>, status: string>[pyarrow] + + >>> bbq.ai.generate_double(("How many legs does a ", animal, " have?")).struct.field("result") + 0 2.0 + 1 4.0 + 2 8.0 + Name: result, dtype: Float64 + + Args: + prompt (Series | List[str|Series] | Tuple[str|Series, ...]): + A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series + or pandas Series. + connection_id (str, optional): + Specifies the connection to use to communicate with the model. For example, `myproject.us.myconnection`. + If not provided, the connection from the current session will be used. + endpoint (str, optional): + Specifies the Vertex AI endpoint to use for the model. For example `"gemini-2.5-flash"`. You can specify any + generally available or preview Gemini model. If you specify the model name, BigQuery ML automatically identifies and + uses the full endpoint of the model. If you don't specify an ENDPOINT value, BigQuery ML selects a recent stable + version of Gemini to use. + request_type (Literal["dedicated", "shared", "unspecified"]): + Specifies the type of inference request to send to the Gemini model. The request type determines what quota the request uses. + * "dedicated": function only uses Provisioned Throughput quota. The function returns the error Provisioned throughput is not + purchased or is not active if Provisioned Throughput quota isn't available. + * "shared": the function only uses dynamic shared quota (DSQ), even if you have purchased Provisioned Throughput quota. + * "unspecified": If you haven't purchased Provisioned Throughput quota, the function uses DSQ quota. + If you have purchased Provisioned Throughput quota, the function uses the Provisioned Throughput quota first. + If requests exceed the Provisioned Throughput quota, the overflow traffic uses DSQ quota. + model_params (Mapping[Any, Any]): + Provides additional parameters to the model. The MODEL_PARAMS value must conform to the generateContent request body format. + + Returns: + bigframes.series.Series: A new struct Series with the result data. The struct contains these fields: + * "result": an DOUBLE value containing the model's response to the prompt. The result is None if the request fails or is filtered by responsible AI. + * "full_response": a JSON value containing the response from the projects.locations.endpoints.generateContent call to the model. + The generated text is in the text element. + * "status": a STRING value that contains the API response status for the corresponding row. This value is empty if the operation was successful. + """ + + prompt_context, series_list = _separate_context_and_series(prompt) + assert len(series_list) > 0 + + operator = ai_ops.AIGenerateDouble( + prompt_context=tuple(prompt_context), + connection_id=_resolve_connection_id(series_list[0], connection_id), + endpoint=endpoint, + request_type=request_type, + model_params=json.dumps(model_params) if model_params else None, + ) + + return series_list[0]._apply_nary_op(operator, series_list[1:]) + + def _separate_context_and_series( prompt: PROMPT_TYPE, ) -> Tuple[List[str | None], List[series.Series]]: diff --git a/bigframes/core/compile/ibis_compiler/scalar_op_registry.py b/bigframes/core/compile/ibis_compiler/scalar_op_registry.py index 8426a86375..e8a2b0b6ce 100644 --- a/bigframes/core/compile/ibis_compiler/scalar_op_registry.py +++ b/bigframes/core/compile/ibis_compiler/scalar_op_registry.py @@ -1986,7 +1986,7 @@ def ai_generate_bool( @scalar_op_compiler.register_nary_op(ops.AIGenerateInt, pass_op=True) def ai_generate_int( - *values: ibis_types.Value, op: ops.AIGenerateBool + *values: ibis_types.Value, op: ops.AIGenerateInt ) -> ibis_types.StructValue: return ai_ops.AIGenerateInt( @@ -1998,6 +1998,20 @@ def ai_generate_int( ).to_expr() +@scalar_op_compiler.register_nary_op(ops.AIGenerateDouble, pass_op=True) +def ai_generate_double( + *values: ibis_types.Value, op: ops.AIGenerateDouble +) -> ibis_types.StructValue: + + return ai_ops.AIGenerateDouble( + _construct_prompt(values, op.prompt_context), # type: ignore + op.connection_id, # type: ignore + op.endpoint, # type: ignore + op.request_type.upper(), # type: ignore + op.model_params, # type: ignore + ).to_expr() + + def _construct_prompt( col_refs: tuple[ibis_types.Value], prompt_context: tuple[str | None] ) -> ibis_types.StructValue: diff --git a/bigframes/core/compile/sqlglot/expressions/ai_ops.py b/bigframes/core/compile/sqlglot/expressions/ai_ops.py index 50d56611b1..0e6d079bd7 100644 --- a/bigframes/core/compile/sqlglot/expressions/ai_ops.py +++ b/bigframes/core/compile/sqlglot/expressions/ai_ops.py @@ -40,6 +40,13 @@ def _(*exprs: TypedExpr, op: ops.AIGenerateInt) -> sge.Expression: return sge.func("AI.GENERATE_INT", *args) +@register_nary_op(ops.AIGenerateDouble, pass_op=True) +def _(*exprs: TypedExpr, op: ops.AIGenerateDouble) -> sge.Expression: + args = [_construct_prompt(exprs, op.prompt_context)] + _construct_named_args(op) + + return sge.func("AI.GENERATE_DOUBLE", *args) + + def _construct_prompt( exprs: tuple[TypedExpr, ...], prompt_context: tuple[str | None, ...] ) -> sge.Kwarg: diff --git a/bigframes/operations/__init__.py b/bigframes/operations/__init__.py index 17e1f7534f..b14d15245a 100644 --- a/bigframes/operations/__init__.py +++ b/bigframes/operations/__init__.py @@ -14,7 +14,7 @@ from __future__ import annotations -from bigframes.operations.ai_ops import AIGenerateBool, AIGenerateInt +from bigframes.operations.ai_ops import AIGenerateBool, AIGenerateDouble, AIGenerateInt from bigframes.operations.array_ops import ( ArrayIndexOp, ArrayReduceOp, @@ -413,6 +413,7 @@ "GeoStDistanceOp", # AI ops "AIGenerateBool", + "AIGenerateDouble", "AIGenerateInt", # Numpy ops mapping "NUMPY_TO_BINOP", diff --git a/bigframes/operations/ai_ops.py b/bigframes/operations/ai_ops.py index 7a8202abd2..4404558497 100644 --- a/bigframes/operations/ai_ops.py +++ b/bigframes/operations/ai_ops.py @@ -66,3 +66,25 @@ def output_type(self, *input_types: dtypes.ExpressionType) -> dtypes.ExpressionT ) ) ) + + +@dataclasses.dataclass(frozen=True) +class AIGenerateDouble(base_ops.NaryOp): + name: ClassVar[str] = "ai_generate_double" + + prompt_context: Tuple[str | None, ...] + connection_id: str + endpoint: str | None + request_type: Literal["dedicated", "shared", "unspecified"] + model_params: str | None + + def output_type(self, *input_types: dtypes.ExpressionType) -> dtypes.ExpressionType: + return pd.ArrowDtype( + pa.struct( + ( + pa.field("result", pa.float64()), + pa.field("full_response", dtypes.JSON_ARROW_TYPE), + pa.field("status", pa.string()), + ) + ) + ) diff --git a/tests/system/small/bigquery/test_ai.py b/tests/system/small/bigquery/test_ai.py index 9f6feb0bbc..7d32149726 100644 --- a/tests/system/small/bigquery/test_ai.py +++ b/tests/system/small/bigquery/test_ai.py @@ -146,5 +146,44 @@ def test_ai_generate_int_multi_model(session): ) +def test_ai_generate_double(session): + s = bpd.Series(["Cat"], session=session) + prompt = ("How many legs does a ", s, " have?") + + result = bbq.ai.generate_double(prompt, endpoint="gemini-2.5-flash") + + assert _contains_no_nulls(result) + assert result.dtype == pd.ArrowDtype( + pa.struct( + ( + pa.field("result", pa.float64()), + pa.field("full_response", dtypes.JSON_ARROW_TYPE), + pa.field("status", pa.string()), + ) + ) + ) + + +def test_ai_generate_double_multi_model(session): + df = session.from_glob_path( + "gs://bigframes-dev-testing/a_multimodel/images/*", name="image" + ) + + result = bbq.ai.generate_double( + ("How many animals are there in the picture ", df["image"]) + ) + + assert _contains_no_nulls(result) + assert result.dtype == pd.ArrowDtype( + pa.struct( + ( + pa.field("result", pa.float64()), + pa.field("full_response", dtypes.JSON_ARROW_TYPE), + pa.field("status", pa.string()), + ) + ) + ) + + def _contains_no_nulls(s: series.Series) -> bool: return len(s) == s.count() diff --git a/tests/unit/core/compile/sqlglot/expressions/snapshots/test_ai_ops/test_ai_generate_double/out.sql b/tests/unit/core/compile/sqlglot/expressions/snapshots/test_ai_ops/test_ai_generate_double/out.sql new file mode 100644 index 0000000000..0baab06c3b --- /dev/null +++ b/tests/unit/core/compile/sqlglot/expressions/snapshots/test_ai_ops/test_ai_generate_double/out.sql @@ -0,0 +1,18 @@ +WITH `bfcte_0` AS ( + SELECT + `string_col` AS `bfcol_0` + FROM `bigframes-dev`.`sqlglot_test`.`scalar_types` +), `bfcte_1` AS ( + SELECT + *, + AI.GENERATE_DOUBLE( + prompt => (`bfcol_0`, ' is the same as ', `bfcol_0`), + connection_id => 'test_connection_id', + endpoint => 'gemini-2.5-flash', + request_type => 'SHARED' + ) AS `bfcol_1` + FROM `bfcte_0` +) +SELECT + `bfcol_1` AS `result` +FROM `bfcte_1` \ No newline at end of file diff --git a/tests/unit/core/compile/sqlglot/expressions/snapshots/test_ai_ops/test_ai_generate_double_with_model_param/out.sql b/tests/unit/core/compile/sqlglot/expressions/snapshots/test_ai_ops/test_ai_generate_double_with_model_param/out.sql new file mode 100644 index 0000000000..4756cbb509 --- /dev/null +++ b/tests/unit/core/compile/sqlglot/expressions/snapshots/test_ai_ops/test_ai_generate_double_with_model_param/out.sql @@ -0,0 +1,18 @@ +WITH `bfcte_0` AS ( + SELECT + `string_col` AS `bfcol_0` + FROM `bigframes-dev`.`sqlglot_test`.`scalar_types` +), `bfcte_1` AS ( + SELECT + *, + AI.GENERATE_DOUBLE( + prompt => (`bfcol_0`, ' is the same as ', `bfcol_0`), + connection_id => 'test_connection_id', + request_type => 'SHARED', + model_params => JSON '{}' + ) AS `bfcol_1` + FROM `bfcte_0` +) +SELECT + `bfcol_1` AS `result` +FROM `bfcte_1` \ No newline at end of file diff --git a/tests/unit/core/compile/sqlglot/expressions/test_ai_ops.py b/tests/unit/core/compile/sqlglot/expressions/test_ai_ops.py index 33a257f9a9..c95889e1b2 100644 --- a/tests/unit/core/compile/sqlglot/expressions/test_ai_ops.py +++ b/tests/unit/core/compile/sqlglot/expressions/test_ai_ops.py @@ -111,3 +111,48 @@ def test_ai_generate_int_with_model_param( ) snapshot.assert_match(sql, "out.sql") + + +def test_ai_generate_double(scalar_types_df: dataframe.DataFrame, snapshot): + col_name = "string_col" + + op = ops.AIGenerateDouble( + # The prompt does not make semantic sense but we only care about syntax correctness. + prompt_context=(None, " is the same as ", None), + connection_id="test_connection_id", + endpoint="gemini-2.5-flash", + request_type="shared", + model_params=None, + ) + + sql = utils._apply_unary_ops( + scalar_types_df, [op.as_expr(col_name, col_name)], ["result"] + ) + + snapshot.assert_match(sql, "out.sql") + + +def test_ai_generate_double_with_model_param( + scalar_types_df: dataframe.DataFrame, snapshot +): + if version.Version(sqlglot.__version__) < version.Version("25.18.0"): + pytest.skip( + "Skip test because SQLGLot cannot compile model params to JSON at this version." + ) + + col_name = "string_col" + + op = ops.AIGenerateDouble( + # The prompt does not make semantic sense but we only care about syntax correctness. + prompt_context=(None, " is the same as ", None), + connection_id="test_connection_id", + endpoint=None, + request_type="shared", + model_params=json.dumps(dict()), + ) + + sql = utils._apply_unary_ops( + scalar_types_df, [op.as_expr(col_name, col_name)], ["result"] + ) + + snapshot.assert_match(sql, "out.sql") diff --git a/third_party/bigframes_vendored/ibis/backends/sql/compilers/bigquery/__init__.py b/third_party/bigframes_vendored/ibis/backends/sql/compilers/bigquery/__init__.py index ef150534ee..e4122e88da 100644 --- a/third_party/bigframes_vendored/ibis/backends/sql/compilers/bigquery/__init__.py +++ b/third_party/bigframes_vendored/ibis/backends/sql/compilers/bigquery/__init__.py @@ -1110,6 +1110,9 @@ def visit_AIGenerateBool(self, op, **kwargs): def visit_AIGenerateInt(self, op, **kwargs): return sge.func("AI.GENERATE_INT", *self._compile_ai_args(**kwargs)) + def visit_AIGenerateDouble(self, op, **kwargs): + return sge.func("AI.GENERATE_DOUBLE", *self._compile_ai_args(**kwargs)) + def _compile_ai_args(self, **kwargs): args = [] diff --git a/third_party/bigframes_vendored/ibis/expr/operations/ai_ops.py b/third_party/bigframes_vendored/ibis/expr/operations/ai_ops.py index 4b855f71c0..708a459072 100644 --- a/third_party/bigframes_vendored/ibis/expr/operations/ai_ops.py +++ b/third_party/bigframes_vendored/ibis/expr/operations/ai_ops.py @@ -49,3 +49,26 @@ def dtype(self) -> dt.Struct: return dt.Struct.from_tuples( (("result", dt.int64), ("full_resposne", dt.string), ("status", dt.string)) ) + + +@public +class AIGenerateDouble(Value): + """Generate integers based on the prompt""" + + prompt: Value + connection_id: Value[dt.String] + endpoint: Optional[Value[dt.String]] + request_type: Value[dt.String] + model_params: Optional[Value[dt.String]] + + shape = rlz.shape_like("prompt") + + @attribute + def dtype(self) -> dt.Struct: + return dt.Struct.from_tuples( + ( + ("result", dt.float64), + ("full_resposne", dt.string), + ("status", dt.string), + ) + ) From 10b2a38f7faed86e71a96d386cf3554559f24019 Mon Sep 17 00:00:00 2001 From: Chelsea Lin Date: Mon, 29 Sep 2025 13:55:59 -0700 Subject: [PATCH 5/8] refactor: support and, or, xor for sqlglot compiler (#2117) --- bigframes/core/compile/sqlglot/__init__.py | 1 + .../compile/sqlglot/expressions/bool_ops.py | 47 +++++++++++++++++++ bigframes/operations/type.py | 4 +- tests/system/small/engines/test_bool_ops.py | 2 +- .../test_bool_ops/test_and_op/out.sql | 31 ++++++++++++ .../test_bool_ops/test_or_op/out.sql | 31 ++++++++++++ .../test_bool_ops/test_xor_op/out.sql | 31 ++++++++++++ .../sqlglot/expressions/test_bool_ops.py | 43 +++++++++++++++++ 8 files changed, 187 insertions(+), 3 deletions(-) create mode 100644 bigframes/core/compile/sqlglot/expressions/bool_ops.py create mode 100644 tests/unit/core/compile/sqlglot/expressions/snapshots/test_bool_ops/test_and_op/out.sql create mode 100644 tests/unit/core/compile/sqlglot/expressions/snapshots/test_bool_ops/test_or_op/out.sql create mode 100644 tests/unit/core/compile/sqlglot/expressions/snapshots/test_bool_ops/test_xor_op/out.sql create mode 100644 tests/unit/core/compile/sqlglot/expressions/test_bool_ops.py diff --git a/bigframes/core/compile/sqlglot/__init__.py b/bigframes/core/compile/sqlglot/__init__.py index 1fc22e1af6..4ceb4118cd 100644 --- a/bigframes/core/compile/sqlglot/__init__.py +++ b/bigframes/core/compile/sqlglot/__init__.py @@ -17,6 +17,7 @@ import bigframes.core.compile.sqlglot.expressions.ai_ops # noqa: F401 import bigframes.core.compile.sqlglot.expressions.array_ops # noqa: F401 import bigframes.core.compile.sqlglot.expressions.blob_ops # noqa: F401 +import bigframes.core.compile.sqlglot.expressions.bool_ops # noqa: F401 import bigframes.core.compile.sqlglot.expressions.comparison_ops # noqa: F401 import bigframes.core.compile.sqlglot.expressions.date_ops # noqa: F401 import bigframes.core.compile.sqlglot.expressions.datetime_ops # noqa: F401 diff --git a/bigframes/core/compile/sqlglot/expressions/bool_ops.py b/bigframes/core/compile/sqlglot/expressions/bool_ops.py new file mode 100644 index 0000000000..41076b666a --- /dev/null +++ b/bigframes/core/compile/sqlglot/expressions/bool_ops.py @@ -0,0 +1,47 @@ +# Copyright 2025 Google LLC +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import annotations + +import sqlglot.expressions as sge + +from bigframes import dtypes +from bigframes import operations as ops +from bigframes.core.compile.sqlglot.expressions.typed_expr import TypedExpr +import bigframes.core.compile.sqlglot.scalar_compiler as scalar_compiler + +register_binary_op = scalar_compiler.scalar_op_compiler.register_binary_op + + +@register_binary_op(ops.and_op) +def _(left: TypedExpr, right: TypedExpr) -> sge.Expression: + if left.dtype == dtypes.BOOL_DTYPE and right.dtype == dtypes.BOOL_DTYPE: + return sge.And(this=left.expr, expression=right.expr) + return sge.BitwiseAnd(this=left.expr, expression=right.expr) + + +@register_binary_op(ops.or_op) +def _(left: TypedExpr, right: TypedExpr) -> sge.Expression: + if left.dtype == dtypes.BOOL_DTYPE and right.dtype == dtypes.BOOL_DTYPE: + return sge.Or(this=left.expr, expression=right.expr) + return sge.BitwiseOr(this=left.expr, expression=right.expr) + + +@register_binary_op(ops.xor_op) +def _(left: TypedExpr, right: TypedExpr) -> sge.Expression: + if left.dtype == dtypes.BOOL_DTYPE and right.dtype == dtypes.BOOL_DTYPE: + left_expr = sge.And(this=left.expr, expression=sge.Not(this=right.expr)) + right_expr = sge.And(this=sge.Not(this=left.expr), expression=right.expr) + return sge.Or(this=left_expr, expression=right_expr) + return sge.BitwiseXor(this=left.expr, expression=right.expr) diff --git a/bigframes/operations/type.py b/bigframes/operations/type.py index 020bd0ea57..6542233081 100644 --- a/bigframes/operations/type.py +++ b/bigframes/operations/type.py @@ -204,7 +204,7 @@ def output_type( raise TypeError(f"Type {right_type} is not binary") if left_type != right_type: raise TypeError( - "Bitwise operands {left_type} and {right_type} do not match" + f"Bitwise operands {left_type} and {right_type} do not match" ) return left_type @@ -222,7 +222,7 @@ def output_type( raise TypeError(f"Type {right_type} is not array-like") if left_type != right_type: raise TypeError( - "Vector op operands {left_type} and {right_type} do not match" + f"Vector op operands {left_type} and {right_type} do not match" ) return bigframes.dtypes.FLOAT_DTYPE diff --git a/tests/system/small/engines/test_bool_ops.py b/tests/system/small/engines/test_bool_ops.py index 065a43c209..a77d52b356 100644 --- a/tests/system/small/engines/test_bool_ops.py +++ b/tests/system/small/engines/test_bool_ops.py @@ -46,7 +46,7 @@ def apply_op_pairwise( return new_arr -@pytest.mark.parametrize("engine", ["polars", "bq"], indirect=True) +@pytest.mark.parametrize("engine", ["polars", "bq", "bq-sqlglot"], indirect=True) @pytest.mark.parametrize( "op", [ diff --git a/tests/unit/core/compile/sqlglot/expressions/snapshots/test_bool_ops/test_and_op/out.sql b/tests/unit/core/compile/sqlglot/expressions/snapshots/test_bool_ops/test_and_op/out.sql new file mode 100644 index 0000000000..42c5847401 --- /dev/null +++ b/tests/unit/core/compile/sqlglot/expressions/snapshots/test_bool_ops/test_and_op/out.sql @@ -0,0 +1,31 @@ +WITH `bfcte_0` AS ( + SELECT + `bool_col` AS `bfcol_0`, + `int64_col` AS `bfcol_1`, + `rowindex` AS `bfcol_2` + FROM `bigframes-dev`.`sqlglot_test`.`scalar_types` +), `bfcte_1` AS ( + SELECT + *, + `bfcol_2` AS `bfcol_6`, + `bfcol_0` AS `bfcol_7`, + `bfcol_1` AS `bfcol_8`, + `bfcol_1` & `bfcol_1` AS `bfcol_9` + FROM `bfcte_0` +), `bfcte_2` AS ( + SELECT + *, + `bfcol_6` AS `bfcol_14`, + `bfcol_7` AS `bfcol_15`, + `bfcol_8` AS `bfcol_16`, + `bfcol_9` AS `bfcol_17`, + `bfcol_7` AND `bfcol_7` AS `bfcol_18` + FROM `bfcte_1` +) +SELECT + `bfcol_14` AS `rowindex`, + `bfcol_15` AS `bool_col`, + `bfcol_16` AS `int64_col`, + `bfcol_17` AS `int_and_int`, + `bfcol_18` AS `bool_and_bool` +FROM `bfcte_2` \ No newline at end of file diff --git a/tests/unit/core/compile/sqlglot/expressions/snapshots/test_bool_ops/test_or_op/out.sql b/tests/unit/core/compile/sqlglot/expressions/snapshots/test_bool_ops/test_or_op/out.sql new file mode 100644 index 0000000000..d1e7bd1822 --- /dev/null +++ b/tests/unit/core/compile/sqlglot/expressions/snapshots/test_bool_ops/test_or_op/out.sql @@ -0,0 +1,31 @@ +WITH `bfcte_0` AS ( + SELECT + `bool_col` AS `bfcol_0`, + `int64_col` AS `bfcol_1`, + `rowindex` AS `bfcol_2` + FROM `bigframes-dev`.`sqlglot_test`.`scalar_types` +), `bfcte_1` AS ( + SELECT + *, + `bfcol_2` AS `bfcol_6`, + `bfcol_0` AS `bfcol_7`, + `bfcol_1` AS `bfcol_8`, + `bfcol_1` | `bfcol_1` AS `bfcol_9` + FROM `bfcte_0` +), `bfcte_2` AS ( + SELECT + *, + `bfcol_6` AS `bfcol_14`, + `bfcol_7` AS `bfcol_15`, + `bfcol_8` AS `bfcol_16`, + `bfcol_9` AS `bfcol_17`, + `bfcol_7` OR `bfcol_7` AS `bfcol_18` + FROM `bfcte_1` +) +SELECT + `bfcol_14` AS `rowindex`, + `bfcol_15` AS `bool_col`, + `bfcol_16` AS `int64_col`, + `bfcol_17` AS `int_and_int`, + `bfcol_18` AS `bool_and_bool` +FROM `bfcte_2` \ No newline at end of file diff --git a/tests/unit/core/compile/sqlglot/expressions/snapshots/test_bool_ops/test_xor_op/out.sql b/tests/unit/core/compile/sqlglot/expressions/snapshots/test_bool_ops/test_xor_op/out.sql new file mode 100644 index 0000000000..7d5f74ede7 --- /dev/null +++ b/tests/unit/core/compile/sqlglot/expressions/snapshots/test_bool_ops/test_xor_op/out.sql @@ -0,0 +1,31 @@ +WITH `bfcte_0` AS ( + SELECT + `bool_col` AS `bfcol_0`, + `int64_col` AS `bfcol_1`, + `rowindex` AS `bfcol_2` + FROM `bigframes-dev`.`sqlglot_test`.`scalar_types` +), `bfcte_1` AS ( + SELECT + *, + `bfcol_2` AS `bfcol_6`, + `bfcol_0` AS `bfcol_7`, + `bfcol_1` AS `bfcol_8`, + `bfcol_1` ^ `bfcol_1` AS `bfcol_9` + FROM `bfcte_0` +), `bfcte_2` AS ( + SELECT + *, + `bfcol_6` AS `bfcol_14`, + `bfcol_7` AS `bfcol_15`, + `bfcol_8` AS `bfcol_16`, + `bfcol_9` AS `bfcol_17`, + `bfcol_7` AND NOT `bfcol_7` OR NOT `bfcol_7` AND `bfcol_7` AS `bfcol_18` + FROM `bfcte_1` +) +SELECT + `bfcol_14` AS `rowindex`, + `bfcol_15` AS `bool_col`, + `bfcol_16` AS `int64_col`, + `bfcol_17` AS `int_and_int`, + `bfcol_18` AS `bool_and_bool` +FROM `bfcte_2` \ No newline at end of file diff --git a/tests/unit/core/compile/sqlglot/expressions/test_bool_ops.py b/tests/unit/core/compile/sqlglot/expressions/test_bool_ops.py new file mode 100644 index 0000000000..08b60d6ddf --- /dev/null +++ b/tests/unit/core/compile/sqlglot/expressions/test_bool_ops.py @@ -0,0 +1,43 @@ +# Copyright 2025 Google LLC +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import pytest + +import bigframes.pandas as bpd + +pytest.importorskip("pytest_snapshot") + + +def test_and_op(scalar_types_df: bpd.DataFrame, snapshot): + bf_df = scalar_types_df[["bool_col", "int64_col"]] + + bf_df["int_and_int"] = bf_df["int64_col"] & bf_df["int64_col"] + bf_df["bool_and_bool"] = bf_df["bool_col"] & bf_df["bool_col"] + snapshot.assert_match(bf_df.sql, "out.sql") + + +def test_or_op(scalar_types_df: bpd.DataFrame, snapshot): + bf_df = scalar_types_df[["bool_col", "int64_col"]] + + bf_df["int_and_int"] = bf_df["int64_col"] | bf_df["int64_col"] + bf_df["bool_and_bool"] = bf_df["bool_col"] | bf_df["bool_col"] + snapshot.assert_match(bf_df.sql, "out.sql") + + +def test_xor_op(scalar_types_df: bpd.DataFrame, snapshot): + bf_df = scalar_types_df[["bool_col", "int64_col"]] + + bf_df["int_and_int"] = bf_df["int64_col"] ^ bf_df["int64_col"] + bf_df["bool_and_bool"] = bf_df["bool_col"] ^ bf_df["bool_col"] + snapshot.assert_match(bf_df.sql, "out.sql") From c311876b2adbc0b66ae5e463c6e56466c6a6a495 Mon Sep 17 00:00:00 2001 From: TrevorBergeron Date: Mon, 29 Sep 2025 14:27:42 -0700 Subject: [PATCH 6/8] fix: Prevent invalid syntax for no-op .replace ops (#2112) --- bigframes/core/compile/ibis_compiler/scalar_op_registry.py | 4 ++++ bigframes/core/compile/sqlglot/expressions/generic_ops.py | 2 ++ tests/system/small/test_series.py | 2 ++ 3 files changed, 8 insertions(+) diff --git a/bigframes/core/compile/ibis_compiler/scalar_op_registry.py b/bigframes/core/compile/ibis_compiler/scalar_op_registry.py index e8a2b0b6ce..635ba516e4 100644 --- a/bigframes/core/compile/ibis_compiler/scalar_op_registry.py +++ b/bigframes/core/compile/ibis_compiler/scalar_op_registry.py @@ -1173,6 +1173,10 @@ def udf(*inputs): @scalar_op_compiler.register_unary_op(ops.MapOp, pass_op=True) def map_op_impl(x: ibis_types.Value, op: ops.MapOp): + # this should probably be handled by a rewriter + if len(op.mappings) == 0: + return x + case = ibis_api.case() for mapping in op.mappings: case = case.when(x == mapping[0], mapping[1]) diff --git a/bigframes/core/compile/sqlglot/expressions/generic_ops.py b/bigframes/core/compile/sqlglot/expressions/generic_ops.py index 8a792c0753..6a3825309c 100644 --- a/bigframes/core/compile/sqlglot/expressions/generic_ops.py +++ b/bigframes/core/compile/sqlglot/expressions/generic_ops.py @@ -78,6 +78,8 @@ def _(expr: TypedExpr) -> sge.Expression: @register_unary_op(ops.MapOp, pass_op=True) def _(expr: TypedExpr, op: ops.MapOp) -> sge.Expression: + if len(op.mappings) == 0: + return expr.expr return sge.Case( this=expr.expr, ifs=[ diff --git a/tests/system/small/test_series.py b/tests/system/small/test_series.py index d1a252f8dc..65b170df32 100644 --- a/tests/system/small/test_series.py +++ b/tests/system/small/test_series.py @@ -733,10 +733,12 @@ def test_series_replace_nans_with_pd_na(scalars_dfs): ( ({"Hello, World!": "Howdy, Planet!", "T": "R"},), ({},), + ({0: "Hello, World!"},), ), ids=[ "non-empty", "empty", + "off-type", ], ) def test_series_replace_dict(scalars_dfs, replacement_dict): From d1a9888a2b47de6aca5dddc94d0c8f280344b58a Mon Sep 17 00:00:00 2001 From: Shenyang Cai Date: Mon, 29 Sep 2025 15:05:20 -0700 Subject: [PATCH 7/8] docs: add timedelta notebook sample (#2124) --- notebooks/data_types/timedelta.ipynb | 576 +++++++++++++++++++++++++++ 1 file changed, 576 insertions(+) create mode 100644 notebooks/data_types/timedelta.ipynb diff --git a/notebooks/data_types/timedelta.ipynb b/notebooks/data_types/timedelta.ipynb new file mode 100644 index 0000000000..dce5b06d58 --- /dev/null +++ b/notebooks/data_types/timedelta.ipynb @@ -0,0 +1,576 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "8ebb6e6a", + "metadata": {}, + "outputs": [], + "source": [ + "# Copyright 2025 Google LLC\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ] + }, + { + "cell_type": "markdown", + "id": "c4f3bbfa", + "metadata": {}, + "source": [ + "# BigFrames Timedelta\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "
\n", + " \n", + " \"Colab Run in Colab\n", + " \n", + " \n", + " \n", + " \"GitHub\n", + " View on GitHub\n", + " \n", + " \n", + " \n", + " \"BQ\n", + " Open in BQ Studio\n", + " \n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "f74e2573", + "metadata": {}, + "source": [ + "In this notebook, you will use timedeltas to analyze the taxi trips in NYC. " + ] + }, + { + "cell_type": "markdown", + "id": "8f74dec4", + "metadata": {}, + "source": [ + "# Setup" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "51173665", + "metadata": {}, + "outputs": [], + "source": [ + "import bigframes.exceptions\n", + "import warnings\n", + "import bigframes.pandas as bpd\n", + "\n", + "PROJECT = \"bigframes-dev\" # replace this with your project\n", + "LOCATION = \"us\" # replace this with your location\n", + "\n", + "bpd.options.bigquery.project = PROJECT\n", + "bpd.options.bigquery.location = LOCATION\n", + "bpd.options.display.progress_bar = None\n", + "\n", + "bpd.options.bigquery.ordering_mode = \"partial\"\n", + "\n", + "warnings.filterwarnings(\"ignore\", category=bigframes.exceptions.AmbiguousWindowWarning)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "d64fd3e3", + "metadata": {}, + "source": [ + "# Timedelta arithmetics and comparisons" + ] + }, + { + "cell_type": "markdown", + "id": "e10bd798", + "metadata": {}, + "source": [ + "First, you load the taxi data from the BigQuery public dataset `bigquery-public-data.new_york_taxi_trips.tlc_yellow_trips_2021`. The size of this table is about 6.3 GB." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "f1b11138", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
vendor_idpickup_datetimedropoff_datetimepassenger_counttrip_distancerate_codestore_and_fwd_flagpayment_typefare_amountextramta_taxtip_amounttolls_amountimp_surchargeairport_feetotal_amountpickup_location_iddropoff_location_iddata_file_yeardata_file_month
022021-08-03 10:47:38+00:002021-08-03 10:48:28+00:0010E-91.0N10E-90E-90E-90E-90E-90E-90E-90E-919319320218
112021-08-03 13:03:25+00:002021-08-03 13:03:25+00:0010E-95.0Y20E-90E-90E-90E-90E-90E-90E-90E-926526420218
222021-08-30 15:47:27+00:002021-08-30 15:47:46+00:0010E-91.0N10E-90E-90E-90E-90E-90E-90E-90E-919319320218
322021-08-18 16:27:00+00:002021-08-19 15:28:35+00:0010E-91.0N10E-90E-90E-90E-90E-90E-90E-90E-919319320218
422021-08-14 10:13:10+00:002021-08-14 10:13:36+00:0010E-91.0N10E-90E-90E-90E-90E-90E-90E-90E-919319320218
\n", + "
" + ], + "text/plain": [ + " vendor_id pickup_datetime dropoff_datetime \\\n", + "0 2 2021-08-03 10:47:38+00:00 2021-08-03 10:48:28+00:00 \n", + "1 1 2021-08-03 13:03:25+00:00 2021-08-03 13:03:25+00:00 \n", + "2 2 2021-08-30 15:47:27+00:00 2021-08-30 15:47:46+00:00 \n", + "3 2 2021-08-18 16:27:00+00:00 2021-08-19 15:28:35+00:00 \n", + "4 2 2021-08-14 10:13:10+00:00 2021-08-14 10:13:36+00:00 \n", + "\n", + " passenger_count trip_distance rate_code store_and_fwd_flag payment_type \\\n", + "0 1 0E-9 1.0 N 1 \n", + "1 1 0E-9 5.0 Y 2 \n", + "2 1 0E-9 1.0 N 1 \n", + "3 1 0E-9 1.0 N 1 \n", + "4 1 0E-9 1.0 N 1 \n", + "\n", + " fare_amount extra mta_tax tip_amount tolls_amount imp_surcharge \\\n", + "0 0E-9 0E-9 0E-9 0E-9 0E-9 0E-9 \n", + "1 0E-9 0E-9 0E-9 0E-9 0E-9 0E-9 \n", + "2 0E-9 0E-9 0E-9 0E-9 0E-9 0E-9 \n", + "3 0E-9 0E-9 0E-9 0E-9 0E-9 0E-9 \n", + "4 0E-9 0E-9 0E-9 0E-9 0E-9 0E-9 \n", + "\n", + " airport_fee total_amount pickup_location_id dropoff_location_id \\\n", + "0 0E-9 0E-9 193 193 \n", + "1 0E-9 0E-9 265 264 \n", + "2 0E-9 0E-9 193 193 \n", + "3 0E-9 0E-9 193 193 \n", + "4 0E-9 0E-9 193 193 \n", + "\n", + " data_file_year data_file_month \n", + "0 2021 8 \n", + "1 2021 8 \n", + "2 2021 8 \n", + "3 2021 8 \n", + "4 2021 8 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "taxi_trips = bpd.read_gbq(\"bigquery-public-data.new_york_taxi_trips.tlc_yellow_trips_2021\").dropna()\n", + "taxi_trips = taxi_trips[taxi_trips['pickup_datetime'].dt.year == 2021]\n", + "taxi_trips.peek(5)" + ] + }, + { + "cell_type": "markdown", + "id": "f5b13623", + "metadata": {}, + "source": [ + "Based on the dataframe content, you calculate the trip durations and store them under the column “trip_duration”. You can see that the values under \"trip_duartion\" are timedeltas." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "12fc1a5a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "duration[us][pyarrow]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "taxi_trips['trip_duration'] = taxi_trips['dropoff_datetime'] - taxi_trips['pickup_datetime']\n", + "taxi_trips['trip_duration'].dtype" + ] + }, + { + "cell_type": "markdown", + "id": "4b18b8d9", + "metadata": {}, + "source": [ + "To remove data outliers, you filter the taxi_trips to keep only the trips that were less than 2 hours." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "62b2d42e", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "taxi_trips = taxi_trips[taxi_trips['trip_duration'] <= pd.Timedelta(\"2h\")]" + ] + }, + { + "cell_type": "markdown", + "id": "665fb8a7", + "metadata": {}, + "source": [ + "Finally, you calculate the average speed of each trip, and find the median speed of all trips." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "e79e23c3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The median speed of an average taxi trip is: 10.58 mph.\n" + ] + } + ], + "source": [ + "average_speed = taxi_trips[\"trip_distance\"] / (taxi_trips['trip_duration'] / pd.Timedelta(\"1h\"))\n", + "print(f\"The median speed of an average taxi trip is: {average_speed.median():.2f} mph.\")" + ] + }, + { + "cell_type": "markdown", + "id": "261dbdf1", + "metadata": {}, + "source": [ + "Given how packed NYC is, a median taxi speed of 10.58 mph totally makes sense." + ] + }, + { + "cell_type": "markdown", + "id": "6122c32e", + "metadata": {}, + "source": [ + "# Use timedelta for rolling aggregation" + ] + }, + { + "cell_type": "markdown", + "id": "05ae6fbb", + "metadata": {}, + "source": [ + "Using your existing dataset, you can now calculate the taxi trip count over a period of two days, and find out when NYC is at its busiest and when it is fast asleep.\n", + "\n", + "First, you pick two workdays (a Thursday and a Friday) as your target dates:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "7dc50b1c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of records: 255434\n" + ] + } + ], + "source": [ + "import datetime\n", + "\n", + "target_dates = [\n", + " datetime.date(2021, 12, 2), \n", + " datetime.date(2021, 12, 3)\n", + "]\n", + "\n", + "two_day_taxi_trips = taxi_trips[taxi_trips['pickup_datetime'].dt.date.isin(target_dates)]\n", + "print(f\"Number of records: {len(two_day_taxi_trips)}\")\n", + "# Number of records: 255434\n" + ] + }, + { + "cell_type": "markdown", + "id": "a5f39bd8", + "metadata": {}, + "source": [ + "Your next step involves aggregating the number of records associated with each unique \"pickup_datetime\" value. Additionally, the data undergo upsampling to account for any absent timestamps, which are populated with a count of 0." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "f25b34f5", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "two_day_trip_count = two_day_taxi_trips['pickup_datetime'].value_counts()\n", + "\n", + "full_index = pd.date_range(\n", + " start='2021-12-02 00:00:00',\n", + " end='2021-12-04 00:00:00',\n", + " freq='s',\n", + " tz='UTC'\n", + ")\n", + "two_day_trip_count = two_day_trip_count.reindex(full_index).fillna(0)" + ] + }, + { + "cell_type": "markdown", + "id": "3394b2ba", + "metadata": {}, + "source": [ + "You'll then calculate the sum of trip counts within a 5-minute rolling window. This involves using the `rolling()` method, which can accept a time window in the form of either a string or a timedelta object." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "4d5987d8", + "metadata": {}, + "outputs": [], + "source": [ + "two_day_trip_rolling_count = two_day_trip_count.sort_index().rolling(window=\"5m\").sum()" + ] + }, + { + "cell_type": "markdown", + "id": "3811b1fb", + "metadata": {}, + "source": [ + "Finally, you visualize the trip counts throughout the target dates." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "871c32c5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS8AAAJeCAYAAABVkfCjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4HOW5NvB7tqv3brn3hm1MN70bCC2FhDRSSE8IpJ+QL5BwEpKQQ0gjJAdySCghIRCKKaaDbdx7t+Um2ep1e5vvj5l3dmZ2V9KuVtJKvn/XlSva3dnVyKxW7zzvUyRZlmUQERERERERERERZRnLaJ8AERERERERERERUSIMXhIREREREREREVFWYvCSiIiIiIiIiIiIshKDl0RERERERERERJSVGLwkIiIiIiIiIiKirMTgJREREREREREREWUlBi+JiIiIiIiIiIgoKzF4SURERERERERERFnJNtonkI2i0SiOHz+OgoICSJI02qdDREREREREREQ0psiyjL6+PtTW1sJiST9/ksHLBI4fP476+vrRPg0iIiIiIiIiIqIx7dixY5gwYULaz2fwMoGCggIAyj9uYWHhKJ9NZoVCIbz66qu47LLLYLfbR/t0aAzge4ZSxfcMpYrvGUoV3zOUKr5nKFV8z1A6+L6hVI3390xvby/q6+u1OFu6GLxMQJSKFxYWjsvgZW5uLgoLC8flLwZlHt8zlCq+ZyhVfM9QqvieoVTxPUOp4nuG0sH3DaXqZHnPDLUlIwf2EBERERERERERUVZi8JKIiIiIiIiIiIiyEoOXRERERERERERElJUYvCQiIiIiIiIiIqKsxOAlERERERERERERZSUGL4mIiIiIiIiIiCgrMXhJREREREREREREWYnBSyIiIiIiIiIiIspKDF4SERERERERERFRVmLwkoiIiIiIiIiIiLISg5dERERERERERESUlRi8JCIiIiIiIiIioqzE4CURERERERERERFlJQYviYiIiIiIiIiIKCsxeElERERERERERERZicFLIiIiIiIiIiIiykoMXhIREREREREREVFWYvCSiIiIiIiIiIiIshKDl0RERERERERERJSVGLwkIiIiIiIiIiKirMTgJRERERERERFRFvnzOw342hObEYnKo30qRKOOwUsiIiIiIiIioixyz4rdeH7rcbyzrw2yLCPKICadxBi8JCIiIiIiIiLKEuFIVPt61YF2LLv3TXzoT2sgywxg0snJNtonQEREREREREREim5fSPv6L+8dAgA0dfsQCEfhsltH67SIRg0zL4mIiIiIiIiIskS3N5jwfk8gPMJnQpQdGLwkIiIiIiIiIsoSnZ5Qwvu9wcgInwlRdmDwkoiIiIiIiIgoS3Qly7wMMvOSTk4MXhIRERERERERZYkuT7KycWZe0smJwUsiIiIiIiIioizR5TWWjVstEgDAy8xLOkkxeElERERERERElCXMZeML6ooAMPOSTl4MXhIRERERERERZQlz2XiBywaAmZd08mLwkoiIiIiIiIgoS+gzLz+3bAryHErw0sNp43SSYvCSiIiIiIiIiChLiJ6X37liFr6/fA5ynVYAgDfAzEs6OTF4SURERERERESUJUTm5ZKJJbBaJGZe0kmPwUsiIiIiIiIioiwhel6W5DoAgJmXdNJj8JKIiIiIiIiIKAtEojJ6fErZeEmeHQCYeUknPQYviYiIiIiIiIiyQK8vhKisfF2co2ZeOtTMS04bp5MUg5dERERERERERFlA9LsscNrgsCkhm1yReRlg5iWdnBi8JCIiIiIiIiLKAr1+JbuyMMeu3ZfnZOYlndwYvCQiIiIiIiIiygKBkJJd6bTHwjUi89LLnpd0kmLwkoiIiIiIiIgoCwTCUQCA02bV7stjz0s6yTF4SURERERERESUBWLBS13mpZM9L+nkxuAlEREREREREVEWCITVsnFd8JKZl3SyY/CSiIiIiIiIiCgLBNXMS0eizEv2vKSTFIOXRERERERERERZIFHPy2J18ngwHEWfPzQq50U0mhi8JCIiIiIiIiLKAommjec5bShSA5gnevyjcl5Eo4nBSyIiIiIiIiKiLJBoYA8A1BbnAACaunwjfk5Eo43BSyIiIiIiIiKiLJCobBwA6kTwspvBSzr5ZFXwMhKJ4M4778SUKVOQk5ODadOm4Sc/+QlkWdaOkWUZP/rRj1BTU4OcnBxccskl2L9/v+F1Ojs7cfPNN6OwsBDFxcX47Gc/C7fbPdI/DhERERERERHRoCWaNg4AdcUuAMDxJMHLzUe78N8rdnMiOY1LWRW8vPfee/HHP/4Rv/vd77B7927ce++9+MUvfoHf/va32jG/+MUv8MADD+DBBx/E2rVrkZeXh8svvxx+f6zvw80334ydO3di5cqVeOGFF/DOO+/g1ltvHY0fiYiIiIiIiIhoUAIhNfPSnqRsPEnw8jev78dD7zRg5a6W4T1BolFgG+0T0Fu9ejWuvfZaXHXVVQCAyZMn44knnsC6desAKFmX999/P374wx/i2muvBQA8+uijqKqqwrPPPoubbroJu3fvxssvv4z169dj6dKlAIDf/va3WL58OX71q1+htrZ2dH44IiIiIiIiIqJ++LXMS1PZeIkSvEyWednnVzIu293BYTw7otGRVcHLs88+Gw899BD27duHmTNnYuvWrXjvvffw61//GgBw6NAhNDc345JLLtGeU1RUhDPOOANr1qzBTTfdhDVr1qC4uFgLXALAJZdcAovFgrVr1+L666+P+76BQACBQEC73dvbCwAIhUIIhULD9eOOCvHzjLefi4YP3zOUKr5nKFV8z1Cq+J6hVPE9Q6nie4bSkYn3TbdHCT7m2SXD61TmK9PGm7p8CV/fp5aLd/T5+b4dQ8b7Z02mfq6sCl5+73vfQ29vL2bPng2r1YpIJIJ77rkHN998MwCgubkZAFBVVWV4XlVVlfZYc3MzKisrDY/bbDaUlpZqx5j97Gc/w1133RV3/6uvvorc3Nwh/1zZaOXKlaN9CjTG8D1DqeJ7hlLF9wyliu8ZShXfM5QqvmcoHUN53xw8ZgFgweH9u7GiZ5d2f08QAGxo7vHh+RdXwCoZn9fRbQUgYdueA1gR3Jf296fRMV4/a7xeb0ZeJ6uCl0899RQee+wxPP7445g3bx62bNmC2267DbW1tfjUpz41bN/3+9//Pm6//Xbtdm9vL+rr63HZZZehsLBw2L7vaAiFQli5ciUuvfRS2O320T4dGgP4nqFU8T1DqeJ7hlLF9wyliu8ZShXfM5SOTLxvHmlcC3T34NzTT8Wlc2OJWdGojJ9seQ2hCHDqOReitjgH6w93YXJZLioKnPjF7ncAnx9FFbVYvnxhpn4kGmbj/bNGVDYPVVYFL7/97W/je9/7Hm666SYAwIIFC3DkyBH87Gc/w6c+9SlUV1cDAFpaWlBTU6M9r6WlBYsWLQIAVFdXo7W11fC64XAYnZ2d2vPNnE4nnE5n3P12u31cvnmA8f2z0fDge4ZSxfcMpYrvGUoV3zOUKr5nKFV8z1A6hvK+6VV7V5YWuOJeo6YoB0c7vWj1hNHY04Ob/3c9Clw2bP/x5QiElUE/Pf4w37Nj0Hj9rMnUz5RV08a9Xi8sFuMpWa1WRKPKL+GUKVNQXV2N119/XXu8t7cXa9euxVlnnQUAOOuss9Dd3Y2NGzdqx7zxxhuIRqM444wzRuCnICIiIiIiIiJKXa9P6RFYlBMf9KktdgFQ+l6+slNpiycG9fjVKeXdPg7sofEnqzIvr7nmGtxzzz2YOHEi5s2bh82bN+PXv/41PvOZzwAAJEnCbbfdhp/+9KeYMWMGpkyZgjvvvBO1tbW47rrrAABz5szBFVdcgc9//vN48MEHEQqF8NWvfhU33XQTJ40TERERERERUVaSZRk9avCyMEHwsq44F0Anmrp9cAfChsf8IWVKeZdnfA5+oZNbVgUvf/vb3+LOO+/El7/8ZbS2tqK2thZf+MIX8KMf/Ug75jvf+Q48Hg9uvfVWdHd3Y9myZXj55Zfhcrm0Yx577DF89atfxcUXXwyLxYIbb7wRDzzwwGj8SEREREREREREA/KFIghFZACJMy/r1MzLxi4f3P5Y8DIciSIcVZ7X7WXmJY0/WRW8LCgowP3334/7778/6TGSJOHuu+/G3XffnfSY0tJSPP7448NwhkREREREREREmdflVbImrRYJeQ5r3OMTy/IAAMc6vYjKsna/X+13CQCeYATBcBQOW1Z1CSQaEr6biYiIiIiIiIhG2d5mZTLzlPI8SJIU9/jkslwAwOEOj6FsXJSMC+x7SeMNg5dERERERERERKNsW2MPAGBhXVHCxyeqwcvj3T50uGMBSl/QFLz0su8ljS8MXhIRERERERERjbLtIng5IXHwsiLfiVyHFVEZaOr2aff3+Y3De7o8zLyk8YXBSyIiIiIiIiKiFPR4Q/jjWwcNQcShkGUZW9Xg5YIJxQmPkSQJk9S+l3q9fmOmZbePmZc0vjB4SURERERERESUgu8+vQ33vrwHH35wTUZer7nXj3Z3AFaLhHm1hUmPE30v9XpMwUpOHKfxhsFLIiIiIiIiIqIkdh7vwUcfeh8vbT+h3ffu/jYAyFjmpeh3ObOqAC57/KRxIVHmpTl42cWelzTOMHhJRERERERERJTEH986iDUNHfjSY5u0+ywJpoEPxbbGbgDJh/UIiTIve+MyLxm8pPGFwUsiIiIiIiIioiT8odg071AkCgDIcOwyNmm8vv/g5USWjdNJiMFLIiIiIiIiIqIkaopytK8PtLoBAFaLMXr5xLqjuPl/18NrHPw9KLIsY3uTGrysK+732PkJMjPjy8aDaGhz4/o/rMIrO5tTPyGiLMPgJRERERERERFRElFZ1r7edbwXQHzZ+Pf/vR3rDndhZVPqYZZjnT50e0NwWC2YVV3Q77GFLjvuvXGBIfMzPvMyhLtf2IXNR7vxhb9tTPl8iLINg5dERERERERERElEorrg5QkleCklqRtPJ/NyW1M3AGBOTQEctoHDNB85bSLe//7FmK0GOkXwsjTPAUAJXrb2BlI/EaIsxeAlEREREREREVEShuClmnlpTRJN0SVpDprod7lgQv/9LvWqCl3IcShTycXAnupCFwClbFwfBNX37CQaixi8JCIiIiIiIiJKwpx5KcsybJbE4ZRoGq8fmzRenNLznGqAUmReVhcpwctuXwjuQCwFtKXXn8ZZEWUPBi+JiIiIiIiIiJKI6NIpe3whHO/xJy3vjqaYeRmNytjRpGRzDjRp3Mxps6rnpAQqq9TMy2A4iqMdXu24Ez0MXtLYxuAlEREREREREVESYVNEctfxXtitiXteplo23tDugTsQhstuwfSK/JSeKzIvRdl4WZ5DO69gJJYD2szgJY1xDF4SERERERERESURTRC8TFo2nmLwcrs6rGd+bRFsyRppJuG0K5mXIlDpsltQnOuIO+54jy+1kyLKMgxeEhERERERERElITIvp1XkAQB2neiBPUnZuCfFaePpDOsRnKZzcNmtKMm1xx3HzEsa6xi8JCIiIiIiIiJKQmReLqhTAoy7TvTCbomVjcu6WvG+UOJy8mRE8HJhGsFLc99Np92K4pz4zEv2vKSxjsFLIiIiIiIiIqIkROblfDV4eazTh10nerXHfaGI9rU7lMLrRqLYeVwEL4tTPq+4zEubBcW6zMup5UqmKDMvaaxj8JKIiIiIiIiIKImomllZlu/Qsi+9wVjAstcXqxV3hyVDJmZ/DrS54Q9Fke+0YUpZXsrnJaaNC0rZeCzz8tRJJQCAE+x5SWMcg5dEREREREREREmE1IE4NosFT956Jv548xJ8/MyJ2uO9fmO6ZZ9/cI0vtx1Tsi7n1xXCYkmt3BxI3PNSn3m5dLISvGx3BxEIR0A0VjF4SURERERERESUhD8kpnlbkee04coFNfjpdQuQ61AyH3t9xuClOzDI4KU6afyUNErGAcBpNwcvjdPG59UWaQHO1t5AWt+DKBsweElERERjkjcYHvTFAREREVG6/GpPS1dcsFAJXpozLQebebl9CJPGgWRl47HMy7riHNQUuQBwaA+NbQxeEhER0ZgTjcq4+oH3sOzeNxjAJCIiomEVCMcyL/VcalZjXNn4INYmwXAUu0/0AQAW1hWndV7xA3tiZeO5DuXrai14yb6XNHYxeElERERjztpDnWho96DbG8KxTu9onw4RERGNY1rmZYJMRyC9svG9zX0IRqIozrWjvjQnrfOK73lpwYSSXADA9Mp8SJKEmiLltZl5SWOZbbRPgIiIiChVz2xu1L4OqtkQRERERMPBN0DZeG+KZePBcBTX/O49AMCCuiJIUurDegDAac4EtVsxvTIfv//YEsyqLgAALfOymcFLGsOYeUlERERjSjQq46XtzdptkQ1BRERENBxiPS/NwcIkZeOm4OXru1tw36t7tQ3X9w60aY8tqEuv3yUQn3nptFkgSRKuWliD6ZX5AIBalo3TOMDMSyIiIhpTenwhQy8pPzMviYiIaJjIsmyYNq4XKxvvP/Pys/+3Qfv6jstmIRiWtdu1xemVjAOAwxy8NJ0fAFSrZePMvKSxjJmXRERENKZ0eIKG28y8JCIiouES0G2SJi8bN2ZeenSbrPqvH3z7IPa19KHbG1vLXLuoNu1zS9Tz0kxMGz/O4CWNYcy8JCIiojHj4fcO4ZWdzYb7GLwkIiKi4RII6YOXxszGHPW2OdNSXyFyuMOjfR2KyLj2d6u0AT0fOnUCClz2tM+tPN9puO2wxgcvRc/LdncAwXDUkK3pD0Vw57M7cPGcKlwxvzrt8yAabsy8JCIiojHheLcPd7+wC2sPdRruZ/CSiIiIhos/rKwzrBYJdqu5TFvteelL3vPycLsXADC5LBfLppfDF4pgX4sbQCwrMl3TKvINtxMN/inNdcBhtUCWgdY+Y/blo2sO458bG/HFv28c0nkQDTcGL4mIiGhU7Drei3N+/gYeW3dsUMe/vKM54f3+EHteEhER0fDwBdVhPbb48EmysnG3LvPyULsSqDx1Uin+7zOn4+sXz9AeO39WxZDOzWqRUJLbf+amxSIlnTh+gqXkNEawbJyIiIhGxXsH2tDU7cM9K/bg9vkDH79i+4mE9zPzkoiIiIaLyLw0l4wDsbLx/gb2HFIzL6dW5MFqkXD7pTNx7oxyHOv04tRJpUM+v1nVBXi/obPfY6qLXDja6WXfSxqzmHlJREREo8IXVDImQxEZTxywIhxJnkHZ3OPHhiNdiV+HwUsiIiIaJskmjSv3KSGVPjXzUvSTNAYvlczLyWV52n2nTS7FDUsmZOT8lg4iAFqjZV76MvI9iUYag5dEREQ0Kryh2ML+qEfCI2uOJD1WDOlZMrEYc2sKAcSa0rNsnIiIiIaLqPBINMnbZVMCmmIiealawu02DOxRMi+nlOdhOHzpgmk4b2YFfnzN3KTHiLJxc5m4hFiPzMYu77CcH1EmMHhJREREo8Kv9pCaXJYLALj/9YM41pl44SxKxpcvqMFTXzwLv//YEtxyzmTldZh5SURERMMkFrxMlHlpvK+iQJn+3e4OwB+KoNsbRKcnCACYXJ47LOeX57Th0c+cjk+fMyXpMTWFavCyO3nZ+Af/uCbj50aUKQxeEhER0ajwqsHLGxbXoj5PRjAcxbpD8T2b2voCWHdYuf/KBTXId9pw1ULl/wEgEB5c8LKp24fv/msb9jb3ZegnICIiorGs1x/CD57ZnnD9IfRbNu4w3jejMh/FDhm+UBSv7W7BoXYPAKC60IVcx+iNHJmsZn3uOtGb9JjmXvbDpOzF4CURERGNCtGrMtdhRblLBgD0+EJxx72ysxmyDJxSX4y64hztfnERIaaADuTZzU34x4ZjeOidhqGeOhEREY0D972yF4+vPYoP/yl51mF/ZeNOq/E+l92C0yqUNc3TGxtxuEMJXg5X1uVgLZ1cCqtFwtFOb9IqF6JsxuAlERERjQpxMZBjtyJHTUbo9RuDl+5AGE+uPwoAWD6/2vCYuIgYbM9Lj9p/qkFtnE9EREQntwY1M7I/WvDSFp95+fy244bbdqsFp1Uo65J39rdj3SFl2OCU8vyhnuqQ5DttWDihCACw4UgsyzQqy6N1SkQpYfCSiIiIRoUoG89xWJGrXg/oMy+PdXpx4x9WY0dTL3LsVlxzSq3h+U4189I/yLJx0Uz/0CAuVIiIiGj8kyRpwGP663l57oxyw22H1YKqHGBRfREiURlPrFM2YKeMcuYlAG3g4YHW2CauWBsJMoOZlKUYvCQiIqJR4dNlXubajGXj6w934rrfr8Lelj5UFDjxxK1nolZXMi6eBwC7T/Rif0t8H0vzAlz0xuz2htClNs8nIiKik9fAoUvAH07e83KOGhAU7GoZublaZLQzLwFgaoVyDg1tsU3cgGnooY9DEClLMXhJREREo8Kny7zUysZ9IfxrYyNu/vNadHiCmFdbiOe+eg4W1RfHPf/cGeWoLHCipTeAD/xuFZ7Z3AgAiERl/PDZ7TjtntdxsE2XXaArLx9MmRgRERGNb4NIvOy356XVYnwBh005pq7YZbg/GzIvp1UoQ3v0ayNz9UqvLzyi50Q0WAxeEhER0agwZl4q9713oB3f+udWBCNRXDm/Gv/84lmoKcpJ+PziXAde/Pq5WDa9HL5QBN/+5zY0dfvwjSc34+/vH0W7O4DVB9q14/WlUSwdJyIiSo0syzjY5kY0On5Kiy2DKhtPnnlpNT3fblVul+c7dd8DqC/NhuClknl5uN2LcET5mcx9w829x4myBYOXRERENCpEz0uX3aJlXopF9Ncumo7ff2wJch22fl+josCJRz9zOqaW5yEclXHxfW/hhW0ntMdP9Pi1rwO67ILDDF4SERGl5N+bmnDxfW/jT+80jPapZEyi0KUsy7j/tX14abuynugv89JmTZx5WZbv0O6rK8mBM8Gwn5FWV5wDp82CYCSKxi4fAOPaCAD6GLykLMXgJREREY0Kvxq8zHVYUeZUsjgcNgt+c9Mi3HHZLFgsg+lEBVgsEmZUKdkE/lAUDpsF582sAAA09+qDl8y8JCIiSte+VqW/dIOu7His0wcfRUbpmoMduP+1/fjSY5sA9D9t3Jy5KXpelufFgpdVBcYS8tFisUha30tROh6XecmyccpS/aczEBEREQ0Tn256Z7kL+OunT0V9Wb5W1pQKZTHeAgC46wPz4LJb8M6+NjTrMy/Z85KIiChtnoAS2PKbJlSPZSW5sSBjS58fNUU5aOr2afdFo3K/08ZtFmM+mEMNhuY5Y6GWAlf2hF2mVeRh94leHGxz4+I5VdrPJrBsnLJV9vwWERER0UkjGI4irGY45KoXA+dMK4Pdbk/r9aaW52lf1xS5tPKs/srGZVmGNJhO/URERAS3XwleioF740FUjvXvPNLhRU1RjuG+Xn9I1/MyvnDVFLuEwxp/TIErvbXNcBAbxAdblU1cEbwszrWj2xtCr4/BS8pOLBsnIiKiEefT7fQnymRI1VRdtqbDZkGtOuXzeLcPsnoRoi8b94UiaOkNDPn7EhERnSzcAeVvt7lP4lgW1K0NjnZ6AQB9/ljpdJc3pE3kHkzmpV0XvJxeqaxNblhSl7kTHqJplYnLxivUAUO9fpaNU3Zi5iURERGNOJG1YbNIWnP7oZhWEcu8DEdk1BTlQJKUgGWHJ4jyfKcheAkADe1uVBdlRx8qIiKibCfKxsdT5mUwElsbNKlDbNrdQe2+Tk+w37Jxc6Klw2aBePZTXzgLB9vcOG1yaWZPegjEekkEL0UgurLQif2tbpaNU9Zi5iURERGNOJF5mZOBrEsAKNb1rLJISkC0skDJIhAXI+Lio1Rtos+hPURERIPnCYqel+MoeKnb2BQ/V4c7VpnR7Q3qysYTBS/NmZexdjSleY6sClwCwNRyJfOyyxtCpyeo9QOvVIcKcWAPZSsGL4mIiGjEedULIJcjM8FLAPjdxxbj8+dOwdnTygAAtcU5AJTScSBWNj67ugAAcKiNwUsiIqLBGo89L/VVGSKQ1+mJZV52eUO6zMv48InV1Ds7E9UkwynHYUWduj462ObWArYVBaJsnJmXlJ2y+zeLiIiIxiVxIZCbweDl1Qtr8V9XzYXFolxIiMW5mBoaUL/nLBG8ZOYlERHRoLnFtPFQ8mnjh9s9eHnHCa3fdLbTZ16KQGa7LnipZF72UzZuNQYv7QkG9mQb0fdyX0sfQhHlv5PoednHnpeUpbL/N4uIiIjGHV9QuUDIVNl4InUlSvCyscuYeTmnuhAAcKiDwUsiIqLB8mjBy+SZlxfd9xa++PdNeHVXy0id1pDoe16KTU592XiXvmzcliB4ac68HAvBS7Xv5c7jvdp9lYVq5iWnjVOWyv7fLCIiIhp3RNl4TgYzL83qdGXjsizHysZrlMzLox1ehCPJs0eIiIhIEY3K8Kjl4r5+gpdRNeHy9d1jJHiZIPNSXzbe6YlNG89xJCgbt4zBzMsKJfNSH7xk2Thlu+z/zSIiIqJxJ9MDexLRl43rMysmleXBZbcgHJW1rEwiIiJKTgzrAZTMy4HKwp/a0DgmSseNwcsIvMEwvLqenvqycWeCzEtbXPBSijsm24jg5W41eOmwWlCUYwfAgT2UvRi8JCIiohEnmv1nsuelmSgbb+r2GRry59itmFymlEyx7yUREdHAPIFYQC8qG8utBXOw8rmtx4f9vIbKUDYejqLDHTQ83ukZYNq4dWwN7AGAaZXKGkj87E67BYUuJXjZx8xLylLZ/5tFREQ0Rhxq9+Crj2/CLl0ZDiXm66f5faaIaePd3hC61BIwSVKyIqaUKwv3BgYviYiIBuQOGINaiYb26DcKAWDlGOh7GTRNG+/wGIOXJ3r82teJpo2b+2COhbLxinwnClw27bbLbkWhmnkZCEdx/2v7RuvUMq7bGxz4IBoTsv83i4iIaIz4+hOb8cK2E1j+wLt4cduJ0T6drCZKsoazbLzQZdcW5yJI6bRZIEmx4OVhBi+JiIgG5A4Y+1wmGtojppELnZ7MB478oQj+8NYB7GnOzEZxKGIsG+/0KMN6CpzK+uFop1d7PNGGq8NmMfS9HAuZl5IkaaXjgLI2Ej8vANz/2n70+kMIRaL4/ZsHsKOpZzROc8jue3UvFt29Es+PgQxgGlj2/2YRERGNEQfb3NrXX3l8k2FBnMgbe1pwxn+/hnf3tw33qWUdcdEznGXjQKzvZUObCF4q308EL1k2TkRENDCPKTCZKHhpPmZPc1/G+16+tbcVv3h5L362Yk9GXk+fLeoPRdGulo2fUl9s6GdptUhJsyr1xznGQM9LAJiqThwHlKCsxdS7c19zH+57dR9++cpe3PyXtSN9ehnx2zcOAAB+9J8do3wmlAkMXhIREWVIvm7XGsCAwcvP/HUDWnoDuOWR9cN5WllJZF66Rih4eahdCSw71YwIsWhn8JKIiGhg5qzKRBPH+/zKMUU5dtitEjo9wYwPxuvyKuXrx7q8Axw5OOaBPaLnZWWhExNLc7XHXP1kVOqDmo4xUDYOwJB5magcfndzH/5v9WEAQI9vbPfBDEezf3AUDWxs/GYRERGNAfkuc/BycIulk3FRJS56cu22AY4cGjG0R8u8VBfoYmBPU7cvYfYIERERxbj9xuBle18QP3tpt6H9ighwluU7MLu6EACwrTGzJcdi4F9rb2DIrxWNyobMy0A4qpWNl+c7tSoNAMjpZ7NVXzY+FnpeAjCVjcf/bHtO9CYMUI9FkZNwnT0ejY3fLCIiojHAnHkZHiDzUpDGRoVRRvlFz0vH8C5FkpWNl+Y5UKgGm490ZCZ7g4iIaLzyBI3By7+814A/vd2An764O3aMGrzMd9qwcEIRAGBbY3dGz0ME1NyBcFw2aKrMA4bcgbCWeVma5zAELxMF+AR92bi5/Dpbzast1L5OFNzb09w3kqczrE7GJIHxiMFLIiKiDIkvGx/cYmms7NJnkjawxzG8mZdi4nhzrzItVJSNS5KEKWrWgSgpJyIiosTMgcLtakbl2oYObbNW/K0ty3PglAnFAICtGQ5e6qslWnv9/RyZ2msBStm7GNBTlufA5HJ9X8jkazXrGAlY6tWX5uLnNyxAca4dVy2oAWAcNtSYobL8bMDMy/Hh5LtaIiIiGibmDMqBel5qTsI1lcicGM5p40CsbFxw6hbmU9WLkgb2vSQiIuqXuWy8Q50k3hcIY8dxZfK3CPxNKsvDwnol83JHUy+iGQweibJxIBYsTfu11LWIw2pBgVqNseO4EpQtz3dq6wQg8aRxYaxuQt90+kRsvvNSfP68qQCA57+6DB88dQIAoEVXlj8GY7MGDF6OD2Pzt4yIiCgL+UPGYGV/ZSr6hVRwsEHOcURcfAx38HJCsTl4Gft+2sTxNgYviYiI+mOeJK636kA7AOCo2oZlYmkuplfkI8duhTsQRkMGKxx8hszLofW9FJmXTrsFtUU56n3Kmqw0z4Epuonctn4ClLYxMmE8EUm38z6rugA/vW5+wuMyPTWeKFUMXhIREWWIPhsA6L/npXlyo/m54502sGeYp42X5zsNkz+durIvUQ7GieNERET9cweSr1PWHOwAEMu8nFiaC5vVgvl1Sl/FrccyN7RHH7xsyVDmpctuRU2xy/BYWb4DVQWx+9r7kgdKx2LZeDIuu1XLQhWicvJWSJGojJseWoPvPb1tJE6PTmIMXhIREWWIP2xc2PfX81JMsxSaun3Dck7Zyqs2/u+vDCsTLBbJcEGSqGz8cAeDl0RERP1xB0Jx94nNwfWHOxGNyrHMy7JcAMBCte9lJof2+A3By6FmXiqbzDl2K2qKjJUaZXlOw/AdbzB55qltHAUvAWXj1yzZ5PHNR7vwfkMnnlx/bLhPi05yDF4SERFlSCCubDx55mWnx3gRcHwcBi9f3HYC/1h/NOFj4oJhuDMvgdjEccBYNi4yL9vdwbhMWCIiopOZuUzYo2Ze6oe6LJpYDECZ2n24w4M+tbS8vkQEL5W+l1sbM5h5Gcxc5qVfy7y0oLYottHpsluQo65PPn7mRADAXdcmLqcGAKtlfIVVyvMdcfcFkgQv9S2SMtnblMhsfP2WERERjSLz1Mr+My+DhtvjLfMyEI7gK49vwnef3p7w4kIb2DMCwctaQ/AytvTJd9pQUaBkFxxh9iUREREA4KkNx7DkJyvx2Noj2n1i2niFLitvVlUBinLsAIBNR7sBAJUFTu1vu5g4vutEL4LhzPT3zmTZuF83PLBaF7wszokF7/5r+Vy8fNu5+MAptUlfxz6Ge14mUuiyx92XLPNS/5OfjD3caeQweElERJQh+qmVQP8lRubg5XjLvDzWGft5zD8rEPu3Ge6BPYAx89Jcpi4Cm8e7h3YBRERENF6s3NWCLm8I//XMDvz3it2IRmVtYE+ZLitvSnmelqW36WgXAGCSWjIuvi7KsSMYjmJvc19Gzs2nq3Jp6ctMz0un3WrY6CzOjQXvchxWzK4u7Pd1xlPPSwB4a19b3H3Jgpd6gQwFqIkSYfCSiIgoA2RZ1nbwRZnUzuO9SY/v8poyL7sGH7wMjYGd7aOdsUxGc/AyGpVjfaZGomy8JHHmJQCtTOxEz+D//V/Z2Yz7Xt3LyZtERDQu6f9uP/ROA57fdlzLvNT3Q6wvzdVubzrSpd0nSJKkKx3vzsi5+YPGnpdD+Vts7HkZy7wszInPPOyPfZyVjUcSlH8nGyypPzJT2bWZoh/YyDXb2De+fsuIiIhGSSgiQ6z1zppWBkBpYp5Mh1u5MBDBs8ZBZl6e6PFh8d0r8cNntw/hbIefaNoPAI+sOoydx2P9rvSDjUY68zLPaZygKRr0n+gZfPbG3c/vwm/fOIBtGezhRURElC1E8HJqhdIben+LWxe8jGVeluTateDlHjWzcqIueAnENnQzNbRHnwEYDEfR7U2/Z7VP1/NSP7An1TzKkdiIHUlv3HE+Jpfl4pFPn4YZlfkAYoFeM33AMhAeODtzpPxsxW5DGTuzQsc+Bi+JiIgyQL+YPmuqErzcdLQ76U5vn19ZbM+uUUqRkpWNhyNRbD7ape2CP/zeIbgDYfz9/cSDcEZSMBzFhsOdCTNBu3QXE6/tbsFVD7yn3dbv3o908NI8IKhWnUSeStm+yJodb6X+REREANDhVqZ4T6tQAleeYFgrG9dnXhbl2OOGu+jLxgFgQZ0SvMxc2bgxQDaU0vGAruelPgA5mBJpvf93zVxUF7rw/66Zm/a5ZJOpFfl469sX4sLZldq/i7mvu6APXmZT5uWf3mkw3O7zJ2/lRGMDg5dEREQZIBbAkgQsmVQCm0VCW18ATd0+7G/pwzf/scWQjehVj59RpVwYNPf4E5bpPLWhEdf/YTXu/M8OAIAli/oqPbzqED744Bo8supQ3GOJmrbLsowOd0CbWOq0WUbk56kpjpWCmRfWqWZehiNReNXga/MQBwUQERFlm1Akil410DNBbbvS6Qlq1SVl+uClLvNSMGdeFucqwU2RuTlUomxcbH629AbSfy0t89K4selNUiKdzNSKfLz/g4txyzlT0j6XbOWyKf82yQK6YyW7USQN0NjF4CUREVEG6PsmuexWzK1VMio3H+3G9/+9Hc9sbsLDuiCfyD6cXJYHq0VCOCqjNUH2wL0v7wEAPL5WybS0ZVHwcsNhpSx+V4LenoEE5UVLf/oaTv3pa/jSYxsBxGdBDhenLfZ9ukzlZSKweWKQWZT6iy8GL4mIaLzpUkvGJQmoVTf4WtUAoSQZJ2sX5dgNwUwAmFiaZ7gtAoPJyo5TJYJoIsNzKBPHfUmCl/mmFjMnM5e6VkvW8zJbMy/NMhU8p9HD4CUREVEGmBfAi+uLAQD/+94hbFCb2OtLpkT5Vb7ThqoCZeHfnCD7L2rKxrRKoxu8/OY/tuD6P6xCOBLFgVbl52lKEPgLRuIXuR3qBZEYZDQSJeNmIqgsiAuzlr4AwoMYhKQvO2pJoU8mERHRWCD+VpfkOpDvUoJ4YnM132EzBKicNquhbDzHbo0rI3fZlZBDJvohhiJRhNV1kRa8HMLfYhFQFWu3P9y8BDMq8/GzGxYM8UzHjxz1v1/SzMtwdmZeTqswBtFZNj72MXhJREQ0gGhUxvee3obfv3kg6TFa6ZE6zXrxxBIAwJZj3dox+1piwUuxCMxzWpGr7vAn2tU2LxatltGbnOgNhvHM5iZsPtqNbU09ONKplMEf746/cDDvvhe6bHjmy2cb+k+OZIP7124/D/dcPx/XL64z3F+cq0wUjUTlQfW46tWVHTHzkoiIxhsxrKc0z6FVSLT2KZmXeU5bXIBKn3k5sTQXkmmTVSs7TrEUOxF9OffkciU4NZSel76QsQR9+YIarLz9fMypKezvaSeVHHv/PS8DkezMvDR3YmLwcuxj8JKIiGgAaxo68OT6Y/jlK3uTBgy14KW60F88sVh7zCIppVYdniDa1Sb4IvMyx27TshL8CbISwqbVl01XrhWKjGzw8nC7V/e1B+KfornXH5e1aL64uf3SmVg8sQSXzKnU7hvJ4OX0ygLcfMYkWE1l9/rbUfWU+wsKGzIvh9Bni4iIKBvpg5eifFr87ct32XCx+ne8pkhpu1JfEtuULHDFl1trZeMZCGyJtZZFAiaUiLLxTPS8ZFgkmVQG9oxkafbqA+348zsNCfvFA9CGSYpNava8HPv4W0pERDSAg21u7WuPbte/xxvCs5ub4A2GtUW5yDCYWJqL0jyldOrqhbWYpDawF6XjIgMh12HVnmPuB+UNxi8CLbqMhlSnYQ7VoXaP9vX2ph7t60hUjstCNO++l6ul8Z8/b6p2346m+F6ZI01fhh+RZTy1/hjm/79XsOZgR8Lj9cHL5h7/iGe/EhERDScRvCzLc8QN48lz2jC7uhBv3HE+Xv3meQCAysLYULxQgkCSCAxGorIWUEpXbO1kQ7X6fVuHUAUhAnIjuZk61jgHGtijW++tPtg+IucEADf/71rcs2I3/vhW4qqosLrBX6IOjGLm5djH4CUREdEA9EE70cgeAL76xCbc9o8t+OEzO7QFtVikS5KEj5xWj8oCJ75+8QxMr1SmijeogVCvrmzclaQkp9s0XEaWZciIXRgk2wUfLoc7Yv8OO3TBSyC+dNwcvCzOURaPE0pycc70MgDAKWpf0NGkn3Yeicr4ztPb4AlG8NE/v5/weP3OvS8U0SayEhERjQcdusxLsfEo5DuV9crUinwUuOza/fd/ZBEKXTb88Ko5ca+nH4Yz1HWLvr94VaHaL3xIwUvjxjPFy9EG9iQOPOvXey/vaI7r1T5cxN7xI6sOJ3xcVC6JzEsO7Bn7OEaLiIhoALtPxDIEu70h1JcqX7+7X9lh/vfmJpw/qwKAcZH+3Stm47tXzAagTBUHgENq6bU3IHb7dWXjpszLHp8xeBmMRBEKxxaFmegflYqGtsSZlwDQ1O0FUKrdNpeN5+tKyf78yaX48zuHcOncquE50RRZJKU3UlSWke+09bvANe/ct/b6UZRjT3I0ERHR2NLpUcqwy/IcKMszDt9JNoX7usV1uM7UU1pw2iyQJCXY5A9Fke+UEYnKsFlTz6PSelQ6LFrmZVtfAJGoHNcWZlCvFzS2/KF4sdYBicuu9QMaW/sC2HS0C0snlyY8NlP0GbzJhgSF1V5AscxLlo2Pdcy8JCIi6ocsy9h9IjZop9sXTHic39T03Uw0lj/c4UE4EkVQXXjl2q1wJsm87PIav5cvGDEs2Ea6bFyfeSkCrWIAT7LMy3m1hfjo6fU4ZUKR9liuw4ZvXDIjbvL3aBEXPJGojEW6bNBEU9TNi99EGR97m/vw+NqjLCknIqIxR9/z0mW3GvpY5iUJXvZHkiQ41WGGvmAE1/zuPVx+/ztpbcD6g7G1Vlm+U9t87HCn1/dS9BoXwxYpnghgd3oSr3/NlTYrtjcP+zn16jb3k/W8NJeNM/Ny7ONvKRERUT9O9PgNGZBd3sQ7t7Gy8cTByykieNnu0UrGASDXqet5aRrY02P6Xt5gRAt6AiM/1VFfPi9coGacNnYZA31i+uQ3L5mJn92wMG76aDYRfUQjUdnQtH9tQ3zfS3PmZXNPfPDyzmd34AfPbMfqJH0ziYiIslWHWw1eqv0uK3R9L5NlXg5ErI32t/ZhR1MvDrZ58NzWppRfRz8d3GqRUKGWtac7tEes3djzMjkxTb59gODl7OoCAMDLO04M++Ztt8/YwkecQyAcweqD7QiEY5v9pXlKdQzb/Ix9DF4SERH1w5x9163LhtRnWYqBPc4kEytF5uXRTq8WALNaJDislqRl492+BMFLXcAymKTxfZ8/hECCyeVD0esPJdx1X6hmVB43/TuJ83SMgWwGkXkpy8YJ7omG9pgXvy0JMi871JK7fS19cY8RERFlM/3AHgCGoT3pZF4CsZ6SW451a/c9uuZIykEufc9LAKhSS8cH0/ey2xuMy9ITJcfJNp4JKM9X3gftfYkDxGItesmcKuQ5rDje48fWxp6Ex2aKuSe8qIp6+L3D+Nif1+L/Vh/W9bzkwJ7xIvuvKIiIiEaROfuxyxO7rc+UHKhsvKbQBYfNgnBUxn41qJVrt0KSJG3RHBhE2bg+KBkIxQcvm7p9OOfnb+Czf90w4M+WijZ10VrgtGkLWatFQl2xMkXdHLwU5zkmgpci81KWDRc27x9KlHmp/PcXZXSJLphEEPpwgkxVIiKibKYvGweA8oJY38v0My+VtYA+eLnzeC82624PhjlTUgQvE20k6h1u9+C0e17D15/YnPj1GLxMSgSvOzyBhMFmEQAucNlw0Ryll/mrO4e3dLzXtLkvgplifb37RJ+2ntPKxtnzcszL/isKIiKiUdRrWuzoA4r6NZw2sTLJAthikTCpVAn07VIHAOWqUztjmZf9l417gmH0+mI7x4myK/+9sRG9/jDeO9CesKQ5XaKMrCzfgSdvPQunTCjCb25ahOqixNM+RealcwwELy1az8sojnZ6tfuPdfrQ2OU1HCt27meo0+Obe+IzEcR/x8Md3rjHiIiIRtqu471Ydu8b+OeGY/0eF43K2jonUeblUMvGRfBSBAv/tuaIdsz7DR040Np/xYJ5o1hMHG9V1yA7j/fg9HtewxPrjhqet/pgB0IRGZuPdhlfT/S8TFI1Q8q6D1DWud4EfUr1lTYL6pRe5icyuP5MxNx/vksNuLeqG+3HdGu5EnXaODMvxz7+lhIREfXDPPFb3DaXHvlDAy+ARen4ruNq8NKhXARoPS/NZeOm4KUvGDEEU80TFmVZxrNbYj2k3t3flvRcUiWa4ZflOzG9Mh//+eoyXL2wFpVq1kOfPwxvMLYwHEtl42JA6Vt723C004sCpw0zq5Tg5NqGTsOxIvNyRqXS2ylRtod4LxzpYOYlERGNvr+814DGLh9e2Hai3+O6fSGI5U1JBsvGRaakCCB99aLpAIBnNjfh6t++i5W7WnDTQ+/jkl+/0+/r+MzBywJj2fjqAx1o7QvgFVPm325107jdHTRkD4rMS6eNmZfJ5Dps2r+32MjW06/3xLpWvx4cDub1sehH39qnvA+O6TaexfuYA3vGvuy/oiAiIhpFItPRYVX+ZIqMBHPQSvTC7K/0SAztEZmX4liRkWAe2GMuG/cGI4aei+aBPTuPK03whXf3tyc9l1R1mHpgCQVOG3LVi5KW3oAW1A2MocxL0fPykVWHAQAfXDoBF81WSp/eNw3tEf/+00XmZaLgpfqzN3b5DNPhiYiIRlIkKsMfimDlzhYA8ROjn9pwDI+vjWUpdqo9mwtdNtjVdU8mMi/rinMMtz+0dALm1ChZejuaevHVxzdpj/lDEciyjB1NPfjNa/vx65X7tL+lvqBa5RJXNq6ct9jgNQfZRPAyGIlq67poVNbWKhzY0z+Rfdnuia82ET0vHVYL8tSKokQZmpkU1/PSa8y81A9wEu0PmHk59qX36UNERDTOdHuDeHVnC65cUI0Cl127XyyEJ5bl4kCrW9vdNU/XFkGs/pq+Ty5TgpcNaoAxb4Cy8fiBPWH0+fSZl8bj/6NmXU4szcXRTi/eO9COaFTWyqKHIlY27jTcL0kSqgtdaGj34Pmtx/HIqkO4fvEEXdl49l8QiGnjYjjTJ86chKOdXjz49sG4vpci83K6mpnZ7g4gFIlqF3mhSFQL4IajMpq6fFrGLRER0UjZ19KHG/6wGlPK89CnZp2JKgoAWH2gHd/51zYAwPIF1SjOdST8Wy/6XAPpBy+n6v4OluY5UJHvxK3nTcE3/7EVgLGS5POPbsD+Frdhc7Cu2IWPnDYxPvOyKNbz8miHF39dfTju54xGZexpjpWjt7n9KMq1G74nB/b0ryzPgcYuHzYe7sKSiSWGx/SZl2LNN9zBS3NVVJdXGVRpDmoCQLFaNu4OhBGJytqGNY092Z8OQURENAK+8eQWfOfpbfjhszsM94sFkuhXKXZ3zb0QxS6vs7/gZXmu4XaOWl4jnmMuGxc9LwvV4TC+UPKy8UhUxnNbjwMAvn/lbOQ7bej0BLFTLVEfKjFB25x5CQCVas+pX6/chy5vCA+vOhTbiR9DmZcAcN7MCkytyMdcNSOkscuHqK5FgNi5n1yWB5tFgiwrAUzBZwpAH2bpOBERjYL7X9sHdyCM7U2xyc/tnljZ9MNqtQEQW+uYh/UAQHmBvmw8vSDf1Ip87evZ1QWQJAnXLarTKlL03t3fjuZeP3LsVi0786F3GhBVs0iBBD0v+wI475dvan+j9T9nY5fPUDIssvP0G8auMbBWGU1ievg9K3bHPabvcS7eH55hLtHuNlUmdXuD2mBJPYsEFOoSEjzDXM5Ow4u/pURERADe3qf0h/zPluOG+8VEw4llSuBRNAU/1mnMvBRl5P0tgM2L9Fxz2XiSaeO1armVNxgxDOzRl42vbehAS28ARTl2XDynCmdPKwMAvJOhvpf6gT1m1WrZlmCzSFr2oSi3z2b6xvKfXTYFAFCYoyx2ZRlwq4vdcCTWrL4ox45K9YJOPxjJ/N/wyDAO7TF/LyIiIiHR399gOKoF8vTtb0TQryNB8LJCl4VZ4Eov81K//plVrfSMliQJ15xSm/D439y0CJt/dCme+sKZKHDacLDNgzf2tMZPG1d7XprL4fU/p2jVI7Sr6xmx2Wi3SrCNgbVKttJvVos2QuaN3EwTwfbJ6tq805M4eGmzWuCyW7XfBfE+l2V52PtyUubxt5SIiKgf5szLXr9SdmLOvPSaFtSJVBW4DD0gxSJPBDz9umCkLMta2bgIXnZ5gtoiETBmXopBPcsX1MBhs+DcGeUAgDUHjWXP6WrXDewxqzIFL8O6TEXnGJjgeeokpQTqqxdOx/kzKwAoAWWRNSoyYPXZKwUum6FcTQiYsmeHI/Oy1x/CFfe/g9l3voynNzZm/PWJiGjsy9cFGuuKc7Q1h9iM1Af8RFCnM0F/60wM7JlSEQteTiiJVaEk64t9zcJauOxWFLjsuPnMSQCAP71zUAuKiU3f4lx70goP8XPuNgUv20yZlywZHxqtbNxq1Qb2eALD3PNSBC/VoHiXN6Rl1OrZ1Moa8bvgVt/nP3hmOxbdvRIH29zDep6UWdl/RUFERDSKxIAWkXkJKAFNc89LwdVPj0eLRdL6XgJArtOYeRnQ7VT7Q1FtQViTIEimP94fiuCl7cpkzesWKVkMSyeXAgC2HOuOm4yeDpGNUZ6gbLy/oTxjIfPyDzcvwb+/fDa+dfksw/1FavalKNUXtwHAbrVoGaf9ZV4ebs988PL2f2zR+nf9+d2GjL8+ERGNfSKQBACnTynVKifE33N96a3o55yobDzHYcV1i2px7oxyLdMxVfrS3QV1RdrXydYP+l7dt5wzGXarhPWHu7D6oDKIUJSNS5KklY6biXY3IngpvpcIXpoDoZTc1IrkvbuN08ZFz8uhZzU+teEYLvzVWzjQGh9gFJvKYk3d7Q32G7wUGcPiff7EumMIhqP4P7VHKo0N2X9FQURENIpE2XhJrkNb/HR5gzimZl6aJ2gOtAjW970UFxaJysZFybjdKmlZD+bJ1gE1C/Otva3oC4RRW+TCaWrQcmZVAfKdNrgDYexr6cNQdfSTeXnZvGrYrRKWTS9Hha43lkXCmCjFqip0xTWgB2LBSpF9K4LA4qJOZJw29ybveTkcZeOv7W7Vvp6m6yNGREQk6DdEnTYLyvKUv88d7gCC4Sg8uqEqosQ6Udk4ANx/02L87bNnDGkA4L++eBZ+ceNCnD6lNHZeujVTvtMGiwT8v2vmGp5XVejC9YvrAMRKvnMcsbVFsoCqOHZ3sxK8PGNqmXq/yLxUJ40zeDmgO69W/pu4ElTTBAzBy1iP9ugQN85f2HYCh9o9eDdB+6NuU9l4lzeINtMaGYA2TFEMmurzhw3nlaz9ztEOrxbopOyR/VcUREREI0zfS1KUaTttVm1iYXtfQOuTOK+20PDcRAs7Pf3k6Ryt56WYNh7F0xsb8ciqQ1rGXlGOQ2uA3tJr3FUWJcobj3QBAC6dW6VdWFgtEhbVFxseT1c4EtUWiol6Xs6vK8LGOy/Fo5853VBqNhYmjfdHDEoSfUbFe8FuVf6NqxNkxJovho51eRGOGEvJh0p/4Sdj6Fm1REQ0/rh1pbu5Dps2NbzDE4wbeCKCl51qtqI5eJkJSyeX4sOn1Rvu02defv3i6dhx1+W45Zwpcc+99byphtv6gKO5dY3Q4Q7CHQhrPcrPna6004kvG2dIZCBiPWTucQ7oel5aY5mXsgz4w0MrHRcbx11qluWWY9349cp96NS9f8WaultXNq7PErVZTZmXgbAWoAeApzY0Yv3hTsP3fXlHM8775Zu49NfvIJTh9RsNDX9TiYjopBcwLbD006NFtp3NKqEkV1nM723pQyQqw26VMLOqQDu2wGnTGtEnM0VXNp5nKhtv7vXjjn9uxV3P78LN/7sWAFCSa9emkuvLk5XzVhZVnR5lYSd6MApL1F6Om44OLXjZ5Q1BlgFJgvZvYFbossNikQzBzbEwabw/Wtm4uoAORZT3gtjJ769sfGJpLhw2C0IR2TAQKBP02TT6QDsREZGgL9398oXTtIBkhzuATlPwUhvY406ceTlc9MHLebVFhlJ3vemVBbh4dqV2W1/lUpmsbNwd0IYsOm0WTK9SKhXa+gJYuasFN/9FWWcx83JgFkkJAoYTZFOKNYnDZjH8W3qDqQUvtxzrxgZdILFPBC/V/4b3vrQHD7y+H0t+shLiNMQgqG5fSNtIPmVCsfYaNovy/ipQ2xb0+UM43m1s+7ThcJfptnIOzb3+uGNpdKV1VbFlyxY88cQThvteeeUVnHfeeTjjjDPwm9/8JiMnR0RENBK6vcbSELGIB6BlzdksEorVwN32RmVwS11xjpaNCQC3LJuiLZCSMWReirLxBBmKsrowK8t3aFPJzSXJInDV41MWdubAohhEs2mImZeib1RJrgPWAUrGRFkaMPaDl7lqmZG4AAzpsguA2AWTMfMyoj7Xqg15OpThvpf69gHByNAzL+96fie+/c+tQy7xIiKi7CHKwu/70Ckoz3dqbV/a3UF0eRKve2IDexIHBDNNX6Ext6awnyOBL5w/Tft6anmsZUrSzEtPUNvkddosWnn5kQ4PPv/ohtg5MHg5IBEETLROiFUoWWCxSLG+lykM7YlGZXziL2vxsT+v1TJjRb9x0UbJvJZy2S3af/tIVMabe5Xy8oUTYj1VxZq1QFc23mQKSDZ1e023Y48n629PoyOtq4rvfOc7+Mc//qHdPnToEK6//nocOnQIAHD77bfjoYceyswZEhERDbMuUwZCr67PjdhltlksKFEDlWLq9ISSXEOA7rPL4kudzKbogpcOtZzFXLJ01tQyPP2ls/Dpsyfj9ktnaQtBM5ExKkpqSnKNgVNRNn64w2vIJk2VyMQoG0Qmhj7zsr9BPmOB3WLMNAiFRdm4KfOy1w9ZjTZrAwBsVkxSs2yPZHDieCQqawt7/TkN5fUeWXUY/9zYiA1qkDsQjuCnL+zCqgPtQ3ptIiIafr5gBPe8uEvbWBW8aim4qPIQf8M7E5aNhyDLsrYeKk3QImY45Kjrm9oiF0oGWGOcNrkEd187D7/60CmGIYoLdQOA9NrdAcNE8VnVBZhemW/o9Qkw83Iw1NhlXOZlJCprAWKRDasFL0ODH9rjD0fQFwgjGIni3f1tkGVZVzYeVF/fuKYsznEk7DOvD1561N+BAt20cXM2pTlAqb/d2JX5vuWUvrSuKrZu3Yply5Zptx999FFYrVZs3rwZa9euxQc/+EE8+OCDGTtJIiKi4dTpMZdPKYv4pzc2amUv+rJxMel5QkkOrj2lDhfPrsQfb15imEadTKVuoI3ou2Pe9a8pduHUSaX48Qfm4fQppdri3kwsGMXCrijHuPAvyrFjplomNZTsy3ZtWM8ggpd546dsXAQpRVaB1vPSZux56Q0qi24g1ofUZbdgijqc6XAGh/Z0uAPQXzuYs3FTpe/nJPo+/f39o/jLe4e0kjoiIspe9768B39+9xCu+d17hvtFH0tRii2G/3V4EpeN9/rDWnuUwWxWZsLSSSW4ZE4Vbrt05oDHSpKET541GR88dYLh/rOnl+Odb1+I2aa2PR1uXeal3QKrRcLtCb4Pe14OTGReBiNRbbMWUNaf4qbYQBfvN08KmZdi7QQA7+xrgz8U1d6LXZ4QWnv9cWupXGfitXFdcSywLdbZ+bpp4+bMS3PwUv94EzMvs0pav6k9PT0oKyvTbq9YsQKXXnopysuVJriXXnopDhw4kJkzJCIiGmaJysZXbG/GHf/cqt2nlI0bg5P1pbkoyrXjfz99Gq5cUDOo7yVJsbJrMancvHCuMfWuNPeAEuehlY2LzMu8+OCpVjp+tHtQ55dIQ5uSOZho0riZ/hjHGJg03h+7Gnxt7Q3gut+vwv+8tl+5X/25ch02bTe/VS3lFg3qXfZY5uX2pp4hD00SzBPnRT/OdOmDl7uOKxNZT7DHExHRmPGeLkv+b+8f0b4Wm69a5qUY2OMOxq173P6wtpGb67AmzGgbDnlOG/7yqaX48NL6gQ/ux8SyXG2DUejwBLR+jKI9zxXzquMGLTLzcmC1xS44bRZ0e0PYqsvwFe+Z4lw7bNraSM28DKaWeSm8u78d3b5YcL3LG0y4mZqs1U15go12redlIBwXkGzs8moBWW8wbEhoYNl4dknrqqKmpga7d+8GAJw4cQIbN27EZZddpj3udrthsYztCxYiIhp/Xt7RjJv/8j5ueWSdobwqrmzcF8LaQx2G+6wWCcWmzMoJJTlpncd/vnIOfrB8Nq5SA54OqwW6mCaqi4yvay4bF430A+EIZFnWJoEnGqazZOLQ+l7Ksown1h0FMHA/KsCYrTHW+0jZ1LLxZ7c0Ycuxbmw91g0gFrwE9EN7jNNLc+xWTFaDl+sOdeLGP67GKzubh3xOYuK8CHib37upCul6Zoo2BMnaFBARUXaRZVkbaAIAP1uxW/taBI/y1H5/Yu2g9LxUniM2UfsC4WGdND4SzD0WzZmXAGCxSPjW5bMMx41UoHYsK3DZcdVCZc36xNqj2v3agCfd+jMWvBx85qVfl3nZ4Qni/YbYGrzLG8T+VnfccxIND6orztGCqMbzj/W8PN5jDEj6Q1EtQzM+sMngZTZJK8J47bXX4re//S2+/vWv47rrroPT6cT111+vPb5161ZMnTo1YydJRESUCb98ZQ9WHejAm3vb8H9rDmv3mzMQev3huHIXm9US148p3eDlKfXFuPW8adoCS5Ikw9CeWlPmpblsXAQpA+Eoev1hbSJ6orJ1MXF8a2N3WpOpOz1BtKo9Fj999uQBj9dnXjrHeOalmK5pfn/oM0pF6bjIiBQLcKfdikm6nlwA8Jd3G4Z8TmI40Cx1yn2PLzSkQTthXaaKCGTm6DJ9OcSHiCh7HenwaoEXwNhrWqxj8kxl413eoJZdNlEdLNfnD6fU3zobeUyZfp3eoBZA06+xLphZgesW1Wq3GbwcnI+dPhEA8NzW4+gzDdPRB7xFtVAqmZeBsHHN/cLWE9rX+sCmXjjBwMJnvnI2AMRVSuU7Y2Xjx7v9cc8TQcr+Sshp9KV1VfHTn/4UN9xwA/72t7+htbUVf/3rX1FVVQUA6O3txb/+9S9DJiYREdFo84cihkmF+kwFn2l3uM8f1pp8CzaLFJeNMKHEGJwaCn3peLUpeJlnKhsXfYUCoajWdD/HnrjMa2p5Hopz7QiEo9h1ojfl8zqmLuSqCp1a9kZ/xlPPSynJYHW7NfaAmHQpgorawB67BbXFOYZAZyYukLTgpdrbKyrHpsSmI6QLTmqT0nXB8r5A+q9NRETDS/QqFn97xSZUJCprf4/EZ7rY+IxEZRxSB8nVlyqbsO5ASAtojtXMS/1aTpIAWQZOqFl2Tt0aS5Ik3Hn1XO32WF+rjJRTJ5VgRmU+fKEI/rPlOIBYT0lj8HJomZcA8Pqe1gGfIzIv9WuySnWivDkAX6iWjbf2BeL63AOxwTyNarBSbBCbB1vR6ErrNzU/Px+PPfYYurq6cOjQIXzoQx8yPNbY2Iif/OQnGTtJIiI6edz1/E78/KU9GX/do51ew6CTHl2vwJCpT1KfPxS3g2+zSqjQDdtx2CyoGEQPyMGy6CJlNaaycXPmpRjM09rnx/+s3AcgftK4IEkSTh1C6fixTmVBVz/IQK1+qE9UHttZe5Yk0cvEZeMi8zJWNm61SJhQGvtvKSWLhqZABC/rS3K1Pl363lCp0mdeivI6/WkOtacmERENH9FP+bJ51QCUIT2BcMSQ9SY2Hh02i1ahcUAtwzVkXmqBqMytbUbSgx8/FRYJ+NkNC7RArciy02deArEeiED8GpASkyQJN6nZl4+vPQpZltEpsnV1az/xfjOX8fdHrJ3yBtG2RgSbxVTxRD1Lf/mhU2C3Svi22iJADOwRPdzNmrTMS2XNO0MddukJRliBkkUyss3Q09ODSER5w1ksFhQVFcFuH3jiKhERkV67O4BHVh3Gg28f1IbQZIq59LdbF5QRTd5F9mOvP6wtpASbxaKVXAFK0MpiGXowStDvUJsDkeYehOLxdncQz6q739Mq85O+tigd36z2bBwMsVg7pi7k6ksHF7zM12Vnrj7Y0c+R2U//n3e67t/XrsvSqEpSNi6yLPXZueZs3nSInpdVhS7t/ZpOOwAhlCB4qe+D2cPgJRFR1hKZlxfNrtT6NHd6YuXSFslYSl6pbsKKjH3xt10/sKcswcCTseCSuVXY/ZMr8NHTJ2qZdyIY5TQNRtRnWw7lb+jJ5obFdXDYLNh1ohfbm3q0snF9z/WcNDIvxfpjUlleXMsds+e+eg5uPmMifn7DAgDAHZcpAcobl8Sm0C+ZWIIdd12Or1w4HUCs52UyolxcBDFF5iUQq6ih0Zd28HLDhg244oorkJubi7KyMrz99tsAgPb2dlx77bV46623MnWORER0kmh3B7SvRdAsU9wBJQgjyksSZV6W5YlFfcjQCFySlIE9JQkakmeKPlBmztCzWy2Gspilk0tx2dwqnD6lFJ9bNgW/uWkR/nDzkqSvLS5O2vsCSY/R+97T23D2z99AtzeoLejqB9nfMxPZhdlCn3l5/swK7Wu77j9WlXohKDIiA7qycQCoKYy1AMhM8FL5PlVFLq1naihB36fBMgzsUc9dH9Bk8JKIKDt1uAM4qGaSLZ1UovXl7nAHtb83eU6b4e/ytArjRqdYH4SjMo6rJbNjtWwcAJxqhmWtOojo1V0tAOIzL/WYeTl4JXkOLJ+vZPk+se5owrLxvHSmjavrD6fdgvNmVPR77OzqQtxz/QJUquurT541CS/fdi7uvXGB4Tin7r+5PtM2Ea1sXF3zTq/M16pQzJVYNHrSCl6uXr0ay5Ytw/79+/Hxj38c0WjsF768vBw9PT3405/+lNYJNTU14eMf/zjKysqQk5ODBQsWYMOGDdrjsizjRz/6EWpqapCTk4NLLrkE+/fvN7xGZ2cnbr75ZhQWFqK4uBif/exn4XbHT6giIqLsIprFA7Fy5UwRWQZismaPNwRZLWsWTb/F4qtPNwQHiGUtWHVBq0xP0h4o6Kcviyl02fDQJ5fiqS+chR9ePRfXLqrrd2GW6kLyyfXH0Nzrx782Nmr/HSYMMvNyPNH/N7lgVmwxrQ8VagN71LLxI+q/l+i7pO9fOpTelIIWvCx0av00h3LhFTZMG1czL3VZKPoNBSIiyh6iZHxGZT5K8hxatqE+89LcM3taZZ7h9oSSHC1Ic6RD+fs1loOXwjWn1BpumzMv9Zh5mZqPqqXj/9lyXFsj6rN1xdC/VIJ+Yv3hsllx3szEwctClw0rv3le3P2SJGF2dWHCKeNCvqlnu7gWEMwDe+pLc7XfHfMATxo9aQUvf/CDH2DOnDnYtWsX/vu//zvu8QsvvBBr165N+XW7urpwzjnnwG6346WXXsKuXbtw3333oaSkRDvmF7/4BR544AE8+OCDWLt2LfLy8nD55ZfD749Njbr55puxc+dOrFy5Ei+88ALeeecd3Hrrren8qERElCHRqBxXim2mD5QczXDw0q1mIdSpGYTBSFQr8RVl42Lx1ecPJZxiqOfKcIP3gfIVc3UXIOYemAMR/YfcKWb+hSKyLvMy9eDl9YvrUn5ONhGx6jyHFUsnlWr369sfiZ6X7e4AguEodqtDkebXFQIAanTBy64hNn4PhCPoUtsfVBW4YFOzccPR9C+8grrApz9B5mU6Q56IiGj4ieDl0snKtXKpLngpMi9zncb1gr4FSp7Diop8pxbYOaIO8Rmr08b19GW/gDELz6wsg/3LTwanTynF1Io8eIMRbFHbEekrk/LSGtgTy7w8a1pZwmM+fuYkzDD9dx0sc/BySrkxiN/Y5YM/FNGuQ+qKc5Cn/u5komqGMiOtK6/169fjlltugdPpTJgpUldXh+bm5pRf995770V9fT0eeeQRnH766ZgyZQouu+wyTJs2DYCSdXn//ffjhz/8Ia699losXLgQjz76KI4fP45nn30WALB79268/PLL+Mtf/oIzzjgDy5Ytw29/+1s8+eSTOH78eDo/LhERZcCtf9uIM3/2umHKt1m7LvMy48FLNeutqsCl9YUSg042H+0GEFv49/rChh43+rkzs9Upzx9aWp/R8xuo2lpfpp7rGHjqt57YPR7MQlIfuApFolr/nwmDLBsHgEc/czounVuF7185O6XzzDaibPy0KaWGafCy7g1Rlu+E1SIhKiu9x7zBCHLsVkwpVy4Qz5waW4R7g5EBA/j9aVX7XTpsFhTn2rXBQcFw+mXjiQb2BHWB++2NPWm/NhERDR/R71Jsrmll456glvVmzrycXhEL/kyrzIckSShwikw55e/TeMi8rC81rlkSZV7+6ROn4vJ5VfjaRdNH6rTGBUmS8NHTJhruK9MNedKmjSfIWOzyBPG3NYfjNtO1ljs2a1ygUagtHvw61MxqkQzDgMx9NX2hCLY3KeudPIcVxbn2lNbONDLSCl7a7XZDqbhZU1MT8vOTDw5I5rnnnsPSpUvxoQ99CJWVlVi8eDH+/Oc/a48fOnQIzc3NuOSSS7T7ioqKcMYZZ2DNmjUAgDVr1qC4uBhLly7VjrnkkktgsVjSygYlIqLMeG13C7q9ITy3NflGUoeh56Uvo99f7JwWuGzatE3Rz0+UvZTmxjIv9VOW9aGhxz9/Jv7vM6fjxiWZzSocsGxct+hKNFmxP2L3eDCZl/rS5qYuH4KRKKwWyZBBOJDzZlbgz59cqvUjGquWzShHXXEObj5jkuG/jz6YbbVI2gCE13e3AgDm1BRoLQYml+fhmS+frR3f0U/wfiCPrjkMQCkZlyRJC14OqWw8qi8bVxbo+oDm9qYeTtokIspCO48rmfGLJxYDgK5sPKCVupr7c+vLxkWQ0tx2pmyMThvXK8qxa0FZIHHPy8vnVeNPn1iK4tyxH6wdaTeeOsHQi700X98TXg36Jdis/fqTm3Hnf3biXxuOGe7XysbVIPPPb1iAiaW5+NgZsSCpudQ7Vfr3+eSy2O+BSGhY26AMmZxQkgtJkrSsZX3mpT8UwaoD7QO2GvCHIlg9iOMoNamlbqjOPPNM/Otf/8Jtt90W95jH48EjjzyC888/P+XXbWhowB//+Efcfvvt+MEPfoD169fj61//OhwOBz71qU9p2ZxVVVWG51VVVWmPNTc3o7Ky0vC4zWZDaWlp0mzQQCCAQCB2wdzbq/whCIVCCIXGV6N68fOMt5+Lhg/fM5SqRO8ZffCjo8+f9P3U1hdrAXK0w5PR912PmmWZa7egKMeGDk8Q7b0+uAsdWgBn+fxK/OW9Q/AEI4ZFlyzL2rkUOCScPaUY4XBmy0j0A3sS/dw5uqwBuyWa0r+Nw6L8fN5gBMFgsN9AaWdfLGi887iyC11T5IIcjSAUHZ7d52z9nDm1vhBv3XEuAOO5hSMRw+3KAidO9Pjx1l5lMMDs6nzD4/Nr8lFV6ERLbwAt3R5U5qW1/MLmo0qJYJHLjlAoBNG5wB9Mf73iC8SCqaGIDH8giEAo9t7u84dxsLXHsNDPBtn6nqHsxfcMpSqb3zOyLGsBn1ybco7F6kTl9j4/+tQNR5fdYjh/u+7PvxxV1jZ5ptLyAqeUlT9zqiaU5GB3cx8AwG4Zuf+O2fy+yZQCh4T5tYXYfExZJxbYY+8ZES/3+I1rk41HuvDu/nYAyntU/5jHHxuqGQqFcOPiGty4uAZrD3Xi8bVHAQBV+fYh/ZsW5djQrHbCqS+OBejrinNwpNOLNQeV4GVNkROhUAi5aqJArzegfd+fr9iDv645ilvPnYxvXzYz6ff6w5sH8cAbB/Gjq2bjE2dOTHqcMN7fM5n6udJaPd911104//zzcdVVV+GjH/0oAGDr1q1oaGjAr371K7S1teHOO+9M+XWj0SiWLl2q9dFcvHgxduzYgQcffBCf+tSn0jnVQfnZz36Gu+66K+7+V199Fbm543NAwcqVK0f7FGiM4XuGUqV/z/jCgPiT88CbB1Hn3gtXgr9AuxssEEUBxzo9eOHFFYag3lDsOaC8duPhA4j6LQAkvLlqLXblyABscFplHNq8SjtPfXZdNBrFihUrMnMiSQSDVojOl4m+V3dX7PF333wdzhSSL/3qv38kKuO5F19CP33rccytHAsAu0/0AJCQE/EM+88PjIXPGeXf5URzs+HfQ/Yq762GdiWDt7f5CFasOGx8Zlj57/fKW6txrCT1TEZZBnY2Kq9xZXknVqxYAXevcvv9dRvgOyhrx6Uy8H17pwQg9mZ67sWXcPBw7PcQAP724jtYUian9LojJfvfM5Rt+J6hVGXje0ZJkFf+Jr35xuvItQHHm5XP890NxxBuPwrAip6O1ri/3zMKLdjfa8FMawtWrFgBX2/sM98myXj7tVez8vM+VfZg7Oc6uH8PVrh3j+j3z8b3TSb19cT+fd987RXt/t3dyvuwub3L8N77/a7Y8Xv2H8CKwD7tsZ1Hlceam45hxYojhu9z42QJPUEJ+za8g/1DeF+eUyRB8kuYXADs374B4vcnL+oGYMH6Q+0AJER6lN8Zd7dyTms2bIZ8VFkD/XWN8pyH3j2MeeEDSb/XO3uV5767aRfKOncM+hzH63vG681MK7C0gpdnnHEGVqxYgS996Uv45Cc/CQC44447AADTpk3DihUrsHDhwpRft6amBnPnzjXcN2fOHDz99NMAgOrqagBAS0sLampqtGNaWlqwaNEi7ZjW1lbDa4TDYXR2dmrPN/v+97+P22+/Xbvd29uL+vp6XHbZZSgsLEz558hmoVAIK1euxKWXXgq7PflkWiKB7xlKVaL3zPFuH7D+Xe2YFT3V+MsnlsQ99+Fja4EuZRc3Iks4ddlFKZUr92fFE1uAtlacunAeeve14/C+dkybsxAVBQ5gy2ZMqSjEB64+C/+16TVtkI9gsViwfPnlGTmPZO7e9hY8YSULbvny5XGPP3ZiPdCrZN594KorDZPPBxKJyvjuemVBtOzCS/ptxr+moQPYvlF5nqx8j0Uz6rF8+bxBf79UjZXPmW+seRUAUFlZheXLF2v3b5D3YNv7R7XbZyxagOWnTTA896nWjWg62IFpc0/B8sXGKaiD0djlg+/9d2G3Svj09VfAYbPgsRPrcaivC6csWozlC6pxz4o9eG1vG/79xTMMzfP7Y9nZAuzdqt2+4OJL8P7L+4DWWHuHR/dbsSdUgr/dshSWTO0mDNFYec9Q9uB7hlKVze8ZXzACrH0dAHDF5Zch32mDtKMZ/zq0DY6CUkyZUQEc3o+pEydg+fL5hueee1EYDe0eLKwrhCRJeLVvG3Z3KxWK5QUuXHVV6hWU2WirtBfbViuBsMUL52P5aZntVZ5MNr9vMukfLRtwoFfpu6pft1Yd6cKDu9fD5srD8uXLAABrD3Vi35oN2jGTJk/B8itmabe3vbwXaDqCWdOnYvnlxozG+BVxevSvs62xB/dtV1oKnjl3CnatPoJgVFnfnLVoFpYvm4JX+7ZhV3czyifOwK+2nsCc6gIAsThTorW68EjjWqCzB9UTJmL58rlJjxPG+3tGVDYPVXp1SwAuuugi7N27F1u2bMH+/fsRjUYxbdo0nHrqqQP27UrmnHPOwd69ew337du3D5MmTQIATJkyBdXV1Xj99de1YGVvby/Wrl2LL33pSwCAs846C93d3di4cSNOPfVUAMAbb7yBaDSKM844I+H3dTqdcDrje3vY7fZx+eYBxvfPRsOD7xlKlf494w0b+1e+va894fup0zSN+XhvEBPL05ssaOZVA5JFeU4tsOMJRhHsVtqGTCrLhd1uR4HLDn8oYHiuLGPY3//6v52Jvpc+aORyptafyQ6lT6YvFEEoKvX7s3gTVHZMKssbkd//MfM5I1kM51lj6sNUXuCK+zmq1CD8+4e68OHTJ6X8Lfe1KeVM0ysLkJejrFmcaklTVFL+mz6/rRkdniC2NPbhsnmJN2zNoqY59xFYIOb1TCjJ0abNrzvchXZfZMg9pzJtzLxnKGvwPUP9kWUZDe0eTNG1ysjG94xf18Ulx+mA3W5FRaFSMdjpDSGo7sHmOePPvdRuR2lB7LO8MDf2eFm+M+t+1nRNrtBNVnc6Rvznysb3TSZZrbp2RrqfsyBXWaN4QxHY7XbIsowH3mwAoPSXDEdlRGFci4qZOLkO24j8m1mssYqTaaYJ5pPKCpTrAbU//sajPWjs8mnrIaEnEEV5kkn1YsBiICyn9POM1/dMpn6mtAb2PProozh8+DAAYNGiRfjQhz6Ej3zkI1i6dCkkScLhw4fx6KOPpvy63/zmN/H+++/jv//7v3HgwAE8/vjjeOihh/CVr3wFgHJhd9ttt+GnP/0pnnvuOWzfvh2f/OQnUVtbi+uuuw6Akql5xRVX4POf/zzWrVuHVatW4atf/Spuuukm1NamnulARERDpx9+058Oddq4mBJ5LIMTx8UgmnynXWvO3u0L4minshiZWKos+gsS1LOPxLiS4U5oy1Mb1w80tKfLGz9Qpr50fLZQSZd+2jgAVJsGEyVq/v+RpfWQJODfm5vwwrbkQ6uS2X1C2bWeUxNbZIsm86GIDH8oog0DOprk9+adfW34+Ut7DAN5whHjzxIIRbUBQHNrjNUnne70hw0REWWjF7Ydx+/e2K99rj/0TgMuvu9t/P7N5CWh2UD/2S2Gt5Xli4E9QfjUaeM5joF7zOgHmYyHSeNCfUls7ZJo2jgNzefPnQoAuGSOcd6ImNLtUyOSaw52YN2hTjisFly/WBl2Gbf2UAcGOlMcSJmuaZWxwLb+fQIAdSXKNYgYPNSZZNDiDnU6uVkkKqOlTwleeoKZ7Y9/skvrt/iWW27B6tWrkz6+du1a3HLLLSm/7mmnnYZnnnkGTzzxBObPn4+f/OQnuP/++3HzzTdrx3znO9/B1772Ndx666047bTT4Ha78fLLL8Plil04PPbYY5g9ezYuvvhiLF++HMuWLcNDDz2U8vkQEVFm9Prj/3ibA0DeYBhedaGzuL4EQGaDlyJol++0oVA3bVwEeiaqWRaFrvjdQZdt+Be9Ay2sJQwtuika8nsHWEid6PHH3TehJLuy7UZbdIDgZUle/HvojKll+MoF0wEA3//39qTv7X0tfZj3o5fx29f3G+4XwUt9QFE/bbypO5YRcKTDC1mW8ezmJhxodWv3f/LhdXjw7YN48O2D2n3hqLFFQiAcRUi9qJhXW2R4rLUv/r1BRDRWRaIyvvOvbfjVq/twTN3I/NlLewAA963c199TR11I99ktNj9F4LHbG9LWPDmDCAbl66Zy99dWZqwRG+EA4EwwbZyG5ryZFXjrWxfgDzefarhfTLj3BMOQZRm/Vn+XPnbGRG0zXL/2cAfCeGpDIwDANULBy0KXHev+62Js/X+Xxa1xxW2xbhZVYdMr83Hp3Njg6GTByw53AJFobFAmZU5aV2PmC04zj8cDmy29ivSrr74a27dvh9/vx+7du/H5z3/e8LgkSbj77rvR3NwMv9+P1157DTNnGvsilJaW4vHHH0dfXx96enrw8MMPIz8/H0REJ6Pfv3kANz20Bv7Q6P0BTZR5aQ5oiqxLh82COWqA5pipRKM/0aiMO57aih/9Z0fCv1MedSFf4LKhSA1edntDWhApUealRQLK8x34y6dOG/R5pOu3H12C8nwnfvWhU4bl9cUOsjvQ//vgRHf8v7l5V/pkFzW9vapMfVmT9Zv8xiUzsHhiMfr8YXzjyc2GDEjh1Z3N8AQjeHjVIcPjuxIFL9WgeigcVfrKqo50evHSjmbc9o8tuOTXb8d9j39vatK+DpqyH/yhiJZ5WVNs/Lna+oztFIiIxrJD7W4tuCCCfQXOtLuqjSgRHLFbJa3tTEmuQxu0c7xb2WwaXOZl7GcuzUtcBjsWTdCtXXyjuAYezyaX58Fh2uDPdcYGX64+2IENR7rgtFnwpQumacF0ny6o97c1sQE9zhFIFhAqC1woyrGjVtcOx2W3aAF8UbHUpWZe1hS58OdPLsV/LZ8DANieJHipTwLwMXiZUYP+dN62bRu2bNmi3X733XcRDsdnb3R3d+PBBx+MCygSEdHo+OUrSi/hZzc34abTJ47KOfT644OXrb1+LYgIQCt5Lc9zaIHEZOWveo+sOoSoDJw9rQxPb1J2br960XRUFhgDL25/LPOyOFHmpfo99ZmXHz9zEu76wLy0ezmnYlF9Mdb/18XD9r3yReblAGXjzb3G7DqnzYKKgvFzMTMU15xSi+e3HscXz59muN+ceal/X+vZrRY8cNNiLP/Nu9h0tBsPvL4ft182y3DM3hYlU7LLG8K6w504e1o5ev0hLStojj54qabbhKOyMXjZ4cG6Q52G19UH9BvaPZBlGZIkxQVQlcxL5T7zRUQrg5dENI7sOtGnfR1UP/eqi1zoUzPWI+adqiwiym71w/usFgnFOXZ0eUNaNn7KmZf54yfzUp/FZx0P49PHCP177pFVhwAo66eqQpcWKNe3MGpoi1WIzKzKTJ/7VLjsVlQWONHaF0BdcY62Ds9TA/9h9XNArInm1ylVKTuaEg+h0a+jmXmZWYMOXj7zzDO46667ACjZj3/605/wpz/9KeGxxcXFafW8JCKi4RMIx2d5jZRen7JIqSlyaTuSrX0BzNAtUjrcSmCkLN856J6XDW1u3PX8LgDAd3RTC/ec6DMEL6NRGW61XDrPGcu8PNjqhi8UgSRBG0Siz0DIcVhHJHAp9Pe9hnoaIvPSM8BCylw2PqEkZ0T/DbLZbz6yCD++Zi7KTA3a85w2FDht6AuEkWO39lv2VF+ai59ePx/feHILfvfmAVy7uA7TdEMF9jbHFsOv7mzB2dPKsUe9wK4pcqFEV9InysYD4Sh6dVnKTV2+uEzr7/97u+H2/lY3ZlYVJOw7FQor99ksFly1sAYvbjsBgJmXRDS+iHYcABBU10j6zPnjPYOv/hgsWZbx9/ePYOGEYpxSX5z264hNJrvFuMlUmudAlzeExi5l/ZR65uX4CV4CwC8/uBBrGjpw2byqgQ+mjLBaJLjsFvhDUby2W5nO/RF10nu++l7r01VfiWDf966cjdOnlI7w2SomlOQowUtdtq5YNwui9cC8OmUTuanbh05PMO53plmfecmM34wadF7urbfeivXr12PdunWQZRl333031q9fb/jfhg0bsHv3brS2tuLqq68ezvMmIqIUjWb8SWReXruoDsumlwMAWkwZfqJsvDw/lnnZ2hfot+RixfYT2tdv7mnVvt7b3Gc4zhuKQCSeFbhsKFYnax5XFxi1RTla2YsheDlCvXcG4+xpZQDSH+wjevd4Bsq8NAUvOawnxmKR4gKXgigdL8kdeKLitYvqsHBCEaKy8b0aDEfR0ObRbr+8oxnRqKwb1mMcoCNKmjyBMJq6Y//dwlEZhzs8hmOfXH/McPvtvW3K9zRlXvpDUe0+u1XCLz+4EJerF33seUlE48mu4/HBS32woaU38xs2r+xswZ3/2Ylrf79qSK8jskJtVuOioEwt+/aHlJ9nMOuY8TqwBwA+tLQev/7wIm2zj0ZGni7wN7U8D0snKb3s8xMMjxSb5gvqjH22R5JoMaDvf5nnNAcvlfdQocuOKeVKn/wlP1mpfXYIxsxLDuzJpEFnXtbU1KCmpgYA8Oabb2LOnDmorKwc4FlERDSa9KWio5k9J3peFubYUKmWIJtLUNs9sczLohy7lsnW1O3F9MrEZSQvbIsFLzcd7da+3mMKXoqScZtFgtNmiSvrnagL0OnLxrMpePn586aiwGXHeTMr0np+npZ5mXwh1eePNfmfUZmP/a1u9rscpOpCFw60uhNOGk9EyQzuMUx3b2h3IxyVke+0QZZlNPf6sa2pJ+GwHgBaEF4pETRmKR9oNQYvzd7e14bPnzc1YealaKRvt1mQ67Dh+sV1eGVnCzMviWhc0WdeikxG/QZfsinDQ7HrROJS01SFtLLx+MxLvZN5YA+NnhyHFVCXIVcuqNauQcxl47Isa73Wa0z9w0fSsunleGHbcZwzrVy7T2z6C/pJ6LXFLhxqV37APc29WDihWHtMnwTAsvHMSqsj8fnnn5/p8yAiomGgLxUfzcJfkXlZ4LKjUu0PmCzzsizfAUmSUJrvQF8gjG5vfL9MADjY5jYEKfW9qfY0Gy8O3AHlNfJdNkiShKLc5MFLc9l4tnDarPjU2ZPTfr4+S0/0OzQTC65Clw11JTnY3+rmpPFBqixUgvLFg8i8BIBSdSJ5l+7iWGRhzqouQHWRCy9uO4FXdjZrF7vmzEtR3tjtDWrDGYpy7OjxhdDujgUaEw2wWn2wHYfbPXHTxv2hqFY27lAzVSqSbDgQEY1V7e6A4TNNrJfchuBlCIVxzxwa/V9efyiS9nRl/cAevRJT8DH3JC8bp9GhH+Jz0exYyb7I8hVJBX2BsNbOqKZo9NabHz6tHtecUmtY98eXjcd+plrduZoDlCd07SY4sCez0gpeXnTRRQMeI0kSXn/99XRenoiIMkTf925Uy8bVnpeFLhtCSQIhoudluVryVKQbqpPICl3WpVCSqzSq39/qRjgShU0NvvTphvXoX1uYWKYPXsYeS/eiIhuJHeTfv3kQ/9lyHCu+ca4hyxSIle7UFufgI0vr0eML4cr5NSN+rmORGNqTbNK4mTiuSxec39eiBC9nVhXg7GlleHHbCby0/YT232VOjTEDWQRKOzxBbbF85tRSvLKzxXCcuefS/LpC7GjqxR/fOojiPON7IBCOTRsXZXaif2xbX0DJkujx4/2GDlw5vyarAvxERIO125QBGUySeZnp4KV+U7nDE9T6bacqpG48xZeNG/8GuQbxGZ3P4CVlmL4FziJdb1exkS7W5SfUjdfiXPuoryfM3z/fXDZujwUvv33FLPxzozIk1JxkoW83EY7KCIajcRPZKT1p/StGo1HIsmz4XzgcxsGDB/HWW2+hsbER0ejoDYYgIiKF6HkEKENrRovIvCzMsaNKDfK0mjMvPbHMSyAWYEw0qRwAXlT7XeqDslcuqEGuw4pgOIrDHR7sbe5DMBzVMinEQsRpsxpKqeqTZF6Op+Clfge5scuHZzY1xR0jAmDVRS5cuaAGz3z5HENgl5I7d0YF8hxWnDezfOCDAa28XF82LjIvZ1cX4MLZlXBYLTjc4UUgHEWuw4pJZXmG1xAXmftb+hCKyLBaJJw2Ob7ZvXkI0zcvmQkA+PfmxrihWAFdz0txUSwyLwPhKO56fhcu+NVbuP2prfjb+4cH9bMSEWWTv7zbgE/87zrDfcFwFNGobBhq1+nNfNl4hy4rPt1WHL3+kPbZbctA2XhZnhPz6wqxdFJJ3OYu0VDYLBKsumbtYoJ3MBJFOBKNrTsLR69kPBnz744Y2AMom7oXzVZaKPb4Yp8TygavcdAXsy8zJ63My7feeivpYy+88AJuvfVW/PrXv073nIiIKEP0GVejOm1cBC9ddi2AaG6E366VjTu1YwGgJ0HZ+IFWpWTcbpWwdFIp1jR0AABOn1yKXcd7seVYN375yl68srMFNyypw2VzlZIV/S5qUY5d+/eZpO95mZOdPS+HKs+0o5yo96UIco1m36Gx6qxpZdj+48thGeREpYRl47rMy3ynDctmlOMNdRDVrOoCwwUAEJ+9WV3oMkwuF5q6jAvpM6eW4cyppXi/oRMrtjcbHvPrMi9F2bjLbkWBy4Y+fxh/XX1YO3ZrY8+gflYiomzhD0Xw0xd3x90fDEcNE5ABtZ1N/EfqkLRnIHj52b+ux/rDXQCU4JCe2AAWBlM2brVIeO4ryyBJo9sfncaPT589GX9dfRi/+9hiw/36jXRvKGKo+Mk2oh2Q4LIbNwqK1euF7z69HVcuqEGhy45eX1hLHLFIQFQGvKEwisBNgUzIeP7q1VdfjY9//OO47bbbMv3SRESUIv8IBC/DkSj+/v4RHOlIPiBElI0X5dhQpZagtvb5Icsy3IEwHl1zWOtTKUqeCrXMy/ggm5gyfs70ckNPxlMnlWB2tVJaK0pn/72pKVY2rsuq1Pcm1Pe81N8/roKXpvIXf4KdYNHzsrow+xaRY8FgA5eAPvNSCTy6A2Ec61SCjLPU9/AV86q1483DepTXMC6G64pzEmbKHusyZlfarRZ89cIZCc8rEIpqgyD001nFZM2ZVfn40gXTAMSXXRIRZbuNR7oMt7VMsHAEbW5jMHE4Mi/1rULa3akHL/v8IS1wCSBuUyudzEtA+fvFwCVlyg+vmoO3v30BrjC1HnLYLFqfVm8gFryszsJNc5fdasgI1WdeAjD0z7/jqa0AgBO9yjquONeurbs5tCdzhqX4ftq0aVi/fv1wvDQREaVgJDIv/+e1ffjhsztwyyOJP/ejURl9usxLsZPpD0XR6w/j7+8fwY/+sxNipki5yLzMUf7oi56XT647iit/8y6Od/u04OVVC2q0gGRlgRMTSnK0wI+e6K+pz7wUwdECp80QBNI3DJcxeqX2mRYXvEzwfmDm5cgRF5iibHy/mnVZUeDUHrtkbhXEdal5WA8Q31+zttiFCSU5cf1tG02Zl3arhHOml+EUXR8qkWUZCEd1PS9jL/T7jy3Bw59eipe+cR5uOWcyAOBwu4flUEQ0prx3oN1we8GEIgBKGas5E7LTk7htzVB4dVUP+u/X2OXFVQ+8i3+pffSS2W7KeDf/bTcHLwfT85Io02xWS1yrG0EE1D3BsDZpvDZL150zqmKp105T30r9GmzlLiVhIpYE4NKynrlOypyMBy/D4TCeeuoplJcPrucTERENH2Pm5fD88Xzw7QYAQEN74sxLTzAM0W6zMMcOl92KQjXg2Nbnx5aj3YbjxcJb63mpBi+/9+/t2H2iF7f+bYNWMn7Z3GoU5yjHnzqpBJIkYXZ1fJDnfbWsXN/PUpR71JfmGrIN9P2erOMoC8F8gdOXoJdocxbvgI83JbnGsnExrGe2LvhemufA1Qtr4bJbcO6M+HVVrsOqBR0BpezKabMapmAC8WXjkqRk2Hz7sllwWC04dVIJbjq9HoDymWEe2AMovycXza6C1SKhssCFApcNURlo6jZmdRIRZbPVpuDlpFIlwBIMR7VMSJGNqW/rkSn6TWV98PI/W45j5/FefOufWxO2yxG2NHZrX8+ozMf3rpxteLwsz1jqOp4qSGh80DISAxE094p1Z3ZW/OgHYJmDl+bql2hUNqyjRYk8My8zJ62el5/5zGcS3t/d3Y33338fzc3N7HlJRJQFArqBPfqvM0WWZUQGGAQkyr4dVov2h7+q0IVevxstvQHs0pWeFrps2kQ+reeladr4jibl+GXTy1GUa8d1i2uxv7UPXzhPKWWdnSDzcv3hTgDxPS8BYFKCMtt7b1yAHU29OHNqWb8/21hi7nnZ4Y6/KBNNxmuLGbwcbmLHvtcfRjgSxZ7mWL9Lvfs+fApCkQWGPlGCJEkozrVrmcV1aguFiaW5aOqOBSwbuxIHGJfNKMfGOy9BvtOG375xAICSeRkMxwcvzcryHOjzh4clM4mIaDj0eEPY1hTLXFxQV6StOYLhWOblzOoCbD7ajU5vUKsKyRR9Fpa+bFz/N/qxdUfw5Qumxz135/Ee/OLlvQCUwWtfu2h6XLuSkrxYQMVulfr9HCcaDSIj0RsM43iWZ16W6jYDnKaNAHPLhgNtbi0YW1PkQqva29+boMc8pSet4OUbb7wR1xNDkiSUlJRg2bJl+NznPofLLrssIydIRETpG6hsXJZlvLO/HYsmFBt6twzW4Y5YUGRebXzGIxDL8CvMsWl/OyoLndjf6sbBNjeO6qYdi5JxYOBp41ctrAUATCrLw+8+tkS7vyTPgapCp2EgkGiene/Ul4crC6XplfHd+D9y2kR85LSE33bMMmdedpgySjyBsBZoztYd8PFE/9/DF4pomZfmtgd2q6Xfi8+SXIcWvBQN7yeV5WpDrID4snG9AnWTQDSi9+oypc1ZBnqleQ4c7vCi05PewAkiopG2pqEdsqz83b/3xgWYXlGAB97YDwAIRGKZl7OqlOBlKCKjI8lH3IrtJ3DX8zvxm5sWp7TRqQ9e6jMvw7qN4EdWHcZnl02J67F31QPvaV+fNa0sYZ9lp82KAqcNfYEwXMy6pCwkNmM9wXBW97wEjAOwXKY1kd+UFLLxSJeWeVlV6EKuww2AZeOZlFbw8vDhwxk+DSIiGg76snFfgp2/1Qc78KmH16E0z4FNd16a8uuvPhgrvzLvQApiWI/IpASgDe15e2+b4Vh9AFUEL3t8Smaant0q4VJ1gngis6oL0dLbFnd/njO2kL/lnCmoKHDimlNqk77OeJJnytzrMA0KEAvIAqfNkKFKw0Nf7h0MR7FXzbycVRWfOdwffdnSBC14aewz1TqIibbiIrlXl+nstPcfvASGpyccEdFwEP0ul00vx6mTSgHAkHnpVjfw6nVD/H6y2YZP3hD/Wk9vbERLbwBv7W0bdPBSlmV49WXj7sTBy7a+AP6z+Tg+fFp90teaX5d4wxgASvMd6AuEBzVpnGikifdlS29AK6muydJNc0PZuGkz4AOn1OI3r+3TNv43HunSNkBqilzI0TJMGbzMFOaRExGNY/rMS0+CP54b1ImVnZ4gdjT1xD0+kDUHY9ldwSQDgUQwRN9vskId2rPqYHvC5wC6aeO+kGE6JwCcO6PC0JvSLFHpuPkcSvIc+MRZk7Wpz+OdPnALAO2msnH2uxxZFoukDcQ50eNHuzsISTI2hx8MfcP4Gl3mZapElqVYhAPGAKtZLHjJzEsiGhtWHVDWLOdMj/UQFp9zIV3mZXn+wOuCHceVNVMqfTED4aihDL1dn3lp2qR96N0GRPtpy5OolYggPp/Z75KykQheHmxVMhNLcu1aoC/blPbT87KiwIn1P7wED396KQBg09Eu3Vo6J1YeH2LwMlOGlFqxa9cuNDQ0oKurC3KChiCf/OQnh/LyREQ0RPqSBk8gPvNSn1n19/eP4Oc3Lhz0a8uyrA3CAZIHLz1qxqe+TFZkXppLLvT9M6vUAOfxHh/e3NNqOO6qBTX9nluy4KW+bPxkYy4bdwfC8IciWlmZ6HfJ4OXIcVgtCEUi2K5uHEwsze33gjQR0d+sKMeuZcxOLE09eCneB6LNg9UiwdZfuTozL4loDGnq9uFQuwdWi4QzppZq9+szLz0BJchQ4Op/rdDa59da03R6Bx+8NJePeoIReAJh5DltCEWU9c+1i2rx+u5WHGh14829rbh4TvIqk2REthjLxikb5aprlQNtSvAym1sVlenaWSVqpeO0WbFkYgkAoKHNox1TXejSKp4SVb5RetIKXh48eBAf//jHsW7duoRBS0DpgcngJRHR6PIPkHnp1mVZJZsWnsz+Vrchey9oyhoIRaI42NGrLdb1GQBVhYkDZGLxDiglJNcvrsMzm5vw4+d3avc7rBZc0k/JOGDsGzi3plAbCpTvOnnLoRMtujo8QdSp2Xpit7iGwcsR47BZ4AnGgpfmYT2DITKHxX9HQMnenF1doA0B0vv02ZMTvo6WeemLDdjqTxkzL4loDFmlloyfMqHI0MbGqQteimqVgTIWdzbFBg12Jsi89AUj2N/ahwV1RYY5ESIDy2G1wGqR4AtF0O4OIM9pQziqrKFKch342BkT8dA7DfjT2w0Jg5eXzKns9/xEthjLxikbieFUB9XgZbYO6wHM08YT/z4V5zowvTIfB1rd2nyBapaND4u0ysa/8IUvYPv27bj//vuxadMmHDp0KO5/DQ0NmT5XIiJKkSF4mSDzsk83DCcUGdw08nAkipd3NOOy/3kHQGyRHAxH4Q9FtOzJ/35pL664/12s2NEMwJgBUFnoRCLdpgyGO6+ei9I8h+EP/4OfWNJvyThgHMJzSn2x9vXJ3MvRPGgPMPa9FAN89EOTaHiJhfD2RiV4mSxjuD9iYV2rC146bVa89I1zcc/18w3HPvjxJfjxB+YlPhe7KBsPGW4nIyZwmgc/ERENp3AkOuj1ip4IXupLxgFd5mUkFrwcKGNR32YnUdn4j5/biQ/8bhXueGqrIdFHZGDlOKyoKFA+Q8XQnrC6eWuzSLjlnMmwWSSsO9yJn720G4BxjXbP9Qv6PT+RGZ+tpbh0chMVJmKYYDZX/JTqWkhY+lkWLZlYrH2dY7ei0GXTNg84sCdz0gperlq1Ct/97nfxta99DYsWLcKkSZMS/o+IiEaX/g9m4uBl7L5EZd+RqIy/rTmMvc19aOn14zev7ceye9/EF/++UTvm/JkV2mud94s38aGH1iIYAZ7ZfBwAsPVYNwDjxYAoGweUATHnqa/xoVMnGL5/aZ7DEGy5Yl41Lpo9cAmV02bF96+cjY+eXo+P6BreF5zEmZeJdOgyZ70JyvtpeImL5j3NShZPOpmXVy6owaVzq/DZZVMM90uSFJd1U9hP0N9lM2YIDJR5WaqWq3elUDJJRDQU0aiMG/+4Ghf88i1to2WwEvW7BGKfdWIDFhg46Cf6XQLxGzjBcBRPbTwGAPj35ibsa3Frj/mCyjorVxe8FH02ReWJzWpBTVEObr9sJgDgT283YH9Ln2ETt2SAXt1l7HlJWUysTURcX7/5mm0KdGviyoLkQdZTJ5VoX9cUuSBJEnLUIC0zLzMnrSuU8vJyFBUVZfpciIgow/zhAYKXgf6Dly9sO447/6OUbFstkpZVme+0wa0+9/yZFXhmcxN8oQh8oQha+wJ4TbJoZeo96sCeHEcsGKLPvJxTW4g/3rwEG4504awEEzuvWViD57Y04bXdrSktcL5w/jQAQCAcQY7dCl8oMuCC/2Szr6UPF85Wys/E4oplZiNHBC/FRWs6mZd1xTn48yeXJnwsx25c5hX208fNnGk52MzLTjeDl0Q0MtYe6sRWNVP9ha0n8LEzJg7qee5AWAsSzq8zXsOKz+GAPnhpt6KywInWvsRtMXboysZ7fCGEI1GtR/C6Q52GoTxbj3VrrWzEJmGO3aoNBRKZlxG1bFwMcvvyBdOx6UgXXtvdiifWHcPnzp2iPe5I0AZG74JZlXhs7VFcMb///uBEo8G8SV6dpJVUNpAkCa/fcT58wYhheI+ZPngpWmPlsmw849LKvPziF7+Iv//974hE+B+CiCibiV1+QOl5ae5TrC8bN/esBIC9up55kaiMpZNK8JubFmHtDy7G9Mp8zKoqMPzBFlY2xZco6zMAXGpJBaD0pMxz2nD+zIqEC3JJknDfhxfhh1fNwRfPn9rfj5uQ02bFnz5xKu7/yCIt04EUv3hlL57e2AiAwcvRoO9DardKmFyel9HXj8u87Cd4aTdlWg6252WHJ5i0/zkRUSY9s7lR+/rpTY39HGnU2qv0dM532uLax4h1x7v727U+3i67BfeqAwztkvHzrdMTRFO3Uu4qurF0eWNrqZW7mg3Hb2ns1r726TI7zWXjoagoG4999t585iTtZxW9NQcz1G1mVQHe/vaF+KCpmoUoG5gzgmuKszd4CQDTKvLjNj3Mppbnay2tRO94rWw8xIE9mZJW5uXMmTMRiURwyimn4DOf+Qzq6+thtcZf7Nxwww1DPkEiovFOluWE/QgzQZ95GYnKCISjhvLtgcrG9bujL33jXMypKdRuv/yNcyEjllmpF5X7D14Cys5kr9+NebWFcceaFeXY8blzUw9cCqIsnRRzawoxt7YQ/9rYiDv+uRU9vpCWEZLqtGtKnz5YP60iPy6AOFTm4GV/A6usFuPv7MG2/gd4iZ5qAXXIBd83RDSc/KEIXtoeCwxuPNKFD/5xNR77/BlJB2kIYjJ4ZYINzESfuzl2K4pzlUBEgSnZaqdaMj6lPA/d3iC6vCF0eYOoKHBClmW8trsVAHDjkgl4elOj1joHgGGAYUW+EuBoUwOmYXUD2WaNfRafN6MCdcU5aOr24Qt/U9r1nMy9u2l8yHOagpdZPG18sCwWCUsmFuPNvW2oUoOX4rqHmZeZk9an30c+8hHt629961sJj5EkiZmZREQDiERl3PDH1Shw2vC3z56e8SBmIGT8HPYEwobgpXuAsnFRZvWlC6YZApcAtBKpgcqXBJcpkHLzGRPx7JbjCSdp0vCoKHCirS+Ay+ZV4esXzUChy46HVx3C3S/s0o5h5uXI0Wc3zkqjZHwg5r5t5gsGPXPwciB5DiscNguC4Sg63EHklvKCmoiGz2u7W9AXCKOuOAfnTC/DUxsaseFIFx5+7zC+dMG0fp/b2qdkXiaqvki0hnE5rFpQUxSl7DreC18ojO3qsJ55tYXYfaIXXd6Q0j+6Cth1ohdN3T647BZ8+cJpeHpTI/Y098EfisBlt2pBjByHFeUFxrJxMbDHrgteWi0SbjqtHvet3Kdle7a5E5eyE40V5s3Omiwe2JOKT549Ga19AVy1QGnXkMuelxmX1krzzTffzPR5EBGdlNrdAW1Xfufx3gHLElLlMwUvvcEI9F0lB8q8FGVKZf30eUlWXjqjMg/7W2PZW+bMy0+fMwWfPmeK+Wk0jJ776jl4d387rl1UC4tFwp1Xz0FJrh33rdynHcMMupHj1P1OpDOsZyD6/5YOq6Xf7CSraePk7msTTyUXJElCWZ4DJ3r86PIGUV+aO7STJSJSdbgDiMiyYUDGM5uaAADXLa7FNy6eiac2KGXj5uqPSFTGfz2zHSV5Dnz3itkAgP997xAAY1aj4EySeakFL2XlNT/2l/fR4wthovpZN7+uCC29fhxs82iDy17bpWRdnjujAlPL87QNw53He3DqpFJtTZbrsKIiXy0bdycvGweAD59Wj/tf36/1HE+0ViMaS/Sb5KV5DkNSxVh24axKXDirUrvNaeOZl9YVyvnnn5/p8yAiOinp/6C9trsl48FLf8i4yHWbhva4dcHLQIKel2IadVl+8uBlopKri2qiuO68afj6P7Zp93Hq5eirKcrBh5fGpq9LkoSvXTwDe5r78OL2EwCYeTmS9IH/dIb1DET/37K/rEsgPvNydvXA7RxKcpXgpXnaLhFRuqJRGZff/y7a3QHsuOty5Dtt6HAH8Pa+NgDA9Yvr4LBZ8NHT6/HEumNxa4tnNzfhyfXKtO/PnDMFXd4gtqlDfrYd64FZosxLu9WiZUBGZKC5149uta/lkQ4vAGBBXRE2HekCEJs4vnK3UtZ+6dwqSJKEUyYU47XdLdhyTA1e6svGxbRxLfPSOLBHqCp04aLZlVi5qwUAYEsxS54o2+g3VrN5WM9QieoXT5A9LzMls82ViIgoJfrMyNfVPkkZff2gOfMy9gfUH4oYhvSEItG4wRuibLwsL/mgG6tFMgQ+Zlfl49rJUW3anmAuYaXs8cGlsab+DF6OHP3AnuHIvNT/zg3U3sEcvBzMZoPY1ODEcSLKlA5PUFt7bD6qBAdf2HYC4aiMBXVFmF6pfFYW5yqfPyLrEVACgL9/84B2e+uxbjy65rB2u64kvrdess9GfeZlY5cv7vF5tYWGz0B/KKJNIb9gltJne1F9kXYeAHRl4zaU6zIvZVlGSC0btyXYEL7ptNim42Bb9RBlK/1mam2WD+sZCrGebmjzaJsPNDSDyry88MILYbFY8Morr8Bms+Giiy4a8DmSJOH1118f8gkSEY1n+uDl9qYeNPf4UZ3B3i/6gT0A4A7EbutLxgFAloFwVDbs+otsgv4yLwFo5UxAbOFdYGoqP1BDfRo9F8yswFULatDU7cOkssxOvKbkxEVonsOKCQkuqocqVxeAtAzQT9f8+GA2G0rz4oMHRERDIfpTAsC2xh6cO6MC/96slIxfv7hOe6xEHajTrfv8eXH7CTS0x9rVbDnWjdUHO7Tb99+0KO77DRS8DMvAMTV4Oa+2EJGojGkV+SjOdWgbu+3ugBZwdVgtWkn4KfXFAICt6sRxQ9m4mnkZDEfR6w8jHFUH9iTIrLxAV4paktv/eowo2+k3yTN5zZNt9D/n5x/dgH9+8SycNrl0FM9o7BtU8FKWZUSjseycaDQ64FAJc/YOERHFM2dGvr6nBTefMSljr+9XX99psyAQjsKrKxsXJeR2q6Tt+Lf1BVBbrARRolEZXVrPy+SZl2YnepQLD/NkY2ZeZi9JkvD7m5eM9mmcdETm5czqgowP6wKMGTwDBS/jMi8H8fsqLqJZNk5EmdLaFxtIs/FIFxra3Nh6rBtWi4RrTqnVHotlXsZ6Xm443GV4rU1Hu9DQ5oEkAVvuvAxFasBTL1nfbrGRG5UlHOtUgpcLJxTjZzcs0I6pLHSq5+zXeoSX5jm0z/OFdcUAlFLzLk8QPrX6JcduhctuRYHLhj5/GO3ugG5gT/z56D+fA+x5SWOcvmx8PEwaTybH1EP+P1uaGLwcokEFL996661+bxMRUXrigpe7WzMbvFQXueX5TjR1+ww9L/v8yoK/It+J2uIcbDjShb+8ewg/umYuAKDXH0JYzags7Wdgj5kIZOSbeuyx5yWRkcj4GY5+l2aWASoNzRfMuYMpGxeZl+rvfIc7gH9ubMQNS+oMgzaIiAarTRe83Hm8B8+qWZfnzig3TAsXmyfduoE9veq6ZmpFHhraPNio9qScUZmfMHAJJM+81AdYdjcr5eD1pcZAS2WBCF4GEvYIL8q1Y2p5HhraPdja2K1lXorNoYoCJ/r8YbT1BbQ1Wb6z/8tzH/vn0RiXZwhejt+1gnkd9dL2Zvz4mnkJW0PQ4PBfjohoFImFrOh99N6BdkNfylTd/fwuXPv7VdpriOCoWEx7dcFSMawn32XD1y+eAQB4bO0RrWSrXV2IF7psafVYyjPtODJ4SWR06dwqTC3Pw3WL6gY+eIjM08TNzBfMg8q8zDNmXv7fmiP4+Ut78Miqw+mdJBGd9PTBy5begDZ8R18yDiQuGxftcMQQEJGl2F/1SLL1TY7DqgUn1x1SgqD1JbmGYyrUTZrW3oD2OWje7NVKx4/1aGswUU6q9b3sC2hT05MFWefVKkPULp1blfRnIRoL9OuL8Z15aVxHdXiCeL+hc5TOZnxIa9q4EAqF0NTUhK6uroRl4kuWsASNiKg/Ing5v64QB1rdaOzy4b397bhsXrXhOH8ogjv+uRXnz6xAgdOGJ9cfw10fmIfJ5bH+hIfaPXh41SEASp+ns6aWaT0vRYbU4Y5YL6hedZFf4LLj3BnlWDyxGJuPduNPbzfgzqvnokPt3yQW16myWCTkO21atmeOg/tlRHrnzqjAG9+6YES+l2WACbUuu/H30zmIDQvxuSLKJRs7lSm8rb2BpM8hIupPa6/feLsvgHynDZfNNa6LitUgn5j+DcQqSsx99KZWJO/lbO8nLX1KeS5a+wLwqEHH+lJj8FIEN9v6Yj0vzWumUyYU4ZnNTdja2A3xKSw2cysKEgQvcxIHLx+55TS8uO0EblgyIeHjRGOFw2aBy26BPxRFXfH4DV4ahzLmY1+LG89vPY5lM8pH8azGtrSuJLu7u/G5z30OhYWFmDZtGpYuXYrTTjtN+5+4TURE/fPrmrdfMkfZTX9td/xEuj+8dRAvbjuB7/xrG778+Ca8va8Nf3rnoOGYx9ce0b5u6wsgGIlC7CuVqYvpR1YdxtMbGwHAUKIkSRJuu2QmACX7sq0vYOjflK4CXd9LFzMviUbNQD0vzT03B9ODs9RUNi561fXoyjiJiFKh73kpXDG/Oi6LqVg3uOZAqxsA0OtTNkvNpagzq5K35ijJc+AHy2cnfGxKuTHoWW8arKYN3YlEcahN2RxOnnnZrZs2rgYv82Nl5wMFLysLXLjlnClJHycaS/7fNfPwzUtmYmJZ7sAHj1GSJOEn183H7ZfOxI8/MA8A8PLOZgTZtzZtaWVefvrTn8bzzz+Pm266CWeccQaKiooyfV5ERCcFUdbtsivBy7+uPow39rQhGpUNmVKrDrRrX4uA5IrtzfjxB+bBabPCH4rgqQ2N2jFtfQH4g7E/jvoeTI+vO4obT52gZUSKAON5M8qxcEIRtjX2YOWuFkTUbzTQpHEAuPvaefjRf3bG3a8vRWXZONHoGahsPB2lprLxFjVjSvSdIyJKVaLgpblkHACKdUG8pzc14rtXzI5lXhYag5czqvL7/Z63njcNf3v/iDaYR5iiC6zkOqxxgUmX3YqiHDt6fCHsUftimtdMc2oKYbdK6PAEsV8Nsop+miL4ebjdA7XFOIOTdFL46OkTR/sURsQnzlTmGESiMioKnGjrC2DVgXZcOLtylM9sbEorePnqq6/i61//Ov7nf/4n0+dDRHRS0fc/On1KKQqcNrS7A9ja2I3FE0u04/a39Glff/2i6fjHhmNo6Q3gnX3tuHRuFV7YdsKQ7dTuDmol41aLZFgMbzrahdY+v9YbqsClPCZJEk6dVIJtjT040uHRMgPKBlE2/smzJuOB1/drfTIF/cRxThsnGj0DlY3rLVIzhQYiLuR7fCGEIlEt6NDLzEsiSlNbguDlmVPL4u7TD704VV0viXY41aY+ejMqBx6K9pubFuNTD6/Dd66IZWHqMy/rS3ITZqRXFjjR4wthd7OyTitLEOCcU1OIbY09Wmm5Vjaurq8OtilBTaWclmslovHGapFw1YIa/HX1YTy/7TiDl2lKq2y8rKwM06dPz/S5EBGddETZeI7dCofNglMnKwvwvc19hmNEb8xvXz4Lt182C9csrAUA/GeLMoXz7+8rJeP6/kkiqzPHbjVkQMoysHJXi5ahoC/tnqj2czra6dUmZ5YPsmz8O5crC/6PnR7rxyQCowDgsnFBTjTSbliiZCx94+KB121XL6wBANx59ZxBvXZxrgPiWr6l169toLBsnIjSIcuyNjRQWFRfDGuSzRcxxMZqlRCJylpFiT7zsiTXjvJBVJAsmViCrT+6TMuUAoCp+uBlaeLefJWFaum4WgpammA40CkTig239dPGgVg/cmZdEo1fYo21cmeLdv1HqUkreHnrrbfiySefRDTKen0ioqHw6YKXQCzYp58KvqOpB6GIjPJ8B758wTQAwLXqdOLXdrfg/YYObDnWDbtVwmeXTQEAtLkDWualy27RSpSEV3a2aE3uC3SBzUlqidSRDm/KPS8/fFo93vvuhfixLvAhXtths6SU+UVEmfGrD56CVd+7CFfMrxnw2F9/eBFWfe8inDqpdFCvbbVIWummfsOFmZdElI6+QBj+kHJ9+eDHT8XyBdX48yeXJj1eBDVlORa4BICqolgAcUp53qB6+ALxGep1xS5YJaWee0JJ4t58lQXGEvVErXZOMWWzm6eNhyLK92Dwkmj8WjKxBDVFLvQFwnhvf/vAT6A4aZWN33nnnQgEAli6dCk+8YlPYMKECbBa4zNqbrjhhiGfIBHReCDLMr72xGbIMvC7jy3WFtJaz0t1IZujTvz16XbkNh3tAgAsnliiPW9+XSGmluehod2D257cAgC4cn4NZlcrpVH6zEuX3Yp8p/Ez+t39bVrvzDN05Vgi8/JYp1cr+R5M2bgwoSQXoVAscCGyOtnvkmh0WCzSoKd5OmyWlCd/luY50OUNYY8ueOkJRhCKRGG3prVHTkTjwPf/vR09viAeuGmxocS7P629Sll1gdOGK+ZX44r51f0eL9ZE0Whs08Rps6A4JxZArEsSdBwMm9WCchfQ4gMmlCTJvCwwrpHMZeMAsKjeOB/CPG1cKGbwkmjcslgkLJlYghe3n0Bjl3e0T2dMSit42dTUhDfeeANbtmzBli1bEh4jSRIiEabDEhEBSg/KF7adAADc45uvTck0Z16KDElvMJZBsOlINwDg1EmxHpiSJOEDi2px/2v70awOyfjEWZO03fx2d0DLXnDZrYbMS4fVgmBEeeybl8zE6VNiWVYis6AvEMZBtbH8YAb2JCPK1Rm8JBqfyvKcONjmwe4TvYb7e32hQW98PL/1ON7e14Z7rp8PJ9tLEI15nkAYT6w7CgC46bQOnDezYlDPEyXjFYWD++ywqomSEVk29PF22GLB0lQ3ZMxmFclo80uGtZKeOQCZ6HNvank+8p02LTs0V+spblxfMfOSaHxzqkkqAU4cT0tawcvPfOYz2LRpE77//e9z2jgR0SDoy5nCYqQkYpmXYiEr+iCJsnFZlrFRzbxcohvgAyil4/e/th8AMKuqAEsnlWiN7jvcAXjU75ljtyJPVxp+9Sk1+PemJlw5vxpfu8jYB89lt6K60IXmXr82Qbg8hcxLM5G9yWE9RONTSZ5ysa3PvASUvpeDDV7+7o0D2NvSh+sX1+Gc6eUZP0ciGlliMA0A/GfL8aTBy1UH2tHQ7tH6TIo1jDmbMRmLFCsbF328C13Gy1t938p03DA5il9/5mKUFyYpGzdNNs9LsN6xWCQsnFCE1Qc7AMTWRHarBaV5Dq1ND4OXROObGMjlC0Xw3NbjKM6xD3pzh9IMXr733nv47ne/i7vuuivT50NENC7pB1jod9tE5qX4Y5Yr/qipwcvGLh/a+gKwqQtfvSnleVhUX4wtx7rx8bMmQZIklOYpAzSiMnCix6e+tkULjgLK0J+PLK3HqZNKEvahnFCSo2VzAoPveZmI6OHJ6ZlE45MYTnFAzdQWxNRfvR5vCFsau3HejHJDDzqxudPtZa9MovGgXR34BwCv7GzGPaH5CdcB3/nXNjR1+3DmlFLMqCrQgpcVpj6SyYjgZVSOfeYUqAHAL54/DVuOdeEDi2qH9LNIUv9BxdJc4xopWX/NU+qLY8FL3b9FeX4seFnI4CXRuFalfra9vrsV97+2H/lOG7b9v8tG+azGjrSaEVVXV6O0dHDN3ImICOjyxhbyAV0/S3PZuDnzUvS7nFdbmHDh/8BNi/HLDy7EzadPBKD0ZxL9lo51ieClVVvgA0BJrgNnTC1L2oOqODe2eJYk5fh0FWhl4+x9RzQeJervBiSeOP7zl3fjUw+vw3NbjxvuF5+DvX4GL4nGA33mpTsQxpt7WhMe1+FRjjvUrkzbbk0181JdWkSi8ZmX37tyNp689axh3zwdbLakmDjusFoM6y992TkzL4nGtxlV+QCA7U09AJTPR1HpRgNL62ryjjvuwF/+8he43e6BDyYiIvToMopEv0kglmEpgpaxnpfK/ZuPdgNQhvUkMrEsFx9aWm/IoBRl3sc6lWbQLrvV0Gjeaev/o19kSwJKRoF1CFPCp6t/pKeU56f9GkSUvUpSCF6Kz7M1avaRIHr89jF4STQu6IOXAOI2LAAl4Ch6czd1K5utrWrVx2CDl2Lw4MYjXdrAngJXWoWFaZtWObiy9KWTS5Bjt2KKqYy9Ip/BS6KTxcyq+OuhTUe70GH6zKTE0vp09/v9sNvtmD59Oj784Q+jvr4+btq4JEn45je/mZGTJCIa67oNmZex4KU/bmCP6IWiXMxvPKL2u5yUOHiZSEWBE3ua+3BMnWQnel6u/cHFsFstSUuahHxdf8yhDOsBlD6db9xxPuqSTOkkorHNnHmZ67DCG4xogQQhGpW17CqRcSDuFwGMXl98qTkRjT3tfcqa55QJRdja2IPX97Sizx8ybI56dIMJm9RKES3zcpADe9Ye6gQA/HX1Ydxx6UwAQKFrZAOA+oGI/SnPd2Ll7ecZ1ljifoHBS6LxbVJZHuxWCaFIbP7Bt57aCn84ghsmSVg+iuc2FqQVvPzWt76lff273/0u4TEMXhLRySQalbG9qQdzagoNUy6Fbl+SzMuQMfNSXzbuC0a0Cb6nphK8VBfCRztE5qVyPlWFg+shpc9aGEq/S2FqBbMuicYrc+bl9Mp8bGvsicu8bOr2af1+9zb3wR+KwGW3wh+OtdFg2TjR+CAyL8+bWQF3IIyDbR68srMFHzx1gnaMNxD73ReZl1rPy/zBrVf0OtVN4pHOvEzFhJL4oT8sGyc6editFkwtz8feltiQwz6173d9npzsaaRKq2z80KFDA/6voaEh0+dKRJS1nt7UiGt/vwq/eX1fwsf1gyj0mZeiPFzrean+/+aj3djW2I1wVEZVoRO1RYNfyIuFsGhen2q/J31mxGCnBRPRycmceTm9UtmsMGdeNqhZlwAQjsrYq04nF60zEj2HiMYm0cuyPN+JD5xSByC+dNyQedmdXual3tZj3QCMa5iRcrua9XnvjQtSfq4heJnL4CXReHfBrApYJGBWVYF237SKPNQz12NAaW1NTZo0KdPnQUQ0pm04rJR37zrem/Bx47Tx2MW635R5qS+n3KgO61kysWTAUm+9ClOvqMFmXAr5uqyF8gxkXhLR+KXPzrZbJUwuU/q5mTMvG9qMfdK3NfXglPpiLfscSDyhnIjGHlE2XpbvwHkzK/A/r+3DqgPtaHcHtDJpT8BYNu4PRbTPjcH2vJxfV4gdTcq6a5PaU7dwFDIvv3bRdHzktPqU11uAsWy8mJmXROPety+fhVvPm4rH1x7F3pXKRu7U8jwAPf0/kdLLvCQiIiOR/t/cm7jhsn7aeFAtnQxFolrPE5FxefXCGu24jWpANJWScSA+eDmxNL5MqT/i/ACgeAiTxolo/NMHL60WSSt7NJeAN7QpmZd2q7IRs6NRWaTrMy85sIdofBBl4+X5Tkwpz8PCCUWIRGWs2H5CO8ajKxvv8ATRqPbpdtgsgy6ffvzzZ2JymXGNMxqZl5IkpRW4BFg2TnSysVktKMt3okpXVVfP2QCDwuAlEdEQRaMy9ovgZY8v4TGGsnE1OOjXZRyJ0u664tgfrzf2tgJIPmk8mfL8oQUv9URGKBFRIvq2FP5QVLv4jsu8bFcyL8+fWQlAybwEYMy85MAeonGhTRe8BIAPnFILAHhpe7N2jDdo/H3frGZOVuQ7B11tUuiy4zPLphjuy+ael4mIoKdFAgoZvCQ6aVTrNjzqSxm8HIyx9elORJSFmrp98KjZQ13ekDaIQk9/IS8yG8VFu0UCnOqQH5vVgpJcO7q8Icgy4LBaML+uMKXzGWrmZb4zdu7OBMOHiIiSSRS87PQEsepABwDg2kW1eG13C/a3KEN7vEEO7CEaT/yhCPrUFhBigOCZU8sAALtO9EKWZUiSBHfAFLxUe1aa1zADmV1tXCONtQBgaZ4D3758Fpw2S8o9yolo7NJna08oyYG3YxRPZozgVSkR0RDtb+0z3G7p9ccd060rGxc9L326YT36LAP9kJz5dYVw2lJbzFbonu+0WVCcYgP4uTVF2tdcSBPRQG5YogzkuHRuFQpzlH1xfRblk+uPal+fN6MCZXkOhKMy9jT3mTIvGbwkGus6Pcp6x26VtM+D6ZX5sFok9PhCaFHb6+g3LgBgi5p5Odh+l4J+6AUw9jIvAeArF07H586dOtqnQUQjSJ95mern3smKwUsioiHa22wcRHGixxi8jEZl08AeY+aluTRbnym5JMWSccDYMynPaUtp2A8ALJhQpGVcXqXrwUlElMjd187Hz29YgF/cuDBh5uWxTqWdxmmTS1CUa8f8OmWDZHtjt6HnpScYQTgSBRFlv2Od3rjsSSDW77IsL1b+7bJbtd6Ue5qVATse03PF/alOGi/KtaNG1zuucBR6XhIRpaowx4alk0owozIfMyo5anwwGLwkIhqifS39Z172+cOIyrHbWvBSvWg3ZzfqB/QsSXFYDwBYLLFgZU6amZN7fnIFDv73cl4EENGA8p023HT6RJTkObSSzV5/CFH1g0/0Ar5xyQQAwMIJavCyqccQvASQMBhCRNmlucePi+57C59+eF3cY9qwngLjwD9R3r23WVkz6Qf2ANDWSZUFqQ++mVqRp33NdQsRjQWSJOGfXzwLr9x2HuxWhuUGY0j/StFoFE899RRuvfVWfPCDH8SXvvQlPPfcc5k6NyKiMUEsxAvVUiVz5mW3L2i4HZd5aQowLqov1r5OddK4WboDdyRJgtWSWsYmEZEIHMgy0KcGIsVnYrWaHSUyL7c19sAbMgYwOLSHKPvtae5FKCLjULsn7rH2PmXNYx4eOKtaKe8WayYxsKfaNKU7nfJJ/bDD/DFYNk5EJydJkgxJJ9S/QQcv586dixdffFG77fF4cMEFF+CjH/0oHn74Ybz77rt46KGHcP311+Pqq69GJBLp59WIiMaHSFTGgTalbHzZjHIASkaCnn7SOBAb2COmjeeaAoxLJ5fg9CmluHphjaGZcyry1Ne8YGZFWs8nIkqHy27V2k6IHpYiG72mSAkwiMzL/a1udHuMmzsc2kOUfWRZxpcf24jbn9oCWZa132lz30ogftK4oAUv1WoVjxq8nFFlLJdMdWAPYMy25MYrEdH4NOjg5Z49e9DT06Pd/u53v4v33nsPP/3pT+F2u9HS0oKenh7ccccdWLFiBe67775hOWEiomxypMODYDgKl92C0yaXAkgQvDQNoYgN7FGCmOaycafNiqe+cBZ+97ElaZ/Xs185B3dcOhO3XzYz7dcgIkqHvu+lPxRBl7qBIzKsqgtdKM93IBKVselol+G5HNpDlH06PUGs2N6Mf29qQltfAM09SoDSF4po7SGEDreyIVGWby4bV4KX+1vdCEei8Kpl4zNNA3fSKRuPyPLABxER0ZiWdtn4E088gU9/+tP4/ve/D5dL+SOTn5+PX/ziF7jyyivx97//PWMnSUSUrUS/yxmVBVpWUXOvOfPSmFkkMi9FyVS6pd39mVFVgK9dPAO5DpZPEdHI0vpe+kLaZk6O3apNHpYkCQvU0vF1hzoNz2XmJVH20WdY7mnuQ3OvT7vtDxuzL0XPywpT5mV9SS5y7FYEw1Ec7ogN+5lclguHrt9bqgN7gPgKFiIiGn/SCl729fWhq6sLV1xxRcLHr7jiChw4cGBIJ0ZENBbsa1FKxmdWFWjTLpt7/Fh9oB1n/ex1rNzVElc2Lnpe9vqVhXseA4xENI4U6Yb2NGsl4y5t8jAALXjpCbLnJVG28+l60+5r6TNUmJhLx9uTlI1bLBJmqiXie5v7tOcVuOyoKVbWT5IElOUZMzYH43PLpmJuTSF+sHx2ys8lIqKxIaXgpVh05uXlITc3FxZL8qdbrdwBI6LxT/RumlWdrwUvW/v8+PQj63Gix4/PP7ohLni5rbEbvmAEDWqvzElluSN70kREw0hfNi6CHOb+vWJojxkzL4myT3zmZUC77QtGEI5Etd/11Qc7AMQHL4FY38tdJ3q0ypV8p00buFOW54Qtjam7JXkOrPjGubj1vGkpP5eIiMaGlP46fPazn0VhYSGKi4vh9/uxadOmhMft2bMHtbW1GTlBIqJstk+dmjmzqgBl+U5YLRKiMhCMRLVjxLTxG5bUoTTPgX0tbnzrn1txoFUJXk6vzI9/YSKiMapQnfbb4wtpk8bF5o6wcEJxwueKjHQzmT3tiEaNaHMDKFmTLbr2OL5QBJ/9vw0482evY40auAQSD86ZVV0IAHh1Zwta+wL/v737Dm+rPPs4/tP03juJHWfvECBkMEMIBEiBFiibhpQOaNIyWkoptKyyW1YZBQqhUHZfKAXCCCFhZkDI3svZtpM43kuWzvuHhqXYTmx5SJa/n+viQjrn6PiW/cQ6vs/93I8sZpPG90/1JS+DWawHANAztHqu4vTp05ts85/+41VZWanXXntN55xzTvsiA4AwV9/g0rb9VZLcyUuL2aSshCjtOWTBnjJP5eWQrARdclyeLv/nIn2waq9v/4AMkpcAIodv2nhNgyo8lZTZhyQvsxKjZDJJ3pxkWpxdB6rqm12wZ8GGYv36tWW6//zRmjY6p3ODB9BEjV/l5YaiCl/vbsldlfn5xn2SpGe/2OLbPq5fapPz+C/aI0kpsTYlRNvUO8WdvMwkeQkAaEGrk5ezZ89u1XE2m03Lli1TcnJysDEBQFhpcLp0zb+/V0qsTbdOG6bkWHc/pm37q9TgMpQQZfVVFWUlRTdJXhYccCc4k2NtGtcvVX/54Ujd/H+rfPsHUHkJIIL4TxsvrnD/Pjw0eWkymRRnt/oW7chKjHYnL5uZNn7V7G8lSTNf/V7TRk/rzNABNMN/2rh/4tK9r7Eq0+m5GZEYbW2h8jJwZXGzpxDmlMEZev6rbTptWGZHhQwAiDBBrzbekqioKPXt21dJSc33MgKA7mbb/ip9uq5Iby3dpZv/b6Vvu7ff5eDsBF8l+qFTIyVp5a4ySfIlPS8+Lk/5fn0u46NYsAdA5EhspudldmLT340xfisEZ3lWGGbBHiD8+C/Ycyj/vt4ulzt72dJ1TXp8lNLjGxfksXoSnEfnpWjFn8/QTybmd0C0AIBI1OHJSwCINHV+VQafb9znqzpo7HfZWDl56KIUktTguZhP9vxBLzWtQgKASOGfvGzseRnT5Li4gOSl+3diBQv2AGGnpr7l5OX2A9W+x1WeKsz46JZvyvpXX1osjdWZ5mYqNQEA8CJ5CQBH4J+8rHW4tHJXqSRpfWG5JHcvSy//ystDqzC9lZeSdNu04eqdHKOHLzqqM0IGgJDxThsvqarXvkr3qsRZSU172cXYGxMcmZ7kZUsL9gAInerDJC93lFT5Hhd5blbEHWZGyZCsRN9jSzPrJwAA0BySlwBwBLWHTJdatNW9mubaPe7k5YjejW0y/BOUvzp1YMDrkmMbKy9H9k7S13+YrPOP6dPh8QJAKCVGu3/XbS6ulGG4p4amxzVNXvpXXnqnlTe3YI+X3cplK9BR9pbVaOYr32vp9pIjHlvjqaj0b3nj5V95WVzhvllxuHY4Q/0rL6m2BAC0EleBAHAEmzy9Lb0WbS3Rwap638I8/hfilX5VQ+eN6aUEvwv4JL9p4wAQqby/67x98rISo5udEtpsz8tDpo17e+hJUqrfzSEA7XP968v1waq9uuDphUc81lt5eXReSpN9/snLhiP0vJQCp41bzfwpCgBoHT4xAOAIVnsqLM8amS1JWrr9oFZ4po73TYtVQnRjUnJ3aY3vcWK0Tcf0bbzQj7Y1/qEOAJEqKTbwRk1LPX5jm+l5WVnXEJCw3F9V53uccJg+egDaZvG2I1dcelV7bkT0TYv1zSLxLrzjf93jdbjk5SC/PuEHq+tbHQMAoGcLKnlpsVj06quvtrj/jTfekMXCH+kAIsPq3e7Vwn94dG+lxtlV43DqjW93SpKG5yQGHHvpuDzF2S365cn9JTUmPAGgp0g8JMnYUvLSbm28Vsz0VF4ahlRZ31jB7l2tXGqs6gLQPobRtn9L3gV7Yu0WnTUyRwlRVh0/IL3F4w/X8zLWr9etd5o5AABHEtQt7CN94DmdTplowAwgAtQ6nNpUXClJGtU7SeP7perD1YX6cHWhpKbJy4GZ8Vp++xmyWdz3hi4am6sDVfVNjgOASBUfZZXFbJLTk2zMSWw+eel/pZgUY1OU1ay6BpfKqh2+vpl7ShuTl4db8RhA6232XNdI0qDM+MMc6eb9txdjt+q+80fprvNG6Mn5m1s8/khV0v6/HwAAaI2gp423lJwsLy/Xxx9/rPT0lu/GAUB34HIZeuCj9XK6DKXG2ZWTFK0J/dMCjhnYzEW/N3EpSWazSTNPHahTh2Z2erwAEA5MJlNA9WVLlZf+l5J2i1m9k2MkSY/M3ei7UV5Y1jgltcZB8hLoCF9t3u973JqKZu+08VhP+xubxRzQ9uFQh6u8lFqXMAUAwF+rk5d33nmnLBaLLBaLTCaTrrjiCt9z//9SUlL08ssv65JLLunMuAGg0726ZIdmf10gSRrRK1Emk6lJ8pI+lgDQlP8CZS0mL/0fm0z60znDZTGb9Pay3br/o/WSpAK/xUDKahwqq255NXIArfO1X/Kyqq7hMEe6eVcb909YxthbTlAeruelJOW08DsBAICWtHra+Lhx4/SrX/1KhmHoqaee0umnn67BgwcHHGMymRQXF6djjz1W559/focHCwBd6cVvCnyPvX+ID8qMV0qsTQc9f0DTIQMAmkr0T162MG38UKcOydQDF4zW795aoWc+36rclFh9uWlfwDFr9pTp+IHM7gFaq7q+QXe/v1ZnjczRyYMz5HC6tGhrid/+I1c0e4+J9ktexh7m5u2RkpfXThqo+Rv2adqonCN+bQAApDYkL8866yydddZZkqSqqipdc801Gj9+fKcFBgChVFxeqy37GntC/XhsriT3NPBx/VL18ZoiSVJGQlRI4gOAcFbncPkeD8lOaPYYczN3fy48to/2lNbo4bkb9dDHG1RW45DFbNL4fqn6ZssBrdlTTvISaIPnvtim15bs1GtLdqrg/mlauatUlX7VllX1DTIM47DrFfgW7PFLWB5u2viRkpfj+qXqu9umKDXW3tq3AQDo4YLqeTl79mwSlwC6pb1lNVq6veSIx32waq8Mw93T8q1rJuqUwRm+fZeN76ucpGhdd9ogFuIBgGZsLK7wPU6ItjV/UAu5kguP7SPJPU1cko7OTdZET8uO1XvKOi5IoAfYdbA64PlXmw5Ikk4d4r6uMYzD95NdsKFYW/dXSQpcKTzGL3k5vl+q7NbGPyuP1PNSktLjo2Q2M30FANA6QSUv582bp4ceeihg2wsvvKC8vDxlZWXphhtukNNJU3UA4eekB+brgqcXavXuwD+ADcNQcXnjqrbvrdgjSbp8fJ6Oy08NOPaUwRlaeMtpuuH0wYetVACAnmpotvvGTr/0uBaP6Zva/L7sxGhF2xovUU8enKGRvZMkSWv2lHdglEDks1kD/9zz9rucMjzL1/qm8jB9L6+a/a3vsX/C0j+RedKgdCX4JSyPtNo4AABtFVTy8o477tCKFSt8z1etWqVf/vKXysjI0KRJk/T444/rr3/9a4cFCQBttbesRg99vF6FZbUB272ravqvtClJD368QePunaf3VuzRzpJqfb+jVGaT6McEAEF49OIxuuCYPnrpp+NaPOYXJ/fXZePzmhxjNpuUn9aY2DxlcIZG9HInQ7fuq1R1/ZEXGAHgZrc0/rlXUevQ9zsOSpJOGpihOE8CsrqudUUn/lPF/SstTxiYrni/hGVrKi8BAGiLoJKX69at09ixY33PX375ZSUmJurLL7/UG2+8oZ///Od66aWXOixIAGirq174Vk/O36Lb/rvKt83hbOzBVnvIFKmnF2yRJP353dV6f+VeSdKE/mnKbOVCEwCARkOyE/S3i45Sbmpsi8fE2C2690ejdLJfWw4vb/IyJdamkb2TlJkYrYyEKLkMad3eiibHA2ie1W9q9ty1RWpwGcpNjVFeWqwvGXm4ykt//snLtLjGfpWj+yQH9Lk8Us9LAADaKqjkZVVVlRITG/u8ffTRRzrzzDMVG+u+QD3uuOO0ffv2jokQANqoqq5BG4rcf9z6r6hZ6lkhXJLW7inXJc8ubLKSba3D5Zsyfs5RvbogWgDAoQZmxkuSThqUIYsn+eKtvlxL30ug1er9btx+4Lk5e6Jn0StvktG7mviHq/bqsucWqbi8VnUNTu04ENgv03/aeG5qrJ77yVi9N+tEWcwmkpcAgE4VVPIyNzdX337r7n+yefNmrV69WmeccYZvf0lJiaKiWIEXQGiM/cunvsf56Y1VP6XV9b7Hn6wt0qKtJbry+SUBr61xOLV2b7msZpPOHJHd+cECAJqYcUK+fnFyf91y9lDfNm/ycvVu+l4CreVfVfmF54btCZ7kZWyUOxlZVd+g0up6/f7/VuqbLQf0waq9euijDTr5ofm+1/7hrKGKsgauMH768CyN6uPuR+vtc2kxmwJ61gIA0BGCui12+eWX66677tLu3bu1Zs0apaSk6LzzzvPtX7p0qQYPHtxhQQJAW/ivmmk1N15Al1TVN3d4s04enKEUvylRAICukxYfpT+ePSxg28henkV79lJ5CbRWlV/y0uF09/0+foAneenpeVlV16CnF2xRRa372L1ltfrnV9t8r7NbzPrlyf0P+3W81ZZxdguLGQIAOlxQyctbb71V9fX1mjNnjvLy8vTiiy8qOTlZkrvqcsGCBbruuus6Mk4ACIp/wvKg37TxIznnKBbqAYBwMsKTvNxYWKn6BtcRjgYgNU4J9xrRK1Gpnpuz3oTj5uJKzf6mwHfMntKagNekxtmPmJD0LtjDlHEAQGcI6tPFarXqnnvu0T333NNkX2pqqgoLC9sdGAB0hIN+yUv/aeP+GpyBfwRPGpKhH4ym3yUAhJPc1BglRFtVUdugzfsqQx0O0C0cuhiPt9+l1LgAz3NfbFV9g0sxNotqHE4VltUqMdqqck8lZmF57RG/TnyUzf3/aJKXAICOR0MSABGtoq7BV6FT0kzycnBWvO/iXJJ+flI/PXvlWNks/HoEgHBiMpkaF+1hxXGgVaoOSV6e4Je89FZJVnmqM397hrvt186D1QHXRjbLkaeBe3texlF5CQDoBEF/utTW1ur//u//9P3336usrEwuV2Dlkslk0vPPP9/uAAGgvUqr65WZGB2w2rhXg8tQWY17e5zdolunDe/q8AAArTSyV5IWbS3R2r0VGktbPeCIquoap43bLWYdl5/qe+7teSlJU0dkadroHP3lg3UqKq/zbR+anaDfnznkiF/Hmwhl2jgAoDME9emyfft2nXrqqSooKFBycrLKysqUmpqq0tJSOZ1OpaenKz4+vqNjBYAjcrmMJtsOVLmTl80t2FNT7/QlL5NibJ0eHwAgeCN6eyov95RrbO8QBwN0A1X1jRWUx/ZNUYy9ccXweM9q42aTdNPUIcpMiJbFbJLTcy2VGmfXR9ef3KqvMyY3WXarWeP7pR75YAAA2iioeZE33XSTysrKtGjRIm3cuFGGYeiNN95QZWWlHnjgAcXExOjjjz/u6FgB4IgcflXgWYlRkhr7Xnp7Xp43ppfOGJ4lyT2dqtyTvEwkeQkAYc27aM+6wgo1c68KwCG808YnD83UH84aGrBvUFaCJOny8X01MDNBFrNJWQlRvv3ehX1a46jcZK264wzNmjyoA6IGACBQUJWXn332mX71q19p3LhxKikpkSQZhqGoqCjddNNNWrduna6//np98MEHHRosAByJ/wq02YnRKiqv8/W69K42ftbIbB2Vm6xP1hap2q/ykuQlAIS3/ulxiraZVV3v1L4jryEC9Gj1DS45nO4s/yMXjVFSbOB1zrRRORqSnaCBGY0z5nKSY7SnzP2Pqy3JS0mKslqOfBAAAEEIqvKyurpa+fn5kqTExESZTCaVlZX59k+cOFFfffVVhwQIAG3hvUiXpKzEaEmNlZfe/yfH2n19nhpchvZXuns7MW0cAMKb1WLW0Gz31PHdVTS9ROSqa3Bq+gtL9OT8zUGfw3+xnriopolFs9mkwVkJMpsb/y3lJEX7HqfHty15CQBAZwkqeZmXl6ddu3ZJkqxWq3r37q1Fixb59q9du1bR0dEtvRwAOo238tJqNikt3j316YA3eempwEyJtSs+yupbPXPrvipJJC8BoDsY6el7uYvkJSLYsh2l+nzjPr34TUHQ56j0JC+jrGZZLa37s88/ednWyksAADpLUNPGJ0+erHfffVe33367JOmqq67Sfffdp4MHD8rlcunll1/WT37ykw4NFABaw5u8tFnMSo1zJyMPVtXL6beqeEqcTRazSbkpsdq6v0ord5VKkhKjSV4CQLjz9r3cWRXiQIBOtOtgjSSpsrbhCEe2rLrevdJ4W1YAz0uN9T1Oi4s6zJEAAHSdoJKXf/jDH/Ttt9+qrq5OUVFR+uMf/6g9e/boP//5jywWiy677DI9/PDDHR0rABxRvdOdvLRbzUqJdVcMlFQ7VF7j8C3ukBzj3p6fHqet+6u0dm+5JCovAaA7GNGrcdq4YbBqDyLTroPVkqQah1NOlyGLue2Vxt7Ky9hmpoy35PiB6b7H/iuTAwAQSkElL/Py8pSXl+d7Hh0drX/+85/65z//2WGBAUAw/Csv0zy9mg5W1fumjMdHWWW3uqdO5afFSWrsk5kUE9SvRABAFxqclSCr2aSqBmlvWa36ZjC1FZFnt6fyUnInIYO5werteRlnb/31Tf/0ON/jOJKXAIAwEVTPSwAIVw5P5WWUX+Xlgap630rjKXGNF//90mMDXstq4wAQ/qJtFg3McCdY1u6tCHE0QOfY5Ze89F94py28r2vLtHGTyaSXrx6nKyf01UXH5Qb1dQEA6Git+iS766672nxik8mkP/3pT21+HQC0h/+0cW+j+YNV9b6Vxr0JTck9bdwf08YBoHsY3itR64sqtXZvuc4a3TvU4QAdbldpte9xZbDJS0/Py9g2JC8l6aRBGTppUEZQXxMAgM7Qqk+yO+64o80nJnkJIBQap42b/HpeNk4bT/ZPXqaRvASA7mh4ToLeXiat2UPlJSKP02Vob2mt73nQyUtf5SXTvwEA3Vurkpcul6uz4wCADuFfeenteVnf4NLuUvf0q9TYxgRlr+QY2S1m32tIXgJA9zA8x71oj3fBNSCSFJXXqsHVuBiVd8VxwzBkMrV+4Z7KIHpeAgAQjuh5CSCi+C/YE2OzKMqzOM+WfVWSAisvLWaT8tIa+17S8xIAuodhOQmSpMLyOh2orAtxNEDH8u93KbkrKJ0uQz/+x0Kd+8RXcvolNg+nut6TvGzjtHEAAMINyUsAEcW7YI/dYpbJZPL1vdxSXClJvude/lPHqbwEgO4hPsqqjGh3AmfNHqovEVl2+/W7lKSKugYt3npA320/qJW7yrS/lQn7qjp3z8s4po0DALo5kpcAIsbOkmrNenWZpMYkpbfv5ZZ9lZ7ngQlK74rjdqtZ0TYu7gGgu+gTR/ISkWlXSWDlZWVtQ0CLhNb2wPRNG6fyEgDQzZG8BBAxpr+wxPd4TG6ypMYkZp1nOrn/tHGpccXxxGiqLgGgO/EmL1fvKQtxJEDHam7aeLVn5XCpsQfmkXinjceTvAQAdHMkLwFEjK37q3yPj+mbIqnpNPFDnw/JcvdNy0qM6uToAAAdqben68fGQlYcR2TZU+ZOXiZ7ZotUHpq8bHXlpfs1sSzYAwDo5vgkAxARvAv1eI3qnSSpabIy+ZBp48f2TdG9PxrlOx4A0D2k2N2Vl8UVLNiDyLLPM6YHZMRr6faDqqxrkNXcuMp4RSsrL6vqvJWXtMUBAHRvVF4CiAibihsrbx6+6Chf/8qUQ6aJH/rcZDLpsvF5GtWH5CUAdCcJnntRZTUO1TU4D38w0I14k5f9PK1tDq28rGpF5WV9g0ubPYsVZiQwuwQA0L0FXXm5bt06zZ49W1u3btXBgwdlGEbAfpPJpHnz5rU7QABoDe+CDRP7p+n8Y/r4tqfGBVZaHpq8BAB0TzFWyWYxyeE0dKCyXr2SY0IdEtBuDqdLB6rqJTUmL6vqGtTgt6hga6aNf7V5n8pqHMpIiNKY3JTOCRYAgC4SVPLy5Zdf1owZM2Sz2TRkyBClpDT9QDw0mQkAnWnNbveCDSN7JwZsP8qzcI9XjJ2pUwAQCcwmKS3OrsLyOu2rqCN5iYhwoNKduLSYTeqT4h7TFbUNcvn9adWa5OV7K/ZKkqaNypHFb8o5AADdUVDJyzvuuENHH320PvzwQ6Wnp3d0TADQZt7KyxG9Aqd/j+6TrBMHpuurzftDERYAoBOlx0f5kpdAJPCO5bQ4uxJj3LNHquobZPLLPx6p52Wtw6lP1hRKks45qlfnBAoAQBcKquflnj179NOf/pTEJYCw4HIZWrvXm7xMbLL/qSuO0blH9dK9PxrV1aEBADpRery7Fcj+SpKXiAz7KmslSZmJUUqIcteZVNY2qKYNPS8/W1+sqnqneifH6Ji85E6LFQCArhJU8nL06NHas2dPR8cS4P7775fJZNL111/v21ZbW6uZM2cqLS1N8fHxuuCCC1RUVBTwuh07dmjatGmKjY1VZmambrrpJjU0tG5FPgDd07YDVaqudyraZlb/jPgm+xOjbXr80qN12fi8EEQHAOgs3oVIqLxEpPCO5Yz4KMV5k5eHLNhzpGnj761w/532g6NyZDIxZRwA0P0Flbx8+OGH9fzzz+ubb77p6HgkSd9++62eeeYZjR49OmD7DTfcoPfee09vvfWWPv/8c+3Zs0fnn3++b7/T6dS0adNUX1+vb775Rv/617/04osv6s9//nOnxAkgPHinjA/LSaSvEwD0IOlx7srLfVReIkL4kpcJUYpvIXl5uGnjFbUOfba+WJJ0zmimjAMAIkNQPS8feOABJSUl6aSTTtLw4cOVl5cniyVwEQyTyaR33323zeeurKzU5Zdfrueee05/+ctffNvLysr0/PPP69VXX9XkyZMlSbNnz9awYcO0aNEiTZgwQZ988onWrl2rTz/9VFlZWRozZozuvvtu3Xzzzbrjjjtkt7PKMBCJfIv1HNLvEgAQ2dI9lZdMG0ekaC55WetwqbzW4Tumss7R7Gsl6dN1RaprcKl/elyzrXQAAOiOgkperly5UiaTSXl5eaqsrNTatWubHBPsFIWZM2dq2rRpmjJlSkDycunSpXI4HJoyZYpv29ChQ5WXl6eFCxdqwoQJWrhwoUaNGqWsrCzfMVOnTtW1116rNWvW6Oijj272a9bV1amurvGit7zcXcXlcDjkcLR8cdAded9PpL0vdJ5wHjOzXluuooo6RVndReRDs+LCMs6eJpzHDMITYwZt5R0rKTHum+fF5bWMHxxWd/k9U1Tu7nmZGmuT3dy4xLh/tWVlbUOL7+OLjfskSVOHZ9I6q526y5hBeGHcoK0ifcx01PsKKnlZUFDQIV/8UK+//rq+//57ffvtt032FRYWym63Kzk5OWB7VlaWCgsLfcf4Jy69+737WnLffffpzjvvbLL9k08+UWxsbFvfRrcwd+7cUIeAbibcxkx1g/Tx2sBfYQe3rtSc4pUhigiHCrcxg/DHmEFbbVu3QpJVBUUHNWfOnFCHg24g3H/PbNxhkWTSzk1r9GnJatnNFtW7AotCikrKWhzv67aaJZlVtnuz5szZ1PkB9wDhPmYQnhg3aKtIHTPV1dUdcp6gkpedYefOnbruuus0d+5cRUdHd+nXvuWWW3TjjTf6npeXlys3N1dnnHGGEhMja7qFw+HQ3Llzdfrpp8tms4U6HHQD4TpmVuwqk75d7HtuNZt01fln+qowETrhOmYQvhgzaCvvmDlr0gn6+5rFqjGsOvvsqaEOC2Gsu/yeeXjDV5KqdcZJE3Rcfooe3vCVtpcE/uFnWKN09tmTmn39s9sXSmUVmjRxrE4dktH5AUew7jJmEF4YN2irSB8z3pnN7dWq5OWOHTskSXl5eQHPj8R7fGssXbpUxcXFOuaYY3zbnE6nvvjiCz3xxBP6+OOPVV9fr9LS0oDqy6KiImVnZ0uSsrOztWTJkoDzelcj9x7TnKioKEVFRTXZbrPZInLwSJH93tA5wm3M7CytDXg+KCtB8TFN/x0jdMJtzCD8MWbQVtnJcZKkqjqnHIZJsfawuS+PMBXuv2e8/VtzUuJks9mUmRjVJHlZWdfQ4ns4WOWenpeZFBvW77M7Cfcxg/DEuEFbReqY6aj31KorvPz8fJlMJtXU1Mhut/ueH4nT6TziMV6nnXaaVq1aFbBtxowZGjp0qG6++Wbl5ubKZrNp3rx5uuCCCyRJGzZs0I4dOzRx4kRJ0sSJE3XPPfeouLhYmZmZktylt4mJiRo+fHirYwEQ/rbtqwp4PpKm9ADQ48RHWRRlNauuwaX9FfXKSyN5ie6rqq5BVZ5VxTM8i1F5/++v1uFSRa1Dv3rle2UlRutPPxiupBibDMPQgap6SVJqLAuVAgAiR6uu8F544QWZTCZfxtT7vCMlJCRo5MiRAdvi4uKUlpbm23711VfrxhtvVGpqqhITE/XrX/9aEydO1IQJEyRJZ5xxhoYPH64rr7xSDz74oAoLC3Xbbbdp5syZzVZWAui+tuwPTF4OJ3kJAD2OyWRSRkKUdh2s0b7KOuWlRWavcvQM3qrLGJtFcXb3YlSZCY3ttJJibCqrcVdW/nf5Hn25ab8kaeGWA3r0kjEanpOougaXJCk1nuQlACBytCp5edVVVx32eVd55JFHZDabdcEFF6iurk5Tp07VU0895dtvsVj0/vvv69prr9XEiRMVFxen6dOn66677gpJvAA6z6GVl335gxUAeiRf8rKiLtShAO3iHcOZiVG+QhH/ysteyTGqcThV3+DSf5bukuTu+b27tEYXP7NQl4xzt+yyW82+5CcAAJEgrOfWLFiwIOB5dHS0nnzyST355JMtvqZv376sNglEOMMwtM2v8nJYTqJOGJgewogAAKGSHu9O7uzzVK2VVNVrc3GljstP6fCZQkBn8iYvM+IbE5ZJMY29wn49eaD+9N/VOtBQrxU7SyVJL109Tv9Zuktvf79bry52r0uQFmdn7AMAIgrL8gLodorK61TjcMpiNmnTPWfpw+tOUpSVCgMA6Im8lWn7PYmfMx/9Qhc9s9A3pRboLrwJeP9qy4kD0mSzmHTOUb101shsxUc31p70SorWxP5peviiMXrskjFKiHLvS4+nXRYAILKEdeUlADRn+wF31WWflBjZLNyDAYCeLMOv8tIwDBV7kpjfbDmgkwdnhDI0oE18lZd+ycsBGfFacfsZirFZZDKZFGdv/PNt6shsX4XleWN665i8FD0+b5Omjsju2sABAOhkJC8BdDt7ymokSb2SYkIcCQAg1NI9iZ59FXUBfS/zUumFjO6luWnjkhTrl7D0r7w885AkZW5qrB768VGdGCEAAKFByRKAbmdPaa0kKSc5+ghHAgAinTfRs7+yThuKKnzbzbT8QzfTXOXlobxTw9Pi7Bqbn9olcQEAEGpBJS9feuklFRQUtLi/oKBAL730UrAxAUCALfsqdcf/1qi43J20bJw2TlUNAPR0GX6VlxsKG5OX9U5XqEICglJU4b7OOVzPygRP5eUZI7JkIUMPAOghgkpezpgxQ998802L+xcvXqwZM2YEHRQA+Lv4mYV68ZsCzXptmST5/jgdmp0QyrAAAGHA1/Oyok67Dtb4ttc3kLxE9+FwurSpqFKSNCAzvsXjLp/QV6cOydC1pwzsqtAAAAi5oHpeGoZx2P1VVVWyWmmnCaBj7K+slyQt2VaiqroGbfRc3A8heQkAPV56gl2SVNfg0ka/aeOl1Y5QhQS02aaiStU1uJQQbVXfw/RrPS4/VbNnjOvCyAAACL1WZxhXrlyp5cuX+55/+eWXamhoaHJcaWmp/vGPf2jw4MEdEiAAHJWbrBU7SyVJFzz9jWocTkVZzcpPiwttYACAkIu1WxUfZVVlXYNW7irzbX9i/mb9buqQEEYGtN7q3e6xO6p3ksxMBwcAIECrk5fvvPOO7rzzTkmSyWTSM888o2eeeabZY5OTk+l5CaDDZPo1rl/vmTI+KCueXk8AAElSerxdlXUNqqxremMd6A5W7i6V5E5eAgCAQK1OXv7iF7/QD37wAxmGoXHjxumuu+7SWWedFXCMyWRSXFycBgwYwLRxAB3G27csOzFahZ5Fe4ZkJYYyJABAGMlIiFLBgeom2w3DkMnEjS6Ev1WequFRfUheAgBwqFZnGHNycpSTkyNJmj9/voYNG6bMzMxOCwwAvLzJyyHZCb7kJYv1AAC8MhKaX535QFX9YVduBsJBfYNL6zwzS0b3Tg5tMAAAhKGgyiNPOeWUjo4DAFpU73QnL/P8GtizWA8AwMs/QRlrtyjGZtGBqnptP1BF8hJhb2NRheobXEqKsSk3NSbU4QAAEHaCntv98ccf6/nnn9fWrVt18ODBJiuQm0wmbdmypd0BAoC38rJXcuMFPZWXAACvDL8EZZTVrCHZCfpmywEV7K/WsX1TQxgZcGSr/Bbroc0BAABNBZW8fOihh/SHP/xBWVlZGjdunEaNGtXRcQGAjzd5OTQnQUOyEpQSZ2txiiAAoOfx/0yItlnUNy1O32w5oO0HqkIYFdA63uTlSBbrAQCgWUElLx977DFNnjxZc+bMkc1m6+iYACCAd9p4nN2qD687SSaTqEwAAPikH1J5mZ/mbjOyrZlFfIBw412sZzSL9QAA0KygkpcHDx7UhRdeSOISQJfwVl7arWaZzSQtAQCB/Csvo6zuyktJVF4i7NU1OLW+sFySe9o4AABoyhzMi8aNG6cNGzZ0dCwA0Cxv5aXdEtSvLABAhPNPXtqsJvVLdycvt+2vatKXHQgnGwsr5XAaSo61qU8Ki/UAANCcoDIBTz31lN5++229+uqrHR0PADThX3kJAMCh0uLtvse1DpfyUt3TxitqG1Ra7QhVWMARrdxdKonFegAAOJygpo1ffPHFamho0JVXXqlrr71Wffr0kcViCTjGZDJpxYoVHRIkgJ7Nm7yMInkJAGhGlLXxOrS8xqEYu0XZidEqLK9VwYEqpcTZD/NqIHTodwkAwJEFlbxMTU1VWlqaBg0a1NHxAEATvmnjJC8BAEdQU++UJPVNi1Vhea22H6jW0XkpIY4KaJ53pXH6XQIA0LKgkpcLFizo4DAAoHlOlyGny92vjJ6XAIAjqXG4k5f5aXFavK1EBSzagzBV63BqQ2GFJGlUn+TQBgMAQBgjEwAgrHmnjEuSjcpLAMARNHhueHkXP9lbWhvKcIAWrS+sUIPLUGqcXb2SokMdDgAAYSuoyssvvviiVcedfPLJwZweAHz8k5dUXgIAWjJlWJY+XVeki8fmSpKSYm2SpIo6FuxBePKfMs5iPQAAtCyo5OWkSZNa9QHrdDqDOT0A+NT5/R6xWbiwBwA075GLj9KCDft02rBMSVJitDt5WV7TEMqwgBat2lUqicV6AAA4kqCSl/Pnz2+yzel0qqCgQM8++6xcLpfuv//+dgcHAKXV7oqZhGgrVQkAgBYlRNt0zlG9/J67L3PLa6m8RHha6VlpfCSL9QAAcFhBJS9POeWUFvddddVVOumkk7RgwQJNnjw56MAAQJJ2HKiW5F41FgCA1kqM8VZekrxE+Kl1OLWpuFISlZcAABxJhzeQM5vNuuSSS/TPf/6zo08NoAfaXuJJXqbGhTgSAEB34ps2Xsu0cYSftXvL5XQZSo+PUnYii/UAAHA4nbL6RUlJiUpLSzvj1AB6mB0HqiRJualUXgIAWi8xxj3BqKLWIcMwQhwN0Gh/ZZ3Of+obSdKo3om0xQEA4AiCmja+Y8eOZreXlpbqiy++0EMPPaSTTjqpXYGhc325eb+27q/R1Sf244IJYW1HCdPGAQBt5628dDgN1TpcirFbQhwR4DZ3bZHv8fED0kMYCQAA3UNQycv8/PwWE16GYWjChAl65pln2hUYOtdP//W9JGl4TqKOH8hFE8LHl5v2KTsxWoOyEiQ1ThvPo/ISANAGsXaLLGaTnC5D5bUOkpcIGyVV9ZKk3skxmnFCfmiDAQCgGwgqefnCCy80SV6aTCalpKRowIABGj58eIcEh863ZV8lyUuEja37KnXl80skSQX3T5PTZWhXSY0kkpcAgLYxmUxKiLaqtNqh8hqHsugriDBR5llE6uxR2bJaOqWLFwAAESWo5OVVV13VwWEgVLbsqwp1CIDPzoM1vsf7KupU73Sp3umS1WxSr+SYEEYGAOiOEqNt7uRlLSuOI3yUVrsrL5Nj7SGOBACA7iGo5KW/tWvXavv27ZKkvn37UnXZzXyxcV+oQwB86htcvscbCitkMbsrvPukxPgeAwDQWt5Fe8prWHEc4cNbeZkUYwtxJAAAdA9BJy/fffdd3XjjjSooKAjY3q9fPz388MM699xz2xsbusDW/VReInx4KxEkaUNRheKj3P3J8tLiQhUSAKAb8y7aQ+UlwklptXs8JseSvAQAoDWCSl7OmTNHF1xwgfr27at7771Xw4YNkyStW7dOzz77rM4//3y9//77OvPMMzs0WHSOWodT0Taa2CP0vJUIkrSntEZRVncfqL70uwQABCEh2lN5WUvlJcIHlZcAALRNUMnLu+++W6NHj9aXX36puLjGiqhzzz1Xs2bN0oknnqg777yT5GUYs1lMcjgNSdKOkmoN9qzsDISSf/KysKxW3nXBWKwHABAMb3KotKr+CEcCXcdXeRlDz0sAAFojqOXtVq5cqenTpwckLr3i4uJ01VVXaeXKle0ODp3H6TJ8j/dX1IUwEqCR92JekvaU1WhHSbUkKS+N5CUAoO3S46MkSQdIXiKMlNZ4F+yh8hIAgNYIqvIyOjpaJSUlLe4vKSlRdHR00EGhcxmG5Je7VGkNfaAQHvzH4t7SWtU4nJKkviQvAQBB8CYv91VyoxbhodbhVK3DvUBhEslLAABaJajKy8mTJ+uxxx7TwoULm+xbvHixHn/8cU2ZMqXdwaFzGIc8P1hNNQLCQ8C08fJa3/PcFJKXAIC2S09wJy+ZZYJw4b22sZhNSogKeu1UAAB6lKA+MR988EFNnDhRJ554osaNG6chQ4ZIkjZs2KAlS5YoMzNTDzzwQIcGio7jOiR76T9VFwilsmYS6enxUYrj4h4AEIT0eHdPwf1UXiJM+C/WY/I29wYAAIcVVOVlv379tHLlSv3mN7/RwYMH9cYbb+iNN97QwYMHdd1112nFihXKz8/v4FDRUZomL6m8RHhoroUBU8YBAMHK8Ewb31/JtQ7Cg7dogJXGAQBovaDLmTIzM/XII4/okUce6ch40AVchzyn8hLhwluNkBJr00HPuGSlcQBAsLw9L8tqHKpvcMluDeq+PdBhvEUDJC8BAGi9oK7gGhoaVF5e3uL+8vJyNTQ0BB0UOtehlZcHSV4iDLhchi95OSwn0bed5CUAIFhJMTZZze6puQeqmDqO0PPOMmGlcQAAWi+o5OVvfvMbHX/88S3uP+GEE/Tb3/426KDQuQ5NXpbVMJUKoVdR2yDDMzYHZyX4tjNtHAAQLLPZpDRv38sKrncQemWeooFkKi8BAGi1oJKXH330kS688MIW91944YWaM2dO0EGhc7FgD8KRt+oy1m5RQnRjRwsqLwEA7ZHu63tJ5SVCr9RTNJAcaw9xJAAAdB9BJS/37Nmj3r17t7i/V69e2r17d9BBoXMdkrtk2jjCgvdiPinGJpfROErzqLwEALSDN3m5j+QlwoD/auMAAKB1gkpepqWlacOGDS3uX7dunRITE1vcj9Bqbtq4YRya0gS6lv/qm3vLan3bvSvFAgAQDCovEU681zv0vAQAoPWCSl6eeeaZeuaZZ7Rs2bIm+77//ns9++yzOuuss9odHDrHoclLh9NQVb0zNMEAHmV+Dex3H6zxbTeZTKEKCQAQAdIT6HmJ8EHlJQAAbWc98iFN3X333froo480btw4nXvuuRoxYoQkafXq1XrvvfeUmZmpu+++u0MDRcfxJi/jo6yqd7pU3+BSaXW94qOCGg5Ahyj1u5ivdbhCHA0AIFJkUHmJMLB1X6Xe/G6Xdnlu0FJ5CQBA6wWVrerVq5e+++47/eEPf9C7776rd955R5KUmJioyy+/XPfee6969erVoYGi43jTQmaTlBJrU1F5nUqrHeqTEtKw0MOVVXsa2MfYdc1ZA/THt1fp2kkDQhwVAKC78/W8rCB5idD52Uvfaeu+Kt/zpBgW7AEAoLWCLrXLycnRv/71LxmGoX379kmSMjIymOLZDXjbW1rMJiXH2H3JSyCU/KeN90uP02u/mBDiiAAAkYCelwgH/olLicpLAADaot3zhE0mkzIzMzsiFnQRpy95afZdOHlXegZCxZtAT6QHFACgA3l7Xu6rrJNhGNxoR1hI5noHAIBWC2rBHnRv3vV6LObGu74HqbxEiJXWsPomAKDj9U6Okd1qVmm1Q3e9v1aGYRz5RUAH8s4u8ceCPQAAtB7Jyx7Iu2CPxeSeNi419hsEQsU3bZweUACADpQQbdM9PxwpSZr9dYH++smGEEeEnmZnSXWTbVYLf4YBANBafGr2QN7kpdlsUnIclZcID2XVjauNAwDQkX48Nld3nzdCkvTk/C164rNNIY4IPcmOZpKXAACg9Uhe9kDe5KXV3Fh5yYI9CDVv31WmjQMAOsOVE/N169nDJEl//WSj/vnl1hBHhJ6C5CUAAO1D8rIHcnn+bzablOJdsIdp4wgx77RxKi8BAJ3l5yf3142nD5Yk/eWDdfr3ou0hjgg9AclLAADaJ+jkZV1dnZ544gmdffbZGj58uIYPH66zzz5bTzzxhGprazsyRnQww3CvsmkxmfxWG6fyEqFT63Cq1uFOq1N5CQDoTL+ePFDXThogSbrr/bWqqmsIcUSIdM31vAQAAK0XVPJy165dGjNmjH7zm99oxYoVysjIUEZGhlasWKHf/OY3GjNmjHbt2tXRsaKD+BbsMZuU5Js2TuUlQsdbdWkxmxQfZQ1xNACASGYymfT7qUMUZ7eovsGl4oq6UIeECNXgdMnlMnyVlz86urck6Zen9A9lWAAAdDtBZQlmzpyp7du3680339SFF14YsO+tt97S9OnTNXPmTL377rsdEiQ6ln/yMiXOO22cykuEjv+UcZPJFOJoAACRzmQyKTXerqqSGpVU1alfelyoQ0KEcThdmvrIF0qMsWn3wRpJ0k1Th+j6KYOUmxIb4ugAAOhegkpezps3TzfccEOTxKUk/fjHP9b333+vv//97+0ODp3D2/PS4r9gT41DhmGQOEJIeJPnyfS7BAB0kdS4KO0sqdGBSmafoONtKqrU1v1Vvud2q1nZidEym7nWBgCgrYKaNp6QkKDMzMwW92dnZyshISHooNC5vJWXZr+el06XoQp6PiFEvG0LEkleAgC6SHqc+wbugSqSl+h4h9YD5KbEkLgEACBIQSUvZ8yYoRdffFHV1U2bT1dWVmr27Nm6+uqr2x0cOof/tPFom0XRNvcwKGPqOELEO22cxXoAAF0l1ZO8LCF5iU5Q63AGPM9LZao4AADBCmra+JgxY/TBBx9o6NChmj59ugYOHChJ2rRpk1566SWlpqZq9OjRevvttwNed/7557c/YrSb/7RxSUqLi9Lu0hoVV9QqlwsrhIAveUnlJQCgi6TFR0mS9leyYA86XnU9yUsAADpKUMnLSy65xPf4nnvuabJ/165duvTSS2UYhm+byWSS0+lsciy6nvfHYvHMZxmQGa/dpTXaUFipY/umhjAy9FTenpdJJC8BAF0kjcpLdKKqQ9oxUSAAAEDwgkpezp8/v6PjQBfynzYuScOyE/TFxn1aX1gewqjQk1XUupOX9LwEAHQVpo2jM1F5CQBAxwkqeXnKKad0dBzoQt5p496m4UNz3IsrrS+sCFFE6OmqPBf4sfagfiUBANBmafHu5OXestoQR4JIVHlI5WVeGslLAACCFdSCPejevJWXVm/yMjtRkrR+b3nAVH+gq9T4kpeWEEcCAOgphuUkymYxaXNxpb7ZvD/U4SDCVNcfMm08heQlAADBalWZ06mnniqz2ayPP/5YVqtVkydPPuJrTCaT5s2b1+4A0fG8yUuzt+dlRrysZpPKaxu0t6xWvZJjQhgdeqIqzwV+DMlLAEAXyUqM1qXj8vTSwu164OMN+u+ANB2oqtejn27UVcfna2BmQqhDRDdWVRc4bTwuitklAAAEq1WVl4ZhyOVy+Z67XC4ZhnHY//yPR3hp7Hnp/r/datbAzHhJou8lQsLbFyqOaeMAgC40a/JAxdgsWrGzVJ+sLdLVL36rfy/aoVmvLgt1aOjmDq28BAAAwWtVpmDBggWHfY7uxTsx3LtgjyQNyU7Q+sIKrdtboclDs0ITGHospo0DAEIhMyFaV5/YT0/M36yHPt6gzcWVkugDjvar8luwJysxKoSRAADQ/bW552VNTY1uvPFGvffee50RD7pAY+Vl44/f1/eSi3WEANPGAQCh8vOT+yspxuZLXEpSHJ9HaKeKWve1TXZitP7v2uNDHA0AAN1bm5OXMTExeuaZZ1RUVNQZ8aAL+JKXjYWXjSuO72XaOLpeDdPGAQAhkhRj068mDQjYVlXvVGl1fYgiQiTwjp/fnzlEfVisBwCAdglqtfFjjz1Wq1ev7uhY0EV8C/b4TRsf5qm83Lq/SrUOZ3MvAzqNt+cllZcAgFCYfny+shOjA7ZtP1AdomgQCcpqHJKk5FhbiCMBAKD7Cyp5+eijj+r111/XP//5TzU00Iy6u/EupWQxNSYvsxKjlBxrk9NlBEybArqCt6k9PS8BAKEQbbPo3z8br8cuGaNx+amSpIIDVSGOCt1ZabU7eZkUYw9xJAAAdH+tTl5+8cUX2rdvnyRp+vTpMpvN+uUvf6nExEQNGjRIo0ePDvjvqKOO6rSg0T6Gp/LS6jdv3GQyaWi2Z+o4fS/RhRxOlxxO96AkeQkACJWBmfE6b0xv5ae7p/gW7KfyEsHzThtPiqHyEgCA9mp1g7lTTz1V//73v3XppZcqLS1N6enpGjJkSGfGhk7i9E4b96u8lNyL9izaWkLfS3Spar/VOGPpeQkACLG+aXGSpO1UXiJITpehcs+CPUwbBwCg/VqdKTAMQ4anZG/BggWdFQ+6gGG4k5YWc2DyclgOlZfoet4p41azSXZrUJ0sAADoMPme5CXTxhGsck+/S4nKSwAAOgJlTj2Qt+floZWXQzyL9qwvLNfnG/fp3WW7dWx+iqYMy1LWIU3sgY7CYj0AgHDinTbOgj0IVqkneRkfZZXNwo1ZAADaq02fpqZDkl3onryrjVsPqbwcnBUvk0naX1mv3765XG8v261b31mtkx+cr4L9VB+gc9R4kpdxTBkHAIQB77TxA1X1Kq91HOFooCn6XQIA0LHalLy84oorZLFYWvWf1UoiIlx5k5eHThuPtVuVleCusNxfWe/ZZlFdg0vbSF6ik1TVsdI4ACB8xEdZlR4fJUnazqI9CIK38pJ+lwAAdIw2ZRinTJmiwYMHd1Ys6CK+aePmppW0mYlRKiyvleS+eB+QEacVu8rk9GY8gQ5W7WDaOAAgvOSnxWp/ZZ0KDlRpVJ+kUIeDbqasmuQlAAAdqU3Jy+nTp+uyyy7rrFjQRQxv5WUzbQAyE6J8j93TyN3HNJC8RAcxDCOgBcV3BSWSRF9VAEDY6JsWp++2H2TFcQTFO208OcYe4kgAAIgMdJDugVqaNi5JGQmNCaQh2Ym+BKfLIHmJ9iuuqNW4e+fp0mcXaXNxpWrqnXp18Q5J0kVjc0McHQAAbv08i/YUsGgPguCdNp5E5SUAAB2CxpQ90OGTl42Vl0Oy4rWjxF1x4F0RGmiPZTtKta+iTvsq6nT2Y18qPd6ug9UO9UmJ0enDs0IdHgAAkhoX7WHBQgSj1DttnAV7AADoEFRe9kDenpfNJS/9p40PyU7UwIx4SdK6veVdERoi3L6KOkmS3WJWvdOlPWXu/qpXHZ/f7HgEACAU8r3JSyovEYQyFuwBAKBDtbry0uVyHfkgdAveyktzMz0vE6Ibh8SQ7ATtLauRFm7Xip2lXRQdIpk3eXnBsX10dF6ybv6/lYqPsuqi45gyDgAIH3lp7mnj+yvrVFnXoPgoJiuh9eh5CQBAx+JKrAfytq+0NlPplpMU43ucGmfXUbnJkqTVe8rkcLpks1Csi+Dtq3QnLzMTonTR2FwNyoxXXJRVidFUJgAAwkdSjE2pcXaVVNVr+4EqjejFiuNoPXpeAgDQsUhe9kBOb+VlM8nL4/JTdOe5IzQ4K0GS1C8tTglRVlXUNWhjUQUX72gXb+Wlt7fq0XkpoQwHAIAW5afFepKX1Vz/oE3K6HkJAECHooyuB/KuG25ppsWgyWTS9OPzNXFAmiR3gnN0rvuCfcXOsi6KEJHq0OQlAADhqrHvJYv2oG1KfT0vmTYOAEBHIHnZAx1utfHmHNUnWZK0cldp5wSEHoPkJQCgu2DFcQTD5TIae14ybRwAgA5B8rIHakxetu7HP9qTvFzOoj1oB8MwfD0vM+JJXgIAwlt+unvRHlYcR1tU1jf4rrWTmDYOAECHIHnZA3nXjW/t2jtjPIv2bCyqUGVdQ6fEhMhXXtug+gb36KPyEgAQ7ryVl9uZNo428Pa7jLaZFW2zhDgaAAAiA8nLHsh7N9hsat208eykaOWlxsplSN9s3t+JkSGSeaeMJ0ZbuZgHAIS9/DR35WVReZ2q67l5i9Yp9S3WQ79LAAA6CsnLHshoY89LSZo0JEOStGDjvs4ICT0A/S4BAN1Jcqzd17NwRwlTx9E6pTX0uwQAoKORvOyBGqeNtz15+fmGfTK82U+gDYoraiWRvAQAdB8s2oO22nWwRhLXOwAAdCSSlz2Qy3AnLduSvJzYP112q1m7S2u0ubiys0JDBGusvIwOcSQAALSOd+o4i/agtdbsKZMkDe+VGOJIAACIHCQveyDfauOt7HkpSTF2i8b3S5UkLdjA1HG0HSuNAwC6GxbtQVut3VMuSRqeQ/ISAICOQvKyB/It2NOGyktJmjQkU5K0YGNxR4eEHoCelwCA7sZXebmfykscmdNlaH1hhSRpBJWXAAB0GJKXPZC3Y6W1zclLd9/Lb7cdVFUdq26ibQrL3D0vM0leAgC6ifx0Ki/RegUHqlRd71S0zax+6fGhDgcAgIhB8rIHcgZZedk/PU69k2NU73Rpxc7Sjg8MEW3nQXfVSp6nigUAgHCX75k2vqesVrUOZ4ijQbjzThkfmp3Ypt7yAADg8Ehe9kBGED0vJclkMmlgpvsu8o4Spk+h9RqcLu0pdVde5qaQvAQAdA8psTYlRFslce2DI1u719PvkinjAAB0KJKXPZBvwZ4g7gjnpsZIaqyiA1pjb1mtnC5DdquZaeMAgG7DZDL5qi8L9jN1HIfnrbyk3yUAAB2L5GUP5PL8P6jkpadqbmdJTQdGhEjnrVbpkxLT5nYFAACEUl9Pu5PtB7hxi8Nbw0rjAAB0CpKXPVD7Ki89yUsqL9EGOz3Jy7xUpowDALqXfp5FewpYtAeHUVxRq/2VdTKb3D0vAQBAxyF52QN5k5fmNva8lKi8RHC8lZf0uwQAdDd9PdPGX1m8Q19v3h/iaBCuvFWX/TPiFWO3hDgaAAAiS1glL++77z4dd9xxSkhIUGZmpn74wx9qw4YNAcfU1tZq5syZSktLU3x8vC644AIVFRUFHLNjxw5NmzZNsbGxyszM1E033aSGhoaufCthzZO7bFfPy/2VdaqpZ9VNtM7Og+5kN5WXAIDuJj+t8bPr8n8uDmEkCGevLNouSTqqT3JoAwEAIAKFVfLy888/18yZM7Vo0SLNnTtXDodDZ5xxhqqqGqfp3HDDDXrvvff01ltv6fPPP9eePXt0/vnn+/Y7nU5NmzZN9fX1+uabb/Svf/1LL774ov785z+H4i2FJW/lpTWI5GVSjE0JUe5VN3cxdRytYBiG3luxR1Jj8hsAgO7CW3kJtGT++mJ9uq5YVrNJ104aEOpwAACIONZQB+Dvo48+Cnj+4osvKjMzU0uXLtXJJ5+ssrIyPf/883r11Vc1efJkSdLs2bM1bNgwLVq0SBMmTNAnn3yitWvX6tNPP1VWVpbGjBmju+++WzfffLPuuOMO2e32ULy1sNKeaeMmk0l9UmO1bm+5dh6s1qCshA6ODpHm+x0HfY9zqbwEAHQz6fGB145l1Q4lxdpCFA3CTV2DU3e+t0aS9NMT+2lgZnyIIwIAIPKEVfLyUGVlZZKk1NRUSdLSpUvlcDg0ZcoU3zFDhw5VXl6eFi5cqAkTJmjhwoUaNWqUsrKyfMdMnTpV1157rdasWaOjjz66ydepq6tTXV2d73l5ubtnjcPhkMPh6JT3FioOh8OXvDRcDUG9vz7J0Vq3t1wF+yrlGJDawREi3HjHSLD/FtbsLvU97pNkj7h/U2iqvWMGPQ9jBm0VyjGzsbBUY3KTJUnvr9wrp8vQeWN6dXkcaJvOGjPPfbFNBQeqlRFv1zUn5fN7LILw2YRgMG7QVpE+ZjrqfYVt8tLlcun666/XCSecoJEjR0qSCgsLZbfblZycHHBsVlaWCgsLfcf4Jy69+737mnPffffpzjvvbLL9k08+UWxs5FWKueRuIv7Vl19qcxBvz1FqlmTWF9+vVVrJ6o4NDmFr7ty5Qb3uwy3u8TIqxaUFn37SsUEhrAU7ZtBzMWbQVl03Zhovmd/9bKH2ZBgqqpHuXe7eXrd9ueIpxuwWOnLMlNZJjy+3SDJpanaNvvyM65xIxGcTgsG4QVtF6pipru6YdoNhm7ycOXOmVq9era+++qrTv9Ytt9yiG2+80fe8vLxcubm5OuOMM5SYmNjpX78rORwO/WHJZ5Kkyaeeovwg+jgdWLRDCz5YL1tyts4+e0wHR4hw43A4NHfuXJ1++umy2dr2l5lhGLr3oS8k1en6c8bq5EHpnRMkwkp7xgx6JsYM2qqrx8wDa7/QnrJaSVJM9gCdPXWw7vpgvaQdkqRBxxyvoz3VmAhPHTVmymocqqxrUO/kGN3w5krVuwp1TF6y/vyT42QKoiUTwhefTQgG4wZtFeljxjuzub3CMnk5a9Ysvf/++/riiy/Up08f3/bs7GzV19ertLQ0oPqyqKhI2dnZvmOWLFkScD7vauTeYw4VFRWlqKioJtttNltEDh6nZ9p4lM0e1PvrleJOeM5dV6y/zNmgW84epmibpSNDRBgK5t/D6t1lKqqoU4zNohMGZcrGOOlRIvV3KDoPYwZt1VVj5o1fTtT5T3+jfRV1WlxwUHUuk95Ztse3f3dZneat36wxuck6a1ROp8eD4AUzZhqcLlnMJhWW1+q8J75Rea1Dj11ytN5fVSiTSbrrvJH01Y9gfDYhGIwbtFWkjpmOek9htdq4YRiaNWuW3nnnHX322Wfq169fwP5jjz1WNptN8+bN823bsGGDduzYoYkTJ0qSJk6cqFWrVqm4uNh3zNy5c5WYmKjhw4d3zRsJc4Z3wZ4gf/pxUY0JqH8t3K4Xvylof1CISPPXu/8dnjAwnQQ3AKDbyk2N1fu/PlGStGp3mV74apsq6xp8+2d/XaBnvtiqa1/5PlQhopPsq6jTMXfP1cxXv9c1Ly9VcUWdah0u/fLlpZKkS47L08jeSSGOEgCAyBZWlZczZ87Uq6++qnfffVcJCQm+HpVJSUmKiYlRUlKSrr76at14441KTU1VYmKifv3rX2vixImaMGGCJOmMM87Q8OHDdeWVV+rBBx9UYWGhbrvtNs2cObPZ6sqeyOX5v8Uc3NSWWHtgEqpgf1U7I0KkmudJXp42LDPEkQAA0D5ZidEalBmvTcWVenjuRklSQpRVFXUNWl9Y4Tuusq5B8VFhdYmNdli1u1TltQ2as6pp7/ykGJtumjokBFEBANCzhFXl5dNPP62ysjJNmjRJOTk5vv/eeOMN3zGPPPKIfvCDH+iCCy7QySefrOzsbL399tu+/RaLRe+//74sFosmTpyoK664Qj/5yU901113heIthSXvauPBJi9jbIEX5MGeB5Ftf2WdVuwqlSSdOoTkJQCg+zthYGPv5ji7RVedkC9Jqm9w+bZzUzeyuBp/tDKbpOTYxulvvz1jsFLjmC4OAEBnC6vbwoZ3PvNhREdH68knn9STTz7Z4jF9+/bVnDlzOjK0iGEYhgy5k42WIJuKH1p5WVxR1+64EHkWbNgnw5BG9EpUdlJ0qMMBAKDdfnZSPy3YUKyCA9W6fEJfTR2Rrb9/tjngmIIDVUwjjiAOZ2P28pGLx+jP767xPb9sXF4oQgIAoMcJq8pLdD6nqzFB3FHTxveU1rQrJkQmb7/L04ZSdQkAiAx9UmL10fUn6z/XTNTNZw7VyN5JOmFgWsAxG/ymkKP7q/ckL48fkKbzxvRWWY3Dt89q4U8pAAC6Ap+4PYzTr7jVHOy0cZKXaIWvt+yXJE0ieQkAiCDRNovG5qf6bgL/4uQBAfu/LSgJRVjoJA7PxbPd6v6z6d4fjZLVbNILV40NZVgAAPQoYTVtHJ3PJOmoVJcys7JlD/Jucaw9cNgcrHao1uFkNWn41DqcKq12VyYMyIgPcTQAAHSekwela1hOotbtLZckLdtRqroGp6KsXBdFAm8/U5vnuvmy8Xm68Ng+vmQmAADofHzq9jB2q1k/HeLSU5eNCTrZ2Nx084PV9e0NDRHEm7i0mE1KjOYeCQAgcplMJr11zUR9+ftTlR5vV12DS6t2lYU6LHQQb89L/5v+JC4BAOhafPIiKNNG5WhQZrySYtwrLh6oJHmJRiVV7vGQEmuTKciFoQAA6C7io6zKTY3VcfmpkqTF25g6Himq652SxAwjAABCiOQlgvLEZUfrkxtOVq/kGEnSgSqSl2jkrcRNibWHOBIAALrOuH7u5OXCLQdCHAk6SnmtezZJYgwzSQAACBWSlwiKyWSSyWRSerw7OXWgsi7EESGc+Cov40heAgB6jpMGZUiSFm874Et6oXsr96wunhhtC3EkAAD0XCQv0S6pnuRUCZWX8FPqqbxMpfISANCDDMyMV/+MODmchj7fsC/U4aADVNQ2SJIS6OENAEDIkLxEu3iTl/vpeQk/JVXuKgUqLwEAPc0Zw7MlSXPXFoU4EnSExmnjVF4CABAqJC/RLunxUZKkkiqmjaORt+dlahwX+gCAnuX04VmSpPkbiuV0GSGOBu3lrbxMpPISAICQIXmJdvFWXrLaOPw1rjZO5SUAoGc5OjdZcXaLKmobtHVfZajDQTvR8xIAgNAjeYl2SfMmL+l5CT+sNg4A6KnMZpOG90qUJK3eUxbiaNBejT0vSV4CABAqJC/RLmne1caZNg4/3srLVHpeAgB6oBG9kiRJq3eX69uCEt03Z53qG1whjgrBaOx5ybRxAABChU9htIu35+W+ijoZhqGFWw+ovsGlSUMyQxwZulpxRa0WbNin88b0Umk1C/YAAHqukb3dycvlO0v1/FfbJLlXIv/x2NxQhoU2cjhdqq53SmLaOAAAoUTyEu3SKzlGFrNJtQ6Xdh2s0WXPLZYkLb1titI8iU30DI/M3ajXluzUgx+t960+n8q0cQBADzSyt3va+NLtB33b9pTWhiocBKnSM2VckuJZsAcAgJBh2jjaxWYxq3dyjCTp03VFvu07SqpDFRJC5D9Ld0mSL3EpSSmsNg4A6IEGZsQ32VZUQfKyu/FOGY+1W2Sz8GcTAAChwqcw2q1vWqwk6c731vq2kbzseQZlJgQ8N5mk+CiqFAAAPY+1mUTXroM1IYgE7dG4WA/XMwAAhBLJS7TbgGaqC7YfIHnZ0xy6aJNhSCaTKUTRAAAQWpOGZEiSb4bKLm7sdjvlNZ7Feuh3CQBASJG8RLsNz0lsso3kZc9iGIZvhXEAACA9dvHRuvuHIzV7xnGSpF2lNXK5jBBHhbYop/ISAICwQPIS7fbDo3vrpyf0C9i2o6QqRNEgFCrqGuRw8gcZAABeSbE2XTmhr/qlx8lskuobXNpfWXfkFyJseHteJsZQeQkAQCiRvES72a1m/fmc4frnT8Yq2uYeUlRe9iwHPIv0xNktSmeVeQAAfGwWs3KS3FPHd9L3sltp7HlJ8hIAgFAieYkOM2V4lhbdcpokqbiiTtX1DSGOCF2lxNPvMjXericvO1oJUVY9eMHoEEcFAEB46JPi6Xt5kJu73Uljz0umjQMAEEokL9GhkmPtSvJMrWHF8Z7DW3mZFhel8f3TtOL2M3TRcbkhjgoAgPDQJyVWknvF8eLyWj08d6P+9skGOemBGda808apvAQAILS4jYgO1zctVit3lWn7gWoNzW66mA8iz4Eqb/LSLkkym1llHAAAL2/l5UMfb9Bjn25SvdMlSYq2WTTz1IGhDA2H4Z02nhjDn0wAAIQSlZfocHmp7uqCHfS97DG8K42nepKXAACgkTd5KUn1TpcGZcZLkh6Zu1GrdpWFKiwcQWm1d9o4lZcAAIQSyUt0uL5p7uTldlYc7zF808ZZrAcAgCZyPTd2Jemq4/P1yQ0n66yR2WpwGbrujWWqqXeGMDq0pLiiVpKUlRgd4kgAAOjZSF6iw/VNjZPEiuM9yQHPgj1pVF4CANCEf+VlZmKUTCaT7v3RKGUmRGnrvio9vWBzCKNDS/aWuZOXOUkkLwEACCWSl+hwed7KS5KXPYZ32nhaPMlLAAAOle1XueetskyJs+uWs4dKkuasLgxJXGhZfYNL+yvdN2ezSV4CABBSJC/R4fLT3JWXu0tr5PA0pEdk804bp+clAABNWS2Nl9zePoqSNHlolixmkzYXV2pnCTd9w0lxRa0MQ7JbzMwsAQAgxEheosNlJkQpymqW02VoT2mNDMOQ02WEOix0IJfL0N8+2aD5G4ol+U8bp+clAADNObZviiTph0f39m1LirFprGf7819tC0lcCLShsEJ3v79Wa/eUS3JXXZpMphBHBQBAz2YNdQCIPGazSXmpsdpUXKntB6p1039Wan9FnT68/iRFWS2hDg8d4JO1Rfr7Z+7+XNvuO5tp4wAAHMErPxuvwrJa5afHBWyfcUI/Ld5Wohe/KVC/9DhNPz4/NAFCkjT10S8kSW9+u1MSU8YBAAgHVF6iU3hXHP9u+0Et2VairfurtKWY1ccjxT7P6puSVFReJ4fTXVnLtHEAAJoXbbM0SVxK0pkjs3XT1CGSpDvfW6NP1tD/MhxU1DVIknJTYo9wJAAA6GwkL9Ep8jwrjvtfgG8/QPIyUniTlZL0bUGJJCk+yqpoG5W1AAC01a8mDdCl43LlMqTfvL5My3eWhjqkHsm7mJJXenyUrjmlf4iiAQAAXiQv0Sm8lZfrCyt82wpYfTxi7POsvik1Ji+pugQAIDgmk0l3nzdSpwzOUK3Dpatf/FY7uG7qcpuKG69b+2fE6Z1fHa9BWQkhjAgAAEgkL9FJ8tKaTrHZUeKuvFy5q1STHpqv615fpm37qcbsjvZXNCYvX1q4XZLUOzkmVOEAANDtWS1mPXn5MRrRK1EHqup11ewl2lBYoe88NwnR+Tb43XT/36wTlZvKlHEAAMIByUt0ivy0pj2dCva7Kwie+GyzCg5U693le3TNy0u7OjR0AP/KS0nKSIjSLWcPDVE0AABEhvgoq1646jj1To7R1v1VmvroF7rwHwv1/Y6DoQ6tR9hY5E5eXnV8vuKjWNcUAIBwQfISnaK5KrwdJdU6UFmnz9YX+7ZtL6mSYRhNjkV42+epvBzfL1UXj83VB78+UaP7JIc2KAAAIkBWYrRmzzhOCdGNybMvN+4PYUQ9h7fd0ZBspooDABBOSF6iU9itTYfWnrIafbi6UA0uQ/09q23WOlyqOqQ5OsLffk/l5Z9+MFwPXDhamYnRIY4IAIDIMTgrQc9ceazvuSFu9HY2wzC0dk+5JJKXAACEG5KX6DTRtsbhlZ8WK8OQbvvvaknS8QPTFGt3r0zt3z8R4c/lMrS/sl6Se7o4AADoeMcPSNdRfZIkuT970bk2F1fqQFW9om1mjeyVFOpwAACAH5KX6DSPX3K0JOmGKYM189SBAfsGZyX4El/7K0ledidlNQ45PX9EscI4AACd5/ThWZKkvWW1IY4kMrlchhqcLknSoq0HJEnH9k1pdgYRAAAIHTpRo9OcMSJb3/xhsjITolR0SHXlwMx4pcdHafuBal//RHQPZTUOSVKc3SKbhYt7AAA6S5anLUthOcnLznDJc4tUWFarT244WYu2uld1n9AvLcRRAQCAQ5G8RKfq5Vm4p1dStGLtFlV7+lsOzkpQery7ao/Ky+7Fm7xMirGFOBIAACJbdpI7eVlE8rLD1Te4tGSbO2E59E8f+baP70/yEgCAcEPZFLqEyWRSrL0xV54WZ1d6vHva+D5P/0R0D97kZSLJSwAAOlWOJ3nJtPGOV1rd9PozymrWUbn0uwQAINxQeYkuMyAjzldlaTKZfMlLKi+7FyovAQDoGt5p4xW1Daqubwi4EYz2OVjt8D1+9efj9d9luzU2P1VRVksIowIAAM3hCghd5qELj9KvXl2qa04ZIElK9y7YQ8/LboXkJQAAXSMh2qY4u0VV9U4VltWqf0Z8qEOKGAc9lZf9M+J0/IB0HT8gPcQRAQCAlpC8RJfJS4vV+78+yfc8g56X3RLJSwAAuk52UrS27KsiednBvNPGU2LtIY4EAAAcCT0vETKN08bpeRlOXC5Dj8/bpC837Wt2fznJSwAAuox30Z7C8lot2FCspxdsUYPTFeKouj/vtPGUWK5nAAAId1ReImToeRmePllbpIfnbpQkFdw/rcn+0mqSlwAAdBVv38u9ZbW68c0VkiSTSb42PGi9XVXSAx9v1KbiKn2+0X2TlspLAADCH8lLhIy352V1vZMm9GFk18Fq32PDMAL2bSqq0Bvf7ZQkJVGpAABAp8v2JC+/3rzft+2Fr7bplyf3l8lkClVYYe1gVb2qHU71To7xbXO5DD27zqIyR4Fvm8Vs0qQhmSGIEAAAtAXZIoRMnN2iaJtZtQ6X9lfUKy+N4RgOrObGP4Sq6p2yGC65PDnMV5fs8O1LplIBAIBOl+OZNv7NlgO+bcUVdVqxq0xvfbdTM07I18DMhFCFF5aueH6x1uwp14LfTVJ+epwkac3ecpU5TIqzW/THacM0NDtBg7ISlBjNzVgAAMIdPS8RMiaTyTd1fB9Tx8NGXUNjH63Vu8s09r75+vdm96+KRVtLfPtOGZTR5bEBANDTeKeNH+riZxbqlcU7NOXhL7o4ovDmchlas6dckvTSwu2+7Qs2uitXTxiYpsvH99WxfVNJXAIA0E2QvERI0fcy/Hgb2EvSeyv2qKrOqaX7zfrH51u1bq/7j4Fvb53CtHEAALqAd8EerxG9EiUF3mw8wHWUT2V9g+/xgg3FcroM3fG/NXr8sy2SpEmD00MVGgAACBLJS4RURgLJy3BTWt24+vtCvylqf/t0syRpUGa87+cGAAA616HJy+YW6vlwdWFXhRP2yvxuwm7dX6XH523Si98U+LadPIjkJQAA3Q3JS4SUb9p4BcnLcFF6yEX/oSYOSOvKcAAA6NHS4xpvGNqtZp06NFPJsTaZTNKPj+0jSfpg5d5QhRd2ymocAc8fm7fJ93hAgtHiNHwAABC+WCEFIZUR7170hcrL8HHQr/KyORP6k7wEAKCrmP0W0kuMtio+yqr3Zp0ok0kyDOmtpbu0eNsBFVfUKjOBxFy5J3k5KDNeg7MTfIndnKRoXT2oMpShAQCAIFF5iZBK904br6jX/so6zXz1ez21YHOIo+rZ/CsvvZJshu8xyUsAAEIjwbPATG5qrPqkxCo3NVZH5SbLZUgfM3VcUmPlZVKMTff+cJR6J8dIkn40ppfiaNcNAEC3RPISIeWdNr5tf5Uuf26xPli5Vw9+tEFzVjH9KRQcTpd2lFRLkk4bmunbPjHLUJTVrAn9U5UaZw9VeAAA9EiXHJcrSbr5zCFN9p0zOkeS9B5TxyVJi7a6+3UnxdiUFGvTC1cdp6uOz9eVE3JDHBkAAAgWyUuElDd5uaGoQhuKKmSzuKdG/fGdVSosqw1laD3Syl1lqnE4lRxr089P7u/bnhdvaN4NJ+qf048LYXQAAPRMd/9wpOb99hRNHZHdZN9Zo9zJy28LSlRUzrXTyt1lkqTEGHeZ5ZDsBN1x7gjfNScAAOh+SF4ipNLj7X6Po/T+r0/S6D5JKq126HdvrZDLZRzm1ehoi7e5qxXG5adqbN8UpcS6L/yT7e4G9/FRtMkFAKCr2SxmDciIl8lkarKvd3KMjslLlmFIH/bwmSu1DqfW7CmXJF0xIS/E0QAAgI5C8hIh1Ss5RhkJUcpMiNLrvxivIdkJeuTiMYq2mfXV5v2a/U1BqEPsURZvLZEkje+fJqvFrGeuHKu7zh2m3nEhDgwAALRo2uhekqQPenjy8tuCEtU3uJSdGK1j8lJCHQ4AAOggJC8RUtE2i+b/bpI+v+lUDcxMkCQNyIjXrdOGS5Ie+Gi9iiuYAtUVGpwufVfgSV72S5UkjeuXqkuPo0cUAADhbJpv6vhB7S2r8W2fv764R/UR/2rzfknSCQPTm61SBQAA3RPJS4RcfJRVMXZLwLYrxudpQEac6htcWrO7PESR9Sxr9pSrqt6pxGirhuUkhjocAADQStlJ0Rrb111p+PmGfZKkuganZrz4rX71yvcqq3aEMrwu89Umd/LypEHpIY4EAAB0JJKXCEsmk0mDPJWYBQeqQhxNz+BdnXNcv1RZzFQrAADQnRydlyxJWl9YIUnaW9o4c2WPXzVmpCqpqvf1uzxhIMlLAAAiCclLhK2+6bGSpO0HqkMcSc+weJt3ynhaiCMBAABtNSTbPWti3V53Am9PaWPC8tkvtoYkpq70tWfK+NDsBGUksLI4AACRhKWDEbby09yrxLz+7Q4t21mq/ulx6pcepx8d3Vu5qbEhji6yOF2GvvUmL/unhjgaAADQVkOz3TNWNhRVyDAM7fJLXr67fLdmTR6oARnxoQqv03mnjJ9I1SUAABGHykuErYn905QQbVWtw6UVO0v1zrLdenjuRt3y9qpQhxZx1u0tV0Vdg+KjrBpOv0sAALqdgZnxMpuk0mqHiivqtPtgY/LSZUhPfLY5hNF1LsMwGhfrod8lAAARh+QlwlZ+epy+vXWKPrr+JD19+TG6+sR+ktwrSd7+7uqA6VBoH2+/y+PyU2S18GsBAIDuJtpmUX66e9bKnFV7tfOgu+3O1BFZktzVl1v2VTZ5XV2Ds+uC7CTb9ldpd2mNbBaTxvdjBgkAAJGGLAXCWrTNoqHZiTprVI5+NWmAb/u/Fm7Xtf9eKofTFcLouj+Xy9BrS3botSU7JEnj+9PvEgCA7uqoPsmSpDvfW6u3v98tSZo6IltThmXJZUh//XiD71iH06X75qzTiD9/rBe+2haKcDvMvHXFktyLDsba6YoFAECkIXmJbiM1zq4Ym8X3fMWuMj08d6PmrNqrsx/7UgX7WZW8rV77dodueXuVtuxzf++oVgAAoPu6bdow/eLk/kqOtfm29UuP0w2nD5LFbNKHqwv14aq92l1ao4ufWahnvtiqBpehb7YcCGHU7Td3XZEk6fRhWSGOBAAAdAZuTaLbMJlMyk2N0caixilPTy/Y4nv82LxNeuTiMSGIrPv6ZE2R73Gs3aKRvZNCGA0AAGiPtPgo/fHsYbrx9MH6YOVeOZwuHZ2XIkm69pQBemL+Zv3xnVVyGVJZjUMmk2QY0v7KuhBHHrySqnp9V+BedHDKcJKXAABEIiov0a30SWlcZfzQKkH/KeTfbNmvN7/dKcMwuiy27uhgdb3v8ZDsBNnodwkAQLcXbbPogmP76JJxeb5tvz5toIZkJehgtUNlNQ4d1SdJj3pu+u6r6L7Jy/nri+UypGE5iQHXiQAAIHJQeYluJTXO7ns8a/JALX5+ie95SVVjIm7G7G9V1+BSndOlKyf07dIYu5MDlY3fs36eJv8AACDyRFktevSSMbrpPyt0woB0/faMISoqr5Xkrrw0DEMmkynEUbbdp74p45khjgQAAHQWkpfoVuzWxsrAiYcsLuNdVbPW4VRdg7sK8+/zNpG8PAz/hG9WYnQIIwEAAJ1tWE6i3v/1Sb7n6fFRkqS6Bpcq6xqUEG1r6aVhqa7Bqc837pPElHEAACIZc0TRrWT7JdisFrOevfJYXTouV5K0p7RWDU5XwNSn/ZV1qm9gRfLmlFU7VONw+p6n+VW1AgCAyBdjtyg+yl3LsN9vNkZ3samoUtX1TqXE2jSKvt0AAEQskpfoVmackK8TB6brLz8cKUk6Y0S27vnhKNmtZjldhvaW1foqMCXJZUg7SqpbOl2Ptu1A4OrsEw6pZAUAAJEvPd5987I79r3cXVojScpLi+uWU94BAEDrkLxEt5IQbdO/fzZeV/hNBTebTeqTHCNJ2llSrRvfWBHwmm37A5N0cNu2371qe1qcXS/OOI6VxgEA6IG8U8e9K46v2lWmHz31tb7Zsj+UYbXK7oPu5KX3OhAAAEQmkpeICH1S3atL7jxYrUJP83kvb5IOgbbtcyd1zxiRrUlDaHIPAEBPlJHQmLw0DEPnPPGVlu0o1W3/Xd3qczicLjldRgHafb8AACreSURBVGeF2CJv5WWvZPp2AwAQyUheIiLkprjvuBccqFac3SJJmuJZdbK1lZd1DU69+PW2HlOpudXzPgdksMo4AAA9lbfycl9FnT5dV+zbXlnb0KrX76uo0zF3z9W1/14qw+jaBKa38rI3lZcAAEQ0kpeICLmeysv564tVVe9UnN2iM0fmSGp98nL21wW64721mvLw550WZzjZ6qm87JdO8hIAgJ7Km7xcvbtMv/9PY+udhsNUUtY3uPT297t0y9srddw9n6qitkGfrC3Sl5u6dqq5t/Kyd0psl35dAADQtayhDgDoCLmei9b1hRWSpNF9kjUwM15S65OX3xUclKSQTHvqaoZh+L4vJC8BAOi50hPcC/bM37BPktQnJUa7DtaopKpetQ6nom2WJq954ettuv/D9U22/23uRp00KL3LFs/xJS+pvAQAIKJReYmIkJcaeMd9XL9U9UtzJ+WKyutUVXfkqU92a+OFdldPe+pqReV1qnE4ZTGbfFWrAACg58nwVF5KUpzdopevHq9YTwuevWW1zb5mybYSSdLUEVkB21fsLNXfPtmo57/a1qZrqaLyWv193iZV1Dpa/ZqKWodKquolSb1TSF4CABDJSF4iIuSmNl60xtgsmnFCvpJibUqLc1cTtKb6srre6XtcXtO6Pk/d1VbPIkZ5qbGyWfg1AABAT5We0Ji8nH58vvqlxyknyb0Azl5PZaM/wzC0YmepJOmXpwzQf2eeoOE5iRrVO0mS9MT8zbr7/bX6og1TyH/2r+/0t7kbddNbK1v9mgWeStH8tFglxdha/ToAAND9kLVARPC/aP3NaYOUHOtOWuZ7pkQfmrx8cv5mzXzl+4CKTG/Td6lxGlKkYso4AACQAisvvddNvTzTsPc0U3m5u7RGB6rqZTWbNDwnUWNykzXnupP00k/HBRy362B1q2NYtbtMkvTRmsLDHldd36ACzzXMnFV7JUlnjcpp9dcBAADdE8lLRASTyaRnrjxWN00dol+c3N+33ZucW7e33LetpKpeD8/dqA9W7dVDH2+QJDU4XSo40Jjg3FsW2cnLzcXuykuSlwAA9GzpfsnLZM/N4MNVXq7c5U40DslOCOiHmRJn1+/PHOJ7vr+ivlVfvy3Ty2e9ukyT/rpAD8/dqPkb3CujTyN5CQBAxCN5iYgxdUS2Zp46UBZzY+/K0X3cU5ieWrBFd7+/VrUOpz5dV+RblOdfCwv0XUGJVu8pl8PZePG8J0IrL6vqGvTq4h36ZE2RJPmmeAEAgJ4pxt6YgByanShJyk5qufJyxa5SSe7FEQ917SkD9IPR7mRiYXnjtdTm4gq9/f2uZhOVReV1Ac/3VdQ1OUaSistrfQnLx+dtUq3DpdzUGI3oldjSWwMAABGC1cYR0S45Lk/r9lbotSU79PxX2/TFxn2+JvRJMTaV1Th02XOLAy7cJWl3afMN6ru7O/63Rm8t3eV7PqF/WgijAQAA4eCTG07Wwap65aW5F/Hr5a28bGYmysqd7srLo/o0vQFqMpl00qB0vb9yr2+xnz2lNZry8BeSpFi7VWeOzA54zabiioDna/eW65SEjCbn/mhNoQxDSoy2qrzW3fbn7JE5XbayOQAACB0qLxHR7Faz7jt/lF64aqzS46O0qbhSKzzTnZ77yVhlJESp3ulSWY1D2YnR+uUp7innkTZt3OkydP+H6wMSl/3S45Tt+eMEAAD0XIOzEjTe74Zmjqfn5YIN+3T3+2u1eneZDMOQy2Votac/ZXOVl1Jj1WZhWa0+XVuksx770rdvwYZiGYahWkfjIombiioDXu89/6HeX+nucfmb0wbpH1cco1+e3F/XnDKgje8UAAB0R1ReokeYPDRLn9yQotv+u0pzVhVqeE6ijstP0eOXHK3H5m1UrN2q354xWFv3ufteRtq08Qc+Wq9nv9gasG1C/9QQRQMAAMJZL7+bm89/tU3Pf7VNQ7MTdMqQDFXUNSjaZtbgrPhmX5ud6H7txqIK/eyl7wL2pcXbdc8H6/TC19v0v1knamTvJG3e505extgsqnE4tdyzkrm/4vJafVtQIkk6e1SOeiXH6MyR9LoEAKCnIHmJHiM1zq4nLztGa/aUKysxWiaTSRMHpGnigIm+Y2odLknSmj3lum/OOl02Pk9901q3qE1VXYOumr1EI3sn6fZzRnTKe/BXVu3QT15YrLH5qfrTD4a3eNzb3+9qkriUmDIOAACa1ys5RnaLWfVOl47LT9GKnWVaX1ih9YXuKd4jeiXJaml+Apd3VoenvbiuPrGfUuPseujjDfp220Et8SQhX1m8Q/edP0qbPZWXFx7bRy8v2q7lO0u1obBCJVX1GpufIpvFrA9Xu6eMH5OX7FsJHQAA9BwkL9GjmEwmjTzMIjWDs+KVFmfXgap6PfPFVr21dJc+uu4kZSYGTq8uq3HIZJISo22+bW98u1PfFhzUtwUHdevZw1q8qO8or327Qyt2lWnFrjJF28y6aerQJses2FmqP7y9SpLUNy1W2w9U+/aN60flJQAAaCouyqp/XHmMisvrdPFxuSqrcei9lXv1f0t3afnOUp0zuuWqx8Roq0b1TtLu0ho9eMFoTRmepZW7SvXQxxt8iUtJeuPbHRrdJ0kbPT0vf3h0L726ZIf2VdRp6qPuHpmpcXadNTJbry7ZIclddQkAAHoekpeAn4Rom+bfNEkLNuzT3+dt0qbiSv3+/1Zq9lXH+RrCO5wunf7w56prcOnbW6fIbnUnKRdtPeA7z66DNcpPb13FZjBKqur1zy8bqymfnL9FpdUOXXJcnkZ5GuiX1zp07b+Xqr7BpSnDMvXk5cfosU83ac2ecp0+PEs5SVQuAACA5k0emuV7nBxr15UT+urKCX3lcLpkO8wNWpPJpLd/dbwk+Y4b2StJ6fF27a+s92w3yeE0dIvnBqvJ5K7mHJKVoLV7y33nKqmq1yuLd/iek7wEAKBnInkJHCIx2qZzj+qlodkJ+sHfv9KCDfv070XbdUzfFH26tlgHq+tVXFEnSVq1u0zH9k3RP7/cqk/WFvnO8d32g+1KXn6wcq9u/e8qPXvl2GYrJP/87mrfHwBeryzeoVcW79BRfZJ0+YS++q6gRHvKapWXGqtHLh6jKKtFvz+zaXUmAABAax0ucdnSMWazSScPztDb3+9Wapxd3/xhsu58b61e81RU9k6OUbTNojF5yb7k5Ze/P1UFB6p05fNLfOdhyjgAAD0Tq40DLRiclaBbznIn+/7ywTpNe/wrPfLpRr34TYHvmH98vkX3fbhOf/lgXcBr312+u9Vfp9bh1PrCchmGIafL0K6D1Zr56vcqrXboomcWqqQqMEn5wcq9en/lXlnMJr0360Q9funRSoi2qrenP9WKXWX6/X9W6s3v3CuLP3DBaCX4TW8HAADoapePz1N8lFXXTxmkaJtFN585xLfP23P85EHpvm0J0VadNChDs2ccp8Roq5698tgujxkAAIQHKi+Bw5g+MV8LNuzT5xv3Nbt/rl+15a8mDdDFx+XqlIcW6OvN+1VUXqusQ3plNuePb6/S28vcyU5vc3x/1/57qV6+erzsVrP2VdTptv+6p1jNnDRAo/okaVSfJJ0zOkcmk0kHKuv05ne79OqS7dpZUqOrjs/XxAEszAMAAELr2L6pWn3nVN/z5Fi7/vSD4br7/bW6dtIASdLJgzOUEG1VcqxN8VHuP1NOHZKplXdMbfacAACgZyB5CRyG2WzSP644Vre+404w2i1mfXnzqbrrvbX6bH2xahxO5SRF6/ZzRujMkdmSpGP7pmjp9oN6b8Ue/eyk/kf8Gt7EpSTVO12yWUyKsVlUXtsgSVq8rUS3/2+17v3RKN36ziodrHZoeE6iZk0e5Hudtx9nWnyUrp00QL88ub8KDlSpXyf23QQAAGiPq0/spzNHZivHc7M31m7VVzdPlsVs6vSFDwEAQPdB8hI4ghi7RQ9fPEaXjMtTapxdWYnRevLyY1TrcOrrzfs1oX+a4qIa/yn98OjeWrr9oN5ZttuXvNxYVKFfvPSdkmLtmjoiS2eOyFb/jHgZhuGrtvzzD4br9OFZ6pUcI4vZnYz8bH2Rrv7Xd3ptyU5tKKzQ9ztKZbOY9NcfH+VbKKg5ZrNJ/TPiO/cbAwAA0E69D+ljmRRDqxsAABCIW5pAK43rl6qBmY0JwWibRacNywpIXErSD0blyGo2ac2ecv3pv6sluaeXFxyo1oqdpXrwow2a/LfPdcYjn+u2/65WvdOlKKtZl47LU25qrC9xKblX+rz17GGSpO93lEqSfnpCPw3vldjJ7xYAAAAAACD0SF4CHSzFU50pSS8v2q4l20pUXF7r3hdr08mDM2Q1m7SxqFKvLHavsjl1RLZi7JZmz3f1if108dhcSVL/9Dj94uQjT0UHAAAAAACIBEwbBzrBNZMG+Koub3hjuXaX1kiSrp8yWNOPz1dZtUOfbSjSR6sLtW1/la9RfXNMJpPuO3+Ufjy2j4b3SlSsnX+2AAAAAACgZyALAnSCK8bnySTptv+u9iUuJSkrMUqSlBRr04+O7qMfHd2nVeczm00am5/aGaECAAAAAACELaaNA53AZDLpigl99fdLjw7YPjSbXpUAAAAAAACtReUl0InOOaqXRvZOUmK0VRW1DcpPjwt1SAAAAAAAAN0GyUugk/XzJCzT4qNCHAkAAAAAAED3wrRxAAAAAAAAAGGJ5CUAAAAAAACAsETyEgAAAAAAAEBYInkJAAAAAAAAICxFbPLyySefVH5+vqKjozV+/HgtWbIk1CEBAAAAAAAAaIOITF6+8cYbuvHGG3X77bfr+++/11FHHaWpU6equLg41KEBAAAAAAAAaKWITF4+/PDD+vnPf64ZM2Zo+PDh+sc//qHY2Fi98MILoQ4NAAAAAAAAQCtZQx1AR6uvr9fSpUt1yy23+LaZzWZNmTJFCxcubPY1dXV1qqur8z0vLy+XJDkcDjkcjs4NuIt530+kvS90HsYM2ooxg7ZizKCtGDNoK8YM2ooxg2AwbtBWkT5mOup9mQzDMDrkTGFiz5496t27t7755htNnDjRt/33v/+9Pv/8cy1evLjJa+644w7deeedTba/+uqrio2N7dR4AQAAAAAAgEhTXV2tyy67TGVlZUpMTAz6PBFXeRmMW265RTfeeKPveXl5uXJzc3XGGWe065sbjhwOh+bOnavTTz9dNpst1OGgG2DMoK0YM2grxgzaijGDtmLMoK0YMwgG4wZtFeljxjuzub0iLnmZnp4ui8WioqKigO1FRUXKzs5u9jVRUVGKiopqst1ms0Xk4JEi+72hczBm0FaMGbQVYwZtxZhBWzFm0FaMGQSDcYO2itQx01HvKeIW7LHb7Tr22GM1b9483zaXy6V58+YFTCMHAAAAAAAAEN4irvJSkm688UZNnz5dY8eO1bhx4/Too4+qqqpKM2bMCHVoAAAAAAAAAFopIpOXF198sfbt26c///nPKiws1JgxY/TRRx8pKysr1KEBAAAAAAAAaKWITF5K0qxZszRr1qxQhwEAAAAAAAAgSBHX8xIAAAAAAABAZCB5CQAAAAAAACAskbwEAAAAAAAAEJZIXgIAAAAAAAAISyQvAQAAAAAAAIQlkpcAAAAAAAAAwpI11AGEI8MwJEnl5eUhjqTjORwOVVdXq7y8XDabLdThoBtgzKCtGDNoK8YM2ooxg7ZizKCtGDMIBuMGbRXpY8abV/Pm2YJF8rIZFRUVkqTc3NwQRwIAAAAAAAB0XxUVFUpKSgr69SajvenPCORyubRnzx4lJCTIZDKFOpwOVV5ertzcXO3cuVOJiYmhDgfdAGMGbcWYQVsxZtBWjBm0FWMGbcWYQTAYN2irSB8zhmGooqJCvXr1ktkcfOdKKi+bYTab1adPn1CH0akSExMj8h8GOg9jBm3FmEFbMWbQVowZtBVjBm3FmEEwGDdoq0geM+2puPRiwR4AAAAAAAAAYYnkJQAAAAAAAICwRPKyh4mKitLtt9+uqKioUIeCboIxg7ZizKCtGDNoK8YM2ooxg7ZizCAYjBu0FWOmdViwBwAAAAAAAEBYovISAAAAAAAAQFgieQkAAAAAAAAgLJG8BAAAAAAAABCWSF4CAAAAAAAACEs9Nnn5xRdf6JxzzlGvXr1kMpn03//+N2C/w+HQzTffrFGjRikuLk69evXST37yE+3Zs6fJuWpqahQXF6fNmzdLkhYsWKBjjjlGUVFRGjhwoF588cWA4++77z4dd9xxSkhIUGZmpn74wx9qw4YNzcbZr18/ffrpp1qwYIHOO+885eTkKC4uTmPGjNErr7wScOyaNWt0wQUXKD8/XyaTSY8++mirvhcrV67USSedpOjoaOXm5urBBx9scsxbb72loUOHKjo6WqNGjdKcOXOOeN4dO3Zo2rRpio2NVWZmpm666SY1NDQEHHOk71VzSkpKdPnllysxMVHJycm6+uqrVVlZ2eb31FaMmUat+f6WlpZq5syZysnJUVRUlAYPHnzEcdNZP9va2lrNnDlTaWlpio+P1wUXXKCioqKAY1ozXtuKMeNWW1urq666SqNGjZLVatUPf/jDJse8/fbbOv3005WRkaHExERNnDhRH3/88RHPzZjpuWNGkl555RUdddRRio2NVU5Ojn7605/qwIEDRzx3Z/xsDcPQn//8Z+Xk5CgmJkZTpkzRpk2bAo5pzXhtq1COmaefflqjR49WYmKi79/thx9+2Gyc4fLZxPUMY8Yf1zOtw5hx43qm9RgzblzPtE0ox42/+++/XyaTSddff32z+8Pl86nHXdMYPdScOXOMW2+91Xj77bcNScY777wTsL+0tNSYMmWK8cYbbxjr1683Fi5caIwbN8449thjm5zr3XffNYYNG2YYhmFs3brViI2NNW688UZj7dq1xt///nfDYrEYH330ke/4qVOnGrNnzzZWr15tLF++3Dj77LONvLw8o7KyMuC8K1asMJKSkoz6+nrjnnvuMW677Tbj66+/NjZv3mw8+uijhtlsNt577z3f8UuWLDF+97vfGa+99pqRnZ1tPPLII0f8PpSVlRlZWVnG5Zdfbqxevdp47bXXjJiYGOOZZ57xHfP1118bFovFePDBB421a9cat912m2Gz2YxVq1a1eN6GhgZj5MiRxpQpU4xly5YZc+bMMdLT041bbrnFd0xrvlfNOfPMM42jjjrKWLRokfHll18aAwcONC699NI2vadgMGbcWvP9raurM8aOHWucffbZxldffWVs27bNWLBggbF8+fLDnruzfrbXXHONkZuba8ybN8/47rvvjAkTJhjHH3+8b39rxmswGDNulZWVxjXXXGM8++yzxtSpU43zzjuvyTHXXXed8cADDxhLliwxNm7caNxyyy2GzWYzvv/++8OemzHTc8fMV199ZZjNZuOxxx4ztm7danz55ZfGiBEjjB/96EeHPXdn/Wzvv/9+Iykpyfjvf/9rrFixwjj33HONfv36GTU1Nb5jjjRegxHKMfO///3P+OCDD4yNGzcaGzZsMP74xz8aNpvNWL16dcB5w+WziesZN8aMG9czrceYceN6pvUYM25cz7RNKMeN15IlS4z8/Hxj9OjRxnXXXddkf7h8PvXEa5oem7z019w/jOYsWbLEkGRs3749YPtPf/pT4+abbzYMwzB+//vfGyNGjAjYf/HFFxtTp05t8bzFxcWGJOPzzz8P2H7XXXcZF198cYuvO/vss40ZM2Y0u69v376t+ofx1FNPGSkpKUZdXZ1v280332wMGTLE9/yiiy4ypk2bFvC68ePHG7/85S9bPO+cOXMMs9lsFBYW+rY9/fTTRmJiou9rBfO9Wrt2rSHJ+Pbbb33bPvzwQ8NkMhm7d+9u9XtqL8bM4b+/Tz/9tNG/f3+jvr7+iOfz6qyfbWlpqWGz2Yy33nrLt23dunWGJGPhwoWGYbRuvLZXTx4z/qZPn97shVtzhg8fbtx5550t7mfMuPXUMfPQQw8Z/fv3D9j2+OOPG717927xXJ31s3W5XEZ2drbx0EMPBXytqKgo47XXXjMMo3Xjtb1CPWYMwzBSUlKMf/7znwHbwuWzieuZphgzXM+0VU8eM/64nmk9xowb1zNtE4pxU1FRYQwaNMiYO3euccoppzSbvAyXz6eeeE3TY6eNB6OsrEwmk0nJycm+bS6XS++//77OO+88SdLChQs1ZcqUgNdNnTpVCxcuPOx5JSk1NTVg+//+9z/feVt63aGvaauFCxfq5JNPlt1uD4h3w4YNOnjwoO+YI72nO+64Q/n5+QHnHTVqlLKysgJeU15erjVr1rT6vC+++KJMJlPAeZOTkzV27FjftilTpshsNmvx4sWtfk9dpaeOmf/973+aOHGiZs6cqaysLI0cOVL33nuvnE6n7zWd9bNdsGCBTCaTCgoKJElLly6Vw+EI+B4PHTpUeXl5vu9xa8ZrV4nEMRMMl8ulioqKgK/NmGleTx0zEydO1M6dOzVnzhwZhqGioiL95z//0dlnn+07prN+tgUFBTKZTFqwYIEkadu2bSosLAw4b1JSksaPHx9w3iON167SGWPG6XTq9ddfV1VVlSZOnBiwL1w+m7ieCV5PHTNczwQvEsdMMLieab2eOma4nmmfjhw3M2fO1LRp05oc6y9cPp964jUNyctWqq2t1c0336xLL71UiYmJvu2LFi2SJI0fP16SVFhYGDAYJCkrK0vl5eWqqalpcl6Xy6Xrr79eJ5xwgkaOHOnbvnv3bq1cuVJnnXVWs/G8+eab+vbbbzVjxox2va+W4vXuO9wx3v2SlJ6ergEDBnTIef2/V0lJSRoyZEjAeTMzMwNeY7ValZqaesTz+n/trtCTx8zWrVv1n//8R06nU3PmzNGf/vQn/e1vf9Nf/vIX32s662cbGxurIUOGyGaz+bbb7faADzTv6xgzXTNmgvHXv/5VlZWVuuiii3zbGDNN9eQxc8IJJ+iVV17RxRdfLLvdruzsbCUlJenJJ5/0HdNZP1ubzaYhQ4YoNjY2YPvhPitbM167QkePmVWrVik+Pl5RUVG65ppr9M4772j48OG+/eH02cT1THB68pjheiY4kTpmgsH1TOv05DHD9UzwOnLcvP766/r+++913333tfj1wunzqSde05C8bAWHw6GLLrpIhmHo6aefDtj37rvv6gc/+IHM5uC+lTNnztTq1av1+uuvB2z/3//+pxNPPLHJLyRJmj9/vmbMmKHnnntOI0aMCOrrdrRZs2Zp3rx5HX7eH/3oR1q/fn2Hn7ez9fQx43K5lJmZqWeffVbHHnusLr74Yt166636xz/+4Tums36248aN0/r169W7d+8OP3dn6uljxt+rr76qO++8U2+++WbAByFjJlBPHzNr167Vddddpz//+c9aunSpPvroIxUUFOiaa67xHdNZP9vevXtr/fr1GjduXIeet7N1xpgZMmSIli9frsWLF+vaa6/V9OnTtXbtWt/+cBozrcH1TKCePma4nmm7nj5m/HE90zo9fcxwPROcjhw3O3fu1HXXXadXXnlF0dHRLR4XTuOmNSLtmobk5RF4/1Fs375dc+fODcjoS+4BfO655/qeZ2dnN1nlq6ioSImJiYqJiQnYPmvWLL3//vuaP3+++vTpc9jzen3++ec655xz9Mgjj+gnP/lJe99ei/F69x3uGO/+jj5vc98r//MWFxcHbGtoaFBJSckRz+v/tTsTY0bKycnR4MGDZbFYfMcMGzZMhYWFqq+vb/G8nfGzzc7OVn19vUpLS5u8jjHTNWOmLV5//XX97Gc/05tvvnnYKRsSY6anj5n77rtPJ5xwgm666SaNHj1aU6dO1VNPPaUXXnhBe/fubfY1nfWz9W4/3Gdla8ZrZ+qsMWO32zVw4EAde+yxuu+++3TUUUfpsccea/G8XlzP9Nzrme40ZrieaZtIHzNtwfVM6zBmuJ4JRkePm6VLl6q4uFjHHHOMrFarrFarPv/8cz3++OOyWq2+ViHh9PnUE69pSF4ehvcfxaZNm/Tpp58qLS0tYP+mTZu0fft2nX766b5tEydObJLdnjt3bkCPDcMwNGvWLL3zzjv67LPP1K9fv4DjKysrNX/+/Ca9FBYsWKBp06bpgQce0C9+8YsOeY8TJ07UF198IYfDERDvkCFDlJKS0ur31Nx5V61aFTCIvb9YvCX7wZ63tLRUS5cu9W377LPP5HK5fGXhrXlPnYUx4/7+nnDCCdq8ebNcLpfvmI0bNyonJyegz8Wh5+2Mn+2xxx4rm80W8D3esGGDduzY4fset2a8dpaeMGZa67XXXtOMGTP02muvadq0aUc8njHTs8dMdXV1kzvq3gSDYRjNvqazfrb9+vVTdnZ2wHnLy8u1ePHigPMeabx2ls4aM81xuVyqq6uTFH6fTVzPtB5jhuuZtuoJY6a1uJ5pHcaMG9czbdMZ4+a0007TqlWrtHz5ct9/Y8eO1eWXX67ly5fLYrGE3edTj7ymafXSPhGmoqLCWLZsmbFs2TJDkvHwww8by5Yt861SVV9fb5x77rlGnz59jOXLlxt79+71/eddIemhhx4yzjnnnIDzepeWv+mmm4x169YZTz75ZJOl5a+99lojKSnJWLBgQcB5q6urDcMwjLfeessYNWpUwHk/++wzIzY21rjlllsCXnPgwAHfMXV1db73lJOTY/zud78zli1bZmzatKnF70NpaamRlZVlXHnllcbq1auN119/3YiNjQ1Ysv7rr782rFar8de//tVYt26dcfvttxs2m81YtWqV75i///3vxuTJk33PGxoajJEjRxpnnHGGsXz5cuOjjz4yMjIyjFtuuaVN36u33367yQpUZ555pnH00UcbixcvNr766itj0KBBxqWXXtqm9xQMxkzrv787duwwEhISjFmzZhkbNmww3n//fSMzM9P4y1/+4jums362ixcvNoYMGWLs2rXLt+2aa64x8vLyjM8++8z47rvvjIkTJxoTJ0707W/NeA0GY6bRmjVrjGXLlhnnnHOOMWnSJN85vF555RXDarUaTz75ZMDXLi0t9R3DmGHM+I+Z2bNnG1ar1XjqqaeMLVu2GF999ZUxduxYY9y4cb5jOutnu2vXLmPIkCHG4sWLfdvuv/9+Izk52Xj33XeNlStXGuedd57Rr18/o6amxnfMkcZrMEI5Zv7whz8Yn3/+ubFt2zZj5cqVxh/+8AfDZDIZn3zyiWEY4ffZxPWMG2Om9d9frmfcGDONuJ5pHcZMI65nWi+U4+ZQh642Hm6fTz3xmqbHJi/nz59vSGry3/Tp0w3DMIxt27Y1u1+SMX/+fMMwDOPEE080nnvuuWbPPWbMGMNutxv9+/c3Zs+eHbC/pfN6j7viiiuMW2+9NeA106dPb/Y1p5xyiu+YlmL2P6Y5K1asME488UQjKirK6N27t3H//fc3OebNN980Bg8ebNjtdmPEiBHGBx98ELD/9ttvN/r27RuwraCgwDjrrLOMmJgYIz093fjtb39rOByONn2vZs+ebRyaYz9w4IBx6aWXGvHx8UZiYqIxY8YMo6Kios3vqa0YM41a8/395ptvjPHjxxtRUVFG//79jXvuucdoaGjw7e+sn63357Rt2zbftpqaGuNXv/qVkZKSYsTGxho/+tGPjL179wa8rjXjta0YM4369u3b7Ou8TjnllMN+rwyDMWMYjJlDf/6PP/64MXz4cCMmJsbIyckxLr/88oAL+8762Xrfk/d7bhiG4XK5jD/96U9GVlaWERUVZZx22mnGhg0bAs7bmvHaVqEcMz/96U+Nvn37Gna73cjIyDBOO+003x+HhhGen01czzBm/HE90zqMmUZcz7QOY6YR1zOtF8pxc6hDk5fh+PnU065pTIbRQi0yDmv//v3KycnRrl27mqya1B4NDQ3KysrShx9+2C0b56JljBm0FWMGbcWYQVsxZtBWjBm0FWMGbcWYQTAYN5GNnpdBKikp0cMPP9yh/yi8573hhht03HHHdeh5EXqMGbQVYwZtxZhBWzFm0FaMGbQVYwZtxZhBMBg3kY3KSwAAAAAAAABhicpLAAAAAAAAAGGJ5CUAAAAAAACAsETyEgAAAAAAAEBYInkJAAAAAAAAICyRvAQAAAAAAAAQlkheAgAAoEVXXXWV8vPz2/w6k8mkWbNmdXxAnSjY9woAAIDOQ/ISAACgB3rxxRdlMpl8/0VHR2vw4MGaNWuWioqKQh1eh/F/j4f7b8GCBaEOFQAAAM2whjoAAAAAhM5dd92lfv36qba2Vl999ZWefvppzZkzR6tXr1ZsbKyee+45uVyuUIcZtJdffjng+UsvvaS5c+c22T5s2LBu/14BAAAiEclLAACAHuyss87S2LFjJUk/+9nPlJaWpocffljvvvuuLr30UtlsthBH2D5XXHFFwPNFixZp7ty5TbYDAAAgPDFtHAAAAD6TJ0+WJG3btk1S830gXS6XHnvsMY0aNUrR0dHKyMjQmWeeqe++++6w5/7LX/4is9msv//975Kk/Px8XXXVVU2OmzRpkiZNmuR7vmDBAplMJr3xxhv64x//qOzsbMXFxencc8/Vzp07g3+zhzj0vRYUFMhkMumvf/2rnnzySfXv31+xsbE644wztHPnThmGobvvvlt9+vRRTEyMzjvvPJWUlDQ574cffqiTTjpJcXFxSkhI0LRp07RmzZoOixsAACCSUXkJAAAAny1btkiS0tLSWjzm6quv1osvvqizzjpLP/vZz9TQ0KAvv/xSixYt8lVxHuq2227Tvffeq2eeeUY///nPg4rtnnvukclk0s0336zi4mI9+uijmjJlipYvX66YmJigztkar7zyiurr6/XrX/9aJSUlevDBB3XRRRdp8uTJWrBggW6++WZt3rxZf//73/W73/1OL7zwgu+1L7/8sqZPn66pU6fqgQceUHV1tZ5++mmdeOKJWrZsGQsEAQAAHAHJSwAAgB6srKxM+/fvV21trb7++mvdddddiomJ0Q9+8INmj58/f75efPFF/eY3v9Fjjz3m2/7b3/5WhmE0+5rf/e53euSRRzR79mxNnz496FhLSkq0bt06JSQkSJKOOeYYXXTRRXruuef0m9/8JujzHsnu3bu1adMmJSUlSZKcTqfuu+8+1dTU6LvvvpPV6r6k3rdvn1555RU9/fTTioqKUmVlpX7zm9/oZz/7mZ599lnf+aZPn64hQ4bo3nvvDdgOAACAppg2DgAA0INNmTJFGRkZys3N1SWXXKL4+Hi988476t27d7PH/9///Z9MJpNuv/32JvtMJlPAc8MwNGvWLD322GP697//3a7EpST95Cc/8SUuJenCCy9UTk6O5syZ067zHsmPf/xjX+JSksaPHy/J3U/Tm7j0bq+vr9fu3bslSXPnzlVpaakuvfRS7d+/3/efxWLR+PHjNX/+/E6NGwAAIBJQeQkAANCDPfnkkxo8eLCsVquysrI0ZMgQmc0t39/esmWLevXqpdTU1COe+6WXXlJlZaWefvppXXrppe2OddCgQQHPTSaTBg4cqIKCgnaf+3Dy8vICnnsTmbm5uc1uP3jwoCRp06ZNkhr7iB4qMTGxQ+MEAACIRCQvAQAAerBx48a12KeyvU444QQtX75cTzzxhC666KImCc9DKzW9nE6nLBZLp8QUjJZiaWm7d/q8y+WS5O57mZ2d3eQ4/6pNAAAANI8rJgAAALTagAED9PHHH6ukpOSI1ZcDBw7Ugw8+qEmTJunMM8/UvHnzAqZ9p6SkqLS0tMnrtm/frv79+zfZ7q1k9DIMQ5s3b9bo0aODezOdbMCAAZKkzMxMTZkyJcTRAAAAdE/0vAQAAECrXXDBBTIMQ3feeWeTfc0t2DN69GjNmTNH69at0znnnKOamhrfvgEDBmjRokWqr6/3bXv//fe1c+fOZr/2Sy+9pIqKCt/z//znP9q7d6/OOuus9rylTjN16lQlJibq3nvvlcPhaLJ/3759IYgKAACge6HyEgAAAK126qmn6sorr9Tjjz+uTZs26cwzz5TL5dKXX36pU089VbNmzWrymgkTJujdd9/V2WefrQsvvFD//e9/ZbPZ9LOf/Uz/+c9/dOaZZ+qiiy7Sli1b9O9//9tXsXio1NRUnXjiiZoxY4aKior06KOPauDAgfr5z3/e2W87KImJiXr66ad15ZVX6phjjtEll1yijIwM7dixQx988IFOOOEEPfHEE6EOEwAAIKxReQkAAIA2mT17th566CFt27ZNN910k+69917V1NTo+OOPb/E1kydP1ptvvqlPPvlEV155pVwul6ZOnaq//e1v2rhxo66//notXLhQ77//vvr06dPsOf74xz9q2rRpuu+++/TYY4/ptNNO07x58xQbG9tZb7XdLrvsMs2bN0+9e/fWQw89pOuuu06vv/66xowZoxkzZoQ6PAAAgLBnMpqb3wMAAACEiQULFujUU0/VW2+9pQsvvDDU4QAAAKALUXkJAAAAAAAAICyRvAQAAAAAAAAQlkheAgAAAAAAAAhL9LwEAAAAAAAAEJaovAQAAAAAAAAQlkheAgAAAAAAAAhLJC8BAAAAAAAAhCWSlwAAAAAAAADCEslLAAAAAAAAAGGJ5CUAAAAAAACAsETyEgAAAAAAAEBYInkJAAAAAAAAICyRvAQAAAAAAAAQlv4fHTWyf+ju86YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import pyplot as plt\n", + "import matplotlib.dates as mdates\n", + "\n", + "plt.figure(figsize=(16,7))\n", + "ax = plt.gca()\n", + "formatter = mdates.DateFormatter(\"%D %H:%M:%S\")\n", + "ax.xaxis.set_major_formatter(formatter)\n", + "\n", + "ax.tick_params(axis='both', labelsize=10)\n", + "\n", + "two_day_trip_rolling_count.plot(ax=ax, legend=False)\n", + "plt.xlabel(\"Pickup Time\", fontsize=12)\n", + "plt.ylabel(\"Trip count in last 5 minutes\", fontsize=12)\n", + "plt.grid()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "336b78ce", + "metadata": {}, + "source": [ + "The taxi ride count reached its lowest point around 5:00 a.m., and peaked around 7:00 p.m. on a workday. Such is the rhythm of NYC." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv (3.10.17)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.17" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 9130a610fef69f100b8c2885d5d41478aa2ade18 Mon Sep 17 00:00:00 2001 From: "release-please[bot]" <55107282+release-please[bot]@users.noreply.github.com> Date: Mon, 29 Sep 2025 16:30:00 -0700 Subject: [PATCH 8/8] chore(main): release 2.23.0 (#2122) Co-authored-by: release-please[bot] <55107282+release-please[bot]@users.noreply.github.com> --- CHANGELOG.md | 17 +++++++++++++++++ bigframes/version.py | 4 ++-- third_party/bigframes_vendored/version.py | 4 ++-- 3 files changed, 21 insertions(+), 4 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 9911d2cb2e..394e04331b 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -4,6 +4,23 @@ [1]: https://pypi.org/project/bigframes/#history +## [2.23.0](https://github.com/googleapis/python-bigquery-dataframes/compare/v2.22.0...v2.23.0) (2025-09-29) + + +### Features + +* Add ai.generate_double to bigframes.bigquery package ([#2111](https://github.com/googleapis/python-bigquery-dataframes/issues/2111)) ([6b8154c](https://github.com/googleapis/python-bigquery-dataframes/commit/6b8154c578bb1a276e9cf8fe494d91f8cd6260f2)) + + +### Bug Fixes + +* Prevent invalid syntax for no-op .replace ops ([#2112](https://github.com/googleapis/python-bigquery-dataframes/issues/2112)) ([c311876](https://github.com/googleapis/python-bigquery-dataframes/commit/c311876b2adbc0b66ae5e463c6e56466c6a6a495)) + + +### Documentation + +* Add timedelta notebook sample ([#2124](https://github.com/googleapis/python-bigquery-dataframes/issues/2124)) ([d1a9888](https://github.com/googleapis/python-bigquery-dataframes/commit/d1a9888a2b47de6aca5dddc94d0c8f280344b58a)) + ## [2.22.0](https://github.com/googleapis/python-bigquery-dataframes/compare/v2.21.0...v2.22.0) (2025-09-25) diff --git a/bigframes/version.py b/bigframes/version.py index 5b669176e8..80776a5511 100644 --- a/bigframes/version.py +++ b/bigframes/version.py @@ -12,8 +12,8 @@ # See the License for the specific language governing permissions and # limitations under the License. -__version__ = "2.22.0" +__version__ = "2.23.0" # {x-release-please-start-date} -__release_date__ = "2025-09-25" +__release_date__ = "2025-09-29" # {x-release-please-end} diff --git a/third_party/bigframes_vendored/version.py b/third_party/bigframes_vendored/version.py index 5b669176e8..80776a5511 100644 --- a/third_party/bigframes_vendored/version.py +++ b/third_party/bigframes_vendored/version.py @@ -12,8 +12,8 @@ # See the License for the specific language governing permissions and # limitations under the License. -__version__ = "2.22.0" +__version__ = "2.23.0" # {x-release-please-start-date} -__release_date__ = "2025-09-25" +__release_date__ = "2025-09-29" # {x-release-please-end}