-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmetrics.py
226 lines (175 loc) · 7.3 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from dataclasses import dataclass
import datetime
import logging
import os
import sys
from typing import Any, Dict, List, Optional
from omegaconf import DictConfig
import pandas as pd
import torch
from torch.nn import functional as F
from transformers.trainer_utils import EvalPrediction
sys.path.append('../')
from src.training.finetune import IGNORE_INDEX
from utils import *
from metrics import *
WANDB_PROJECT = 'backend_finetune_eval'
def compute_metrics(
eval_preds: EvalPrediction,
fim_token_id: Optional[int] = None,
) -> Dict[str, float]:
"""Compute metrics for finetuning.
Args:
eval_preds: Evaluation predictions from a model.
fim_token_id: Token ID for the FIM token. If None, FIM loss will not be calculated.
Returns:
Dictionary mapping metric names to metric values.
"""
logits, labels, inputs = eval_preds
# Shift logits and labels over by one
logits = logits[:, :-1, :]
labels = labels[:, 1:]
# Gather all preds and labels where the label is not -100
preds = logits.argmax(2)
no_ignore_idxs = (labels != IGNORE_INDEX)
select_preds = preds[no_ignore_idxs]
select_labels = labels[no_ignore_idxs]
# Calculate the accuracy
n_correct = (select_preds == select_labels).sum()
n_tokens = no_ignore_idxs.sum()
# Calculate the mean loss
losses = F.cross_entropy(
input = logits.swapaxes(1, 2),
target = labels,
ignore_index = IGNORE_INDEX,
reduction = 'none',
)
if fim_token_id is not None:
# Check which inputs had the FIM token
fim_idxs = (inputs == fim_token_id).any(1)
# Calculate how many tokens there are in each category
n_fim_tokens = no_ignore_idxs[fim_idxs].sum()
# Calculate the total loss for each category
fim_loss = losses[fim_idxs].sum()
else:
n_fim_tokens = torch.tensor(float('nan'))
fim_loss = torch.tensor(float('nan'))
n_ntp_tokens = no_ignore_idxs[~fim_idxs].sum()
ntp_loss = losses[~fim_idxs].sum()
return {
'n_tokens': n_tokens,
'n_fim_tokens': n_fim_tokens,
'n_ntp_tokens': n_ntp_tokens,
'n_correct': n_correct,
'fim_loss': fim_loss,
'ntp_loss': ntp_loss,
}
def collate_metrics(metrics_list: List[Dict[str, float]]) -> Dict[str, float]:
"""Collate metrics from multiple runs.
Args:
metrics_list: List of dictionaries mapping metric names to metric values.
Returns:
Dictionary mapping metric names to metric values.
"""
# Initialize the collated metrics
collated_metrics = {}
sum_metrics = {}
# First, sum each of the metrics
for metric_name in metrics_list[0].keys():
sum_metrics[metric_name] = 0
for metrics in metrics_list:
sum_metrics[metric_name] += metrics[metric_name]
collated_metrics['accuracy'] = sum_metrics['n_correct'] / sum_metrics['n_tokens']
collated_metrics['fim_loss'] = sum_metrics['fim_loss'] / sum_metrics['n_fim_tokens']
collated_metrics['ntp_loss'] = sum_metrics['ntp_loss'] / sum_metrics['n_ntp_tokens']
collated_metrics['combined_loss'] = \
(sum_metrics['fim_loss'] + sum_metrics['ntp_loss']) / sum_metrics['n_tokens']
return collated_metrics
def compute_problem_level_metrics(
eval_preds: EvalPrediction,
fim_token_id: Optional[int] = None,
) -> Dict[str, float]:
"""Compute metrics for for each individual problem.
Args:
eval_preds: Evaluation predictions from a model.
fim_token_id: Token ID for the FIM token. If None, FIM loss will not be calculated.
Returns:
Dictionary mapping metric names to metric values.
"""
# logits: (batch_size, seq_len, vocab_size)
# labels: (batch_size, seq_len)
# inputs: (batch_size, seq_len)
logits, labels, inputs = eval_preds
# Shift logits and labels over by one
logits = logits[:, :-1, :]
labels = labels[:, 1:]
# Calculate the losses
losses = F.cross_entropy(
input = logits.swapaxes(1, 2),
target = labels,
ignore_index = IGNORE_INDEX,
reduction = 'none',
)
# Get the average loss per sequence
# losses: (batch_size, seq_len)
valid_tokens_per_sequence = (labels != IGNORE_INDEX).sum(1)
loss_per_sequence = losses.sum(1) / valid_tokens_per_sequence
# Calculate accuracy
preds = logits.argmax(2)
correct_preds = (preds == labels)
accuracy_per_sequence = correct_preds.sum(1) / valid_tokens_per_sequence
# Get the problem type of each sequence (e.g. ntp or fim)
if fim_token_id is not None:
is_fim_sequence = (inputs == fim_token_id).any(1)
else:
is_fim_sequence = torch.zeros_like(valid_tokens_per_sequence, dtype=torch.bool)
problem_types = ['fim' if is_fim else 'ntp' for is_fim in is_fim_sequence]
return {
'loss': loss_per_sequence.tolist(),
'accuracy': accuracy_per_sequence.tolist(),
'n_tokens': valid_tokens_per_sequence.tolist(),
'problem_type': problem_types,
}
def collate_problem_level_metrics(metrics_list: List[Dict[str, float]]) -> Dict[str, float]:
"""Collate metrics from multiple runs in a way that preserves the metrics for each problem.
Args:
metrics_list: List of dictionaries mapping metric names to metric values.
Returns:
Dictionary mapping metric names to metric values.
"""
collated_metrics = {k: [] for k in metrics_list[0].keys()}
for metrics in metrics_list:
for k, v in metrics.items():
collated_metrics[k].extend(v)
return collated_metrics
@dataclass
class EvalResults:
"""Results from running evaluation on a set of tasks and/or benchmarks."""
task_metrics: Optional[List[Dict[str, Any]]] = None
benchmark_metrics: Optional[List[Dict[str, Any]]] = None
def save_metrics(eval_results: EvalResults, config: DictConfig, logger: logging.Logger, output_dir: Optional[str] = None):
"""Save evaluation metrics to a file and/or wandb depending on the config.
Args:
eval_results: Results from running evaluation on a set of tasks and/or benchmarks.
config: Configuration for saving metrics.
"""
task_metrics_df = pd.DataFrame(eval_results.task_metrics) if eval_results.task_metrics else None
benchmark_metrics_df = pd.DataFrame(eval_results.benchmark_metrics) if eval_results.benchmark_metrics else None
output_dir = config['eval'].get('metrics_output_dir')
if output_dir:
logger.info(f"Saving metrics to {output_dir}...")
# Get datetime for the output file
if output_dir is None:
now = datetime.datetime.now()
output_dir = os.path.join(output_dir, now.strftime('%Y-%m-%d_%H-%M-%S'))
os.makedirs(output_dir, exist_ok=True)
# Save to csv
if task_metrics_df is not None:
task_metrics_df.to_csv(os.path.join(output_dir, 'task_metrics.csv'), index=False)
if benchmark_metrics_df is not None:
benchmark_metrics_df.to_csv(os.path.join(output_dir, 'benchmark_metrics.csv'), index=False)
if config.get('wandb', False):
logger.info("Logging to wandb...")
import wandb
wandb.init(project=WANDB_PROJECT, config=config)
wandb.log({'task_metrics': task_metrics_df, 'benchmark_metrics': benchmark_metrics_df})