-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_rag_eval.py
323 lines (252 loc) · 11.6 KB
/
run_rag_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""Evaluate the performance of RAG.
Objectives of the eval:
- Measure the overall impact of RAG on generation performance.
- Measure how well the model is able to utilize information from difference types of sources.
- Measure the gap in current performance vs. potential performance that stems from:
- Defficiencies in retrieval.
- Defficiencies in how the information is stored (e.g. chunking).
"""
from dataclasses import dataclass
import datetime
import logging
import os
import random
import sys
from typing import Any, Dict, List, Optional, Tuple
import warnings
import hydra
from llama_index.core import VectorStoreIndex
import numpy as np
from omegaconf import DictConfig, OmegaConf
import pandas as pd
import torch
from torch.nn import functional as F
from transformers import PreTrainedModel, PreTrainedTokenizer
from transformers.trainer_utils import EvalPrediction
sys.path.append('../')
from src import config_handler
# from src import finetune, modeling
# from src.data_formatting import IGNORE_INDEX, FIM_HOLE_TOKEN
from src.modeling import ModelProvider, FIM_HOLE_TOKEN
from src.rag import retrieve_context, VectorStoreProvider
from src.routers.fine_tuner import collect_item_data, finetune_model, ProjectFinetuneData
from src.training import finetune
from src.training.data_formatting import format_rag_query
from src.training.finetune import (
COMMON_DATASET_MAP_KWARGS,
problems_to_train_samples,
project_to_problems,
train_self_supervised,
)
from data_loading import load_task_info
from utils import *
from metrics import (
collate_problem_level_metrics,
compute_problem_level_metrics,
EvalResults,
save_metrics,
)
logger = logging.getLogger(__name__)
def prepare_vector_store(
config: DictConfig,
vs_provider: VectorStoreProvider,
task_info: Dict[str, Any]
) -> Tuple[VectorStoreIndex, int]:
"""Create a vector store and populate it with documents from the task.
Args:
config (DictConfig): Top level config.
vs_provider (VectorStoreProvider): Vector store provider used to create a new vector store.
task_info (Dict[str, Any]): Task info dictionary with 'code', 'docs', and 'links' keys.
Returns:
Tuple[VectorStoreIndex, int]: The populated vector store and the number of documents added.
"""
vector_store = vs_provider.create_new_vector_store()
finetune_data = ProjectFinetuneData(
project_dict = task_info.get('code'),
documents = task_info.get('docs'),
urls = task_info.get('links'),
)
documents = collect_item_data(finetune_data, config)
if len(documents) > 0:
vs_provider._add_documents_to_vs(vector_store, documents)
return vector_store, len(documents)
def calculate_weighted_metrics(prefix: str, metrics: Dict[str, Any]) -> Dict[str, Any]:
"""Calculate the average weighted loss and accuracy for a set of sample-level statistics.
Args:
prefix (str): Prefix for the metrics to calculate.
metrics (Dict[str, Any]): Dictionary of metrics to calculate the weighted averages for.
Returns:
Dict[str, Any]: Dictionary of the calculated metrics.
"""
output_metrics = {}
n_tokens = torch.tensor(metrics[f'{prefix}/n_tokens'])
problem_type = metrics[f'{prefix}/problem_type']
losses = torch.tensor(metrics[f'{prefix}/loss'])
accuracies = torch.tensor(metrics[f'{prefix}/accuracy'])
ntp_mask = torch.tensor([x == 'ntp' for x in problem_type])
total_ntp_tokens = n_tokens[ntp_mask].sum()
ntp_weights = n_tokens[ntp_mask] / total_ntp_tokens
fim_mask = torch.tensor([x == 'fim' for x in problem_type])
total_fim_tokens = n_tokens[fim_mask].sum()
fim_weights = n_tokens[fim_mask] / total_fim_tokens
total_tokens = n_tokens.sum()
weights = n_tokens / total_tokens
output_metrics[f'ntp_loss'] = torch.sum(
losses[ntp_mask] * ntp_weights)
output_metrics[f'fim_loss'] = torch.sum(
losses[fim_mask] * fim_weights)
output_metrics[f'loss'] = torch.sum(
losses * weights)
output_metrics[f'ntp_accuracy'] = torch.sum(
accuracies[ntp_mask] * ntp_weights)
output_metrics[f'fim_accuracy'] = torch.sum(
accuracies[fim_mask] * fim_weights)
output_metrics[f'accuracy'] = torch.sum(
accuracies * weights)
return {k: v.tolist() for k, v in output_metrics.items()}
def run_task_eval(
config: DictConfig,
task_info: Dict[str, Any],
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
vector_store: VectorStoreIndex,
) -> Dict[str, Any]:
"""Run evaluation on a single task and return a dictionary of metrics."""
train_methods = []
if config.train.use_ntp:
train_methods.append('ntp')
if config.train.use_fim:
train_methods.append('fim')
# Convert task data into individual problems (leave space for context)
problems_dataset = project_to_problems(
project_data = task_info['test'],
tokenizer = tokenizer,
train_methods = train_methods,
context_size = config.model.context_length - config.rag.max_gen_context_length,
)
# Query top k relevant contexts for each problem
retriever = vector_store.as_retriever(similarity_top_k=config.eval.top_k_retrievals)
problem_contexts = [] # (n_problems, n_retrievals)
for row in problems_dataset:
rag_query = format_rag_query(
row['prior_context'], row['proceeding_context'], config.rag.max_embed_context_length)
retrievals = retrieve_context(rag_query, vector_store, retriever=retriever)
retrievals = retrievals or ['' for _ in range(config.eval.top_k_retrievals)]
problem_contexts.append(retrievals)
# For each problem, create a new k problems, each with a different retrieved context
# Each dataset contains the same problem with a different set of retrievals
context_template = config.rag.context_for_generation_template
rag_problem_datasets = [problems_dataset]
for i in range(config.eval.top_k_retrievals):
retrievals = [context_template.format(contexts[i]) for contexts in problem_contexts]
new_dataset = problems_dataset.add_column('additional_context', retrievals)
rag_problem_datasets.append(new_dataset)
# Tokenize the datasets and convert into training format
eval_datasets = {}
for i, dataset in enumerate(rag_problem_datasets):
train_dataset = dataset.map(
problems_to_train_samples,
fn_kwargs = {
'tokenizer': tokenizer,
'additional_context_max_length': config.rag.max_gen_context_length,
},
remove_columns = dataset.column_names,
**COMMON_DATASET_MAP_KWARGS,
)
eval_datasets[i] = train_dataset
# Run evaluation on all of the problems, and measure the metrics for each
fim_token_id = tokenizer.vocab[FIM_HOLE_TOKEN]
compute_metrics_fn = lambda eval_preds: compute_problem_level_metrics(eval_preds, fim_token_id)
metrics = train_self_supervised(
model,
tokenizer,
config.train,
train_dataset = None,
eval_datasets = eval_datasets,
compute_metrics = compute_metrics_fn,
metrics_collator = collate_problem_level_metrics,
report_to = 'none',
output_dir = config.model.save_model_dir,
)
# Calculate the best metrics from all different contexts for each problem
all_losses = torch.stack([
torch.tensor(metrics[f'eval_{i}/loss'])
for i in range(config.eval.top_k_retrievals + 1)
])
all_accuracies = torch.stack([
torch.tensor(metrics[f'eval_{i}/accuracy'])
for i in range(config.eval.top_k_retrievals + 1)
])
metrics['eval_best/loss'] = torch.min(all_losses, dim=0)[0].tolist()
metrics['eval_best/accuracy'] = torch.max(all_accuracies, dim=0)[0].tolist()
metrics['eval_best/n_tokens'] = metrics['eval_0/n_tokens']
metrics['eval_best/problem_type'] = metrics['eval_0/problem_type']
# Log the average accuracy with no conext, with the first context, and with the best context
# averaged over all unique problems
final_metrics = {}
baseline_metrics = calculate_weighted_metrics('eval_0', metrics)
final_metrics = {f'baseline/{k}': v for k, v in baseline_metrics.items()}
rag_metrics = calculate_weighted_metrics('eval_1', metrics)
final_metrics.update({f'rag/{k}': v for k, v in rag_metrics.items()})
best_rag_metrics = calculate_weighted_metrics('eval_best', metrics)
final_metrics.update({f'best_rag/{k}': v for k, v in best_rag_metrics.items()})
# Log the percentage improvement from baseline -> rag, and rag -> best rag
for metric_name, sign in [('loss', -1), ('accuracy', 1)]:
baseline = final_metrics[f'baseline/{metric_name}']
rag = final_metrics[f'rag/{metric_name}']
best_rag = final_metrics[f'best_rag/{metric_name}']
if baseline == 0:
final_metrics[f'rag_improvement/{metric_name}'] = float('inf')
else:
final_metrics[f'rag_improvement/{metric_name}'] = sign * (rag - baseline) / baseline
if rag == 0:
final_metrics[f'best_rag_improvement/{metric_name}'] = float('inf')
else:
final_metrics[f'best_rag_improvement/{metric_name}'] = sign * (best_rag - rag) / rag
return final_metrics
def run_eval(config: DictConfig, model_provider: ModelProvider, vs_provider: VectorStoreProvider):
"""Run evaluation steps for finetuning."""
# Make a random seed that will be used for both pre- and post-finetune eval
# This is required to keep the FIM examples the same for both runs
eval_seed = random.randint(0, 2**32 - 1)
# Create a directory to save results to
output_dir = config['eval'].get('metrics_output_dir')
now = datetime.datetime.now()
metrics_save_dir = os.path.join(output_dir, now.strftime('%Y-%m-%d_%H-%M-%S'))
# Reinit a new model
model, tokenizer = create_new_model_tuple(model_provider)
# Load name of all eval tasks
task_metrics = []
for task_name, task_info in load_task_info():
logger.info(f"===== Starting eval on task [{task_name}] =====")
### Create and populate a vector store ###
vector_store, n_documents = prepare_vector_store(config, vs_provider, task_info['train'])
logger.info(f"<Task {task_name}> Added {n_documents} document nodes to vector store.")
### Run eval ###
logger.info(f"Running pre-finetune eval...")
set_seed(eval_seed)
eval_metrics = run_task_eval(config, task_info, model, tokenizer, vector_store)
eval_metrics['task_name'] = task_name
eval_metrics.update(task_info['metadata'])
task_metrics.append(eval_metrics)
logger.debug(f"Metrics for task {task_name}: {eval_metrics}")
### Save metrics so far ###
save_metrics(EvalResults(task_metrics=task_metrics), config, logger, output_dir=metrics_save_dir)
return task_metrics
@hydra.main(version_base=None, config_path='../src/conf', config_name='eval')
def main(config: DictConfig):
# Start logging and config
configure_logging(logger)
config = OmegaConf.create(config)
logger.info(f"Loaded config: {config}")
# Initialize singletons
config_handler.ConfigProvider.initialize(config)
model_provider = ModelProvider.get_instance(config.model)
vs_provider = VectorStoreProvider.get_instance(config.rag)
# Set random seed
set_seed(config.get('seed'))
# Run eval
logger.info("Running eval...")
run_eval(config, model_provider, vs_provider)
if __name__ == '__main__':
main()