@@ -18,7 +18,7 @@ We assume a one-dimensional robot motion :math:`x(t)` at time :math:`t` is
1818formulated as a quintic polynomials based on time as follows:
1919
2020.. math :: x(t) = a_0+a_1t+a_2t^2+a_3t^3+a_4t^4+a_5t^5
21- :label: eq1
21+ :label: quintic_eq1
2222
2323:math: `a_0 , a_1 . a_2 , a_3 , a_4 , a_5 ` are parameters of the quintic polynomial.
2424
@@ -31,44 +31,44 @@ End position, velocity, and acceleration are :math:`x_e, v_e, a_e` respectively.
3131So, when time is 0.
3232
3333.. math :: x(0) = a_0 = x_s
34- :label: eq2
34+ :label: quintic_eq2
3535
36- Then, differentiating the equation :eq: `eq1 ` with t,
36+ Then, differentiating the equation :eq: `quintic_eq1 ` with t,
3737
3838.. math :: x'(t) = a_1+2a_2t+3a_3t^2+4a_4t^3+5a_5t^4
39- :label: eq3
39+ :label: quintic_eq3
4040
4141So, when time is 0,
4242
4343.. math :: x'(0) = a_1 = v_s
44- :label: eq4
44+ :label: quintic_eq4
4545
46- Then, differentiating the equation :eq: `eq3 ` with t again,
46+ Then, differentiating the equation :eq: `quintic_eq3 ` with t again,
4747
4848.. math :: x''(t) = 2a_2+6a_3t+12a_4t^2
49- :label: eq5
49+ :label: quintic_eq5
5050
5151So, when time is 0,
5252
5353.. math :: x''(0) = 2a_2 = a_s
54- :label: eq6
54+ :label: quintic_eq6
5555
56- so, we can calculate :math: `a_0 , a_1 , a_2 ` with eq. :eq: `eq2 `, :eq: `eq4 `, :eq: `eq6 ` and boundary conditions.
56+ so, we can calculate :math: `a_0 , a_1 , a_2 ` with eq. :eq: `quintic_eq2 `, :eq: `quintic_eq4 `, :eq: `quintic_eq6 ` and boundary conditions.
5757
58- :math: `a_3 , a_4 , a_5 ` are still unknown in eq :eq: `eq1 `.
58+ :math: `a_3 , a_4 , a_5 ` are still unknown in eq :eq: `quintic_eq1 `.
5959
60- We assume that the end time for a maneuver is :math: `T`, we can get these equations from eq :eq: `eq1 `, :eq: `eq3 `, :eq: `eq5 `:
60+ We assume that the end time for a maneuver is :math: `T`, we can get these equations from eq :eq: `quintic_eq1 `, :eq: `quintic_eq3 `, :eq: `quintic_eq5 `:
6161
6262.. math :: x(T)=a_0+a_1T+a_2T^2+a_3T^3+a_4T^4+a_5T^5=x_e
63- :label: eq7
63+ :label: quintic_eq7
6464
6565.. math :: x'(T)=a_1+2a_2T+3a_3T^2+4a_4T^3+5a_5T^4=v_e
66- :label: eq8
66+ :label: quintic_eq8
6767
6868.. math :: x''(T)=2a_2+6a_3T+12a_4T^2+20a_5T^3=a_e
69- :label: eq9
69+ :label: quintic_eq9
7070
71- From eq :eq: `eq7 `, :eq: `eq8 `, :eq: `eq9 `, we can calculate :math: `a_3 , a_4 , a_5 ` to solve the linear equations: :math: `Ax=b`
71+ From eq :eq: `quintic_eq7 `, :eq: `quintic_eq8 `, :eq: `quintic_eq9 `, we can calculate :math: `a_3 , a_4 , a_5 ` to solve the linear equations: :math: `Ax=b`
7272
7373.. math :: \begin{bmatrix} T^3 & T^4 & T^5 \\ 3T^2 & 4T^3 & 5T^4 \\ 6T & 12T^2 & 20T^3 \end{bmatrix}\begin{bmatrix} a_3\\ a_4\\ a_5\end{bmatrix}=\begin{bmatrix} x_e-x_s-v_sT-0.5a_sT^2\\ v_e-v_s-a_sT\\ a_e-a_s\end{bmatrix}
7474
@@ -80,10 +80,10 @@ Quintic polynomials for two dimensional robot motion (x-y)
8080If you use two quintic polynomials along x axis and y axis, you can plan for two dimensional robot motion in x-y plane.
8181
8282.. math :: x(t) = a_0+a_1t+a_2t^2+a_3t^3+a_4t^4+a_5t^5
83- :label: eq10
83+ :label: quintic_eq10
8484
8585.. math :: y(t) = b_0+b_1t+b_2t^2+b_3t^3+b_4t^4+b_5t^5
86- :label: eq11
86+ :label: quintic_eq11
8787
8888It is assumed that terminal states (start and end) are known as boundary conditions.
8989
0 commit comments