-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnaiveBayes.py
85 lines (73 loc) · 2.82 KB
/
naiveBayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 31 13:56:06 2019
@author: juandiaz
"""
import numpy as np
import pandas as pd
import math
import scipy
import scipy.stats
class NaiveBayesClassifier:
def __init__(self):
self.init = 1
def mean(self, numbers):
return sum(numbers)/float(len(numbers))
def stdev(self, numbers):
avg = self.mean(numbers)
variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
return math.sqrt(variance)
def summarize(self,instances):
summaries = [(self.mean(attribute), self.stdev(attribute)) for attribute in zip(*instances)]
return summaries
def calculateClassProbabilities(self,summaries, inputVector):
probabilities = {}
for classValue, classSummaries in summaries.items():
probabilities[classValue] = 1
for i in range(len(classSummaries)):
mean, stdev = classSummaries[i]
x = inputVector[i]
probabilities[classValue] *= scipy.stats.norm(mean, stdev).pdf(x)
return probabilities
def fit(self, X_train, y_train):
self.X_train = X_train
self.y_train = y_train
self.separatedBasedOnOutcomeClass()
self.summaries = {}
for classValue, instances in self.separated.items():
self.summaries[classValue] = self.summarize(instances)
print("Model Trained")
def single_prediction(self, inputVector):
probabilities = self.calculateClassProbabilities(self.summaries, inputVector)
bestLabel, bestProb = None, -1
for classValue, probability in probabilities.items():
if bestLabel is None or probability > bestProb:
bestProb = probability
bestLabel = classValue
return bestLabel
def predict(self,X_test):
predictions = []
for i in range(len(X_test)):
predictions.append(self.single_prediction( X_test.iloc[i]))
return predictions
def separatedBasedOnOutcomeClass(self):
self.separated = {}
class_vals = np.array(self.y_train.unique())
for val in class_vals:
self.separated[val]= []
i=0
for outcome in np.array(self.y_train.where(self.y_train==val)):
if outcome == val:
self.separated[val].append(self.X_train.iloc[i])
i+=1
return self.separated
def score(self, X_test, y_test):
prs = self.predict(X_test)
testActualLabels = np.array(y_test)
predictions = np.array(prs)
correct = 0
for x in range(len(predictions)):
if testActualLabels[x] == predictions[x]:
correct += 1
return (correct/float(len(predictions)))