|  | 
|  | 1 | +{ | 
|  | 2 | + "cells": [ | 
|  | 3 | +  { | 
|  | 4 | +   "cell_type": "markdown", | 
|  | 5 | +   "metadata": {}, | 
|  | 6 | +   "source": [ | 
|  | 7 | +    "# Merge Sort" | 
|  | 8 | +   ] | 
|  | 9 | +  }, | 
|  | 10 | +  { | 
|  | 11 | +   "cell_type": "code", | 
|  | 12 | +   "execution_count": 31, | 
|  | 13 | +   "metadata": {}, | 
|  | 14 | +   "outputs": [], | 
|  | 15 | +   "source": [ | 
|  | 16 | +    "def merge_sort(array):\n", | 
|  | 17 | +    "    if len(array) < 2:\n", | 
|  | 18 | +    "        return array\n", | 
|  | 19 | +    "    \n", | 
|  | 20 | +    "    mid = len(array) // 2\n", | 
|  | 21 | +    "    left = merge_sort(array[:mid])\n", | 
|  | 22 | +    "    right = merge_sort(array[mid:])\n", | 
|  | 23 | +    "    \n", | 
|  | 24 | +    "    return merge(left, right)\n", | 
|  | 25 | +    "\n", | 
|  | 26 | +    "def merge(left, right):\n", | 
|  | 27 | +    "    result = []\n", | 
|  | 28 | +    "    i, j = 0, 0\n", | 
|  | 29 | +    "    while i < len(left) or j < len(right):\n", | 
|  | 30 | +    "        if left[i] <= right[j]:\n", | 
|  | 31 | +    "            result.append(left[i])\n", | 
|  | 32 | +    "            i += 1\n", | 
|  | 33 | +    "        else:\n", | 
|  | 34 | +    "            result.append(right[j])\n", | 
|  | 35 | +    "            j += 1\n", | 
|  | 36 | +    "        if i == len(left) or j == len(right):\n", | 
|  | 37 | +    "            result.extend(left[i:] or right[j:])\n", | 
|  | 38 | +    "            break\n", | 
|  | 39 | +    "    \n", | 
|  | 40 | +    "    return result" | 
|  | 41 | +   ] | 
|  | 42 | +  }, | 
|  | 43 | +  { | 
|  | 44 | +   "cell_type": "markdown", | 
|  | 45 | +   "metadata": {}, | 
|  | 46 | +   "source": [ | 
|  | 47 | +    "\n", | 
|  | 48 | +    "### Time Complexity:\n", | 
|  | 49 | +    "\n", | 
|  | 50 | +    "- Best Case: O(n log2(n))\n", | 
|  | 51 | +    "- Average Case: O(n log2(n))\n", | 
|  | 52 | +    "- Worst Case:  O(n log2(n))" | 
|  | 53 | +   ] | 
|  | 54 | +  }, | 
|  | 55 | +  { | 
|  | 56 | +   "cell_type": "markdown", | 
|  | 57 | +   "metadata": {}, | 
|  | 58 | +   "source": [ | 
|  | 59 | +    "### Why O(n log n) ?" | 
|  | 60 | +   ] | 
|  | 61 | +  }, | 
|  | 62 | +  { | 
|  | 63 | +   "cell_type": "markdown", | 
|  | 64 | +   "metadata": {}, | 
|  | 65 | +   "source": [ | 
|  | 66 | +    "If you are given two sorted arrays(say A & B) of length n/2 then it will take O(n) time to merge and make a sorted array of length n.\n", | 
|  | 67 | +    "\n", | 
|  | 68 | +    "But if A and B are not sorted then we need to sort them first. For this we first divide array A and B of length n/2 each into two arrays of length n/4 and suppose these two arrays are already sorted.\n", | 
|  | 69 | +    "\n", | 
|  | 70 | +    "Now to merge two sorted array of length n/4 to make array A of length n/2 will take O(n/2) time and similarly array B formation will also take O(n/2) time.\n", | 
|  | 71 | +    "\n", | 
|  | 72 | +    "So total time to make array A and B both also took O(n). So at every stage it is taking O(n) time. So the total time for merge sort will be O(no. of stages * n).\n", | 
|  | 73 | +    "\n", | 
|  | 74 | +    "Here we are dividing array into two parts at every stage and we will continue dividing untill length of two divided array is one.\n", | 
|  | 75 | +    "\n", | 
|  | 76 | +    "So if length of array is eight then we need to divide it three times to get arrays of length one like this\n", | 
|  | 77 | +    "\n", | 
|  | 78 | +    "8 = 4+4 = 2+2+2+2 = 1+1+1+1+1+1+1+1\n", | 
|  | 79 | +    "\n", | 
|  | 80 | +    "So\n", | 
|  | 81 | +    "\n", | 
|  | 82 | +    "no. of stages = log2(8) = 3\n", | 
|  | 83 | +    "\n", | 
|  | 84 | +    "That is why merge sort is O(nlog(n)) with log2(n) iteration.\n" | 
|  | 85 | +   ] | 
|  | 86 | +  }, | 
|  | 87 | +  { | 
|  | 88 | +   "cell_type": "markdown", | 
|  | 89 | +   "metadata": {}, | 
|  | 90 | +   "source": [ | 
|  | 91 | +    "## Code for executing and seeing the difference in time complexities" | 
|  | 92 | +   ] | 
|  | 93 | +  }, | 
|  | 94 | +  { | 
|  | 95 | +   "cell_type": "markdown", | 
|  | 96 | +   "metadata": {}, | 
|  | 97 | +   "source": [ | 
|  | 98 | +    "### Best Case Performance:" | 
|  | 99 | +   ] | 
|  | 100 | +  }, | 
|  | 101 | +  { | 
|  | 102 | +   "cell_type": "code", | 
|  | 103 | +   "execution_count": 32, | 
|  | 104 | +   "metadata": {}, | 
|  | 105 | +   "outputs": [ | 
|  | 106 | +    { | 
|  | 107 | +     "name": "stdout", | 
|  | 108 | +     "output_type": "stream", | 
|  | 109 | +     "text": [ | 
|  | 110 | +      "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]\n", | 
|  | 111 | +      "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]\n" | 
|  | 112 | +     ] | 
|  | 113 | +    } | 
|  | 114 | +   ], | 
|  | 115 | +   "source": [ | 
|  | 116 | +    "# elements are already sorted\n", | 
|  | 117 | +    "array = [i for i in range(1, 20)]\n", | 
|  | 118 | +    "\n", | 
|  | 119 | +    "print(array)\n", | 
|  | 120 | +    "# 20 ALREADY sorted elements need 18 iterations approx = n\n", | 
|  | 121 | +    "print(merge_sort(array))" | 
|  | 122 | +   ] | 
|  | 123 | +  }, | 
|  | 124 | +  { | 
|  | 125 | +   "cell_type": "markdown", | 
|  | 126 | +   "metadata": {}, | 
|  | 127 | +   "source": [ | 
|  | 128 | +    "### Average Case Performance:" | 
|  | 129 | +   ] | 
|  | 130 | +  }, | 
|  | 131 | +  { | 
|  | 132 | +   "cell_type": "code", | 
|  | 133 | +   "execution_count": 33, | 
|  | 134 | +   "metadata": {}, | 
|  | 135 | +   "outputs": [ | 
|  | 136 | +    { | 
|  | 137 | +     "name": "stdout", | 
|  | 138 | +     "output_type": "stream", | 
|  | 139 | +     "text": [ | 
|  | 140 | +      "[5, 2, 17, 15, 3, 13, 9, 12, 7, 19, 11, 18, 14, 10, 1, 16, 4, 8, 6]\n", | 
|  | 141 | +      "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]\n" | 
|  | 142 | +     ] | 
|  | 143 | +    } | 
|  | 144 | +   ], | 
|  | 145 | +   "source": [ | 
|  | 146 | +    "import random\n", | 
|  | 147 | +    "# elements are randomly shuffled\n", | 
|  | 148 | +    "array = [i for i in range(1, 20)]\n", | 
|  | 149 | +    "random.shuffle(array)\n", | 
|  | 150 | +    "print(array)\n", | 
|  | 151 | +    "# 20 shuffled elements need 324 iterations approx = n * n\n", | 
|  | 152 | +    "print(merge_sort(array))" | 
|  | 153 | +   ] | 
|  | 154 | +  }, | 
|  | 155 | +  { | 
|  | 156 | +   "cell_type": "markdown", | 
|  | 157 | +   "metadata": {}, | 
|  | 158 | +   "source": [ | 
|  | 159 | +    "### Worst Case Performance:" | 
|  | 160 | +   ] | 
|  | 161 | +  }, | 
|  | 162 | +  { | 
|  | 163 | +   "cell_type": "code", | 
|  | 164 | +   "execution_count": 34, | 
|  | 165 | +   "metadata": {}, | 
|  | 166 | +   "outputs": [ | 
|  | 167 | +    { | 
|  | 168 | +     "name": "stdout", | 
|  | 169 | +     "output_type": "stream", | 
|  | 170 | +     "text": [ | 
|  | 171 | +      "[19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]\n", | 
|  | 172 | +      "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]\n" | 
|  | 173 | +     ] | 
|  | 174 | +    } | 
|  | 175 | +   ], | 
|  | 176 | +   "source": [ | 
|  | 177 | +    "# elements are reverse sorted\n", | 
|  | 178 | +    "array = [i for i in range(1, 20)]\n", | 
|  | 179 | +    "# reversing the array\n", | 
|  | 180 | +    "array = array[::-1]\n", | 
|  | 181 | +    "\n", | 
|  | 182 | +    "print(array)\n", | 
|  | 183 | +    "# 20 REVERSE sorted elements need 324 iterations approx = n * n\n", | 
|  | 184 | +    "print(merge_sort(array))" | 
|  | 185 | +   ] | 
|  | 186 | +  } | 
|  | 187 | + ], | 
|  | 188 | + "metadata": { | 
|  | 189 | +  "kernelspec": { | 
|  | 190 | +   "display_name": "Python 3", | 
|  | 191 | +   "language": "python", | 
|  | 192 | +   "name": "python3" | 
|  | 193 | +  }, | 
|  | 194 | +  "language_info": { | 
|  | 195 | +   "codemirror_mode": { | 
|  | 196 | +    "name": "ipython", | 
|  | 197 | +    "version": 3 | 
|  | 198 | +   }, | 
|  | 199 | +   "file_extension": ".py", | 
|  | 200 | +   "mimetype": "text/x-python", | 
|  | 201 | +   "name": "python", | 
|  | 202 | +   "nbconvert_exporter": "python", | 
|  | 203 | +   "pygments_lexer": "ipython3", | 
|  | 204 | +   "version": "3.5.2" | 
|  | 205 | +  } | 
|  | 206 | + }, | 
|  | 207 | + "nbformat": 4, | 
|  | 208 | + "nbformat_minor": 2 | 
|  | 209 | +} | 
0 commit comments