>> "+wordBeingEncrypted);
- System.out.println("Word encrypted ->>> "+ColumnarTranspositionCipher.encrpyter(wordBeingEncrypted,keywordForExample));
- System.out.println("Word decryped ->>> "+ColumnarTranspositionCipher.decrypter());
- System.out.println("\n### Encrypted Table ###");
- showTable();
- }
-}
diff --git a/ciphers/RSA.java b/ciphers/RSA.java
deleted file mode 100644
index 5baa61b0424d..000000000000
--- a/ciphers/RSA.java
+++ /dev/null
@@ -1,62 +0,0 @@
-package ciphers;
-
-import java.math.BigInteger;
-import java.security.SecureRandom;
-
-/**
- * Created by Nguyen Duy Tiep on 23-Oct-17.
- */
-public class RSA {
- private BigInteger modulus, privateKey, publicKey;
-
- public RSA(int bits) {
- generateKeys(bits);
- }
-
- public synchronized String encrypt(String message) {
- return (new BigInteger(message.getBytes())).modPow(publicKey, modulus).toString();
- }
-
- public synchronized BigInteger encrypt(BigInteger message) {
- return message.modPow(publicKey, modulus);
- }
-
- public synchronized String decrypt(String message) {
- return new String((new BigInteger(message)).modPow(privateKey, modulus).toByteArray());
- }
-
- public synchronized BigInteger decrypt(BigInteger message) {
- return message.modPow(privateKey, modulus);
- }
-
- /** Generate a new public and private key set. */
- public synchronized void generateKeys(int bits) {
- SecureRandom r = new SecureRandom();
- BigInteger p = new BigInteger(bits / 2, 100, r);
- BigInteger q = new BigInteger(bits / 2, 100, r);
- modulus = p.multiply(q);
-
- BigInteger m = (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE));
-
- publicKey = new BigInteger("3");
-
- while (m.gcd(publicKey).intValue() > 1) {
- publicKey = publicKey.add(new BigInteger("2"));
- }
-
- privateKey = publicKey.modInverse(m);
- }
-
- /** Trivial test program. */
- public static void main(String[] args) {
- RSA rsa = new RSA(1024);
-
- String text1 = "This is a message";
- System.out.println("Plaintext: " + text1);
-
- String ciphertext = rsa.encrypt(text1);
- System.out.println("Ciphertext: " + ciphertext);
-
- System.out.println("Plaintext: " + rsa.decrypt(ciphertext));
- }
-}
diff --git a/pmd-custom_ruleset.xml b/pmd-custom_ruleset.xml
new file mode 100644
index 000000000000..19bb1c7968f0
--- /dev/null
+++ b/pmd-custom_ruleset.xml
@@ -0,0 +1,28 @@
+
+
+
+ Custom PMD checks for TheAlgorithms/Java
+
+
+
+ Avoid using the main method.
+
+ 3
+
+
+
+
+
+
+
+
+
diff --git a/pmd-exclude.properties b/pmd-exclude.properties
new file mode 100644
index 000000000000..a3c95b12fa4b
--- /dev/null
+++ b/pmd-exclude.properties
@@ -0,0 +1,122 @@
+com.thealgorithms.ciphers.AES=UselessMainMethod
+com.thealgorithms.ciphers.AESEncryption=UselessMainMethod
+com.thealgorithms.ciphers.AffineCipher=UselessParentheses
+com.thealgorithms.ciphers.DES=UselessParentheses
+com.thealgorithms.ciphers.ProductCipher=UselessMainMethod
+com.thealgorithms.ciphers.RSA=UselessParentheses
+com.thealgorithms.conversions.AnyBaseToAnyBase=UselessMainMethod,UselessParentheses
+com.thealgorithms.conversions.AnytoAny=UselessParentheses
+com.thealgorithms.conversions.RgbHsvConversion=UselessMainMethod
+com.thealgorithms.datastructures.crdt.Pair=UnusedPrivateField
+com.thealgorithms.datastructures.graphs.AStar=UselessParentheses
+com.thealgorithms.datastructures.graphs.AdjacencyMatrixGraph=CollapsibleIfStatements,UnnecessaryFullyQualifiedName,UselessParentheses
+com.thealgorithms.datastructures.graphs.BellmanFord=UselessMainMethod
+com.thealgorithms.datastructures.graphs.BipartiteGraphDFS=CollapsibleIfStatements
+com.thealgorithms.datastructures.graphs.ConnectedComponent=UselessMainMethod
+com.thealgorithms.datastructures.graphs.Cycles=UselessMainMethod
+com.thealgorithms.datastructures.graphs.Graphs=UselessMainMethod
+com.thealgorithms.datastructures.graphs.KahnsAlgorithm=UselessMainMethod
+com.thealgorithms.datastructures.graphs.MatrixGraphs=UselessMainMethod
+com.thealgorithms.datastructures.hashmap.hashing.HashMapCuckooHashing=UselessParentheses
+com.thealgorithms.datastructures.hashmap.hashing.MainCuckooHashing=UselessMainMethod
+com.thealgorithms.datastructures.heaps.FibonacciHeap=UselessParentheses
+com.thealgorithms.datastructures.heaps.HeapNode=UselessParentheses
+com.thealgorithms.datastructures.lists.DoublyLinkedList=UselessParentheses
+com.thealgorithms.datastructures.lists.Link=UselessMainMethod
+com.thealgorithms.datastructures.lists.RandomNode=UselessMainMethod
+com.thealgorithms.datastructures.lists.SearchSinglyLinkedListRecursion=UselessParentheses
+com.thealgorithms.datastructures.lists.SinglyLinkedList=UnusedLocalVariable,UselessMainMethod
+com.thealgorithms.datastructures.queues.Deque=UselessMainMethod
+com.thealgorithms.datastructures.queues.PriorityQueue=UselessParentheses
+com.thealgorithms.datastructures.trees.BSTRecursiveGeneric=UselessMainMethod
+com.thealgorithms.datastructures.trees.CheckBinaryTreeIsValidBST=UselessParentheses
+com.thealgorithms.datastructures.trees.LCA=UselessMainMethod
+com.thealgorithms.datastructures.trees.NearestRightKey=UselessMainMethod
+com.thealgorithms.datastructures.trees.PrintTopViewofTree=UselessMainMethod
+com.thealgorithms.datastructures.trees.SegmentTree=UselessParentheses
+com.thealgorithms.devutils.nodes.LargeTreeNode=UselessParentheses
+com.thealgorithms.devutils.nodes.SimpleNode=UselessParentheses
+com.thealgorithms.devutils.nodes.SimpleTreeNode=UselessParentheses
+com.thealgorithms.devutils.nodes.TreeNode=UselessParentheses
+com.thealgorithms.divideandconquer.ClosestPair=UnnecessaryFullyQualifiedName,UselessMainMethod,UselessParentheses
+com.thealgorithms.divideandconquer.Point=UselessParentheses
+com.thealgorithms.dynamicprogramming.CatalanNumber=UselessMainMethod
+com.thealgorithms.dynamicprogramming.EggDropping=UselessMainMethod
+com.thealgorithms.dynamicprogramming.LongestPalindromicSubsequence=UselessMainMethod
+com.thealgorithms.dynamicprogramming.WineProblem=UselessParentheses
+com.thealgorithms.maths.BinomialCoefficient=UselessParentheses
+com.thealgorithms.maths.Complex=UselessParentheses
+com.thealgorithms.maths.DistanceFormulaTest=UnnecessaryFullyQualifiedName
+com.thealgorithms.maths.EulerMethod=UselessMainMethod
+com.thealgorithms.maths.GCDRecursion=UselessMainMethod
+com.thealgorithms.maths.Gaussian=UselessParentheses
+com.thealgorithms.maths.GcdSolutionWrapper=UselessParentheses
+com.thealgorithms.maths.HeronsFormula=UselessParentheses
+com.thealgorithms.maths.JugglerSequence=UselessMainMethod
+com.thealgorithms.maths.KaprekarNumbers=UselessParentheses
+com.thealgorithms.maths.KeithNumber=UselessMainMethod,UselessParentheses
+com.thealgorithms.maths.LeonardoNumber=UselessParentheses
+com.thealgorithms.maths.LinearDiophantineEquationsSolver=UselessMainMethod,UselessParentheses
+com.thealgorithms.maths.MagicSquare=UselessMainMethod
+com.thealgorithms.maths.PiNilakantha=UselessMainMethod
+com.thealgorithms.maths.Prime.PrimeCheck=UselessMainMethod
+com.thealgorithms.maths.PythagoreanTriple=UselessMainMethod
+com.thealgorithms.maths.RomanNumeralUtil=UselessParentheses
+com.thealgorithms.maths.SecondMinMax=UselessParentheses
+com.thealgorithms.maths.SecondMinMaxTest=UnnecessaryFullyQualifiedName
+com.thealgorithms.maths.SimpsonIntegration=UselessMainMethod
+com.thealgorithms.maths.StandardDeviation=UselessParentheses
+com.thealgorithms.maths.SumOfArithmeticSeries=UselessParentheses
+com.thealgorithms.maths.TrinomialTriangle=UselessMainMethod,UselessParentheses
+com.thealgorithms.maths.VectorCrossProduct=UselessMainMethod
+com.thealgorithms.maths.Volume=UselessParentheses
+com.thealgorithms.matrix.RotateMatrixBy90Degrees=UselessMainMethod
+com.thealgorithms.misc.Sparsity=UselessParentheses
+com.thealgorithms.others.BankersAlgorithm=UselessMainMethod
+com.thealgorithms.others.BrianKernighanAlgorithm=UselessMainMethod
+com.thealgorithms.others.CRC16=UselessMainMethod,UselessParentheses
+com.thealgorithms.others.CRC32=UselessMainMethod
+com.thealgorithms.others.Damm=UnnecessaryFullyQualifiedName,UselessMainMethod
+com.thealgorithms.others.Dijkstra=UselessMainMethod
+com.thealgorithms.others.GaussLegendre=UselessMainMethod
+com.thealgorithms.others.HappyNumbersSeq=UselessMainMethod
+com.thealgorithms.others.Huffman=UselessMainMethod
+com.thealgorithms.others.InsertDeleteInArray=UselessMainMethod
+com.thealgorithms.others.KochSnowflake=UselessMainMethod
+com.thealgorithms.others.Krishnamurthy=UselessMainMethod
+com.thealgorithms.others.LinearCongruentialGenerator=UselessMainMethod
+com.thealgorithms.others.Luhn=UnnecessaryFullyQualifiedName,UselessMainMethod
+com.thealgorithms.others.Mandelbrot=UselessMainMethod,UselessParentheses
+com.thealgorithms.others.MiniMaxAlgorithm=UselessMainMethod,UselessParentheses
+com.thealgorithms.others.MosAlgorithm=UselessMainMethod
+com.thealgorithms.others.PageRank=UselessMainMethod,UselessParentheses
+com.thealgorithms.others.PerlinNoise=UselessMainMethod,UselessParentheses
+com.thealgorithms.others.QueueUsingTwoStacks=UselessParentheses
+com.thealgorithms.others.Trieac=UselessMainMethod,UselessParentheses
+com.thealgorithms.others.Verhoeff=UnnecessaryFullyQualifiedName,UselessMainMethod
+com.thealgorithms.puzzlesandgames.Sudoku=UselessMainMethod
+com.thealgorithms.recursion.DiceThrower=UselessMainMethod
+com.thealgorithms.searches.HowManyTimesRotated=UselessMainMethod
+com.thealgorithms.searches.InterpolationSearch=UselessParentheses
+com.thealgorithms.searches.KMPSearch=UselessParentheses
+com.thealgorithms.searches.RabinKarpAlgorithm=UselessParentheses
+com.thealgorithms.searches.RecursiveBinarySearch=UselessMainMethod
+com.thealgorithms.sorts.BogoSort=UselessMainMethod
+com.thealgorithms.sorts.CircleSort=EmptyControlStatement
+com.thealgorithms.sorts.DutchNationalFlagSort=UselessParentheses
+com.thealgorithms.sorts.MergeSortNoExtraSpace=UselessParentheses
+com.thealgorithms.sorts.RadixSort=UselessParentheses
+com.thealgorithms.sorts.TreeSort=UselessMainMethod
+com.thealgorithms.sorts.WiggleSort=UselessParentheses
+com.thealgorithms.stacks.LargestRectangle=UselessMainMethod
+com.thealgorithms.stacks.MaximumMinimumWindow=UselessMainMethod
+com.thealgorithms.stacks.PostfixToInfix=UselessParentheses
+com.thealgorithms.strings.Alphabetical=UselessMainMethod
+com.thealgorithms.strings.HorspoolSearch=UnnecessaryFullyQualifiedName,UselessParentheses
+com.thealgorithms.strings.KMP=UselessMainMethod
+com.thealgorithms.strings.Lower=UselessMainMethod
+com.thealgorithms.strings.Palindrome=UselessParentheses
+com.thealgorithms.strings.Pangram=UselessMainMethod
+com.thealgorithms.strings.RabinKarp=UselessMainMethod
+com.thealgorithms.strings.Rotation=UselessMainMethod
+com.thealgorithms.strings.Upper=UselessMainMethod
diff --git a/pom.xml b/pom.xml
new file mode 100644
index 000000000000..8a7cba29c908
--- /dev/null
+++ b/pom.xml
@@ -0,0 +1,158 @@
+
+
+ 4.0.0
+ com.thealgorithms
+ Java
+ 1.0-SNAPSHOT
+ jar
+
+
+ UTF-8
+ 21
+ 21
+ 3.27.6
+
+
+
+
+
+ org.junit
+ junit-bom
+ 6.0.0
+ pom
+ import
+
+
+
+
+
+
+ org.junit.jupiter
+ junit-jupiter
+ test
+
+
+ org.assertj
+ assertj-core
+ ${assertj.version}
+ test
+
+
+ org.mockito
+ mockito-core
+ 5.20.0
+ test
+
+
+ org.apache.commons
+ commons-lang3
+ 3.19.0
+
+
+ org.apache.commons
+ commons-collections4
+ 4.5.0
+
+
+
+
+
+
+ maven-surefire-plugin
+ 3.5.4
+
+
+
+
+
+ org.apache.maven.plugins
+ maven-compiler-plugin
+ 3.14.1
+
+ 21
+
+ -Xlint:all
+ -Xlint:-auxiliaryclass
+ -Werror
+
+
+
+
+ org.jacoco
+ jacoco-maven-plugin
+ 0.8.14
+
+
+
+ prepare-agent
+
+
+
+ generate-code-coverage-report
+ test
+
+ report
+
+
+
+
+
+ org.apache.maven.plugins
+ maven-checkstyle-plugin
+ 3.6.0
+
+ checkstyle.xml
+ true
+ true
+ warning
+
+
+
+ com.puppycrawl.tools
+ checkstyle
+ 12.0.1
+
+
+
+
+ com.github.spotbugs
+ spotbugs-maven-plugin
+ 4.9.7.0
+
+ spotbugs-exclude.xml
+ true
+
+
+ com.mebigfatguy.fb-contrib
+ fb-contrib
+ 7.6.15
+
+
+ com.h3xstream.findsecbugs
+ findsecbugs-plugin
+ 1.14.0
+
+
+
+
+
+ org.apache.maven.plugins
+ maven-pmd-plugin
+ 3.28.0
+
+
+ /rulesets/java/maven-pmd-plugin-default.xml
+ /category/java/security.xml
+ file://${basedir}/pmd-custom_ruleset.xml
+
+ true
+ true
+ false
+ pmd-exclude.properties
+
+
+
+
+
diff --git a/spotbugs-exclude.xml b/spotbugs-exclude.xml
new file mode 100644
index 000000000000..d2e094556d61
--- /dev/null
+++ b/spotbugs-exclude.xml
@@ -0,0 +1,211 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/src/main/java/com/thealgorithms/audiofilters/EMAFilter.java b/src/main/java/com/thealgorithms/audiofilters/EMAFilter.java
new file mode 100644
index 000000000000..0dd23e937953
--- /dev/null
+++ b/src/main/java/com/thealgorithms/audiofilters/EMAFilter.java
@@ -0,0 +1,48 @@
+package com.thealgorithms.audiofilters;
+
+/**
+ * Exponential Moving Average (EMA) Filter for smoothing audio signals.
+ *
+ * This filter applies an exponential moving average to a sequence of audio
+ * signal values, making it useful for smoothing out rapid fluctuations.
+ * The smoothing factor (alpha) controls the degree of smoothing.
+ *
+ *
Based on the definition from
+ * Wikipedia link.
+ */
+public class EMAFilter {
+ private final double alpha;
+ private double emaValue;
+ /**
+ * Constructs an EMA filter with a given smoothing factor.
+ *
+ * @param alpha Smoothing factor (0 < alpha <= 1)
+ * @throws IllegalArgumentException if alpha is not in (0, 1]
+ */
+ public EMAFilter(double alpha) {
+ if (alpha <= 0 || alpha > 1) {
+ throw new IllegalArgumentException("Alpha must be between 0 and 1.");
+ }
+ this.alpha = alpha;
+ this.emaValue = 0.0;
+ }
+ /**
+ * Applies the EMA filter to an audio signal array.
+ *
+ * @param audioSignal Array of audio samples to process
+ * @return Array of processed (smoothed) samples
+ */
+ public double[] apply(double[] audioSignal) {
+ if (audioSignal.length == 0) {
+ return new double[0];
+ }
+ double[] emaSignal = new double[audioSignal.length];
+ emaValue = audioSignal[0];
+ emaSignal[0] = emaValue;
+ for (int i = 1; i < audioSignal.length; i++) {
+ emaValue = alpha * audioSignal[i] + (1 - alpha) * emaValue;
+ emaSignal[i] = emaValue;
+ }
+ return emaSignal;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/audiofilters/IIRFilter.java b/src/main/java/com/thealgorithms/audiofilters/IIRFilter.java
new file mode 100644
index 000000000000..fbc095909541
--- /dev/null
+++ b/src/main/java/com/thealgorithms/audiofilters/IIRFilter.java
@@ -0,0 +1,93 @@
+package com.thealgorithms.audiofilters;
+
+/**
+ * N-Order IIR Filter Assumes inputs are normalized to [-1, 1]
+ *
+ * Based on the difference equation from
+ * Wikipedia link
+ */
+public class IIRFilter {
+
+ private final int order;
+ private final double[] coeffsA;
+ private final double[] coeffsB;
+ private final double[] historyX;
+ private final double[] historyY;
+
+ /**
+ * Construct an IIR Filter
+ *
+ * @param order the filter's order
+ * @throws IllegalArgumentException if order is zero or less
+ */
+ public IIRFilter(int order) throws IllegalArgumentException {
+ if (order < 1) {
+ throw new IllegalArgumentException("order must be greater than zero");
+ }
+
+ this.order = order;
+ coeffsA = new double[order + 1];
+ coeffsB = new double[order + 1];
+
+ // Sane defaults
+ coeffsA[0] = 1.0;
+ coeffsB[0] = 1.0;
+
+ historyX = new double[order];
+ historyY = new double[order];
+ }
+
+ /**
+ * Set coefficients
+ *
+ * @param aCoeffs Denominator coefficients
+ * @param bCoeffs Numerator coefficients
+ * @throws IllegalArgumentException if {@code aCoeffs} or {@code bCoeffs} is
+ * not of size {@code order}, or if {@code aCoeffs[0]} is 0.0
+ */
+ public void setCoeffs(double[] aCoeffs, double[] bCoeffs) throws IllegalArgumentException {
+ if (aCoeffs.length != order) {
+ throw new IllegalArgumentException("aCoeffs must be of size " + order + ", got " + aCoeffs.length);
+ }
+
+ if (aCoeffs[0] == 0.0) {
+ throw new IllegalArgumentException("aCoeffs.get(0) must not be zero");
+ }
+
+ if (bCoeffs.length != order) {
+ throw new IllegalArgumentException("bCoeffs must be of size " + order + ", got " + bCoeffs.length);
+ }
+
+ for (int i = 0; i < order; i++) {
+ coeffsA[i] = aCoeffs[i];
+ coeffsB[i] = bCoeffs[i];
+ }
+ }
+
+ /**
+ * Process a single sample
+ *
+ * @param sample the sample to process
+ * @return the processed sample
+ */
+ public double process(double sample) {
+ double result = 0.0;
+
+ // Process
+ for (int i = 1; i <= order; i++) {
+ result += (coeffsB[i] * historyX[i - 1] - coeffsA[i] * historyY[i - 1]);
+ }
+ result = (result + coeffsB[0] * sample) / coeffsA[0];
+
+ // Feedback
+ for (int i = order - 1; i > 0; i--) {
+ historyX[i] = historyX[i - 1];
+ historyY[i] = historyY[i - 1];
+ }
+
+ historyX[0] = sample;
+ historyY[0] = result;
+
+ return result;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/AllPathsFromSourceToTarget.java b/src/main/java/com/thealgorithms/backtracking/AllPathsFromSourceToTarget.java
new file mode 100644
index 000000000000..c35a36d97a57
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/AllPathsFromSourceToTarget.java
@@ -0,0 +1,101 @@
+package com.thealgorithms.backtracking;
+
+import java.util.ArrayList;
+import java.util.List;
+
+/**
+ * Program description - To find all possible paths from source to destination
+ * Wikipedia
+ *
+ * @author Siddhant Swarup Mallick
+ */
+@SuppressWarnings({"rawtypes", "unchecked"})
+public class AllPathsFromSourceToTarget {
+
+ // No. of vertices in graph
+ private final int v;
+
+ // To store the paths from source to destination
+ static List> nm = new ArrayList<>();
+ // adjacency list
+ private ArrayList[] adjList;
+
+ // Constructor
+ public AllPathsFromSourceToTarget(int vertices) {
+
+ // initialise vertex count
+ this.v = vertices;
+
+ // initialise adjacency list
+ initAdjList();
+ }
+
+ // utility method to initialise adjacency list
+ private void initAdjList() {
+ adjList = new ArrayList[v];
+
+ for (int i = 0; i < v; i++) {
+ adjList[i] = new ArrayList<>();
+ }
+ }
+
+ // add edge from u to v
+ public void addEdge(int u, int v) {
+ // Add v to u's list.
+ adjList[u].add(v);
+ }
+
+ public void storeAllPaths(int s, int d) {
+ boolean[] isVisited = new boolean[v];
+ ArrayList pathList = new ArrayList<>();
+
+ // add source to path[]
+ pathList.add(s);
+ // Call recursive utility
+ storeAllPathsUtil(s, d, isVisited, pathList);
+ }
+
+ // A recursive function to print all paths from 'u' to 'd'.
+ // isVisited[] keeps track of vertices in current path.
+ // localPathList<> stores actual vertices in the current path
+ private void storeAllPathsUtil(Integer u, Integer d, boolean[] isVisited, List localPathList) {
+
+ if (u.equals(d)) {
+ nm.add(new ArrayList<>(localPathList));
+ return;
+ }
+
+ // Mark the current node
+ isVisited[u] = true;
+
+ // Recursion for all the vertices adjacent to current vertex
+
+ for (Integer i : adjList[u]) {
+ if (!isVisited[i]) {
+ // store current node in path[]
+ localPathList.add(i);
+ storeAllPathsUtil(i, d, isVisited, localPathList);
+
+ // remove current node in path[]
+ localPathList.remove(i);
+ }
+ }
+
+ // Mark the current node
+ isVisited[u] = false;
+ }
+
+ // Driver program
+ public static List> allPathsFromSourceToTarget(int vertices, int[][] a, int source, int destination) {
+ // Create a sample graph
+ AllPathsFromSourceToTarget g = new AllPathsFromSourceToTarget(vertices);
+ for (int[] i : a) {
+ g.addEdge(i[0], i[1]);
+ // edges are added
+ }
+ g.storeAllPaths(source, destination);
+ // method call to store all possible paths
+ return nm;
+ // returns all possible paths from source to destination
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/ArrayCombination.java b/src/main/java/com/thealgorithms/backtracking/ArrayCombination.java
new file mode 100644
index 000000000000..f8cd0c40c20e
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/ArrayCombination.java
@@ -0,0 +1,54 @@
+package com.thealgorithms.backtracking;
+
+import java.util.ArrayList;
+import java.util.List;
+
+/**
+ * This class provides methods to find all combinations of integers from 0 to n-1
+ * of a specified length k using backtracking.
+ */
+public final class ArrayCombination {
+ private ArrayCombination() {
+ }
+
+ /**
+ * Generates all possible combinations of length k from the integers 0 to n-1.
+ *
+ * @param n The total number of elements (0 to n-1).
+ * @param k The desired length of each combination.
+ * @return A list containing all combinations of length k.
+ * @throws IllegalArgumentException if n or k are negative, or if k is greater than n.
+ */
+ public static List> combination(int n, int k) {
+ if (n < 0 || k < 0 || k > n) {
+ throw new IllegalArgumentException("Invalid input: n must be non-negative, k must be non-negative and less than or equal to n.");
+ }
+
+ List> combinations = new ArrayList<>();
+ combine(combinations, new ArrayList<>(), 0, n, k);
+ return combinations;
+ }
+
+ /**
+ * A helper method that uses backtracking to find combinations.
+ *
+ * @param combinations The list to store all valid combinations found.
+ * @param current The current combination being built.
+ * @param start The starting index for the current recursion.
+ * @param n The total number of elements (0 to n-1).
+ * @param k The desired length of each combination.
+ */
+ private static void combine(List> combinations, List current, int start, int n, int k) {
+ // Base case: combination found
+ if (current.size() == k) {
+ combinations.add(new ArrayList<>(current));
+ return;
+ }
+
+ for (int i = start; i < n; i++) {
+ current.add(i);
+ combine(combinations, current, i + 1, n, k);
+ current.remove(current.size() - 1); // Backtrack
+ }
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/Combination.java b/src/main/java/com/thealgorithms/backtracking/Combination.java
new file mode 100644
index 000000000000..ecaf7428f986
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/Combination.java
@@ -0,0 +1,67 @@
+package com.thealgorithms.backtracking;
+
+import java.util.Arrays;
+import java.util.Collections;
+import java.util.LinkedList;
+import java.util.List;
+import java.util.TreeSet;
+
+/**
+ * Finds all permutations of given array
+ * @author Alan Piao (git-Alan Piao)
+ */
+public final class Combination {
+ private Combination() {
+ }
+
+ /**
+ * Find all combinations of given array using backtracking
+ * @param arr the array.
+ * @param n length of combination
+ * @param the type of elements in the array.
+ * @return a list of all combinations of length n. If n == 0, return null.
+ */
+ public static List> combination(T[] arr, int n) {
+ if (n < 0) {
+ throw new IllegalArgumentException("The combination length cannot be negative.");
+ }
+
+ if (n == 0) {
+ return Collections.emptyList();
+ }
+ T[] array = arr.clone();
+ Arrays.sort(array);
+
+ List> result = new LinkedList<>();
+ backtracking(array, n, 0, new TreeSet(), result);
+ return result;
+ }
+
+ /**
+ * Backtrack all possible combinations of a given array
+ * @param arr the array.
+ * @param n length of the combination
+ * @param index the starting index.
+ * @param currSet set that tracks current combination
+ * @param result the list contains all combination.
+ * @param the type of elements in the array.
+ */
+ private static void backtracking(T[] arr, int n, int index, TreeSet currSet, List> result) {
+ if (index + n - currSet.size() > arr.length) {
+ return;
+ }
+ if (currSet.size() == n - 1) {
+ for (int i = index; i < arr.length; i++) {
+ currSet.add(arr[i]);
+ result.add(new TreeSet<>(currSet));
+ currSet.remove(arr[i]);
+ }
+ return;
+ }
+ for (int i = index; i < arr.length; i++) {
+ currSet.add(arr[i]);
+ backtracking(arr, n, i + 1, currSet, result);
+ currSet.remove(arr[i]);
+ }
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/CrosswordSolver.java b/src/main/java/com/thealgorithms/backtracking/CrosswordSolver.java
new file mode 100644
index 000000000000..6bfb026c7de9
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/CrosswordSolver.java
@@ -0,0 +1,125 @@
+package com.thealgorithms.backtracking;
+
+import java.util.ArrayList;
+import java.util.Collection;
+import java.util.List;
+
+/**
+ * A class to solve a crossword puzzle using backtracking.
+ * Example:
+ * Input:
+ * puzzle = {
+ * {' ', ' ', ' '},
+ * {' ', ' ', ' '},
+ * {' ', ' ', ' '}
+ * }
+ * words = List.of("cat", "dog")
+ *
+ * Output:
+ * {
+ * {'c', 'a', 't'},
+ * {' ', ' ', ' '},
+ * {'d', 'o', 'g'}
+ * }
+ */
+public final class CrosswordSolver {
+ private CrosswordSolver() {
+ }
+
+ /**
+ * Checks if a word can be placed at the specified position in the crossword.
+ *
+ * @param puzzle The crossword puzzle represented as a 2D char array.
+ * @param word The word to be placed.
+ * @param row The row index where the word might be placed.
+ * @param col The column index where the word might be placed.
+ * @param vertical If true, the word is placed vertically; otherwise, horizontally.
+ * @return true if the word can be placed, false otherwise.
+ */
+ public static boolean isValid(char[][] puzzle, String word, int row, int col, boolean vertical) {
+ for (int i = 0; i < word.length(); i++) {
+ if (vertical) {
+ if (row + i >= puzzle.length || puzzle[row + i][col] != ' ') {
+ return false;
+ }
+ } else {
+ if (col + i >= puzzle[0].length || puzzle[row][col + i] != ' ') {
+ return false;
+ }
+ }
+ }
+ return true;
+ }
+
+ /**
+ * Places a word at the specified position in the crossword.
+ *
+ * @param puzzle The crossword puzzle represented as a 2D char array.
+ * @param word The word to be placed.
+ * @param row The row index where the word will be placed.
+ * @param col The column index where the word will be placed.
+ * @param vertical If true, the word is placed vertically; otherwise, horizontally.
+ */
+ public static void placeWord(char[][] puzzle, String word, int row, int col, boolean vertical) {
+ for (int i = 0; i < word.length(); i++) {
+ if (vertical) {
+ puzzle[row + i][col] = word.charAt(i);
+ } else {
+ puzzle[row][col + i] = word.charAt(i);
+ }
+ }
+ }
+
+ /**
+ * Removes a word from the specified position in the crossword.
+ *
+ * @param puzzle The crossword puzzle represented as a 2D char array.
+ * @param word The word to be removed.
+ * @param row The row index where the word is placed.
+ * @param col The column index where the word is placed.
+ * @param vertical If true, the word was placed vertically; otherwise, horizontally.
+ */
+ public static void removeWord(char[][] puzzle, String word, int row, int col, boolean vertical) {
+ for (int i = 0; i < word.length(); i++) {
+ if (vertical) {
+ puzzle[row + i][col] = ' ';
+ } else {
+ puzzle[row][col + i] = ' ';
+ }
+ }
+ }
+
+ /**
+ * Solves the crossword puzzle using backtracking.
+ *
+ * @param puzzle The crossword puzzle represented as a 2D char array.
+ * @param words The list of words to be placed.
+ * @return true if the crossword is solved, false otherwise.
+ */
+ public static boolean solveCrossword(char[][] puzzle, Collection words) {
+ // Create a mutable copy of the words list
+ List remainingWords = new ArrayList<>(words);
+
+ for (int row = 0; row < puzzle.length; row++) {
+ for (int col = 0; col < puzzle[0].length; col++) {
+ if (puzzle[row][col] == ' ') {
+ for (String word : new ArrayList<>(remainingWords)) {
+ for (boolean vertical : new boolean[] {true, false}) {
+ if (isValid(puzzle, word, row, col, vertical)) {
+ placeWord(puzzle, word, row, col, vertical);
+ remainingWords.remove(word);
+ if (solveCrossword(puzzle, remainingWords)) {
+ return true;
+ }
+ remainingWords.add(word);
+ removeWord(puzzle, word, row, col, vertical);
+ }
+ }
+ }
+ return false;
+ }
+ }
+ }
+ return true;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/FloodFill.java b/src/main/java/com/thealgorithms/backtracking/FloodFill.java
new file mode 100644
index 000000000000..c8219ca8ba7e
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/FloodFill.java
@@ -0,0 +1,62 @@
+package com.thealgorithms.backtracking;
+
+/**
+ * Java program for Flood fill algorithm.
+ * @author Akshay Dubey (Git-Akshay Dubey)
+ */
+public final class FloodFill {
+ private FloodFill() {
+ }
+
+ /**
+ * Get the color at the given coordinates of a 2D image
+ *
+ * @param image The image to be filled
+ * @param x The x co-ordinate of which color is to be obtained
+ * @param y The y co-ordinate of which color is to be obtained
+ */
+
+ public static int getPixel(final int[][] image, final int x, final int y) {
+ return image[x][y];
+ }
+
+ /**
+ * Put the color at the given coordinates of a 2D image
+ *
+ * @param image The image to be filled
+ * @param x The x co-ordinate at which color is to be filled
+ * @param y The y co-ordinate at which color is to be filled
+ */
+ public static void putPixel(final int[][] image, final int x, final int y, final int newColor) {
+ image[x][y] = newColor;
+ }
+
+ /**
+ * Fill the 2D image with new color
+ *
+ * @param image The image to be filled
+ * @param x The x co-ordinate at which color is to be filled
+ * @param y The y co-ordinate at which color is to be filled
+ * @param newColor The new color which to be filled in the image
+ * @param oldColor The old color which is to be replaced in the image
+ */
+ public static void floodFill(final int[][] image, final int x, final int y, final int newColor, final int oldColor) {
+ if (newColor == oldColor || x < 0 || x >= image.length || y < 0 || y >= image[x].length || getPixel(image, x, y) != oldColor) {
+ return;
+ }
+
+ putPixel(image, x, y, newColor);
+
+ /* Recursively check for horizontally & vertically adjacent coordinates */
+ floodFill(image, x + 1, y, newColor, oldColor);
+ floodFill(image, x - 1, y, newColor, oldColor);
+ floodFill(image, x, y + 1, newColor, oldColor);
+ floodFill(image, x, y - 1, newColor, oldColor);
+
+ /* Recursively check for diagonally adjacent coordinates */
+ floodFill(image, x + 1, y - 1, newColor, oldColor);
+ floodFill(image, x - 1, y + 1, newColor, oldColor);
+ floodFill(image, x + 1, y + 1, newColor, oldColor);
+ floodFill(image, x - 1, y - 1, newColor, oldColor);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/KnightsTour.java b/src/main/java/com/thealgorithms/backtracking/KnightsTour.java
new file mode 100644
index 000000000000..2c2da659f3aa
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/KnightsTour.java
@@ -0,0 +1,156 @@
+package com.thealgorithms.backtracking;
+
+import java.util.ArrayList;
+import java.util.Comparator;
+import java.util.List;
+
+/**
+ * The KnightsTour class solves the Knight's Tour problem using backtracking.
+ *
+ * Problem Statement:
+ * Given an N*N board with a knight placed on the first block, the knight must
+ * move according to chess rules and visit each square on the board exactly once.
+ * The class outputs the sequence of moves for the knight.
+ *
+ * Example:
+ * Input: N = 8 (8x8 chess board)
+ * Output: The sequence of numbers representing the order in which the knight visits each square.
+ */
+public final class KnightsTour {
+ private KnightsTour() {
+ }
+
+ // The size of the chess board (12x12 grid, with 2 extra rows/columns as a buffer around a 8x8 area)
+ private static final int BASE = 12;
+
+ // Possible moves for a knight in chess
+ private static final int[][] MOVES = {
+ {1, -2},
+ {2, -1},
+ {2, 1},
+ {1, 2},
+ {-1, 2},
+ {-2, 1},
+ {-2, -1},
+ {-1, -2},
+ };
+
+ // Chess grid representing the board
+ static int[][] grid;
+
+ // Total number of cells the knight needs to visit
+ static int total;
+
+ /**
+ * Resets the chess board to its initial state.
+ * Initializes the grid with boundary cells marked as -1 and internal cells as 0.
+ * Sets the total number of cells the knight needs to visit.
+ */
+ public static void resetBoard() {
+ grid = new int[BASE][BASE];
+ total = (BASE - 4) * (BASE - 4);
+ for (int r = 0; r < BASE; r++) {
+ for (int c = 0; c < BASE; c++) {
+ if (r < 2 || r > BASE - 3 || c < 2 || c > BASE - 3) {
+ grid[r][c] = -1; // Mark boundary cells
+ }
+ }
+ }
+ }
+
+ /**
+ * Recursive method to solve the Knight's Tour problem.
+ *
+ * @param row The current row of the knight
+ * @param column The current column of the knight
+ * @param count The current move number
+ * @return True if a solution is found, False otherwise
+ */
+ static boolean solve(int row, int column, int count) {
+ if (count > total) {
+ return true;
+ }
+
+ List neighbor = neighbors(row, column);
+
+ if (neighbor.isEmpty() && count != total) {
+ return false;
+ }
+
+ // Sort neighbors by Warnsdorff's rule (fewest onward moves)
+ neighbor.sort(Comparator.comparingInt(a -> a[2]));
+
+ for (int[] nb : neighbor) {
+ int nextRow = nb[0];
+ int nextCol = nb[1];
+ grid[nextRow][nextCol] = count;
+ if (!orphanDetected(count, nextRow, nextCol) && solve(nextRow, nextCol, count + 1)) {
+ return true;
+ }
+ grid[nextRow][nextCol] = 0; // Backtrack
+ }
+
+ return false;
+ }
+
+ /**
+ * Returns a list of valid neighboring cells where the knight can move.
+ *
+ * @param row The current row of the knight
+ * @param column The current column of the knight
+ * @return A list of arrays representing valid moves, where each array contains:
+ * {nextRow, nextCol, numberOfPossibleNextMoves}
+ */
+ static List neighbors(int row, int column) {
+ List neighbour = new ArrayList<>();
+
+ for (int[] m : MOVES) {
+ int x = m[0];
+ int y = m[1];
+ if (row + y >= 0 && row + y < BASE && column + x >= 0 && column + x < BASE && grid[row + y][column + x] == 0) {
+ int num = countNeighbors(row + y, column + x);
+ neighbour.add(new int[] {row + y, column + x, num});
+ }
+ }
+ return neighbour;
+ }
+
+ /**
+ * Counts the number of possible valid moves for a knight from a given position.
+ *
+ * @param row The row of the current position
+ * @param column The column of the current position
+ * @return The number of valid neighboring moves
+ */
+ static int countNeighbors(int row, int column) {
+ int num = 0;
+ for (int[] m : MOVES) {
+ int x = m[0];
+ int y = m[1];
+ if (row + y >= 0 && row + y < BASE && column + x >= 0 && column + x < BASE && grid[row + y][column + x] == 0) {
+ num++;
+ }
+ }
+ return num;
+ }
+
+ /**
+ * Detects if moving to a given position will create an orphan (a position with no further valid moves).
+ *
+ * @param count The current move number
+ * @param row The row of the current position
+ * @param column The column of the current position
+ * @return True if an orphan is detected, False otherwise
+ */
+ static boolean orphanDetected(int count, int row, int column) {
+ if (count < total - 1) {
+ List neighbor = neighbors(row, column);
+ for (int[] nb : neighbor) {
+ if (countNeighbors(nb[0], nb[1]) == 0) {
+ return true;
+ }
+ }
+ }
+ return false;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/MColoring.java b/src/main/java/com/thealgorithms/backtracking/MColoring.java
new file mode 100644
index 000000000000..d0188dfd13aa
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/MColoring.java
@@ -0,0 +1,96 @@
+package com.thealgorithms.backtracking;
+
+import java.util.ArrayList;
+import java.util.HashSet;
+import java.util.LinkedList;
+import java.util.Queue;
+import java.util.Set;
+
+/**
+ * Node class represents a graph node. Each node is associated with a color
+ * (initially 1) and contains a set of edges representing its adjacent nodes.
+ *
+ * @author Bama Charan Chhandogi (https://github.com/BamaCharanChhandogi)
+ */
+class Node {
+ int color = 1; // Initial color for each node
+ Set edges = new HashSet(); // Set of edges representing adjacent nodes
+}
+
+/**
+ * MColoring class solves the M-Coloring problem where the goal is to determine
+ * if it's possible to color a graph using at most M colors such that no two
+ * adjacent nodes have the same color.
+ */
+public final class MColoring {
+
+ private MColoring() {
+ } // Prevent instantiation of utility class
+
+ /**
+ * Determines whether it is possible to color the graph using at most M colors.
+ *
+ * @param nodes List of nodes representing the graph.
+ * @param n The total number of nodes in the graph.
+ * @param m The maximum number of allowed colors.
+ * @return true if the graph can be colored using M colors, false otherwise.
+ */
+ static boolean isColoringPossible(ArrayList nodes, int n, int m) {
+
+ // Visited array keeps track of whether each node has been processed.
+ ArrayList visited = new ArrayList();
+ for (int i = 0; i < n + 1; i++) {
+ visited.add(0); // Initialize all nodes as unvisited (0)
+ }
+
+ // The number of colors used so far (initially set to 1, since all nodes
+ // start with color 1).
+ int maxColors = 1;
+
+ // Loop through all the nodes to ensure every node is visited, in case the
+ // graph is disconnected.
+ for (int sv = 1; sv <= n; sv++) {
+ if (visited.get(sv) > 0) {
+ continue; // Skip nodes that are already visited
+ }
+
+ // If the node is unvisited, mark it as visited and add it to the queue for BFS.
+ visited.set(sv, 1);
+ Queue q = new LinkedList<>();
+ q.add(sv);
+
+ // Perform BFS to process all nodes and their adjacent nodes
+ while (q.size() != 0) {
+ int top = q.peek(); // Get the current node from the queue
+ q.remove();
+
+ // Check all adjacent nodes of the current node
+ for (int it : nodes.get(top).edges) {
+
+ // If the adjacent node has the same color as the current node, increment its
+ // color to avoid conflict.
+ if (nodes.get(top).color == nodes.get(it).color) {
+ nodes.get(it).color += 1;
+ }
+
+ // Keep track of the maximum number of colors used so far
+ maxColors = Math.max(maxColors, Math.max(nodes.get(top).color, nodes.get(it).color));
+
+ // If the number of colors used exceeds the allowed limit M, return false.
+ if (maxColors > m) {
+ return false;
+ }
+
+ // If the adjacent node hasn't been visited yet, mark it as visited and add it
+ // to the queue for further processing.
+ if (visited.get(it) == 0) {
+ visited.set(it, 1);
+ q.add(it);
+ }
+ }
+ }
+ }
+
+ return true; // Possible to color the entire graph with M or fewer colors.
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/MazeRecursion.java b/src/main/java/com/thealgorithms/backtracking/MazeRecursion.java
new file mode 100644
index 000000000000..8247172e7ee0
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/MazeRecursion.java
@@ -0,0 +1,125 @@
+package com.thealgorithms.backtracking;
+
+/**
+ * This class contains methods to solve a maze using recursive backtracking.
+ * The maze is represented as a 2D array where walls, paths, and visited/dead
+ * ends are marked with different integers.
+ *
+ * The goal is to find a path from a starting position to the target position
+ * (map[6][5]) while navigating through the maze.
+ */
+public final class MazeRecursion {
+
+ private MazeRecursion() {
+ }
+
+ /**
+ * This method solves the maze using the "down -> right -> up -> left"
+ * movement strategy.
+ *
+ * @param map The 2D array representing the maze (walls, paths, etc.)
+ * @return The solved maze with paths marked, or null if no solution exists.
+ */
+ public static int[][] solveMazeUsingFirstStrategy(int[][] map) {
+ if (setWay(map, 1, 1)) {
+ return map;
+ }
+ return null;
+ }
+
+ /**
+ * This method solves the maze using the "up -> right -> down -> left"
+ * movement strategy.
+ *
+ * @param map The 2D array representing the maze (walls, paths, etc.)
+ * @return The solved maze with paths marked, or null if no solution exists.
+ */
+ public static int[][] solveMazeUsingSecondStrategy(int[][] map) {
+ if (setWay2(map, 1, 1)) {
+ return map;
+ }
+ return null;
+ }
+
+ /**
+ * Attempts to find a path through the maze using a "down -> right -> up -> left"
+ * movement strategy. The path is marked with '2' for valid paths and '3' for dead ends.
+ *
+ * @param map The 2D array representing the maze (walls, paths, etc.)
+ * @param i The current x-coordinate of the ball (row index)
+ * @param j The current y-coordinate of the ball (column index)
+ * @return True if a path is found to (6,5), otherwise false
+ */
+ private static boolean setWay(int[][] map, int i, int j) {
+ if (map[6][5] == 2) {
+ return true;
+ }
+
+ // If the current position is unvisited (0), explore it
+ if (map[i][j] == 0) {
+ // Mark the current position as '2'
+ map[i][j] = 2;
+
+ // Move down
+ if (setWay(map, i + 1, j)) {
+ return true;
+ }
+ // Move right
+ else if (setWay(map, i, j + 1)) {
+ return true;
+ }
+ // Move up
+ else if (setWay(map, i - 1, j)) {
+ return true;
+ }
+ // Move left
+ else if (setWay(map, i, j - 1)) {
+ return true;
+ }
+
+ map[i][j] = 3; // Mark as dead end (3) if no direction worked
+ return false;
+ }
+ return false;
+ }
+
+ /**
+ * Attempts to find a path through the maze using an alternative movement
+ * strategy "up -> right -> down -> left".
+ *
+ * @param map The 2D array representing the maze (walls, paths, etc.)
+ * @param i The current x-coordinate of the ball (row index)
+ * @param j The current y-coordinate of the ball (column index)
+ * @return True if a path is found to (6,5), otherwise false
+ */
+ private static boolean setWay2(int[][] map, int i, int j) {
+ if (map[6][5] == 2) {
+ return true;
+ }
+
+ if (map[i][j] == 0) {
+ map[i][j] = 2;
+
+ // Move up
+ if (setWay2(map, i - 1, j)) {
+ return true;
+ }
+ // Move right
+ else if (setWay2(map, i, j + 1)) {
+ return true;
+ }
+ // Move down
+ else if (setWay2(map, i + 1, j)) {
+ return true;
+ }
+ // Move left
+ else if (setWay2(map, i, j - 1)) {
+ return true;
+ }
+
+ map[i][j] = 3; // Mark as dead end (3) if no direction worked
+ return false;
+ }
+ return false;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/NQueens.java b/src/main/java/com/thealgorithms/backtracking/NQueens.java
new file mode 100644
index 000000000000..1a8e453e34cb
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/NQueens.java
@@ -0,0 +1,111 @@
+package com.thealgorithms.backtracking;
+
+import java.util.ArrayList;
+import java.util.List;
+
+/**
+ * Problem statement: Given a N x N chess board. Return all arrangements in
+ * which N queens can be placed on the board such no two queens attack each
+ * other. Ex. N = 6 Solution= There are 4 possible ways Arrangement: 1 ".Q....",
+ * "...Q..", ".....Q", "Q.....", "..Q...", "....Q."
+ *
+ * Arrangement: 2 "..Q...", ".....Q", ".Q....", "....Q.", "Q.....", "...Q.."
+ *
+ * Arrangement: 3 "...Q..", "Q.....", "....Q.", ".Q....", ".....Q", "..Q..."
+ *
+ * Arrangement: 4 "....Q.", "..Q...", "Q.....", ".....Q", "...Q..", ".Q...."
+ *
+ * Solution: Brute Force approach:
+ *
+ * Generate all possible arrangement to place N queens on N*N board. Check each
+ * board if queens are placed safely. If it is safe, include arrangement in
+ * solution set. Otherwise, ignore it
+ *
+ * Optimized solution: This can be solved using backtracking in below steps
+ *
+ * Start with first column and place queen on first row Try placing queen in a
+ * row on second column If placing second queen in second column attacks any of
+ * the previous queens, change the row in second column otherwise move to next
+ * column and try to place next queen In case if there is no rows where a queen
+ * can be placed such that it doesn't attack previous queens, then go back to
+ * previous column and change row of previous queen. Keep doing this until last
+ * queen is not placed safely. If there is no such way then return an empty list
+ * as solution
+ */
+public final class NQueens {
+ private NQueens() {
+ }
+
+ public static List> getNQueensArrangements(int queens) {
+ List> arrangements = new ArrayList<>();
+ getSolution(queens, arrangements, new int[queens], 0);
+ return arrangements;
+ }
+
+ public static void placeQueens(final int queens) {
+ List> arrangements = new ArrayList>();
+ getSolution(queens, arrangements, new int[queens], 0);
+ if (arrangements.isEmpty()) {
+ System.out.println("There is no way to place " + queens + " queens on board of size " + queens + "x" + queens);
+ } else {
+ System.out.println("Arrangement for placing " + queens + " queens");
+ }
+ for (List arrangement : arrangements) {
+ arrangement.forEach(System.out::println);
+ System.out.println();
+ }
+ }
+
+ /**
+ * This is backtracking function which tries to place queen recursively
+ *
+ * @param boardSize: size of chess board
+ * @param solutions: this holds all possible arrangements
+ * @param columns: columns[i] = rowId where queen is placed in ith column.
+ * @param columnIndex: This is the column in which queen is being placed
+ */
+ private static void getSolution(int boardSize, List> solutions, int[] columns, int columnIndex) {
+ if (columnIndex == boardSize) {
+ // this means that all queens have been placed
+ List sol = new ArrayList();
+ for (int i = 0; i < boardSize; i++) {
+ StringBuilder sb = new StringBuilder();
+ for (int j = 0; j < boardSize; j++) {
+ sb.append(j == columns[i] ? "Q" : ".");
+ }
+ sol.add(sb.toString());
+ }
+ solutions.add(sol);
+ return;
+ }
+
+ // This loop tries to place queen in a row one by one
+ for (int rowIndex = 0; rowIndex < boardSize; rowIndex++) {
+ columns[columnIndex] = rowIndex;
+ if (isPlacedCorrectly(columns, rowIndex, columnIndex)) {
+ // If queen is placed successfully at rowIndex in column=columnIndex then try
+ // placing queen in next column
+ getSolution(boardSize, solutions, columns, columnIndex + 1);
+ }
+ }
+ }
+
+ /**
+ * This function checks if queen can be placed at row = rowIndex in column =
+ * columnIndex safely
+ *
+ * @param columns: columns[i] = rowId where queen is placed in ith column.
+ * @param rowIndex: row in which queen has to be placed
+ * @param columnIndex: column in which queen is being placed
+ * @return true: if queen can be placed safely false: otherwise
+ */
+ private static boolean isPlacedCorrectly(int[] columns, int rowIndex, int columnIndex) {
+ for (int i = 0; i < columnIndex; i++) {
+ int diff = Math.abs(columns[i] - rowIndex);
+ if (diff == 0 || columnIndex - i == diff) {
+ return false;
+ }
+ }
+ return true;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/ParenthesesGenerator.java b/src/main/java/com/thealgorithms/backtracking/ParenthesesGenerator.java
new file mode 100644
index 000000000000..bf93f946ab7b
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/ParenthesesGenerator.java
@@ -0,0 +1,50 @@
+package com.thealgorithms.backtracking;
+
+import java.util.ArrayList;
+import java.util.List;
+
+/**
+ * This class generates all valid combinations of parentheses for a given number of pairs using backtracking.
+ */
+public final class ParenthesesGenerator {
+ private ParenthesesGenerator() {
+ }
+
+ /**
+ * Generates all valid combinations of parentheses for a given number of pairs.
+ *
+ * @param n The number of pairs of parentheses.
+ * @return A list of strings representing valid combinations of parentheses.
+ * @throws IllegalArgumentException if n is less than 0.
+ */
+ public static List generateParentheses(final int n) {
+ if (n < 0) {
+ throw new IllegalArgumentException("The number of pairs of parentheses cannot be negative");
+ }
+ List result = new ArrayList<>();
+ generateParenthesesHelper(result, "", 0, 0, n);
+ return result;
+ }
+
+ /**
+ * Helper function for generating all valid combinations of parentheses recursively.
+ *
+ * @param result The list to store valid combinations.
+ * @param current The current combination being formed.
+ * @param open The number of open parentheses.
+ * @param close The number of closed parentheses.
+ * @param n The total number of pairs of parentheses.
+ */
+ private static void generateParenthesesHelper(List result, final String current, final int open, final int close, final int n) {
+ if (current.length() == n * 2) {
+ result.add(current);
+ return;
+ }
+ if (open < n) {
+ generateParenthesesHelper(result, current + "(", open + 1, close, n);
+ }
+ if (close < open) {
+ generateParenthesesHelper(result, current + ")", open, close + 1, n);
+ }
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/Permutation.java b/src/main/java/com/thealgorithms/backtracking/Permutation.java
new file mode 100644
index 000000000000..21d26e53980f
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/Permutation.java
@@ -0,0 +1,57 @@
+package com.thealgorithms.backtracking;
+
+import java.util.LinkedList;
+import java.util.List;
+
+/**
+ * Finds all permutations of given array
+ * @author Alan Piao (Git-Alan Piao)
+ */
+public final class Permutation {
+ private Permutation() {
+ }
+
+ /**
+ * Find all permutations of given array using backtracking
+ * @param arr the array.
+ * @param the type of elements in the array.
+ * @return a list of all permutations.
+ */
+ public static List permutation(T[] arr) {
+ T[] array = arr.clone();
+ List result = new LinkedList<>();
+ backtracking(array, 0, result);
+ return result;
+ }
+
+ /**
+ * Backtrack all possible orders of a given array
+ * @param arr the array.
+ * @param index the starting index.
+ * @param result the list contains all permutations.
+ * @param the type of elements in the array.
+ */
+ private static void backtracking(T[] arr, int index, List result) {
+ if (index == arr.length) {
+ result.add(arr.clone());
+ }
+ for (int i = index; i < arr.length; i++) {
+ swap(index, i, arr);
+ backtracking(arr, index + 1, result);
+ swap(index, i, arr);
+ }
+ }
+
+ /**
+ * Swap two element for a given array
+ * @param a first index
+ * @param b second index
+ * @param arr the array.
+ * @param the type of elements in the array.
+ */
+ private static void swap(int a, int b, T[] arr) {
+ T temp = arr[a];
+ arr[a] = arr[b];
+ arr[b] = temp;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/PowerSum.java b/src/main/java/com/thealgorithms/backtracking/PowerSum.java
new file mode 100644
index 000000000000..b34ba660ebd7
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/PowerSum.java
@@ -0,0 +1,51 @@
+package com.thealgorithms.backtracking;
+
+/**
+ * Problem Statement:
+ * Find the number of ways that a given integer, N, can be expressed as the sum of the Xth powers
+ * of unique, natural numbers.
+ * For example, if N=100 and X=3, we have to find all combinations of unique cubes adding up to 100.
+ * The only solution is 1^3 + 2^3 + 3^3 + 4^3. Therefore, the output will be 1.
+ *
+ * N is represented by the parameter 'targetSum' in the code.
+ * X is represented by the parameter 'power' in the code.
+ */
+public class PowerSum {
+
+ /**
+ * Calculates the number of ways to express the target sum as a sum of Xth powers of unique natural numbers.
+ *
+ * @param targetSum The target sum to achieve (N in the problem statement)
+ * @param power The power to raise natural numbers to (X in the problem statement)
+ * @return The number of ways to express the target sum
+ */
+ public int powSum(int targetSum, int power) {
+ // Special case: when both targetSum and power are zero
+ if (targetSum == 0 && power == 0) {
+ return 1; // by convention, one way to sum to zero: use nothing
+ }
+ return sumRecursive(targetSum, power, 1, 0);
+ }
+
+ /**
+ * Recursively calculates the number of ways to express the remaining sum as a sum of Xth powers.
+ *
+ * @param remainingSum The remaining sum to achieve
+ * @param power The power to raise natural numbers to (X in the problem statement)
+ * @param currentNumber The current natural number being considered
+ * @param currentSum The current sum of powered numbers
+ * @return The number of valid combinations
+ */
+ private int sumRecursive(int remainingSum, int power, int currentNumber, int currentSum) {
+ int newSum = currentSum + (int) Math.pow(currentNumber, power);
+
+ if (newSum == remainingSum) {
+ return 1;
+ }
+ if (newSum > remainingSum) {
+ return 0;
+ }
+
+ return sumRecursive(remainingSum, power, currentNumber + 1, newSum) + sumRecursive(remainingSum, power, currentNumber + 1, currentSum);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/SubsequenceFinder.java b/src/main/java/com/thealgorithms/backtracking/SubsequenceFinder.java
new file mode 100644
index 000000000000..4a159dbfe0b1
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/SubsequenceFinder.java
@@ -0,0 +1,54 @@
+package com.thealgorithms.backtracking;
+
+import java.util.ArrayList;
+import java.util.List;
+
+/**
+ * Class generates all subsequences for a given list of elements using backtracking
+ */
+public final class SubsequenceFinder {
+ private SubsequenceFinder() {
+ }
+
+ /**
+ * Find all subsequences of given list using backtracking
+ *
+ * @param sequence a list of items on the basis of which we need to generate all subsequences
+ * @param the type of elements in the array
+ * @return a list of all subsequences
+ */
+ public static List> generateAll(List sequence) {
+ List> allSubSequences = new ArrayList<>();
+ if (sequence.isEmpty()) {
+ allSubSequences.add(new ArrayList<>());
+ return allSubSequences;
+ }
+ List currentSubsequence = new ArrayList<>();
+ backtrack(sequence, currentSubsequence, 0, allSubSequences);
+ return allSubSequences;
+ }
+
+ /**
+ * Iterate through each branch of states
+ * We know that each state has exactly two branching
+ * It terminates when it reaches the end of the given sequence
+ *
+ * @param sequence all elements
+ * @param currentSubsequence current subsequence
+ * @param index current index
+ * @param allSubSequences contains all sequences
+ * @param the type of elements which we generate
+ */
+ private static void backtrack(List sequence, List currentSubsequence, final int index, List> allSubSequences) {
+ assert index <= sequence.size();
+ if (index == sequence.size()) {
+ allSubSequences.add(new ArrayList<>(currentSubsequence));
+ return;
+ }
+
+ backtrack(sequence, currentSubsequence, index + 1, allSubSequences);
+ currentSubsequence.add(sequence.get(index));
+ backtrack(sequence, currentSubsequence, index + 1, allSubSequences);
+ currentSubsequence.removeLast();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/WordPatternMatcher.java b/src/main/java/com/thealgorithms/backtracking/WordPatternMatcher.java
new file mode 100644
index 000000000000..1854cab20a7f
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/WordPatternMatcher.java
@@ -0,0 +1,86 @@
+package com.thealgorithms.backtracking;
+
+import java.util.HashMap;
+import java.util.Map;
+
+/**
+ * Class to determine if a pattern matches a string using backtracking.
+ *
+ * Example:
+ * Pattern: "abab"
+ * Input String: "JavaPythonJavaPython"
+ * Output: true
+ *
+ * Pattern: "aaaa"
+ * Input String: "JavaJavaJavaJava"
+ * Output: true
+ *
+ * Pattern: "aabb"
+ * Input String: "JavaPythonPythonJava"
+ * Output: false
+ */
+public final class WordPatternMatcher {
+ private WordPatternMatcher() {
+ }
+
+ /**
+ * Determines if the given pattern matches the input string using backtracking.
+ *
+ * @param pattern The pattern to match.
+ * @param inputString The string to match against the pattern.
+ * @return True if the pattern matches the string, False otherwise.
+ */
+ public static boolean matchWordPattern(String pattern, String inputString) {
+ Map patternMap = new HashMap<>();
+ Map strMap = new HashMap<>();
+ return backtrack(pattern, inputString, 0, 0, patternMap, strMap);
+ }
+
+ /**
+ * Backtracking helper function to check if the pattern matches the string.
+ *
+ * @param pattern The pattern string.
+ * @param inputString The string to match against the pattern.
+ * @param patternIndex Current index in the pattern.
+ * @param strIndex Current index in the input string.
+ * @param patternMap Map to store pattern characters to string mappings.
+ * @param strMap Map to store string to pattern character mappings.
+ * @return True if the pattern matches, False otherwise.
+ */
+ private static boolean backtrack(String pattern, String inputString, int patternIndex, int strIndex, Map patternMap, Map strMap) {
+ if (patternIndex == pattern.length() && strIndex == inputString.length()) {
+ return true;
+ }
+ if (patternIndex == pattern.length() || strIndex == inputString.length()) {
+ return false;
+ }
+
+ char currentChar = pattern.charAt(patternIndex);
+ if (patternMap.containsKey(currentChar)) {
+ String mappedStr = patternMap.get(currentChar);
+ if (inputString.startsWith(mappedStr, strIndex)) {
+ return backtrack(pattern, inputString, patternIndex + 1, strIndex + mappedStr.length(), patternMap, strMap);
+ } else {
+ return false;
+ }
+ }
+
+ for (int end = strIndex + 1; end <= inputString.length(); end++) {
+ String substring = inputString.substring(strIndex, end);
+ if (strMap.containsKey(substring)) {
+ continue;
+ }
+
+ patternMap.put(currentChar, substring);
+ strMap.put(substring, currentChar);
+ if (backtrack(pattern, inputString, patternIndex + 1, end, patternMap, strMap)) {
+ return true;
+ }
+
+ patternMap.remove(currentChar);
+ strMap.remove(substring);
+ }
+
+ return false;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/backtracking/WordSearch.java b/src/main/java/com/thealgorithms/backtracking/WordSearch.java
new file mode 100644
index 000000000000..174ca90ccaab
--- /dev/null
+++ b/src/main/java/com/thealgorithms/backtracking/WordSearch.java
@@ -0,0 +1,109 @@
+package com.thealgorithms.backtracking;
+
+/**
+ * Word Search Problem
+ *
+ * This class solves the word search problem where given an m x n grid of characters (board)
+ * and a target word, the task is to check if the word exists in the grid.
+ * The word can be constructed from sequentially adjacent cells (horizontally or vertically),
+ * and the same cell may not be used more than once in constructing the word.
+ *
+ * Example:
+ * - For board =
+ * [
+ * ['A','B','C','E'],
+ * ['S','F','C','S'],
+ * ['A','D','E','E']
+ * ]
+ * and word = "ABCCED", -> returns true
+ * and word = "SEE", -> returns true
+ * and word = "ABCB", -> returns false
+ *
+ * Solution:
+ * - Depth First Search (DFS) with backtracking is used to explore possible paths from any cell
+ * matching the first letter of the word. DFS ensures that we search all valid paths, while
+ * backtracking helps in reverting decisions when a path fails to lead to a solution.
+ *
+ * Time Complexity: O(m * n * 3^L)
+ * - m = number of rows in the board
+ * - n = number of columns in the board
+ * - L = length of the word
+ * - For each cell, we look at 3 possible directions (since we exclude the previously visited direction),
+ * and we do this for L letters.
+ *
+ * Space Complexity: O(L)
+ * - Stack space for the recursive DFS function, where L is the maximum depth of recursion (length of the word).
+ */
+public class WordSearch {
+ private final int[] dx = {0, 0, 1, -1};
+ private final int[] dy = {1, -1, 0, 0};
+ private boolean[][] visited;
+ private char[][] board;
+ private String word;
+
+ /**
+ * Checks if the given (x, y) coordinates are valid positions in the board.
+ *
+ * @param x The row index.
+ * @param y The column index.
+ * @return True if the coordinates are within the bounds of the board; false otherwise.
+ */
+ private boolean isValid(int x, int y) {
+ return x >= 0 && x < board.length && y >= 0 && y < board[0].length;
+ }
+
+ /**
+ * Performs Depth First Search (DFS) from the cell (x, y)
+ * to search for the next character in the word.
+ *
+ * @param x The current row index.
+ * @param y The current column index.
+ * @param nextIdx The index of the next character in the word to be matched.
+ * @return True if a valid path is found to match the remaining characters of the word; false otherwise.
+ */
+ private boolean doDFS(int x, int y, int nextIdx) {
+ visited[x][y] = true;
+ if (nextIdx == word.length()) {
+ return true;
+ }
+
+ for (int i = 0; i < 4; ++i) {
+ int xi = x + dx[i];
+ int yi = y + dy[i];
+ if (isValid(xi, yi) && board[xi][yi] == word.charAt(nextIdx) && !visited[xi][yi]) {
+ boolean exists = doDFS(xi, yi, nextIdx + 1);
+ if (exists) {
+ return true;
+ }
+ }
+ }
+
+ visited[x][y] = false; // Backtrack
+ return false;
+ }
+
+ /**
+ * Main function to check if the word exists in the board. It initiates DFS from any
+ * cell that matches the first character of the word.
+ *
+ * @param board The 2D grid of characters (the board).
+ * @param word The target word to search for in the board.
+ * @return True if the word exists in the board; false otherwise.
+ */
+ public boolean exist(char[][] board, String word) {
+ this.board = board;
+ this.word = word;
+ for (int i = 0; i < board.length; ++i) {
+ for (int j = 0; j < board[0].length; ++j) {
+ if (board[i][j] == word.charAt(0)) {
+ visited = new boolean[board.length][board[0].length];
+ boolean exists = doDFS(i, j, 1);
+ if (exists) {
+ return true;
+ }
+ }
+ }
+ }
+ return false;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/BcdConversion.java b/src/main/java/com/thealgorithms/bitmanipulation/BcdConversion.java
new file mode 100644
index 000000000000..e6bd35720d9f
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/BcdConversion.java
@@ -0,0 +1,82 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * This class provides methods to convert between BCD (Binary-Coded Decimal) and decimal numbers.
+ *
+ * BCD is a class of binary encodings of decimal numbers where each decimal digit is represented by a fixed number of binary digits, usually four or eight.
+ *
+ * For more information, refer to the
+ * Binary-Coded Decimal Wikipedia page.
+ *
+ * Example usage:
+ *
+ * int decimal = BcdConversion.bcdToDecimal(0x1234);
+ * System.out.println("BCD 0x1234 to decimal: " + decimal); // Output: 1234
+ *
+ * int bcd = BcdConversion.decimalToBcd(1234);
+ * System.out.println("Decimal 1234 to BCD: " + Integer.toHexString(bcd)); // Output: 0x1234
+ *
+ */
+public final class BcdConversion {
+ private BcdConversion() {
+ }
+
+ /**
+ * Converts a BCD (Binary-Coded Decimal) number to a decimal number.
+ * Steps:
+ *
1. Validate the BCD number to ensure all digits are between 0 and 9.
+ *
2. Extract the last 4 bits (one BCD digit) from the BCD number.
+ *
3. Multiply the extracted digit by the corresponding power of 10 and add it to the decimal number.
+ *
4. Shift the BCD number right by 4 bits to process the next BCD digit.
+ *
5. Repeat steps 1-4 until the BCD number is zero.
+ *
+ * @param bcd The BCD number.
+ * @return The corresponding decimal number.
+ * @throws IllegalArgumentException if the BCD number contains invalid digits.
+ */
+ public static int bcdToDecimal(int bcd) {
+ int decimal = 0;
+ int multiplier = 1;
+
+ // Validate BCD digits
+ while (bcd > 0) {
+ int digit = bcd & 0xF;
+ if (digit > 9) {
+ throw new IllegalArgumentException("Invalid BCD digit: " + digit);
+ }
+ decimal += digit * multiplier;
+ multiplier *= 10;
+ bcd >>= 4;
+ }
+ return decimal;
+ }
+
+ /**
+ * Converts a decimal number to BCD (Binary-Coded Decimal).
+ *
Steps:
+ *
1. Check if the decimal number is within the valid range for BCD (0 to 9999).
+ *
2. Extract the last decimal digit from the decimal number.
+ *
3. Shift the digit to the correct BCD position and add it to the BCD number.
+ *
4. Remove the last decimal digit from the decimal number.
+ *
5. Repeat steps 2-4 until the decimal number is zero.
+ *
+ * @param decimal The decimal number.
+ * @return The corresponding BCD number.
+ * @throws IllegalArgumentException if the decimal number is greater than 9999.
+ */
+ public static int decimalToBcd(int decimal) {
+ if (decimal < 0 || decimal > 9999) {
+ throw new IllegalArgumentException("Value out of bounds for BCD representation: " + decimal);
+ }
+
+ int bcd = 0;
+ int shift = 0;
+ while (decimal > 0) {
+ int digit = decimal % 10;
+ bcd |= (digit << (shift * 4));
+ decimal /= 10;
+ shift++;
+ }
+ return bcd;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/BinaryPalindromeCheck.java b/src/main/java/com/thealgorithms/bitmanipulation/BinaryPalindromeCheck.java
new file mode 100644
index 000000000000..0d6fd140c720
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/BinaryPalindromeCheck.java
@@ -0,0 +1,43 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * This class contains a method to check if the binary representation of a number is a palindrome.
+ *
+ * A binary palindrome is a number whose binary representation is the same when read from left to right and right to left.
+ * For example, the number 9 has a binary representation of 1001, which is a palindrome.
+ * The number 10 has a binary representation of 1010, which is not a palindrome.
+ *
+ *
+ * @author Hardvan
+ */
+public final class BinaryPalindromeCheck {
+ private BinaryPalindromeCheck() {
+ }
+
+ /**
+ * Checks if the binary representation of a number is a palindrome.
+ *
+ * @param x The number to check.
+ * @return True if the binary representation is a palindrome, otherwise false.
+ */
+ public static boolean isBinaryPalindrome(int x) {
+ int reversed = reverseBits(x);
+ return x == reversed;
+ }
+
+ /**
+ * Helper function to reverse all the bits of an integer.
+ *
+ * @param x The number to reverse the bits of.
+ * @return The number with reversed bits.
+ */
+ private static int reverseBits(int x) {
+ int result = 0;
+ while (x > 0) {
+ result <<= 1;
+ result |= (x & 1);
+ x >>= 1;
+ }
+ return result;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/BitSwap.java b/src/main/java/com/thealgorithms/bitmanipulation/BitSwap.java
new file mode 100644
index 000000000000..634c9e7b3b44
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/BitSwap.java
@@ -0,0 +1,33 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * Utility class for performing bit-swapping operations on integers.
+ * This class cannot be instantiated.
+ */
+public final class BitSwap {
+ private BitSwap() {
+ }
+
+ /**
+ * Swaps two bits at specified positions in an integer.
+ *
+ * @param data The input integer whose bits need to be swapped
+ * @param posA The position of the first bit (0-based, from least significant)
+ * @param posB The position of the second bit (0-based, from least significant)
+ * @return The modified value with swapped bits
+ * @throws IllegalArgumentException if either position is negative or ≥ 32
+ */
+
+ public static int bitSwap(int data, final int posA, final int posB) {
+ if (posA < 0 || posA >= Integer.SIZE || posB < 0 || posB >= Integer.SIZE) {
+ throw new IllegalArgumentException("Bit positions must be between 0 and 31");
+ }
+
+ boolean bitA = ((data >> posA) & 1) != 0;
+ boolean bitB = ((data >> posB) & 1) != 0;
+ if (bitA != bitB) {
+ data ^= (1 << posA) ^ (1 << posB);
+ }
+ return data;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/BitwiseGCD.java b/src/main/java/com/thealgorithms/bitmanipulation/BitwiseGCD.java
new file mode 100644
index 000000000000..516563459256
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/BitwiseGCD.java
@@ -0,0 +1,147 @@
+package com.thealgorithms.bitmanipulation;
+
+import java.math.BigInteger;
+
+/**
+ * Bitwise GCD implementation with full-range support utilities.
+ *
+ * This class provides a fast binary (Stein's) GCD implementation for {@code long}
+ * inputs and a BigInteger-backed API for full 2's-complement range support (including
+ * {@code Long.MIN_VALUE}). The {@code long} implementation is efficient and avoids
+ * division/modulo operations. For edge-cases that overflow signed-64-bit ranges
+ * (e.g., gcd(Long.MIN_VALUE, 0) = 2^63), use the BigInteger API {@code gcdBig}.
+ *
+ *
Behaviour:
+ *
+ * - {@code gcd(long,long)} : returns non-negative {@code long} gcd for inputs whose
+ * absolute values fit in signed {@code long} (i.e., not causing an unsigned 2^63 result).
+ * If the true gcd does not fit in a signed {@code long} (for example gcd(Long.MIN_VALUE,0) = 2^63)
+ * this method will delegate to BigInteger and throw {@link ArithmeticException} if the
+ * BigInteger result does not fit into a signed {@code long}.
+ * - {@code gcdBig(BigInteger, BigInteger)} : returns the exact gcd as a {@link BigInteger}
+ * and works for the full signed-64-bit range and beyond.
+ *
+ */
+public final class BitwiseGCD {
+
+ private BitwiseGCD() {
+ }
+
+ /**
+ * Computes GCD of two long values using Stein's algorithm (binary GCD).
+ * Handles negative inputs. If either input is {@code Long.MIN_VALUE} the
+ * method delegates to the BigInteger implementation and will throw {@link ArithmeticException}
+ * if the result cannot be represented as a signed {@code long}.
+ *
+ * @param a first value (may be negative)
+ * @param b second value (may be negative)
+ * @return non-negative gcd as a {@code long}
+ * @throws ArithmeticException when the exact gcd does not fit into a signed {@code long}
+ */
+ public static long gcd(long a, long b) {
+ // Trivial cases
+ if (a == 0L) {
+ return absOrThrowIfOverflow(b);
+ }
+ if (b == 0L) {
+ return absOrThrowIfOverflow(a);
+ }
+
+ // If either is Long.MIN_VALUE, absolute value doesn't fit into signed long.
+ if (a == Long.MIN_VALUE || b == Long.MIN_VALUE) {
+ // Delegate to BigInteger and try to return a long if it fits
+ BigInteger g = gcdBig(BigInteger.valueOf(a), BigInteger.valueOf(b));
+ return g.longValueExact();
+ }
+
+ // Work with non-negative long values now (safe because we excluded Long.MIN_VALUE)
+ a = (a < 0) ? -a : a;
+ b = (b < 0) ? -b : b;
+
+ // Count common factors of 2
+ int commonTwos = Long.numberOfTrailingZeros(a | b);
+
+ // Remove all factors of 2 from a
+ a >>= Long.numberOfTrailingZeros(a);
+
+ while (b != 0L) {
+ // Remove all factors of 2 from b
+ b >>= Long.numberOfTrailingZeros(b);
+
+ // Now both a and b are odd. Ensure a <= b
+ if (a > b) {
+ long tmp = a;
+ a = b;
+ b = tmp;
+ }
+
+ // b >= a; subtract a from b (result is even)
+ b = b - a;
+ }
+
+ // Restore common powers of two
+ return a << commonTwos;
+ }
+
+ /**
+ * Helper to return absolute value of x unless x == Long.MIN_VALUE, in which
+ * case we delegate to BigInteger and throw to indicate overflow.
+ */
+ private static long absOrThrowIfOverflow(long x) {
+ if (x == Long.MIN_VALUE) {
+ // |Long.MIN_VALUE| = 2^63 which does not fit into signed long
+ throw new ArithmeticException("Absolute value of Long.MIN_VALUE does not fit into signed long. Use gcdBig() for full-range support.");
+ }
+ return (x < 0) ? -x : x;
+ }
+
+ /**
+ * Computes GCD for an array of {@code long} values. Returns 0 for empty/null arrays.
+ * If any intermediate gcd cannot be represented in signed long (rare), an ArithmeticException
+ * will be thrown.
+ */
+ public static long gcd(long... values) {
+
+ if (values == null || values.length == 0) {
+ return 0L;
+ }
+ long result = values[0];
+ for (int i = 1; i < values.length; i++) {
+ result = gcd(result, values[i]);
+ if (result == 1L) {
+ return 1L; // early exit
+ }
+ }
+ return result;
+ }
+
+ /**
+ * BigInteger-backed gcd that works for the full integer range (and beyond).
+ * This is the recommended method when inputs may be Long.MIN_VALUE or when you
+ * need an exact result even if it is greater than Long.MAX_VALUE.
+ * @param a first value (may be negative)
+ * @param b second value (may be negative)
+ * @return non-negative gcd as a {@link BigInteger}
+ */
+ public static BigInteger gcdBig(BigInteger a, BigInteger b) {
+
+ if (a == null || b == null) {
+ throw new NullPointerException("Arguments must not be null");
+ }
+ return a.abs().gcd(b.abs());
+ }
+
+ /**
+ * Convenience overload that accepts signed-64 inputs and returns BigInteger gcd.
+ */
+ public static BigInteger gcdBig(long a, long b) {
+ return gcdBig(BigInteger.valueOf(a), BigInteger.valueOf(b));
+ }
+
+ /**
+ * int overload for convenience.
+ */
+ public static int gcd(int a, int b) {
+ return (int) gcd((long) a, (long) b);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/BooleanAlgebraGates.java b/src/main/java/com/thealgorithms/bitmanipulation/BooleanAlgebraGates.java
new file mode 100644
index 000000000000..869466320831
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/BooleanAlgebraGates.java
@@ -0,0 +1,111 @@
+package com.thealgorithms.bitmanipulation;
+
+import java.util.List;
+
+/**
+ * Implements various Boolean algebra gates (AND, OR, NOT, XOR, NAND, NOR)
+ */
+public final class BooleanAlgebraGates {
+
+ private BooleanAlgebraGates() {
+ // Prevent instantiation
+ }
+
+ /**
+ * Represents a Boolean gate that takes multiple inputs and returns a result.
+ */
+ interface BooleanGate {
+ /**
+ * Evaluates the gate with the given inputs.
+ *
+ * @param inputs The input values for the gate.
+ * @return The result of the evaluation.
+ */
+ boolean evaluate(List inputs);
+ }
+
+ /**
+ * AND Gate implementation.
+ * Returns true if all inputs are true; otherwise, false.
+ */
+ static class ANDGate implements BooleanGate {
+ @Override
+ public boolean evaluate(List inputs) {
+ for (boolean input : inputs) {
+ if (!input) {
+ return false;
+ }
+ }
+ return true;
+ }
+ }
+
+ /**
+ * OR Gate implementation.
+ * Returns true if at least one input is true; otherwise, false.
+ */
+ static class ORGate implements BooleanGate {
+ @Override
+ public boolean evaluate(List inputs) {
+ for (boolean input : inputs) {
+ if (input) {
+ return true;
+ }
+ }
+ return false;
+ }
+ }
+
+ /**
+ * NOT Gate implementation (Unary operation).
+ * Negates a single input value.
+ */
+ static class NOTGate {
+ /**
+ * Evaluates the negation of the input.
+ *
+ * @param input The input value to be negated.
+ * @return The negated value.
+ */
+ public boolean evaluate(boolean input) {
+ return !input;
+ }
+ }
+
+ /**
+ * XOR Gate implementation.
+ * Returns true if an odd number of inputs are true; otherwise, false.
+ */
+ static class XORGate implements BooleanGate {
+ @Override
+ public boolean evaluate(List inputs) {
+ boolean result = false;
+ for (boolean input : inputs) {
+ result ^= input;
+ }
+ return result;
+ }
+ }
+
+ /**
+ * NAND Gate implementation.
+ * Returns true if at least one input is false; otherwise, false.
+ */
+ static class NANDGate implements BooleanGate {
+ @Override
+ public boolean evaluate(List inputs) {
+ return !new ANDGate().evaluate(inputs); // Equivalent to negation of AND
+ }
+ }
+
+ /**
+ * NOR Gate implementation.
+ * Returns true if all inputs are false; otherwise, false.
+ */
+ static class NORGate implements BooleanGate {
+ @Override
+ public boolean evaluate(List inputs) {
+ return !new ORGate().evaluate(inputs); // Equivalent to negation of OR
+ }
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/ClearLeftmostSetBit.java b/src/main/java/com/thealgorithms/bitmanipulation/ClearLeftmostSetBit.java
new file mode 100644
index 000000000000..3e9a4a21183f
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/ClearLeftmostSetBit.java
@@ -0,0 +1,39 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * ClearLeftmostSetBit class contains a method to clear the leftmost set bit of a number.
+ * The leftmost set bit is the leftmost bit that is set to 1 in the binary representation of a number.
+ *
+ * Example:
+ * 26 (11010) -> 10 (01010)
+ * 1 (1) -> 0 (0)
+ * 7 (111) -> 3 (011)
+ * 6 (0110) -> 2 (0010)
+ *
+ * @author Hardvan
+ */
+public final class ClearLeftmostSetBit {
+ private ClearLeftmostSetBit() {
+ }
+
+ /**
+ * Clears the leftmost set bit (1) of a given number.
+ * Step 1: Find the position of the leftmost set bit
+ * Step 2: Create a mask with all bits set except for the leftmost set bit
+ * Step 3: Clear the leftmost set bit using AND with the mask
+ *
+ * @param num The input number.
+ * @return The number after clearing the leftmost set bit.
+ */
+ public static int clearLeftmostSetBit(int num) {
+ int pos = 0;
+ int temp = num;
+ while (temp > 0) {
+ temp >>= 1;
+ pos++;
+ }
+
+ int mask = ~(1 << (pos - 1));
+ return num & mask;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/CountBitsFlip.java b/src/main/java/com/thealgorithms/bitmanipulation/CountBitsFlip.java
new file mode 100644
index 000000000000..8d2c757e5e0a
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/CountBitsFlip.java
@@ -0,0 +1,63 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * Implementation to count number of bits to be flipped to convert A to B
+ *
+ * Problem: Given two numbers A and B, count the number of bits needed to be
+ * flipped to convert A to B.
+ *
+ * Example:
+ * A = 10 (01010 in binary)
+ * B = 20 (10100 in binary)
+ * XOR = 30 (11110 in binary) - positions where bits differ
+ * Answer: 4 bits need to be flipped
+ *
+ * Time Complexity: O(log n) - where n is the number of set bits
+ * Space Complexity: O(1)
+ *
+ *@author [Yash Rajput](https://github.com/the-yash-rajput)
+ */
+public final class CountBitsFlip {
+
+ private CountBitsFlip() {
+ throw new AssertionError("No instances.");
+ }
+
+ /**
+ * Counts the number of bits that need to be flipped to convert a to b
+ *
+ * Algorithm:
+ * 1. XOR a and b to get positions where bits differ
+ * 2. Count the number of set bits in the XOR result
+ * 3. Use Brian Kernighan's algorithm: n & (n-1) removes rightmost set bit
+ *
+ * @param a the source number
+ * @param b the target number
+ * @return the number of bits to flip to convert A to B
+ */
+ public static long countBitsFlip(long a, long b) {
+ int count = 0;
+
+ // XOR gives us positions where bits differ
+ long xorResult = a ^ b;
+
+ // Count set bits using Brian Kernighan's algorithm
+ while (xorResult != 0) {
+ xorResult = xorResult & (xorResult - 1); // Remove rightmost set bit
+ count++;
+ }
+
+ return count;
+ }
+
+ /**
+ * Alternative implementation using Long.bitCount().
+ *
+ * @param a the source number
+ * @param b the target number
+ * @return the number of bits to flip to convert a to b
+ */
+ public static long countBitsFlipAlternative(long a, long b) {
+ return Long.bitCount(a ^ b);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/CountLeadingZeros.java b/src/main/java/com/thealgorithms/bitmanipulation/CountLeadingZeros.java
new file mode 100644
index 000000000000..318334f0b951
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/CountLeadingZeros.java
@@ -0,0 +1,39 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * CountLeadingZeros class contains a method to count the number of leading zeros in the binary representation of a number.
+ * The number of leading zeros is the number of zeros before the leftmost 1 bit.
+ * For example, the number 5 has 29 leading zeros in its 32-bit binary representation.
+ * The number 0 has 32 leading zeros.
+ * The number 1 has 31 leading zeros.
+ * The number -1 has no leading zeros.
+ *
+ * @author Hardvan
+ */
+public final class CountLeadingZeros {
+ private CountLeadingZeros() {
+ }
+
+ /**
+ * Counts the number of leading zeros in the binary representation of a number.
+ * Method: Keep shifting the mask to the right until the leftmost bit is 1.
+ * The number of shifts is the number of leading zeros.
+ *
+ * @param num The input number.
+ * @return The number of leading zeros.
+ */
+ public static int countLeadingZeros(int num) {
+ if (num == 0) {
+ return 32;
+ }
+
+ int count = 0;
+ int mask = 1 << 31;
+ while ((mask & num) == 0) {
+ count++;
+ mask >>>= 1;
+ }
+
+ return count;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/CountSetBits.java b/src/main/java/com/thealgorithms/bitmanipulation/CountSetBits.java
new file mode 100644
index 000000000000..242f35fc35f2
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/CountSetBits.java
@@ -0,0 +1,79 @@
+package com.thealgorithms.bitmanipulation;
+
+public class CountSetBits {
+
+ /**
+ * The below algorithm is called as Brian Kernighan's algorithm
+ * We can use Brian Kernighan’s algorithm to improve the above naive algorithm’s performance.
+ The idea is to only consider the set bits of an integer by turning off its rightmost set bit
+ (after counting it), so the next iteration of the loop considers the next rightmost bit.
+
+ The expression n & (n-1) can be used to turn off the rightmost set bit of a number n. This
+ works as the expression n-1 flips all the bits after the rightmost set bit of n, including the
+ rightmost set bit itself. Therefore, n & (n-1) results in the last bit flipped of n.
+
+ For example, consider number 52, which is 00110100 in binary, and has a total 3 bits set.
+
+ 1st iteration of the loop: n = 52
+
+ 00110100 & (n)
+ 00110011 (n-1)
+ ~~~~~~~~
+ 00110000
+
+
+ 2nd iteration of the loop: n = 48
+
+ 00110000 & (n)
+ 00101111 (n-1)
+ ~~~~~~~~
+ 00100000
+
+
+ 3rd iteration of the loop: n = 32
+
+ 00100000 & (n)
+ 00011111 (n-1)
+ ~~~~~~~~
+ 00000000 (n = 0)
+
+ * @param num takes Long number whose number of set bit is to be found
+ * @return the count of set bits in the binary equivalent
+ */
+ public long countSetBits(long num) {
+ long cnt = 0;
+ while (num > 0) {
+ cnt++;
+ num &= (num - 1);
+ }
+ return cnt;
+ }
+
+ /**
+ * This approach takes O(1) running time to count the set bits, but requires a pre-processing.
+ *
+ * So, we divide our 32-bit input into 8-bit chunks, with four chunks. We have 8 bits in each chunk.
+ *
+ * Then the range is from 0-255 (0 to 2^7).
+ * So, we may need to count set bits from 0 to 255 in individual chunks.
+ *
+ * @param num takes a long number
+ * @return the count of set bits in the binary equivalent
+ */
+ public int lookupApproach(int num) {
+ int[] table = new int[256];
+ table[0] = 0;
+
+ for (int i = 1; i < 256; i++) {
+ table[i] = (i & 1) + table[i >> 1]; // i >> 1 equals to i/2
+ }
+
+ int res = 0;
+ for (int i = 0; i < 4; i++) {
+ res += table[num & 0xff];
+ num >>= 8;
+ }
+
+ return res;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/FindNthBit.java b/src/main/java/com/thealgorithms/bitmanipulation/FindNthBit.java
new file mode 100644
index 000000000000..7a35fc3feebf
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/FindNthBit.java
@@ -0,0 +1,46 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * A utility class to find the Nth bit of a given number.
+ *
+ * This class provides a method to extract the value of the Nth bit (either 0 or 1)
+ * from the binary representation of a given integer.
+ *
+ *
Example:
+ *
{@code
+ * int result = FindNthBit.findNthBit(5, 2); // returns 0 as the 2nd bit of 5 (binary 101) is 0.
+ * }
+ *
+ * Author: Tuhinm2002
+ */
+public final class FindNthBit {
+
+ /**
+ * Private constructor to prevent instantiation.
+ *
+ *
This is a utility class, and it should not be instantiated.
+ * Attempting to instantiate this class will throw an UnsupportedOperationException.
+ */
+ private FindNthBit() {
+ throw new UnsupportedOperationException("Utility class");
+ }
+
+ /**
+ * Finds the value of the Nth bit of the given number.
+ *
+ *
This method uses bitwise operations to extract the Nth bit from the
+ * binary representation of the given integer.
+ *
+ * @param num the integer number whose Nth bit is to be found
+ * @param n the bit position (1-based) to retrieve
+ * @return the value of the Nth bit (0 or 1)
+ * @throws IllegalArgumentException if the bit position is less than 1
+ */
+ public static int findNthBit(int num, int n) {
+ if (n < 1) {
+ throw new IllegalArgumentException("Bit position must be greater than or equal to 1.");
+ }
+ // Shifting the number to the right by (n - 1) positions and checking the last bit
+ return (num & (1 << (n - 1))) >> (n - 1);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/FirstDifferentBit.java b/src/main/java/com/thealgorithms/bitmanipulation/FirstDifferentBit.java
new file mode 100644
index 000000000000..9a761c572e2c
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/FirstDifferentBit.java
@@ -0,0 +1,33 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * This class provides a method to find the first differing bit
+ * between two integers.
+ *
+ * Example:
+ * x = 10 (1010 in binary)
+ * y = 12 (1100 in binary)
+ * The first differing bit is at index 1 (0-based)
+ * So, the output will be 1
+ *
+ * @author Hardvan
+ */
+public final class FirstDifferentBit {
+ private FirstDifferentBit() {
+ }
+
+ /**
+ * Identifies the index of the first differing bit between two integers.
+ * Steps:
+ * 1. XOR the two integers to get the differing bits
+ * 2. Find the index of the first set bit in XOR result
+ *
+ * @param x the first integer
+ * @param y the second integer
+ * @return the index of the first differing bit (0-based)
+ */
+ public static int firstDifferentBit(int x, int y) {
+ int diff = x ^ y;
+ return Integer.numberOfTrailingZeros(diff);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/GenerateSubsets.java b/src/main/java/com/thealgorithms/bitmanipulation/GenerateSubsets.java
new file mode 100644
index 000000000000..f1b812495c1b
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/GenerateSubsets.java
@@ -0,0 +1,44 @@
+package com.thealgorithms.bitmanipulation;
+
+import java.util.ArrayList;
+import java.util.List;
+
+/**
+ * This class provides a method to generate all subsets (power set)
+ * of a given set using bit manipulation.
+ *
+ * @author Hardvan
+ */
+public final class GenerateSubsets {
+ private GenerateSubsets() {
+ }
+
+ /**
+ * Generates all subsets of a given set using bit manipulation.
+ * Steps:
+ * 1. Iterate over all numbers from 0 to 2^n - 1.
+ * 2. For each number, iterate over all bits from 0 to n - 1.
+ * 3. If the i-th bit of the number is set, add the i-th element of the set to the current subset.
+ * 4. Add the current subset to the list of subsets.
+ * 5. Return the list of subsets.
+ *
+ * @param set the input set of integers
+ * @return a list of all subsets represented as lists of integers
+ */
+ public static List> generateSubsets(int[] set) {
+ int n = set.length;
+ List> subsets = new ArrayList<>();
+
+ for (int mask = 0; mask < (1 << n); mask++) {
+ List subset = new ArrayList<>();
+ for (int i = 0; i < n; i++) {
+ if ((mask & (1 << i)) != 0) {
+ subset.add(set[i]);
+ }
+ }
+ subsets.add(subset);
+ }
+
+ return subsets;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/GrayCodeConversion.java b/src/main/java/com/thealgorithms/bitmanipulation/GrayCodeConversion.java
new file mode 100644
index 000000000000..83cd30c7d50a
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/GrayCodeConversion.java
@@ -0,0 +1,44 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * Gray code is a binary numeral system where two successive values differ in only one bit.
+ * This is a simple conversion between binary and Gray code.
+ * Example:
+ * 7 -> 0111 -> 0100 -> 4
+ * 4 -> 0100 -> 0111 -> 7
+ * 0 -> 0000 -> 0000 -> 0
+ * 1 -> 0001 -> 0000 -> 0
+ * 2 -> 0010 -> 0011 -> 3
+ * 3 -> 0011 -> 0010 -> 2
+ *
+ * @author Hardvan
+ */
+public final class GrayCodeConversion {
+ private GrayCodeConversion() {
+ }
+
+ /**
+ * Converts a binary number to Gray code.
+ *
+ * @param num The binary number.
+ * @return The corresponding Gray code.
+ */
+ public static int binaryToGray(int num) {
+ return num ^ (num >> 1);
+ }
+
+ /**
+ * Converts a Gray code number back to binary.
+ *
+ * @param gray The Gray code number.
+ * @return The corresponding binary number.
+ */
+ public static int grayToBinary(int gray) {
+ int binary = gray;
+ while (gray > 0) {
+ gray >>= 1;
+ binary ^= gray;
+ }
+ return binary;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/HammingDistance.java b/src/main/java/com/thealgorithms/bitmanipulation/HammingDistance.java
new file mode 100644
index 000000000000..4c24909ef234
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/HammingDistance.java
@@ -0,0 +1,29 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * The Hamming distance between two integers is the number of positions at which the corresponding bits are different.
+ * Given two integers x and y, calculate the Hamming distance.
+ * Example:
+ * Input: x = 1, y = 4
+ * Output: 2
+ * Explanation: 1 (0001) and 4 (0100) have 2 differing bits.
+ *
+ * @author Hardvan
+ */
+public final class HammingDistance {
+ private HammingDistance() {
+ }
+
+ /**
+ * Calculates the Hamming distance between two integers.
+ * The Hamming distance is the number of differing bits between the two integers.
+ *
+ * @param x The first integer.
+ * @param y The second integer.
+ * @return The Hamming distance (number of differing bits).
+ */
+ public static int hammingDistance(int x, int y) {
+ int xor = x ^ y;
+ return Integer.bitCount(xor);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/HigherLowerPowerOfTwo.java b/src/main/java/com/thealgorithms/bitmanipulation/HigherLowerPowerOfTwo.java
new file mode 100644
index 000000000000..0fb058b2b8a3
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/HigherLowerPowerOfTwo.java
@@ -0,0 +1,54 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * HigherLowerPowerOfTwo class has two methods to find the next higher and lower power of two.
+ *
+ * nextHigherPowerOfTwo method finds the next higher power of two.
+ * nextLowerPowerOfTwo method finds the next lower power of two.
+ * Both methods take an integer as input and return the next higher or lower power of two.
+ * If the input is less than 1, the next higher power of two is 1.
+ * If the input is less than or equal to 1, the next lower power of two is 0.
+ * nextHigherPowerOfTwo method uses bitwise operations to find the next higher power of two.
+ * nextLowerPowerOfTwo method uses Integer.highestOneBit method to find the next lower power of two.
+ * The time complexity of both methods is O(1).
+ * The space complexity of both methods is O(1).
+ *
+ *
+ * @author Hardvan
+ */
+public final class HigherLowerPowerOfTwo {
+ private HigherLowerPowerOfTwo() {
+ }
+
+ /**
+ * Finds the next higher power of two.
+ *
+ * @param x The given number.
+ * @return The next higher power of two.
+ */
+ public static int nextHigherPowerOfTwo(int x) {
+ if (x < 1) {
+ return 1;
+ }
+ x--;
+ x |= x >> 1;
+ x |= x >> 2;
+ x |= x >> 4;
+ x |= x >> 8;
+ x |= x >> 16;
+ return x + 1;
+ }
+
+ /**
+ * Finds the next lower power of two.
+ *
+ * @param x The given number.
+ * @return The next lower power of two.
+ */
+ public static int nextLowerPowerOfTwo(int x) {
+ if (x < 1) {
+ return 0;
+ }
+ return Integer.highestOneBit(x);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/HighestSetBit.java b/src/main/java/com/thealgorithms/bitmanipulation/HighestSetBit.java
new file mode 100644
index 000000000000..2398b8214371
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/HighestSetBit.java
@@ -0,0 +1,54 @@
+package com.thealgorithms.bitmanipulation;
+
+import java.util.Optional;
+
+/**
+ * Find Highest Set Bit
+ *
+ * This class provides a utility method to calculate the position of the highest
+ * (most significant) bit that is set to 1 in a given non-negative integer.
+ * It is often used in bit manipulation tasks to find the left-most set bit in binary
+ * representation of a number.
+ *
+ * Example:
+ * - For input 18 (binary 10010), the highest set bit is at position 4 (zero-based index).
+ *
+ * @author Bama Charan Chhandogi
+ * @version 1.0
+ * @since 2021-06-23
+ */
+public final class HighestSetBit {
+
+ private HighestSetBit() {
+ }
+
+ /**
+ * Finds the highest (most significant) set bit in the given integer.
+ * The method returns the position (index) of the highest set bit as an {@link Optional}.
+ *
+ * - If the number is 0, no bits are set, and the method returns {@link Optional#empty()}.
+ * - If the number is negative, the method throws {@link IllegalArgumentException}.
+ *
+ * @param num The input integer for which the highest set bit is to be found. It must be non-negative.
+ * @return An {@link Optional} containing the index of the highest set bit (zero-based).
+ * Returns {@link Optional#empty()} if the number is 0.
+ * @throws IllegalArgumentException if the input number is negative.
+ */
+ public static Optional findHighestSetBit(int num) {
+ if (num < 0) {
+ throw new IllegalArgumentException("Input cannot be negative");
+ }
+
+ if (num == 0) {
+ return Optional.empty();
+ }
+
+ int position = 0;
+ while (num > 0) {
+ num >>= 1;
+ position++;
+ }
+
+ return Optional.of(position - 1); // Subtract 1 to convert to zero-based index
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/IndexOfRightMostSetBit.java b/src/main/java/com/thealgorithms/bitmanipulation/IndexOfRightMostSetBit.java
new file mode 100644
index 000000000000..1b8962344ea7
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/IndexOfRightMostSetBit.java
@@ -0,0 +1,44 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * Utility class for bit manipulation operations.
+ * This class provides methods to work with bitwise operations.
+ * Specifically, it includes a method to find the index of the rightmost set bit
+ * in an integer.
+ * This class is not meant to be instantiated.
+ *
+ * Author: Bama Charan Chhandogi (https://github.com/BamaCharanChhandogi)
+ */
+public final class IndexOfRightMostSetBit {
+
+ private IndexOfRightMostSetBit() {
+ }
+
+ /**
+ * Finds the index of the rightmost set bit in the given integer.
+ * The index is zero-based, meaning the rightmost bit has an index of 0.
+ *
+ * @param n the integer to check for the rightmost set bit
+ * @return the index of the rightmost set bit; -1 if there are no set bits
+ * (i.e., the input integer is 0)
+ */
+ public static int indexOfRightMostSetBit(int n) {
+ if (n == 0) {
+ return -1; // No set bits
+ }
+
+ // Handle negative numbers by finding the two's complement
+ if (n < 0) {
+ n = -n;
+ n = n & (~n + 1); // Isolate the rightmost set bit
+ }
+
+ int index = 0;
+ while ((n & 1) == 0) {
+ n = n >> 1;
+ index++;
+ }
+
+ return index;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/IsEven.java b/src/main/java/com/thealgorithms/bitmanipulation/IsEven.java
new file mode 100644
index 000000000000..09d5383322ff
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/IsEven.java
@@ -0,0 +1,14 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * Checks whether a number is even
+ * @author Bama Charan Chhandogi (https://github.com/BamaCharanChhandogi)
+ */
+
+public final class IsEven {
+ private IsEven() {
+ }
+ public static boolean isEven(int number) {
+ return (number & 1) == 0;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/IsPowerTwo.java b/src/main/java/com/thealgorithms/bitmanipulation/IsPowerTwo.java
new file mode 100644
index 000000000000..4cdf3c6faa3e
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/IsPowerTwo.java
@@ -0,0 +1,32 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * Utility class for checking if a number is a power of two.
+ * A power of two is a number that can be expressed as 2^n where n is a non-negative integer.
+ * This class provides a method to determine if a given integer is a power of two using bit manipulation.
+ *
+ * @author Bama Charan Chhandogi (https://github.com/BamaCharanChhandogi)
+ */
+public final class IsPowerTwo {
+ private IsPowerTwo() {
+ }
+
+ /**
+ * Checks if the given integer is a power of two.
+ *
+ * A number is considered a power of two if it is greater than zero and
+ * has exactly one '1' bit in its binary representation. This method
+ * uses the property that for any power of two (n), the expression
+ * (n & (n - 1)) will be zero.
+ *
+ * @param number the integer to check
+ * @return true if the number is a power of two, false otherwise
+ */
+ public static boolean isPowerTwo(int number) {
+ if (number <= 0) {
+ return false;
+ }
+ int ans = number & (number - 1);
+ return ans == 0;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/LowestSetBit.java b/src/main/java/com/thealgorithms/bitmanipulation/LowestSetBit.java
new file mode 100644
index 000000000000..127b6fa2c0b1
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/LowestSetBit.java
@@ -0,0 +1,34 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * Lowest Set Bit
+ * @author Prayas Kumar (https://github.com/prayas7102)
+ */
+
+public final class LowestSetBit {
+ // Private constructor to hide the default public one
+ private LowestSetBit() {
+ }
+ /**
+ * Isolates the lowest set bit of the given number. For example, if n = 18
+ * (binary: 10010), the result will be 2 (binary: 00010).
+ *
+ * @param n the number whose lowest set bit will be isolated
+ * @return the isolated lowest set bit of n
+ */
+ public static int isolateLowestSetBit(int n) {
+ // Isolate the lowest set bit using n & -n
+ return n & -n;
+ }
+ /**
+ * Clears the lowest set bit of the given number.
+ * For example, if n = 18 (binary: 10010), the result will be 16 (binary: 10000).
+ *
+ * @param n the number whose lowest set bit will be cleared
+ * @return the number after clearing its lowest set bit
+ */
+ public static int clearLowestSetBit(int n) {
+ // Clear the lowest set bit using n & (n - 1)
+ return n & (n - 1);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/ModuloPowerOfTwo.java b/src/main/java/com/thealgorithms/bitmanipulation/ModuloPowerOfTwo.java
new file mode 100644
index 000000000000..537a046f77e4
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/ModuloPowerOfTwo.java
@@ -0,0 +1,28 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * This class provides a method to compute the remainder
+ * of a number when divided by a power of two (2^n)
+ * without using division or modulo operations.
+ *
+ * @author Hardvan
+ */
+public final class ModuloPowerOfTwo {
+ private ModuloPowerOfTwo() {
+ }
+
+ /**
+ * Computes the remainder of a given integer when divided by 2^n.
+ *
+ * @param x the input number
+ * @param n the exponent (power of two)
+ * @return the remainder of x divided by 2^n
+ */
+ public static int moduloPowerOfTwo(int x, int n) {
+ if (n <= 0) {
+ throw new IllegalArgumentException("The exponent must be positive");
+ }
+
+ return x & ((1 << n) - 1);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/NextHigherSameBitCount.java b/src/main/java/com/thealgorithms/bitmanipulation/NextHigherSameBitCount.java
new file mode 100644
index 000000000000..6a764d806279
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/NextHigherSameBitCount.java
@@ -0,0 +1,30 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * This class provides a method to find the next higher number
+ * with the same number of set bits as the given number.
+ *
+ * @author Hardvan
+ */
+public final class NextHigherSameBitCount {
+ private NextHigherSameBitCount() {
+ }
+
+ /**
+ * Finds the next higher integer with the same number of set bits.
+ * Steps:
+ * 1. Find {@code c}, the rightmost set bit of {@code n}.
+ * 2. Find {@code r}, the rightmost set bit of {@code n + c}.
+ * 3. Swap the bits of {@code r} and {@code n} to the right of {@code c}.
+ * 4. Shift the bits of {@code r} and {@code n} to the right of {@code c} to the rightmost.
+ * 5. Combine the results of steps 3 and 4.
+ *
+ * @param n the input number
+ * @return the next higher integer with the same set bit count
+ */
+ public static int nextHigherSameBitCount(int n) {
+ int c = n & -n;
+ int r = n + c;
+ return (((r ^ n) >> 2) / c) | r;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/NonRepeatingNumberFinder.java b/src/main/java/com/thealgorithms/bitmanipulation/NonRepeatingNumberFinder.java
new file mode 100644
index 000000000000..17e1a73ec062
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/NonRepeatingNumberFinder.java
@@ -0,0 +1,35 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * A utility class to find the non-repeating number in an array where every other number repeats.
+ * This class contains a method to identify the single unique number using bit manipulation.
+ *
+ * The solution leverages the properties of the XOR operation, which states that:
+ * - x ^ x = 0 for any integer x (a number XORed with itself is zero)
+ * - x ^ 0 = x for any integer x (a number XORed with zero is the number itself)
+ *
+ * Using these properties, we can find the non-repeating number in linear time with constant space.
+ *
+ * Example:
+ * Given the input array [2, 3, 5, 2, 3], the output will be 5 since it does not repeat.
+ *
+ * @author Bama Charan Chhandogi (https://github.com/BamaCharanChhandogi)
+ */
+public final class NonRepeatingNumberFinder {
+ private NonRepeatingNumberFinder() {
+ }
+
+ /**
+ * Finds the non-repeating number in the given array.
+ *
+ * @param arr an array of integers where every number except one appears twice
+ * @return the integer that appears only once in the array or 0 if the array is empty
+ */
+ public static int findNonRepeatingNumber(int[] arr) {
+ int result = 0;
+ for (int num : arr) {
+ result ^= num;
+ }
+ return result;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/NumberAppearingOddTimes.java b/src/main/java/com/thealgorithms/bitmanipulation/NumberAppearingOddTimes.java
new file mode 100644
index 000000000000..bd4868d4dbd5
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/NumberAppearingOddTimes.java
@@ -0,0 +1,41 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * This class provides a method to find the element that appears an
+ * odd number of times in an array. All other elements in the array
+ * must appear an even number of times for the logic to work.
+ *
+ * The solution uses the XOR operation, which has the following properties:
+ * - a ^ a = 0 (XOR-ing the same numbers cancels them out)
+ * - a ^ 0 = a
+ * - XOR is commutative and associative.
+ *
+ * Time Complexity: O(n), where n is the size of the array.
+ * Space Complexity: O(1), as no extra space is used.
+ *
+ * Usage Example:
+ * int result = NumberAppearingOddTimes.findOddOccurrence(new int[]{1, 2, 1, 2, 3});
+ * // result will be 3
+ *
+ * @author Lakshyajeet Singh Goyal (https://github.com/DarkMatter-999)
+ */
+
+public final class NumberAppearingOddTimes {
+ private NumberAppearingOddTimes() {
+ }
+
+ /**
+ * Finds the element in the array that appears an odd number of times.
+ *
+ * @param arr the input array containing integers, where all elements
+ * except one appear an even number of times.
+ * @return the integer that appears an odd number of times.
+ */
+ public static int findOddOccurrence(int[] arr) {
+ int result = 0;
+ for (int num : arr) {
+ result ^= num;
+ }
+ return result;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/NumbersDifferentSigns.java b/src/main/java/com/thealgorithms/bitmanipulation/NumbersDifferentSigns.java
new file mode 100644
index 000000000000..a2da37aa81ee
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/NumbersDifferentSigns.java
@@ -0,0 +1,30 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * This class provides a method to determine whether two integers have
+ * different signs. It utilizes the XOR operation on the two numbers:
+ *
+ * - If two numbers have different signs, their most significant bits
+ * (sign bits) will differ, resulting in a negative XOR result.
+ * - If two numbers have the same sign, the XOR result will be non-negative.
+ *
+ * Time Complexity: O(1) - Constant time operation.
+ * Space Complexity: O(1) - No extra space used.
+ *
+ * @author Bama Charan Chhandogi
+ */
+public final class NumbersDifferentSigns {
+ private NumbersDifferentSigns() {
+ }
+
+ /**
+ * Determines if two integers have different signs using bitwise XOR.
+ *
+ * @param num1 the first integer
+ * @param num2 the second integer
+ * @return true if the two numbers have different signs, false otherwise
+ */
+ public static boolean differentSigns(int num1, int num2) {
+ return (num1 ^ num2) < 0;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/OneBitDifference.java b/src/main/java/com/thealgorithms/bitmanipulation/OneBitDifference.java
new file mode 100644
index 000000000000..afec0188e299
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/OneBitDifference.java
@@ -0,0 +1,32 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * This class provides a method to detect if two integers
+ * differ by exactly one bit flip.
+ *
+ * Example:
+ * 1 (0001) and 2 (0010) differ by exactly one bit flip.
+ * 7 (0111) and 3 (0011) differ by exactly one bit flip.
+ *
+ * @author Hardvan
+ */
+public final class OneBitDifference {
+ private OneBitDifference() {
+ }
+
+ /**
+ * Checks if two integers differ by exactly one bit.
+ *
+ * @param x the first integer
+ * @param y the second integer
+ * @return true if x and y differ by exactly one bit, false otherwise
+ */
+ public static boolean differByOneBit(int x, int y) {
+ if (x == y) {
+ return false;
+ }
+
+ int xor = x ^ y;
+ return (xor & (xor - 1)) == 0;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/OnesComplement.java b/src/main/java/com/thealgorithms/bitmanipulation/OnesComplement.java
new file mode 100644
index 000000000000..aae3a996e49d
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/OnesComplement.java
@@ -0,0 +1,37 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * @author - https://github.com/Monk-AbhinayVerma
+ * @Wikipedia - https://en.wikipedia.org/wiki/Ones%27_complement
+ * The class OnesComplement computes the complement of binary number
+ * and returns
+ * the complemented binary string.
+ * @return the complimented binary string
+ */
+public final class OnesComplement {
+ private OnesComplement() {
+ }
+
+ /**
+ * Returns the 1's complement of a binary string.
+ *
+ * @param binary A string representing a binary number (e.g., "1010").
+ * @return A string representing the 1's complement.
+ * @throws IllegalArgumentException if the input is null or contains characters other than '0' or '1'.
+ */
+ public static String onesComplement(String binary) {
+ if (binary == null || binary.isEmpty()) {
+ throw new IllegalArgumentException("Input must be a non-empty binary string.");
+ }
+
+ StringBuilder complement = new StringBuilder(binary.length());
+ for (char bit : binary.toCharArray()) {
+ switch (bit) {
+ case '0' -> complement.append('1');
+ case '1' -> complement.append('0');
+ default -> throw new IllegalArgumentException("Input must contain only '0' and '1'. Found: " + bit);
+ }
+ }
+ return complement.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/ParityCheck.java b/src/main/java/com/thealgorithms/bitmanipulation/ParityCheck.java
new file mode 100644
index 000000000000..5acab4d4a362
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/ParityCheck.java
@@ -0,0 +1,34 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * The ParityCheck class provides a method to check the parity of a given number.
+ *
+ * Parity is a mathematical term that describes the property of an integer's binary representation.
+ * The parity of a binary number is the number of 1s in its binary representation.
+ * If the number of 1s is even, the parity is even; otherwise, it is odd.
+ *
+ * For example, the binary representation of 5 is 101, which has two 1s, so the parity of 5 is even.
+ * The binary representation of 6 is 110, which has two 1s, so the parity of 6 is even.
+ * The binary representation of 7 is 111, which has three 1s, so the parity of 7 is odd.
+ *
+ * @author Hardvan
+ */
+public final class ParityCheck {
+ private ParityCheck() {
+ }
+
+ /**
+ * This method checks the parity of the given number.
+ *
+ * @param n the number to check the parity of
+ * @return true if the number has even parity, false otherwise
+ */
+ public static boolean checkParity(int n) {
+ int count = 0;
+ while (n > 0) {
+ count += n & 1;
+ n >>= 1;
+ }
+ return count % 2 == 0;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/ReverseBits.java b/src/main/java/com/thealgorithms/bitmanipulation/ReverseBits.java
new file mode 100644
index 000000000000..12c269d9be48
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/ReverseBits.java
@@ -0,0 +1,41 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * This class provides a method to reverse the bits of a 32-bit integer.
+ * Reversing the bits means that the least significant bit (LSB) becomes
+ * the most significant bit (MSB) and vice versa.
+ *
+ * Example:
+ * Input (binary): 00000010100101000001111010011100 (43261596)
+ * Output (binary): 00111001011110000010100101000000 (964176192)
+ *
+ * Time Complexity: O(32) - A fixed number of 32 iterations
+ * Space Complexity: O(1) - No extra space used
+ *
+ * Note:
+ * - If the input is negative, Java handles it using two’s complement representation.
+ * - This function works on 32-bit integers by default.
+ *
+ * @author Bama Charan Chhandogi
+ */
+public final class ReverseBits {
+ private ReverseBits() {
+ }
+
+ /**
+ * Reverses the bits of a 32-bit integer.
+ *
+ * @param n the integer whose bits are to be reversed
+ * @return the integer obtained by reversing the bits of the input
+ */
+ public static int reverseBits(int n) {
+ int result = 0;
+ int bitCount = 32;
+ for (int i = 0; i < bitCount; i++) {
+ result <<= 1; // Left shift the result to make space for the next bit
+ result |= (n & 1); // OR operation to set the least significant bit of result with the current bit of n
+ n >>= 1; // Right shift n to move on to the next bit
+ }
+ return result;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/SingleBitOperations.java b/src/main/java/com/thealgorithms/bitmanipulation/SingleBitOperations.java
new file mode 100644
index 000000000000..624a4e2b858a
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/SingleBitOperations.java
@@ -0,0 +1,68 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * A utility class for performing single-bit operations on integers.
+ * These operations include flipping, setting, clearing, and getting
+ * individual bits at specified positions.
+ *
+ * Bit positions are zero-indexed (i.e., the least significant bit is at position 0).
+ * These methods leverage bitwise operations for optimal performance.
+ *
+ * Examples:
+ * - `flipBit(3, 1)` flips the bit at index 1 in binary `11` (result: `1`).
+ * - `setBit(4, 0)` sets the bit at index 0 in `100` (result: `101` or 5).
+ * - `clearBit(7, 1)` clears the bit at index 1 in `111` (result: `101` or 5).
+ * - `getBit(6, 0)` checks if the least significant bit is set (result: `0`).
+ *
+ * Time Complexity: O(1) for all operations.
+ *
+ * Author: lukasb1b (https://github.com/lukasb1b)
+ */
+public final class SingleBitOperations {
+ private SingleBitOperations() {
+ }
+
+ /**
+ * Flips (toggles) the bit at the specified position.
+ *
+ * @param num the input number
+ * @param bit the position of the bit to flip (0-indexed)
+ * @return the new number after flipping the specified bit
+ */
+ public static int flipBit(final int num, final int bit) {
+ return num ^ (1 << bit);
+ }
+
+ /**
+ * Sets the bit at the specified position to 1.
+ *
+ * @param num the input number
+ * @param bit the position of the bit to set (0-indexed)
+ * @return the new number after setting the specified bit to 1
+ */
+ public static int setBit(final int num, final int bit) {
+ return num | (1 << bit);
+ }
+
+ /**
+ * Clears the bit at the specified position (sets it to 0).
+ *
+ * @param num the input number
+ * @param bit the position of the bit to clear (0-indexed)
+ * @return the new number after clearing the specified bit
+ */
+ public static int clearBit(final int num, final int bit) {
+ return num & ~(1 << bit);
+ }
+
+ /**
+ * Gets the bit value (0 or 1) at the specified position.
+ *
+ * @param num the input number
+ * @param bit the position of the bit to retrieve (0-indexed)
+ * @return 1 if the bit is set, 0 otherwise
+ */
+ public static int getBit(final int num, final int bit) {
+ return (num >> bit) & 1;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/SingleElement.java b/src/main/java/com/thealgorithms/bitmanipulation/SingleElement.java
new file mode 100644
index 000000000000..85ebdf02db25
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/SingleElement.java
@@ -0,0 +1,39 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * Utility class to find the single non-duplicate element from an array
+ * where all other elements appear twice.
+ *
+ * The algorithm runs in O(n) time complexity and O(1) space complexity
+ * using bitwise XOR.
+ *
+ *
+ * @author Tuhin M
+ */
+public final class SingleElement {
+
+ /**
+ * Private constructor to prevent instantiation of this utility class.
+ * Throws an UnsupportedOperationException if attempted.
+ */
+ private SingleElement() {
+ throw new UnsupportedOperationException("Utility Class");
+ }
+
+ /**
+ * Finds the single non-duplicate element in an array where every other
+ * element appears exactly twice. Uses bitwise XOR to achieve O(n) time
+ * complexity and O(1) space complexity.
+ *
+ * @param arr the input array containing integers where every element
+ * except one appears exactly twice
+ * @return the single non-duplicate element
+ */
+ public static int findSingleElement(int[] arr) {
+ int ele = 0;
+ for (int i = 0; i < arr.length; i++) {
+ ele ^= arr[i];
+ }
+ return ele;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/SwapAdjacentBits.java b/src/main/java/com/thealgorithms/bitmanipulation/SwapAdjacentBits.java
new file mode 100644
index 000000000000..98a7de8bdf1a
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/SwapAdjacentBits.java
@@ -0,0 +1,57 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * A utility class to swap every pair of adjacent bits in a given integer.
+ * This operation shifts the even-positioned bits to odd positions and vice versa.
+ *
+ * Example:
+ * - Input: 2 (binary: `10`) → Output: 1 (binary: `01`)
+ * - Input: 43 (binary: `101011`) → Output: 23 (binary: `010111`)
+ *
+ * **Explanation of the Algorithm:**
+ * 1. Mask even-positioned bits: Using `0xAAAAAAAA` (binary: `101010...`),
+ * which selects bits in even positions.
+ * 2. Mask odd-positioned bits: Using `0x55555555` (binary: `010101...`),
+ * which selects bits in odd positions.
+ * 3. Shift bits:
+ * - Right-shift even-positioned bits by 1 to move them to odd positions.
+ * - Left-shift odd-positioned bits by 1 to move them to even positions.
+ * 4. Combine both shifted results using bitwise OR (`|`) to produce the final result.
+ *
+ * Use Case: This algorithm can be useful in applications involving low-level bit manipulation,
+ * such as encoding, data compression, or cryptographic transformations.
+ *
+ * Time Complexity: O(1) (constant time, since operations are bitwise).
+ *
+ * Author: Lakshyajeet Singh Goyal (https://github.com/DarkMatter-999)
+ */
+public final class SwapAdjacentBits {
+ private SwapAdjacentBits() {
+ }
+
+ /**
+ * Swaps every pair of adjacent bits of a given integer.
+ * Steps:
+ * 1. Mask the even-positioned bits.
+ * 2. Mask the odd-positioned bits.
+ * 3. Shift the even bits to the right and the odd bits to the left.
+ * 4. Combine the shifted bits.
+ *
+ * @param num the integer whose bits are to be swapped
+ * @return the integer after swapping every pair of adjacent bits
+ */
+ public static int swapAdjacentBits(int num) {
+ // mask the even bits (0xAAAAAAAA => 10101010...)
+ int evenBits = num & 0xAAAAAAAA;
+
+ // mask the odd bits (0x55555555 => 01010101...)
+ int oddBits = num & 0x55555555;
+
+ // right shift even bits and left shift odd bits
+ evenBits >>= 1;
+ oddBits <<= 1;
+
+ // combine shifted bits
+ return evenBits | oddBits;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/TwosComplement.java b/src/main/java/com/thealgorithms/bitmanipulation/TwosComplement.java
new file mode 100644
index 000000000000..9b8cecd791a6
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/TwosComplement.java
@@ -0,0 +1,62 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * This class provides a method to compute the Two's Complement of a given binary number.
+ *
+ * In two's complement representation, a binary number's negative value is obtained
+ * by taking the one's complement (inverting all bits) and then adding 1 to the result.
+ * This method handles both small and large binary strings and ensures the output is
+ * correct for all binary inputs, including edge cases like all zeroes and all ones.
+ *
+ *
For more information on Two's Complement:
+ * @see Wikipedia - Two's Complement
+ *
+ *
Algorithm originally suggested by Jon von Neumann.
+ *
+ * @author Abhinay Verma (https://github.com/Monk-AbhinayVerma)
+ */
+public final class TwosComplement {
+ private TwosComplement() {
+ }
+
+ /**
+ * Computes the Two's Complement of the given binary string.
+ * Steps:
+ * 1. Compute the One's Complement (invert all bits).
+ * 2. Add 1 to the One's Complement to get the Two's Complement.
+ * 3. Iterate from the rightmost bit to the left, adding 1 and carrying over as needed.
+ * 4. If a carry is still present after the leftmost bit, prepend '1' to handle overflow.
+ *
+ * @param binary The binary number as a string (only '0' and '1' characters allowed).
+ * @return The two's complement of the input binary string as a new binary string.
+ * @throws IllegalArgumentException If the input contains non-binary characters.
+ */
+ public static String twosComplement(String binary) {
+ if (!binary.matches("[01]+")) {
+ throw new IllegalArgumentException("Input must contain only '0' and '1'.");
+ }
+
+ StringBuilder onesComplement = new StringBuilder();
+ for (char bit : binary.toCharArray()) {
+ onesComplement.append(bit == '0' ? '1' : '0');
+ }
+
+ StringBuilder twosComplement = new StringBuilder(onesComplement);
+ boolean carry = true;
+
+ for (int i = onesComplement.length() - 1; i >= 0 && carry; i--) {
+ if (onesComplement.charAt(i) == '1') {
+ twosComplement.setCharAt(i, '0');
+ } else {
+ twosComplement.setCharAt(i, '1');
+ carry = false;
+ }
+ }
+
+ if (carry) {
+ twosComplement.insert(0, '1');
+ }
+
+ return twosComplement.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/bitmanipulation/Xs3Conversion.java b/src/main/java/com/thealgorithms/bitmanipulation/Xs3Conversion.java
new file mode 100644
index 000000000000..b22abc0c04ff
--- /dev/null
+++ b/src/main/java/com/thealgorithms/bitmanipulation/Xs3Conversion.java
@@ -0,0 +1,58 @@
+package com.thealgorithms.bitmanipulation;
+
+/**
+ * This class provides methods to convert between XS-3 (Excess-3) and binary.
+ *
+ * Excess-3, also called XS-3, is a binary-coded decimal (BCD) code in which each decimal digit is represented by its corresponding 4-bit binary value plus 3.
+ *
+ * For more information, refer to the
+ * Excess-3 Wikipedia page.
+ *
+ * Example usage:
+ *
+ * int binary = Xs3Conversion.xs3ToBinary(0x4567);
+ * System.out.println("XS-3 0x4567 to binary: " + binary); // Output: 1234
+ *
+ * int xs3 = Xs3Conversion.binaryToXs3(1234);
+ * System.out.println("Binary 1234 to XS-3: " + Integer.toHexString(xs3)); // Output: 0x4567
+ *
+ */
+public final class Xs3Conversion {
+ private Xs3Conversion() {
+ }
+ /**
+ * Converts an XS-3 (Excess-3) number to binary.
+ *
+ * @param xs3 The XS-3 number.
+ * @return The corresponding binary number.
+ */
+ public static int xs3ToBinary(int xs3) {
+ int binary = 0;
+ int multiplier = 1;
+ while (xs3 > 0) {
+ int digit = (xs3 & 0xF) - 3; // Extract the last 4 bits (one XS-3 digit) and subtract 3
+ binary += digit * multiplier;
+ multiplier *= 10;
+ xs3 >>= 4; // Shift right by 4 bits to process the next XS-3 digit
+ }
+ return binary;
+ }
+
+ /**
+ * Converts a binary number to XS-3 (Excess-3).
+ *
+ * @param binary The binary number.
+ * @return The corresponding XS-3 number.
+ */
+ public static int binaryToXs3(int binary) {
+ int xs3 = 0;
+ int shift = 0;
+ while (binary > 0) {
+ int digit = (binary % 10) + 3; // Extract the last decimal digit and add 3
+ xs3 |= (digit << (shift * 4)); // Shift the digit to the correct XS-3 position
+ binary /= 10; // Remove the last decimal digit
+ shift++;
+ }
+ return xs3;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/ADFGVXCipher.java b/src/main/java/com/thealgorithms/ciphers/ADFGVXCipher.java
new file mode 100644
index 000000000000..d915858f9e6f
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/ADFGVXCipher.java
@@ -0,0 +1,167 @@
+package com.thealgorithms.ciphers;
+
+import java.util.Arrays;
+import java.util.HashMap;
+import java.util.Map;
+
+/**
+ * The ADFGVX cipher is a fractionating transposition cipher that was used by
+ * the German Army during World War I. It combines a **Polybius square substitution**
+ * with a **columnar transposition** to enhance encryption strength.
+ *
+ * The name "ADFGVX" refers to the six letters (A, D, F, G, V, X) used as row and
+ * column labels in the Polybius square. This cipher was designed to secure
+ * communication and create complex, hard-to-break ciphertexts.
+ *
+ * Learn more: ADFGVX Cipher - Wikipedia.
+ *
+ * Example usage:
+ *
+ * ADFGVXCipher cipher = new ADFGVXCipher();
+ * String encrypted = cipher.encrypt("attack at 1200am", "PRIVACY");
+ * String decrypted = cipher.decrypt(encrypted, "PRIVACY");
+ *
+ *
+ * @author bennybebo
+ */
+public class ADFGVXCipher {
+
+ // Constants used in the Polybius square
+ private static final char[] POLYBIUS_LETTERS = {'A', 'D', 'F', 'G', 'V', 'X'};
+ private static final char[][] POLYBIUS_SQUARE = {{'N', 'A', '1', 'C', '3', 'H'}, {'8', 'T', 'B', '2', 'O', 'M'}, {'E', '5', 'W', 'R', 'P', 'D'}, {'4', 'F', '6', 'G', '7', 'I'}, {'9', 'J', '0', 'K', 'L', 'Q'}, {'S', 'U', 'V', 'X', 'Y', 'Z'}};
+
+ // Maps for fast substitution lookups
+ private static final Map POLYBIUS_MAP = new HashMap<>();
+ private static final Map REVERSE_POLYBIUS_MAP = new HashMap<>();
+
+ // Static block to initialize the lookup tables from the Polybius square
+ static {
+ for (int i = 0; i < POLYBIUS_SQUARE.length; i++) {
+ for (int j = 0; j < POLYBIUS_SQUARE[i].length; j++) {
+ String key = "" + POLYBIUS_LETTERS[i] + POLYBIUS_LETTERS[j];
+ POLYBIUS_MAP.put(key, POLYBIUS_SQUARE[i][j]);
+ REVERSE_POLYBIUS_MAP.put(POLYBIUS_SQUARE[i][j], key);
+ }
+ }
+ }
+
+ /**
+ * Encrypts a given plaintext using the ADFGVX cipher with the provided keyword.
+ * Steps:
+ * 1. Substitute each letter in the plaintext with a pair of ADFGVX letters.
+ * 2. Perform a columnar transposition on the fractionated text using the keyword.
+ *
+ * @param plaintext The message to be encrypted (can contain letters and digits).
+ * @param key The keyword for columnar transposition.
+ * @return The encrypted message as ciphertext.
+ */
+ public String encrypt(String plaintext, String key) {
+ plaintext = plaintext.toUpperCase().replaceAll("[^A-Z0-9]", ""); // Sanitize input
+ StringBuilder fractionatedText = new StringBuilder();
+
+ for (char c : plaintext.toCharArray()) {
+ fractionatedText.append(REVERSE_POLYBIUS_MAP.get(c));
+ }
+
+ return columnarTransposition(fractionatedText.toString(), key);
+ }
+
+ /**
+ * Decrypts a given ciphertext using the ADFGVX cipher with the provided keyword.
+ * Steps:
+ * 1. Reverse the columnar transposition performed during encryption.
+ * 2. Substitute each pair of ADFGVX letters with the corresponding plaintext letter.
+ * The resulting text is the decrypted message.
+ *
+ * @param ciphertext The encrypted message.
+ * @param key The keyword used during encryption.
+ * @return The decrypted plaintext message.
+ */
+ public String decrypt(String ciphertext, String key) {
+ String fractionatedText = reverseColumnarTransposition(ciphertext, key);
+
+ StringBuilder plaintext = new StringBuilder();
+ for (int i = 0; i < fractionatedText.length(); i += 2) {
+ String pair = fractionatedText.substring(i, i + 2);
+ plaintext.append(POLYBIUS_MAP.get(pair));
+ }
+
+ return plaintext.toString();
+ }
+
+ /**
+ * Helper method: Performs columnar transposition during encryption
+ *
+ * @param text The fractionated text to be transposed
+ * @param key The keyword for columnar transposition
+ * @return The transposed text
+ */
+ private String columnarTransposition(String text, String key) {
+ int numRows = (int) Math.ceil((double) text.length() / key.length());
+ char[][] table = new char[numRows][key.length()];
+ for (char[] row : table) { // Fill empty cells with underscores
+ Arrays.fill(row, '_');
+ }
+
+ // Populate the table row by row
+ for (int i = 0; i < text.length(); i++) {
+ table[i / key.length()][i % key.length()] = text.charAt(i);
+ }
+
+ // Read columns based on the alphabetical order of the key
+ StringBuilder ciphertext = new StringBuilder();
+ char[] sortedKey = key.toCharArray();
+ Arrays.sort(sortedKey);
+
+ for (char keyChar : sortedKey) {
+ int column = key.indexOf(keyChar);
+ for (char[] row : table) {
+ if (row[column] != '_') {
+ ciphertext.append(row[column]);
+ }
+ }
+ }
+
+ return ciphertext.toString();
+ }
+
+ /**
+ * Helper method: Reverses the columnar transposition during decryption
+ *
+ * @param ciphertext The transposed text to be reversed
+ * @param key The keyword used during encryption
+ * @return The reversed text
+ */
+ private String reverseColumnarTransposition(String ciphertext, String key) {
+ int numRows = (int) Math.ceil((double) ciphertext.length() / key.length());
+ char[][] table = new char[numRows][key.length()];
+
+ char[] sortedKey = key.toCharArray();
+ Arrays.sort(sortedKey);
+
+ int index = 0;
+ // Populate the table column by column according to the sorted key
+ for (char keyChar : sortedKey) {
+ int column = key.indexOf(keyChar);
+ for (int row = 0; row < numRows; row++) {
+ if (index < ciphertext.length()) {
+ table[row][column] = ciphertext.charAt(index++);
+ } else {
+ table[row][column] = '_';
+ }
+ }
+ }
+
+ // Read the table row by row to reconstruct the fractionated text
+ StringBuilder fractionatedText = new StringBuilder();
+ for (char[] row : table) {
+ for (char cell : row) {
+ if (cell != '_') {
+ fractionatedText.append(cell);
+ }
+ }
+ }
+
+ return fractionatedText.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/AES.java b/src/main/java/com/thealgorithms/ciphers/AES.java
new file mode 100644
index 000000000000..1c283f6b7655
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/AES.java
@@ -0,0 +1,2781 @@
+package com.thealgorithms.ciphers;
+
+import java.math.BigInteger;
+import java.util.Scanner;
+
+/**
+ * This class is build to demonstrate the application of the AES-algorithm on a
+ * single 128-Bit block of data.
+ */
+public final class AES {
+ private AES() {
+ }
+
+ /**
+ * Precalculated values for x to the power of 2 in Rijndaels galois field.
+ * Used as 'RCON' during the key expansion.
+ */
+ private static final int[] RCON = {
+ 0x8d,
+ 0x01,
+ 0x02,
+ 0x04,
+ 0x08,
+ 0x10,
+ 0x20,
+ 0x40,
+ 0x80,
+ 0x1b,
+ 0x36,
+ 0x6c,
+ 0xd8,
+ 0xab,
+ 0x4d,
+ 0x9a,
+ 0x2f,
+ 0x5e,
+ 0xbc,
+ 0x63,
+ 0xc6,
+ 0x97,
+ 0x35,
+ 0x6a,
+ 0xd4,
+ 0xb3,
+ 0x7d,
+ 0xfa,
+ 0xef,
+ 0xc5,
+ 0x91,
+ 0x39,
+ 0x72,
+ 0xe4,
+ 0xd3,
+ 0xbd,
+ 0x61,
+ 0xc2,
+ 0x9f,
+ 0x25,
+ 0x4a,
+ 0x94,
+ 0x33,
+ 0x66,
+ 0xcc,
+ 0x83,
+ 0x1d,
+ 0x3a,
+ 0x74,
+ 0xe8,
+ 0xcb,
+ 0x8d,
+ 0x01,
+ 0x02,
+ 0x04,
+ 0x08,
+ 0x10,
+ 0x20,
+ 0x40,
+ 0x80,
+ 0x1b,
+ 0x36,
+ 0x6c,
+ 0xd8,
+ 0xab,
+ 0x4d,
+ 0x9a,
+ 0x2f,
+ 0x5e,
+ 0xbc,
+ 0x63,
+ 0xc6,
+ 0x97,
+ 0x35,
+ 0x6a,
+ 0xd4,
+ 0xb3,
+ 0x7d,
+ 0xfa,
+ 0xef,
+ 0xc5,
+ 0x91,
+ 0x39,
+ 0x72,
+ 0xe4,
+ 0xd3,
+ 0xbd,
+ 0x61,
+ 0xc2,
+ 0x9f,
+ 0x25,
+ 0x4a,
+ 0x94,
+ 0x33,
+ 0x66,
+ 0xcc,
+ 0x83,
+ 0x1d,
+ 0x3a,
+ 0x74,
+ 0xe8,
+ 0xcb,
+ 0x8d,
+ 0x01,
+ 0x02,
+ 0x04,
+ 0x08,
+ 0x10,
+ 0x20,
+ 0x40,
+ 0x80,
+ 0x1b,
+ 0x36,
+ 0x6c,
+ 0xd8,
+ 0xab,
+ 0x4d,
+ 0x9a,
+ 0x2f,
+ 0x5e,
+ 0xbc,
+ 0x63,
+ 0xc6,
+ 0x97,
+ 0x35,
+ 0x6a,
+ 0xd4,
+ 0xb3,
+ 0x7d,
+ 0xfa,
+ 0xef,
+ 0xc5,
+ 0x91,
+ 0x39,
+ 0x72,
+ 0xe4,
+ 0xd3,
+ 0xbd,
+ 0x61,
+ 0xc2,
+ 0x9f,
+ 0x25,
+ 0x4a,
+ 0x94,
+ 0x33,
+ 0x66,
+ 0xcc,
+ 0x83,
+ 0x1d,
+ 0x3a,
+ 0x74,
+ 0xe8,
+ 0xcb,
+ 0x8d,
+ 0x01,
+ 0x02,
+ 0x04,
+ 0x08,
+ 0x10,
+ 0x20,
+ 0x40,
+ 0x80,
+ 0x1b,
+ 0x36,
+ 0x6c,
+ 0xd8,
+ 0xab,
+ 0x4d,
+ 0x9a,
+ 0x2f,
+ 0x5e,
+ 0xbc,
+ 0x63,
+ 0xc6,
+ 0x97,
+ 0x35,
+ 0x6a,
+ 0xd4,
+ 0xb3,
+ 0x7d,
+ 0xfa,
+ 0xef,
+ 0xc5,
+ 0x91,
+ 0x39,
+ 0x72,
+ 0xe4,
+ 0xd3,
+ 0xbd,
+ 0x61,
+ 0xc2,
+ 0x9f,
+ 0x25,
+ 0x4a,
+ 0x94,
+ 0x33,
+ 0x66,
+ 0xcc,
+ 0x83,
+ 0x1d,
+ 0x3a,
+ 0x74,
+ 0xe8,
+ 0xcb,
+ 0x8d,
+ 0x01,
+ 0x02,
+ 0x04,
+ 0x08,
+ 0x10,
+ 0x20,
+ 0x40,
+ 0x80,
+ 0x1b,
+ 0x36,
+ 0x6c,
+ 0xd8,
+ 0xab,
+ 0x4d,
+ 0x9a,
+ 0x2f,
+ 0x5e,
+ 0xbc,
+ 0x63,
+ 0xc6,
+ 0x97,
+ 0x35,
+ 0x6a,
+ 0xd4,
+ 0xb3,
+ 0x7d,
+ 0xfa,
+ 0xef,
+ 0xc5,
+ 0x91,
+ 0x39,
+ 0x72,
+ 0xe4,
+ 0xd3,
+ 0xbd,
+ 0x61,
+ 0xc2,
+ 0x9f,
+ 0x25,
+ 0x4a,
+ 0x94,
+ 0x33,
+ 0x66,
+ 0xcc,
+ 0x83,
+ 0x1d,
+ 0x3a,
+ 0x74,
+ 0xe8,
+ 0xcb,
+ 0x8d,
+ };
+
+ /**
+ * Rijndael S-box Substitution table used for encryption in the subBytes
+ * step, as well as the key expansion.
+ */
+ private static final int[] SBOX = {
+ 0x63,
+ 0x7C,
+ 0x77,
+ 0x7B,
+ 0xF2,
+ 0x6B,
+ 0x6F,
+ 0xC5,
+ 0x30,
+ 0x01,
+ 0x67,
+ 0x2B,
+ 0xFE,
+ 0xD7,
+ 0xAB,
+ 0x76,
+ 0xCA,
+ 0x82,
+ 0xC9,
+ 0x7D,
+ 0xFA,
+ 0x59,
+ 0x47,
+ 0xF0,
+ 0xAD,
+ 0xD4,
+ 0xA2,
+ 0xAF,
+ 0x9C,
+ 0xA4,
+ 0x72,
+ 0xC0,
+ 0xB7,
+ 0xFD,
+ 0x93,
+ 0x26,
+ 0x36,
+ 0x3F,
+ 0xF7,
+ 0xCC,
+ 0x34,
+ 0xA5,
+ 0xE5,
+ 0xF1,
+ 0x71,
+ 0xD8,
+ 0x31,
+ 0x15,
+ 0x04,
+ 0xC7,
+ 0x23,
+ 0xC3,
+ 0x18,
+ 0x96,
+ 0x05,
+ 0x9A,
+ 0x07,
+ 0x12,
+ 0x80,
+ 0xE2,
+ 0xEB,
+ 0x27,
+ 0xB2,
+ 0x75,
+ 0x09,
+ 0x83,
+ 0x2C,
+ 0x1A,
+ 0x1B,
+ 0x6E,
+ 0x5A,
+ 0xA0,
+ 0x52,
+ 0x3B,
+ 0xD6,
+ 0xB3,
+ 0x29,
+ 0xE3,
+ 0x2F,
+ 0x84,
+ 0x53,
+ 0xD1,
+ 0x00,
+ 0xED,
+ 0x20,
+ 0xFC,
+ 0xB1,
+ 0x5B,
+ 0x6A,
+ 0xCB,
+ 0xBE,
+ 0x39,
+ 0x4A,
+ 0x4C,
+ 0x58,
+ 0xCF,
+ 0xD0,
+ 0xEF,
+ 0xAA,
+ 0xFB,
+ 0x43,
+ 0x4D,
+ 0x33,
+ 0x85,
+ 0x45,
+ 0xF9,
+ 0x02,
+ 0x7F,
+ 0x50,
+ 0x3C,
+ 0x9F,
+ 0xA8,
+ 0x51,
+ 0xA3,
+ 0x40,
+ 0x8F,
+ 0x92,
+ 0x9D,
+ 0x38,
+ 0xF5,
+ 0xBC,
+ 0xB6,
+ 0xDA,
+ 0x21,
+ 0x10,
+ 0xFF,
+ 0xF3,
+ 0xD2,
+ 0xCD,
+ 0x0C,
+ 0x13,
+ 0xEC,
+ 0x5F,
+ 0x97,
+ 0x44,
+ 0x17,
+ 0xC4,
+ 0xA7,
+ 0x7E,
+ 0x3D,
+ 0x64,
+ 0x5D,
+ 0x19,
+ 0x73,
+ 0x60,
+ 0x81,
+ 0x4F,
+ 0xDC,
+ 0x22,
+ 0x2A,
+ 0x90,
+ 0x88,
+ 0x46,
+ 0xEE,
+ 0xB8,
+ 0x14,
+ 0xDE,
+ 0x5E,
+ 0x0B,
+ 0xDB,
+ 0xE0,
+ 0x32,
+ 0x3A,
+ 0x0A,
+ 0x49,
+ 0x06,
+ 0x24,
+ 0x5C,
+ 0xC2,
+ 0xD3,
+ 0xAC,
+ 0x62,
+ 0x91,
+ 0x95,
+ 0xE4,
+ 0x79,
+ 0xE7,
+ 0xC8,
+ 0x37,
+ 0x6D,
+ 0x8D,
+ 0xD5,
+ 0x4E,
+ 0xA9,
+ 0x6C,
+ 0x56,
+ 0xF4,
+ 0xEA,
+ 0x65,
+ 0x7A,
+ 0xAE,
+ 0x08,
+ 0xBA,
+ 0x78,
+ 0x25,
+ 0x2E,
+ 0x1C,
+ 0xA6,
+ 0xB4,
+ 0xC6,
+ 0xE8,
+ 0xDD,
+ 0x74,
+ 0x1F,
+ 0x4B,
+ 0xBD,
+ 0x8B,
+ 0x8A,
+ 0x70,
+ 0x3E,
+ 0xB5,
+ 0x66,
+ 0x48,
+ 0x03,
+ 0xF6,
+ 0x0E,
+ 0x61,
+ 0x35,
+ 0x57,
+ 0xB9,
+ 0x86,
+ 0xC1,
+ 0x1D,
+ 0x9E,
+ 0xE1,
+ 0xF8,
+ 0x98,
+ 0x11,
+ 0x69,
+ 0xD9,
+ 0x8E,
+ 0x94,
+ 0x9B,
+ 0x1E,
+ 0x87,
+ 0xE9,
+ 0xCE,
+ 0x55,
+ 0x28,
+ 0xDF,
+ 0x8C,
+ 0xA1,
+ 0x89,
+ 0x0D,
+ 0xBF,
+ 0xE6,
+ 0x42,
+ 0x68,
+ 0x41,
+ 0x99,
+ 0x2D,
+ 0x0F,
+ 0xB0,
+ 0x54,
+ 0xBB,
+ 0x16,
+ };
+
+ /**
+ * Inverse Rijndael S-box Substitution table used for decryption in the
+ * subBytesDec step.
+ */
+ private static final int[] INVERSE_SBOX = {
+ 0x52,
+ 0x09,
+ 0x6A,
+ 0xD5,
+ 0x30,
+ 0x36,
+ 0xA5,
+ 0x38,
+ 0xBF,
+ 0x40,
+ 0xA3,
+ 0x9E,
+ 0x81,
+ 0xF3,
+ 0xD7,
+ 0xFB,
+ 0x7C,
+ 0xE3,
+ 0x39,
+ 0x82,
+ 0x9B,
+ 0x2F,
+ 0xFF,
+ 0x87,
+ 0x34,
+ 0x8E,
+ 0x43,
+ 0x44,
+ 0xC4,
+ 0xDE,
+ 0xE9,
+ 0xCB,
+ 0x54,
+ 0x7B,
+ 0x94,
+ 0x32,
+ 0xA6,
+ 0xC2,
+ 0x23,
+ 0x3D,
+ 0xEE,
+ 0x4C,
+ 0x95,
+ 0x0B,
+ 0x42,
+ 0xFA,
+ 0xC3,
+ 0x4E,
+ 0x08,
+ 0x2E,
+ 0xA1,
+ 0x66,
+ 0x28,
+ 0xD9,
+ 0x24,
+ 0xB2,
+ 0x76,
+ 0x5B,
+ 0xA2,
+ 0x49,
+ 0x6D,
+ 0x8B,
+ 0xD1,
+ 0x25,
+ 0x72,
+ 0xF8,
+ 0xF6,
+ 0x64,
+ 0x86,
+ 0x68,
+ 0x98,
+ 0x16,
+ 0xD4,
+ 0xA4,
+ 0x5C,
+ 0xCC,
+ 0x5D,
+ 0x65,
+ 0xB6,
+ 0x92,
+ 0x6C,
+ 0x70,
+ 0x48,
+ 0x50,
+ 0xFD,
+ 0xED,
+ 0xB9,
+ 0xDA,
+ 0x5E,
+ 0x15,
+ 0x46,
+ 0x57,
+ 0xA7,
+ 0x8D,
+ 0x9D,
+ 0x84,
+ 0x90,
+ 0xD8,
+ 0xAB,
+ 0x00,
+ 0x8C,
+ 0xBC,
+ 0xD3,
+ 0x0A,
+ 0xF7,
+ 0xE4,
+ 0x58,
+ 0x05,
+ 0xB8,
+ 0xB3,
+ 0x45,
+ 0x06,
+ 0xD0,
+ 0x2C,
+ 0x1E,
+ 0x8F,
+ 0xCA,
+ 0x3F,
+ 0x0F,
+ 0x02,
+ 0xC1,
+ 0xAF,
+ 0xBD,
+ 0x03,
+ 0x01,
+ 0x13,
+ 0x8A,
+ 0x6B,
+ 0x3A,
+ 0x91,
+ 0x11,
+ 0x41,
+ 0x4F,
+ 0x67,
+ 0xDC,
+ 0xEA,
+ 0x97,
+ 0xF2,
+ 0xCF,
+ 0xCE,
+ 0xF0,
+ 0xB4,
+ 0xE6,
+ 0x73,
+ 0x96,
+ 0xAC,
+ 0x74,
+ 0x22,
+ 0xE7,
+ 0xAD,
+ 0x35,
+ 0x85,
+ 0xE2,
+ 0xF9,
+ 0x37,
+ 0xE8,
+ 0x1C,
+ 0x75,
+ 0xDF,
+ 0x6E,
+ 0x47,
+ 0xF1,
+ 0x1A,
+ 0x71,
+ 0x1D,
+ 0x29,
+ 0xC5,
+ 0x89,
+ 0x6F,
+ 0xB7,
+ 0x62,
+ 0x0E,
+ 0xAA,
+ 0x18,
+ 0xBE,
+ 0x1B,
+ 0xFC,
+ 0x56,
+ 0x3E,
+ 0x4B,
+ 0xC6,
+ 0xD2,
+ 0x79,
+ 0x20,
+ 0x9A,
+ 0xDB,
+ 0xC0,
+ 0xFE,
+ 0x78,
+ 0xCD,
+ 0x5A,
+ 0xF4,
+ 0x1F,
+ 0xDD,
+ 0xA8,
+ 0x33,
+ 0x88,
+ 0x07,
+ 0xC7,
+ 0x31,
+ 0xB1,
+ 0x12,
+ 0x10,
+ 0x59,
+ 0x27,
+ 0x80,
+ 0xEC,
+ 0x5F,
+ 0x60,
+ 0x51,
+ 0x7F,
+ 0xA9,
+ 0x19,
+ 0xB5,
+ 0x4A,
+ 0x0D,
+ 0x2D,
+ 0xE5,
+ 0x7A,
+ 0x9F,
+ 0x93,
+ 0xC9,
+ 0x9C,
+ 0xEF,
+ 0xA0,
+ 0xE0,
+ 0x3B,
+ 0x4D,
+ 0xAE,
+ 0x2A,
+ 0xF5,
+ 0xB0,
+ 0xC8,
+ 0xEB,
+ 0xBB,
+ 0x3C,
+ 0x83,
+ 0x53,
+ 0x99,
+ 0x61,
+ 0x17,
+ 0x2B,
+ 0x04,
+ 0x7E,
+ 0xBA,
+ 0x77,
+ 0xD6,
+ 0x26,
+ 0xE1,
+ 0x69,
+ 0x14,
+ 0x63,
+ 0x55,
+ 0x21,
+ 0x0C,
+ 0x7D,
+ };
+
+ /**
+ * Precalculated lookup table for galois field multiplication by 2 used in
+ * the MixColums step during encryption.
+ */
+ private static final int[] MULT2 = {
+ 0x00,
+ 0x02,
+ 0x04,
+ 0x06,
+ 0x08,
+ 0x0a,
+ 0x0c,
+ 0x0e,
+ 0x10,
+ 0x12,
+ 0x14,
+ 0x16,
+ 0x18,
+ 0x1a,
+ 0x1c,
+ 0x1e,
+ 0x20,
+ 0x22,
+ 0x24,
+ 0x26,
+ 0x28,
+ 0x2a,
+ 0x2c,
+ 0x2e,
+ 0x30,
+ 0x32,
+ 0x34,
+ 0x36,
+ 0x38,
+ 0x3a,
+ 0x3c,
+ 0x3e,
+ 0x40,
+ 0x42,
+ 0x44,
+ 0x46,
+ 0x48,
+ 0x4a,
+ 0x4c,
+ 0x4e,
+ 0x50,
+ 0x52,
+ 0x54,
+ 0x56,
+ 0x58,
+ 0x5a,
+ 0x5c,
+ 0x5e,
+ 0x60,
+ 0x62,
+ 0x64,
+ 0x66,
+ 0x68,
+ 0x6a,
+ 0x6c,
+ 0x6e,
+ 0x70,
+ 0x72,
+ 0x74,
+ 0x76,
+ 0x78,
+ 0x7a,
+ 0x7c,
+ 0x7e,
+ 0x80,
+ 0x82,
+ 0x84,
+ 0x86,
+ 0x88,
+ 0x8a,
+ 0x8c,
+ 0x8e,
+ 0x90,
+ 0x92,
+ 0x94,
+ 0x96,
+ 0x98,
+ 0x9a,
+ 0x9c,
+ 0x9e,
+ 0xa0,
+ 0xa2,
+ 0xa4,
+ 0xa6,
+ 0xa8,
+ 0xaa,
+ 0xac,
+ 0xae,
+ 0xb0,
+ 0xb2,
+ 0xb4,
+ 0xb6,
+ 0xb8,
+ 0xba,
+ 0xbc,
+ 0xbe,
+ 0xc0,
+ 0xc2,
+ 0xc4,
+ 0xc6,
+ 0xc8,
+ 0xca,
+ 0xcc,
+ 0xce,
+ 0xd0,
+ 0xd2,
+ 0xd4,
+ 0xd6,
+ 0xd8,
+ 0xda,
+ 0xdc,
+ 0xde,
+ 0xe0,
+ 0xe2,
+ 0xe4,
+ 0xe6,
+ 0xe8,
+ 0xea,
+ 0xec,
+ 0xee,
+ 0xf0,
+ 0xf2,
+ 0xf4,
+ 0xf6,
+ 0xf8,
+ 0xfa,
+ 0xfc,
+ 0xfe,
+ 0x1b,
+ 0x19,
+ 0x1f,
+ 0x1d,
+ 0x13,
+ 0x11,
+ 0x17,
+ 0x15,
+ 0x0b,
+ 0x09,
+ 0x0f,
+ 0x0d,
+ 0x03,
+ 0x01,
+ 0x07,
+ 0x05,
+ 0x3b,
+ 0x39,
+ 0x3f,
+ 0x3d,
+ 0x33,
+ 0x31,
+ 0x37,
+ 0x35,
+ 0x2b,
+ 0x29,
+ 0x2f,
+ 0x2d,
+ 0x23,
+ 0x21,
+ 0x27,
+ 0x25,
+ 0x5b,
+ 0x59,
+ 0x5f,
+ 0x5d,
+ 0x53,
+ 0x51,
+ 0x57,
+ 0x55,
+ 0x4b,
+ 0x49,
+ 0x4f,
+ 0x4d,
+ 0x43,
+ 0x41,
+ 0x47,
+ 0x45,
+ 0x7b,
+ 0x79,
+ 0x7f,
+ 0x7d,
+ 0x73,
+ 0x71,
+ 0x77,
+ 0x75,
+ 0x6b,
+ 0x69,
+ 0x6f,
+ 0x6d,
+ 0x63,
+ 0x61,
+ 0x67,
+ 0x65,
+ 0x9b,
+ 0x99,
+ 0x9f,
+ 0x9d,
+ 0x93,
+ 0x91,
+ 0x97,
+ 0x95,
+ 0x8b,
+ 0x89,
+ 0x8f,
+ 0x8d,
+ 0x83,
+ 0x81,
+ 0x87,
+ 0x85,
+ 0xbb,
+ 0xb9,
+ 0xbf,
+ 0xbd,
+ 0xb3,
+ 0xb1,
+ 0xb7,
+ 0xb5,
+ 0xab,
+ 0xa9,
+ 0xaf,
+ 0xad,
+ 0xa3,
+ 0xa1,
+ 0xa7,
+ 0xa5,
+ 0xdb,
+ 0xd9,
+ 0xdf,
+ 0xdd,
+ 0xd3,
+ 0xd1,
+ 0xd7,
+ 0xd5,
+ 0xcb,
+ 0xc9,
+ 0xcf,
+ 0xcd,
+ 0xc3,
+ 0xc1,
+ 0xc7,
+ 0xc5,
+ 0xfb,
+ 0xf9,
+ 0xff,
+ 0xfd,
+ 0xf3,
+ 0xf1,
+ 0xf7,
+ 0xf5,
+ 0xeb,
+ 0xe9,
+ 0xef,
+ 0xed,
+ 0xe3,
+ 0xe1,
+ 0xe7,
+ 0xe5,
+ };
+
+ /**
+ * Precalculated lookup table for galois field multiplication by 3 used in
+ * the MixColums step during encryption.
+ */
+ private static final int[] MULT3 = {
+ 0x00,
+ 0x03,
+ 0x06,
+ 0x05,
+ 0x0c,
+ 0x0f,
+ 0x0a,
+ 0x09,
+ 0x18,
+ 0x1b,
+ 0x1e,
+ 0x1d,
+ 0x14,
+ 0x17,
+ 0x12,
+ 0x11,
+ 0x30,
+ 0x33,
+ 0x36,
+ 0x35,
+ 0x3c,
+ 0x3f,
+ 0x3a,
+ 0x39,
+ 0x28,
+ 0x2b,
+ 0x2e,
+ 0x2d,
+ 0x24,
+ 0x27,
+ 0x22,
+ 0x21,
+ 0x60,
+ 0x63,
+ 0x66,
+ 0x65,
+ 0x6c,
+ 0x6f,
+ 0x6a,
+ 0x69,
+ 0x78,
+ 0x7b,
+ 0x7e,
+ 0x7d,
+ 0x74,
+ 0x77,
+ 0x72,
+ 0x71,
+ 0x50,
+ 0x53,
+ 0x56,
+ 0x55,
+ 0x5c,
+ 0x5f,
+ 0x5a,
+ 0x59,
+ 0x48,
+ 0x4b,
+ 0x4e,
+ 0x4d,
+ 0x44,
+ 0x47,
+ 0x42,
+ 0x41,
+ 0xc0,
+ 0xc3,
+ 0xc6,
+ 0xc5,
+ 0xcc,
+ 0xcf,
+ 0xca,
+ 0xc9,
+ 0xd8,
+ 0xdb,
+ 0xde,
+ 0xdd,
+ 0xd4,
+ 0xd7,
+ 0xd2,
+ 0xd1,
+ 0xf0,
+ 0xf3,
+ 0xf6,
+ 0xf5,
+ 0xfc,
+ 0xff,
+ 0xfa,
+ 0xf9,
+ 0xe8,
+ 0xeb,
+ 0xee,
+ 0xed,
+ 0xe4,
+ 0xe7,
+ 0xe2,
+ 0xe1,
+ 0xa0,
+ 0xa3,
+ 0xa6,
+ 0xa5,
+ 0xac,
+ 0xaf,
+ 0xaa,
+ 0xa9,
+ 0xb8,
+ 0xbb,
+ 0xbe,
+ 0xbd,
+ 0xb4,
+ 0xb7,
+ 0xb2,
+ 0xb1,
+ 0x90,
+ 0x93,
+ 0x96,
+ 0x95,
+ 0x9c,
+ 0x9f,
+ 0x9a,
+ 0x99,
+ 0x88,
+ 0x8b,
+ 0x8e,
+ 0x8d,
+ 0x84,
+ 0x87,
+ 0x82,
+ 0x81,
+ 0x9b,
+ 0x98,
+ 0x9d,
+ 0x9e,
+ 0x97,
+ 0x94,
+ 0x91,
+ 0x92,
+ 0x83,
+ 0x80,
+ 0x85,
+ 0x86,
+ 0x8f,
+ 0x8c,
+ 0x89,
+ 0x8a,
+ 0xab,
+ 0xa8,
+ 0xad,
+ 0xae,
+ 0xa7,
+ 0xa4,
+ 0xa1,
+ 0xa2,
+ 0xb3,
+ 0xb0,
+ 0xb5,
+ 0xb6,
+ 0xbf,
+ 0xbc,
+ 0xb9,
+ 0xba,
+ 0xfb,
+ 0xf8,
+ 0xfd,
+ 0xfe,
+ 0xf7,
+ 0xf4,
+ 0xf1,
+ 0xf2,
+ 0xe3,
+ 0xe0,
+ 0xe5,
+ 0xe6,
+ 0xef,
+ 0xec,
+ 0xe9,
+ 0xea,
+ 0xcb,
+ 0xc8,
+ 0xcd,
+ 0xce,
+ 0xc7,
+ 0xc4,
+ 0xc1,
+ 0xc2,
+ 0xd3,
+ 0xd0,
+ 0xd5,
+ 0xd6,
+ 0xdf,
+ 0xdc,
+ 0xd9,
+ 0xda,
+ 0x5b,
+ 0x58,
+ 0x5d,
+ 0x5e,
+ 0x57,
+ 0x54,
+ 0x51,
+ 0x52,
+ 0x43,
+ 0x40,
+ 0x45,
+ 0x46,
+ 0x4f,
+ 0x4c,
+ 0x49,
+ 0x4a,
+ 0x6b,
+ 0x68,
+ 0x6d,
+ 0x6e,
+ 0x67,
+ 0x64,
+ 0x61,
+ 0x62,
+ 0x73,
+ 0x70,
+ 0x75,
+ 0x76,
+ 0x7f,
+ 0x7c,
+ 0x79,
+ 0x7a,
+ 0x3b,
+ 0x38,
+ 0x3d,
+ 0x3e,
+ 0x37,
+ 0x34,
+ 0x31,
+ 0x32,
+ 0x23,
+ 0x20,
+ 0x25,
+ 0x26,
+ 0x2f,
+ 0x2c,
+ 0x29,
+ 0x2a,
+ 0x0b,
+ 0x08,
+ 0x0d,
+ 0x0e,
+ 0x07,
+ 0x04,
+ 0x01,
+ 0x02,
+ 0x13,
+ 0x10,
+ 0x15,
+ 0x16,
+ 0x1f,
+ 0x1c,
+ 0x19,
+ 0x1a,
+ };
+
+ /**
+ * Precalculated lookup table for galois field multiplication by 9 used in
+ * the MixColums step during decryption.
+ */
+ private static final int[] MULT9 = {
+ 0x00,
+ 0x09,
+ 0x12,
+ 0x1b,
+ 0x24,
+ 0x2d,
+ 0x36,
+ 0x3f,
+ 0x48,
+ 0x41,
+ 0x5a,
+ 0x53,
+ 0x6c,
+ 0x65,
+ 0x7e,
+ 0x77,
+ 0x90,
+ 0x99,
+ 0x82,
+ 0x8b,
+ 0xb4,
+ 0xbd,
+ 0xa6,
+ 0xaf,
+ 0xd8,
+ 0xd1,
+ 0xca,
+ 0xc3,
+ 0xfc,
+ 0xf5,
+ 0xee,
+ 0xe7,
+ 0x3b,
+ 0x32,
+ 0x29,
+ 0x20,
+ 0x1f,
+ 0x16,
+ 0x0d,
+ 0x04,
+ 0x73,
+ 0x7a,
+ 0x61,
+ 0x68,
+ 0x57,
+ 0x5e,
+ 0x45,
+ 0x4c,
+ 0xab,
+ 0xa2,
+ 0xb9,
+ 0xb0,
+ 0x8f,
+ 0x86,
+ 0x9d,
+ 0x94,
+ 0xe3,
+ 0xea,
+ 0xf1,
+ 0xf8,
+ 0xc7,
+ 0xce,
+ 0xd5,
+ 0xdc,
+ 0x76,
+ 0x7f,
+ 0x64,
+ 0x6d,
+ 0x52,
+ 0x5b,
+ 0x40,
+ 0x49,
+ 0x3e,
+ 0x37,
+ 0x2c,
+ 0x25,
+ 0x1a,
+ 0x13,
+ 0x08,
+ 0x01,
+ 0xe6,
+ 0xef,
+ 0xf4,
+ 0xfd,
+ 0xc2,
+ 0xcb,
+ 0xd0,
+ 0xd9,
+ 0xae,
+ 0xa7,
+ 0xbc,
+ 0xb5,
+ 0x8a,
+ 0x83,
+ 0x98,
+ 0x91,
+ 0x4d,
+ 0x44,
+ 0x5f,
+ 0x56,
+ 0x69,
+ 0x60,
+ 0x7b,
+ 0x72,
+ 0x05,
+ 0x0c,
+ 0x17,
+ 0x1e,
+ 0x21,
+ 0x28,
+ 0x33,
+ 0x3a,
+ 0xdd,
+ 0xd4,
+ 0xcf,
+ 0xc6,
+ 0xf9,
+ 0xf0,
+ 0xeb,
+ 0xe2,
+ 0x95,
+ 0x9c,
+ 0x87,
+ 0x8e,
+ 0xb1,
+ 0xb8,
+ 0xa3,
+ 0xaa,
+ 0xec,
+ 0xe5,
+ 0xfe,
+ 0xf7,
+ 0xc8,
+ 0xc1,
+ 0xda,
+ 0xd3,
+ 0xa4,
+ 0xad,
+ 0xb6,
+ 0xbf,
+ 0x80,
+ 0x89,
+ 0x92,
+ 0x9b,
+ 0x7c,
+ 0x75,
+ 0x6e,
+ 0x67,
+ 0x58,
+ 0x51,
+ 0x4a,
+ 0x43,
+ 0x34,
+ 0x3d,
+ 0x26,
+ 0x2f,
+ 0x10,
+ 0x19,
+ 0x02,
+ 0x0b,
+ 0xd7,
+ 0xde,
+ 0xc5,
+ 0xcc,
+ 0xf3,
+ 0xfa,
+ 0xe1,
+ 0xe8,
+ 0x9f,
+ 0x96,
+ 0x8d,
+ 0x84,
+ 0xbb,
+ 0xb2,
+ 0xa9,
+ 0xa0,
+ 0x47,
+ 0x4e,
+ 0x55,
+ 0x5c,
+ 0x63,
+ 0x6a,
+ 0x71,
+ 0x78,
+ 0x0f,
+ 0x06,
+ 0x1d,
+ 0x14,
+ 0x2b,
+ 0x22,
+ 0x39,
+ 0x30,
+ 0x9a,
+ 0x93,
+ 0x88,
+ 0x81,
+ 0xbe,
+ 0xb7,
+ 0xac,
+ 0xa5,
+ 0xd2,
+ 0xdb,
+ 0xc0,
+ 0xc9,
+ 0xf6,
+ 0xff,
+ 0xe4,
+ 0xed,
+ 0x0a,
+ 0x03,
+ 0x18,
+ 0x11,
+ 0x2e,
+ 0x27,
+ 0x3c,
+ 0x35,
+ 0x42,
+ 0x4b,
+ 0x50,
+ 0x59,
+ 0x66,
+ 0x6f,
+ 0x74,
+ 0x7d,
+ 0xa1,
+ 0xa8,
+ 0xb3,
+ 0xba,
+ 0x85,
+ 0x8c,
+ 0x97,
+ 0x9e,
+ 0xe9,
+ 0xe0,
+ 0xfb,
+ 0xf2,
+ 0xcd,
+ 0xc4,
+ 0xdf,
+ 0xd6,
+ 0x31,
+ 0x38,
+ 0x23,
+ 0x2a,
+ 0x15,
+ 0x1c,
+ 0x07,
+ 0x0e,
+ 0x79,
+ 0x70,
+ 0x6b,
+ 0x62,
+ 0x5d,
+ 0x54,
+ 0x4f,
+ 0x46,
+ };
+
+ /**
+ * Precalculated lookup table for galois field multiplication by 11 used in
+ * the MixColums step during decryption.
+ */
+ private static final int[] MULT11 = {
+ 0x00,
+ 0x0b,
+ 0x16,
+ 0x1d,
+ 0x2c,
+ 0x27,
+ 0x3a,
+ 0x31,
+ 0x58,
+ 0x53,
+ 0x4e,
+ 0x45,
+ 0x74,
+ 0x7f,
+ 0x62,
+ 0x69,
+ 0xb0,
+ 0xbb,
+ 0xa6,
+ 0xad,
+ 0x9c,
+ 0x97,
+ 0x8a,
+ 0x81,
+ 0xe8,
+ 0xe3,
+ 0xfe,
+ 0xf5,
+ 0xc4,
+ 0xcf,
+ 0xd2,
+ 0xd9,
+ 0x7b,
+ 0x70,
+ 0x6d,
+ 0x66,
+ 0x57,
+ 0x5c,
+ 0x41,
+ 0x4a,
+ 0x23,
+ 0x28,
+ 0x35,
+ 0x3e,
+ 0x0f,
+ 0x04,
+ 0x19,
+ 0x12,
+ 0xcb,
+ 0xc0,
+ 0xdd,
+ 0xd6,
+ 0xe7,
+ 0xec,
+ 0xf1,
+ 0xfa,
+ 0x93,
+ 0x98,
+ 0x85,
+ 0x8e,
+ 0xbf,
+ 0xb4,
+ 0xa9,
+ 0xa2,
+ 0xf6,
+ 0xfd,
+ 0xe0,
+ 0xeb,
+ 0xda,
+ 0xd1,
+ 0xcc,
+ 0xc7,
+ 0xae,
+ 0xa5,
+ 0xb8,
+ 0xb3,
+ 0x82,
+ 0x89,
+ 0x94,
+ 0x9f,
+ 0x46,
+ 0x4d,
+ 0x50,
+ 0x5b,
+ 0x6a,
+ 0x61,
+ 0x7c,
+ 0x77,
+ 0x1e,
+ 0x15,
+ 0x08,
+ 0x03,
+ 0x32,
+ 0x39,
+ 0x24,
+ 0x2f,
+ 0x8d,
+ 0x86,
+ 0x9b,
+ 0x90,
+ 0xa1,
+ 0xaa,
+ 0xb7,
+ 0xbc,
+ 0xd5,
+ 0xde,
+ 0xc3,
+ 0xc8,
+ 0xf9,
+ 0xf2,
+ 0xef,
+ 0xe4,
+ 0x3d,
+ 0x36,
+ 0x2b,
+ 0x20,
+ 0x11,
+ 0x1a,
+ 0x07,
+ 0x0c,
+ 0x65,
+ 0x6e,
+ 0x73,
+ 0x78,
+ 0x49,
+ 0x42,
+ 0x5f,
+ 0x54,
+ 0xf7,
+ 0xfc,
+ 0xe1,
+ 0xea,
+ 0xdb,
+ 0xd0,
+ 0xcd,
+ 0xc6,
+ 0xaf,
+ 0xa4,
+ 0xb9,
+ 0xb2,
+ 0x83,
+ 0x88,
+ 0x95,
+ 0x9e,
+ 0x47,
+ 0x4c,
+ 0x51,
+ 0x5a,
+ 0x6b,
+ 0x60,
+ 0x7d,
+ 0x76,
+ 0x1f,
+ 0x14,
+ 0x09,
+ 0x02,
+ 0x33,
+ 0x38,
+ 0x25,
+ 0x2e,
+ 0x8c,
+ 0x87,
+ 0x9a,
+ 0x91,
+ 0xa0,
+ 0xab,
+ 0xb6,
+ 0xbd,
+ 0xd4,
+ 0xdf,
+ 0xc2,
+ 0xc9,
+ 0xf8,
+ 0xf3,
+ 0xee,
+ 0xe5,
+ 0x3c,
+ 0x37,
+ 0x2a,
+ 0x21,
+ 0x10,
+ 0x1b,
+ 0x06,
+ 0x0d,
+ 0x64,
+ 0x6f,
+ 0x72,
+ 0x79,
+ 0x48,
+ 0x43,
+ 0x5e,
+ 0x55,
+ 0x01,
+ 0x0a,
+ 0x17,
+ 0x1c,
+ 0x2d,
+ 0x26,
+ 0x3b,
+ 0x30,
+ 0x59,
+ 0x52,
+ 0x4f,
+ 0x44,
+ 0x75,
+ 0x7e,
+ 0x63,
+ 0x68,
+ 0xb1,
+ 0xba,
+ 0xa7,
+ 0xac,
+ 0x9d,
+ 0x96,
+ 0x8b,
+ 0x80,
+ 0xe9,
+ 0xe2,
+ 0xff,
+ 0xf4,
+ 0xc5,
+ 0xce,
+ 0xd3,
+ 0xd8,
+ 0x7a,
+ 0x71,
+ 0x6c,
+ 0x67,
+ 0x56,
+ 0x5d,
+ 0x40,
+ 0x4b,
+ 0x22,
+ 0x29,
+ 0x34,
+ 0x3f,
+ 0x0e,
+ 0x05,
+ 0x18,
+ 0x13,
+ 0xca,
+ 0xc1,
+ 0xdc,
+ 0xd7,
+ 0xe6,
+ 0xed,
+ 0xf0,
+ 0xfb,
+ 0x92,
+ 0x99,
+ 0x84,
+ 0x8f,
+ 0xbe,
+ 0xb5,
+ 0xa8,
+ 0xa3,
+ };
+
+ /**
+ * Precalculated lookup table for galois field multiplication by 13 used in
+ * the MixColums step during decryption.
+ */
+ private static final int[] MULT13 = {
+ 0x00,
+ 0x0d,
+ 0x1a,
+ 0x17,
+ 0x34,
+ 0x39,
+ 0x2e,
+ 0x23,
+ 0x68,
+ 0x65,
+ 0x72,
+ 0x7f,
+ 0x5c,
+ 0x51,
+ 0x46,
+ 0x4b,
+ 0xd0,
+ 0xdd,
+ 0xca,
+ 0xc7,
+ 0xe4,
+ 0xe9,
+ 0xfe,
+ 0xf3,
+ 0xb8,
+ 0xb5,
+ 0xa2,
+ 0xaf,
+ 0x8c,
+ 0x81,
+ 0x96,
+ 0x9b,
+ 0xbb,
+ 0xb6,
+ 0xa1,
+ 0xac,
+ 0x8f,
+ 0x82,
+ 0x95,
+ 0x98,
+ 0xd3,
+ 0xde,
+ 0xc9,
+ 0xc4,
+ 0xe7,
+ 0xea,
+ 0xfd,
+ 0xf0,
+ 0x6b,
+ 0x66,
+ 0x71,
+ 0x7c,
+ 0x5f,
+ 0x52,
+ 0x45,
+ 0x48,
+ 0x03,
+ 0x0e,
+ 0x19,
+ 0x14,
+ 0x37,
+ 0x3a,
+ 0x2d,
+ 0x20,
+ 0x6d,
+ 0x60,
+ 0x77,
+ 0x7a,
+ 0x59,
+ 0x54,
+ 0x43,
+ 0x4e,
+ 0x05,
+ 0x08,
+ 0x1f,
+ 0x12,
+ 0x31,
+ 0x3c,
+ 0x2b,
+ 0x26,
+ 0xbd,
+ 0xb0,
+ 0xa7,
+ 0xaa,
+ 0x89,
+ 0x84,
+ 0x93,
+ 0x9e,
+ 0xd5,
+ 0xd8,
+ 0xcf,
+ 0xc2,
+ 0xe1,
+ 0xec,
+ 0xfb,
+ 0xf6,
+ 0xd6,
+ 0xdb,
+ 0xcc,
+ 0xc1,
+ 0xe2,
+ 0xef,
+ 0xf8,
+ 0xf5,
+ 0xbe,
+ 0xb3,
+ 0xa4,
+ 0xa9,
+ 0x8a,
+ 0x87,
+ 0x90,
+ 0x9d,
+ 0x06,
+ 0x0b,
+ 0x1c,
+ 0x11,
+ 0x32,
+ 0x3f,
+ 0x28,
+ 0x25,
+ 0x6e,
+ 0x63,
+ 0x74,
+ 0x79,
+ 0x5a,
+ 0x57,
+ 0x40,
+ 0x4d,
+ 0xda,
+ 0xd7,
+ 0xc0,
+ 0xcd,
+ 0xee,
+ 0xe3,
+ 0xf4,
+ 0xf9,
+ 0xb2,
+ 0xbf,
+ 0xa8,
+ 0xa5,
+ 0x86,
+ 0x8b,
+ 0x9c,
+ 0x91,
+ 0x0a,
+ 0x07,
+ 0x10,
+ 0x1d,
+ 0x3e,
+ 0x33,
+ 0x24,
+ 0x29,
+ 0x62,
+ 0x6f,
+ 0x78,
+ 0x75,
+ 0x56,
+ 0x5b,
+ 0x4c,
+ 0x41,
+ 0x61,
+ 0x6c,
+ 0x7b,
+ 0x76,
+ 0x55,
+ 0x58,
+ 0x4f,
+ 0x42,
+ 0x09,
+ 0x04,
+ 0x13,
+ 0x1e,
+ 0x3d,
+ 0x30,
+ 0x27,
+ 0x2a,
+ 0xb1,
+ 0xbc,
+ 0xab,
+ 0xa6,
+ 0x85,
+ 0x88,
+ 0x9f,
+ 0x92,
+ 0xd9,
+ 0xd4,
+ 0xc3,
+ 0xce,
+ 0xed,
+ 0xe0,
+ 0xf7,
+ 0xfa,
+ 0xb7,
+ 0xba,
+ 0xad,
+ 0xa0,
+ 0x83,
+ 0x8e,
+ 0x99,
+ 0x94,
+ 0xdf,
+ 0xd2,
+ 0xc5,
+ 0xc8,
+ 0xeb,
+ 0xe6,
+ 0xf1,
+ 0xfc,
+ 0x67,
+ 0x6a,
+ 0x7d,
+ 0x70,
+ 0x53,
+ 0x5e,
+ 0x49,
+ 0x44,
+ 0x0f,
+ 0x02,
+ 0x15,
+ 0x18,
+ 0x3b,
+ 0x36,
+ 0x21,
+ 0x2c,
+ 0x0c,
+ 0x01,
+ 0x16,
+ 0x1b,
+ 0x38,
+ 0x35,
+ 0x22,
+ 0x2f,
+ 0x64,
+ 0x69,
+ 0x7e,
+ 0x73,
+ 0x50,
+ 0x5d,
+ 0x4a,
+ 0x47,
+ 0xdc,
+ 0xd1,
+ 0xc6,
+ 0xcb,
+ 0xe8,
+ 0xe5,
+ 0xf2,
+ 0xff,
+ 0xb4,
+ 0xb9,
+ 0xae,
+ 0xa3,
+ 0x80,
+ 0x8d,
+ 0x9a,
+ 0x97,
+ };
+
+ /**
+ * Precalculated lookup table for galois field multiplication by 14 used in
+ * the MixColums step during decryption.
+ */
+ private static final int[] MULT14 = {
+ 0x00,
+ 0x0e,
+ 0x1c,
+ 0x12,
+ 0x38,
+ 0x36,
+ 0x24,
+ 0x2a,
+ 0x70,
+ 0x7e,
+ 0x6c,
+ 0x62,
+ 0x48,
+ 0x46,
+ 0x54,
+ 0x5a,
+ 0xe0,
+ 0xee,
+ 0xfc,
+ 0xf2,
+ 0xd8,
+ 0xd6,
+ 0xc4,
+ 0xca,
+ 0x90,
+ 0x9e,
+ 0x8c,
+ 0x82,
+ 0xa8,
+ 0xa6,
+ 0xb4,
+ 0xba,
+ 0xdb,
+ 0xd5,
+ 0xc7,
+ 0xc9,
+ 0xe3,
+ 0xed,
+ 0xff,
+ 0xf1,
+ 0xab,
+ 0xa5,
+ 0xb7,
+ 0xb9,
+ 0x93,
+ 0x9d,
+ 0x8f,
+ 0x81,
+ 0x3b,
+ 0x35,
+ 0x27,
+ 0x29,
+ 0x03,
+ 0x0d,
+ 0x1f,
+ 0x11,
+ 0x4b,
+ 0x45,
+ 0x57,
+ 0x59,
+ 0x73,
+ 0x7d,
+ 0x6f,
+ 0x61,
+ 0xad,
+ 0xa3,
+ 0xb1,
+ 0xbf,
+ 0x95,
+ 0x9b,
+ 0x89,
+ 0x87,
+ 0xdd,
+ 0xd3,
+ 0xc1,
+ 0xcf,
+ 0xe5,
+ 0xeb,
+ 0xf9,
+ 0xf7,
+ 0x4d,
+ 0x43,
+ 0x51,
+ 0x5f,
+ 0x75,
+ 0x7b,
+ 0x69,
+ 0x67,
+ 0x3d,
+ 0x33,
+ 0x21,
+ 0x2f,
+ 0x05,
+ 0x0b,
+ 0x19,
+ 0x17,
+ 0x76,
+ 0x78,
+ 0x6a,
+ 0x64,
+ 0x4e,
+ 0x40,
+ 0x52,
+ 0x5c,
+ 0x06,
+ 0x08,
+ 0x1a,
+ 0x14,
+ 0x3e,
+ 0x30,
+ 0x22,
+ 0x2c,
+ 0x96,
+ 0x98,
+ 0x8a,
+ 0x84,
+ 0xae,
+ 0xa0,
+ 0xb2,
+ 0xbc,
+ 0xe6,
+ 0xe8,
+ 0xfa,
+ 0xf4,
+ 0xde,
+ 0xd0,
+ 0xc2,
+ 0xcc,
+ 0x41,
+ 0x4f,
+ 0x5d,
+ 0x53,
+ 0x79,
+ 0x77,
+ 0x65,
+ 0x6b,
+ 0x31,
+ 0x3f,
+ 0x2d,
+ 0x23,
+ 0x09,
+ 0x07,
+ 0x15,
+ 0x1b,
+ 0xa1,
+ 0xaf,
+ 0xbd,
+ 0xb3,
+ 0x99,
+ 0x97,
+ 0x85,
+ 0x8b,
+ 0xd1,
+ 0xdf,
+ 0xcd,
+ 0xc3,
+ 0xe9,
+ 0xe7,
+ 0xf5,
+ 0xfb,
+ 0x9a,
+ 0x94,
+ 0x86,
+ 0x88,
+ 0xa2,
+ 0xac,
+ 0xbe,
+ 0xb0,
+ 0xea,
+ 0xe4,
+ 0xf6,
+ 0xf8,
+ 0xd2,
+ 0xdc,
+ 0xce,
+ 0xc0,
+ 0x7a,
+ 0x74,
+ 0x66,
+ 0x68,
+ 0x42,
+ 0x4c,
+ 0x5e,
+ 0x50,
+ 0x0a,
+ 0x04,
+ 0x16,
+ 0x18,
+ 0x32,
+ 0x3c,
+ 0x2e,
+ 0x20,
+ 0xec,
+ 0xe2,
+ 0xf0,
+ 0xfe,
+ 0xd4,
+ 0xda,
+ 0xc8,
+ 0xc6,
+ 0x9c,
+ 0x92,
+ 0x80,
+ 0x8e,
+ 0xa4,
+ 0xaa,
+ 0xb8,
+ 0xb6,
+ 0x0c,
+ 0x02,
+ 0x10,
+ 0x1e,
+ 0x34,
+ 0x3a,
+ 0x28,
+ 0x26,
+ 0x7c,
+ 0x72,
+ 0x60,
+ 0x6e,
+ 0x44,
+ 0x4a,
+ 0x58,
+ 0x56,
+ 0x37,
+ 0x39,
+ 0x2b,
+ 0x25,
+ 0x0f,
+ 0x01,
+ 0x13,
+ 0x1d,
+ 0x47,
+ 0x49,
+ 0x5b,
+ 0x55,
+ 0x7f,
+ 0x71,
+ 0x63,
+ 0x6d,
+ 0xd7,
+ 0xd9,
+ 0xcb,
+ 0xc5,
+ 0xef,
+ 0xe1,
+ 0xf3,
+ 0xfd,
+ 0xa7,
+ 0xa9,
+ 0xbb,
+ 0xb5,
+ 0x9f,
+ 0x91,
+ 0x83,
+ 0x8d,
+ };
+
+ /**
+ * Subroutine of the Rijndael key expansion.
+ */
+ public static BigInteger scheduleCore(BigInteger t, int rconCounter) {
+ StringBuilder rBytes = new StringBuilder(t.toString(16));
+
+ // Add zero padding
+ while (rBytes.length() < 8) {
+ rBytes.insert(0, "0");
+ }
+
+ // rotate the first 16 bits to the back
+ String rotatingBytes = rBytes.substring(0, 2);
+ String fixedBytes = rBytes.substring(2);
+
+ rBytes = new StringBuilder(fixedBytes + rotatingBytes);
+
+ // apply S-Box to all 8-Bit Substrings
+ for (int i = 0; i < 4; i++) {
+ StringBuilder currentByteBits = new StringBuilder(rBytes.substring(i * 2, (i + 1) * 2));
+
+ int currentByte = Integer.parseInt(currentByteBits.toString(), 16);
+ currentByte = SBOX[currentByte];
+
+ // add the current RCON value to the first byte
+ if (i == 0) {
+ currentByte = currentByte ^ RCON[rconCounter];
+ }
+
+ currentByteBits = new StringBuilder(Integer.toHexString(currentByte));
+
+ // Add zero padding
+ while (currentByteBits.length() < 2) {
+ currentByteBits.insert(0, '0');
+ }
+
+ // replace bytes in original string
+ rBytes = new StringBuilder(rBytes.substring(0, i * 2) + currentByteBits + rBytes.substring((i + 1) * 2));
+ }
+
+ return new BigInteger(rBytes.toString(), 16);
+ }
+
+ /**
+ * Returns an array of 10 + 1 round keys that are calculated by using
+ * Rijndael key schedule
+ *
+ * @return array of 10 + 1 round keys
+ */
+ public static BigInteger[] keyExpansion(BigInteger initialKey) {
+ BigInteger[] roundKeys = {
+ initialKey,
+ BigInteger.ZERO,
+ BigInteger.ZERO,
+ BigInteger.ZERO,
+ BigInteger.ZERO,
+ BigInteger.ZERO,
+ BigInteger.ZERO,
+ BigInteger.ZERO,
+ BigInteger.ZERO,
+ BigInteger.ZERO,
+ BigInteger.ZERO,
+ };
+
+ // initialize rcon iteration
+ int rconCounter = 1;
+
+ for (int i = 1; i < 11; i++) {
+ // get the previous 32 bits the key
+ BigInteger t = roundKeys[i - 1].remainder(new BigInteger("100000000", 16));
+
+ // split previous key into 8-bit segments
+ BigInteger[] prevKey = {
+ roundKeys[i - 1].remainder(new BigInteger("100000000", 16)),
+ roundKeys[i - 1].remainder(new BigInteger("10000000000000000", 16)).divide(new BigInteger("100000000", 16)),
+ roundKeys[i - 1].remainder(new BigInteger("1000000000000000000000000", 16)).divide(new BigInteger("10000000000000000", 16)),
+ roundKeys[i - 1].divide(new BigInteger("1000000000000000000000000", 16)),
+ };
+
+ // run schedule core
+ t = scheduleCore(t, rconCounter);
+ rconCounter += 1;
+
+ // Calculate partial round key
+ BigInteger t0 = t.xor(prevKey[3]);
+ BigInteger t1 = t0.xor(prevKey[2]);
+ BigInteger t2 = t1.xor(prevKey[1]);
+ BigInteger t3 = t2.xor(prevKey[0]);
+
+ // Join round key segments
+ t2 = t2.multiply(new BigInteger("100000000", 16));
+ t1 = t1.multiply(new BigInteger("10000000000000000", 16));
+ t0 = t0.multiply(new BigInteger("1000000000000000000000000", 16));
+ roundKeys[i] = t0.add(t1).add(t2).add(t3);
+ }
+ return roundKeys;
+ }
+
+ /**
+ * representation of the input 128-bit block as an array of 8-bit integers.
+ *
+ * @param block of 128-bit integers
+ * @return array of 8-bit integers
+ */
+ public static int[] splitBlockIntoCells(BigInteger block) {
+ int[] cells = new int[16];
+ StringBuilder blockBits = new StringBuilder(block.toString(2));
+
+ // Append leading 0 for full "128-bit" string
+ while (blockBits.length() < 128) {
+ blockBits.insert(0, '0');
+ }
+
+ // split 128 to 8 bit cells
+ for (int i = 0; i < cells.length; i++) {
+ String cellBits = blockBits.substring(8 * i, 8 * (i + 1));
+ cells[i] = Integer.parseInt(cellBits, 2);
+ }
+
+ return cells;
+ }
+
+ /**
+ * Returns the 128-bit BigInteger representation of the input of an array of
+ * 8-bit integers.
+ *
+ * @param cells that we need to merge
+ * @return block of merged cells
+ */
+ public static BigInteger mergeCellsIntoBlock(int[] cells) {
+ StringBuilder blockBits = new StringBuilder();
+ for (int i = 0; i < 16; i++) {
+ StringBuilder cellBits = new StringBuilder(Integer.toBinaryString(cells[i]));
+
+ // Append leading 0 for full "8-bit" strings
+ while (cellBits.length() < 8) {
+ cellBits.insert(0, '0');
+ }
+
+ blockBits.append(cellBits);
+ }
+
+ return new BigInteger(blockBits.toString(), 2);
+ }
+
+ /**
+ * @return ciphertext XOR key
+ */
+ public static BigInteger addRoundKey(BigInteger ciphertext, BigInteger key) {
+ return ciphertext.xor(key);
+ }
+
+ /**
+ * substitutes 8-Bit long substrings of the input using the S-Box and
+ * returns the result.
+ *
+ * @return subtraction Output
+ */
+ public static BigInteger subBytes(BigInteger ciphertext) {
+ int[] cells = splitBlockIntoCells(ciphertext);
+
+ for (int i = 0; i < 16; i++) {
+ cells[i] = SBOX[cells[i]];
+ }
+
+ return mergeCellsIntoBlock(cells);
+ }
+
+ /**
+ * substitutes 8-Bit long substrings of the input using the inverse S-Box
+ * for decryption and returns the result.
+ *
+ * @return subtraction Output
+ */
+ public static BigInteger subBytesDec(BigInteger ciphertext) {
+ int[] cells = splitBlockIntoCells(ciphertext);
+
+ for (int i = 0; i < 16; i++) {
+ cells[i] = INVERSE_SBOX[cells[i]];
+ }
+
+ return mergeCellsIntoBlock(cells);
+ }
+
+ /**
+ * Cell permutation step. Shifts cells within the rows of the input and
+ * returns the result.
+ */
+ public static BigInteger shiftRows(BigInteger ciphertext) {
+ int[] cells = splitBlockIntoCells(ciphertext);
+ int[] output = new int[16];
+
+ // do nothing in the first row
+ output[0] = cells[0];
+ output[4] = cells[4];
+ output[8] = cells[8];
+ output[12] = cells[12];
+
+ // shift the second row backwards by one cell
+ output[1] = cells[5];
+ output[5] = cells[9];
+ output[9] = cells[13];
+ output[13] = cells[1];
+
+ // shift the third row backwards by two cell
+ output[2] = cells[10];
+ output[6] = cells[14];
+ output[10] = cells[2];
+ output[14] = cells[6];
+
+ // shift the forth row backwards by tree cell
+ output[3] = cells[15];
+ output[7] = cells[3];
+ output[11] = cells[7];
+ output[15] = cells[11];
+
+ return mergeCellsIntoBlock(output);
+ }
+
+ /**
+ * Cell permutation step for decryption . Shifts cells within the rows of
+ * the input and returns the result.
+ */
+ public static BigInteger shiftRowsDec(BigInteger ciphertext) {
+ int[] cells = splitBlockIntoCells(ciphertext);
+ int[] output = new int[16];
+
+ // do nothing in the first row
+ output[0] = cells[0];
+ output[4] = cells[4];
+ output[8] = cells[8];
+ output[12] = cells[12];
+
+ // shift the second row forwards by one cell
+ output[1] = cells[13];
+ output[5] = cells[1];
+ output[9] = cells[5];
+ output[13] = cells[9];
+
+ // shift the third row forwards by two cell
+ output[2] = cells[10];
+ output[6] = cells[14];
+ output[10] = cells[2];
+ output[14] = cells[6];
+
+ // shift the forth row forwards by tree cell
+ output[3] = cells[7];
+ output[7] = cells[11];
+ output[11] = cells[15];
+ output[15] = cells[3];
+
+ return mergeCellsIntoBlock(output);
+ }
+
+ /**
+ * Applies the Rijndael MixColumns to the input and returns the result.
+ */
+ public static BigInteger mixColumns(BigInteger ciphertext) {
+ int[] cells = splitBlockIntoCells(ciphertext);
+ int[] outputCells = new int[16];
+
+ for (int i = 0; i < 4; i++) {
+ int[] row = {
+ cells[i * 4],
+ cells[i * 4 + 1],
+ cells[i * 4 + 2],
+ cells[i * 4 + 3],
+ };
+
+ outputCells[i * 4] = MULT2[row[0]] ^ MULT3[row[1]] ^ row[2] ^ row[3];
+ outputCells[i * 4 + 1] = row[0] ^ MULT2[row[1]] ^ MULT3[row[2]] ^ row[3];
+ outputCells[i * 4 + 2] = row[0] ^ row[1] ^ MULT2[row[2]] ^ MULT3[row[3]];
+ outputCells[i * 4 + 3] = MULT3[row[0]] ^ row[1] ^ row[2] ^ MULT2[row[3]];
+ }
+ return mergeCellsIntoBlock(outputCells);
+ }
+
+ /**
+ * Applies the inverse Rijndael MixColumns for decryption to the input and
+ * returns the result.
+ */
+ public static BigInteger mixColumnsDec(BigInteger ciphertext) {
+ int[] cells = splitBlockIntoCells(ciphertext);
+ int[] outputCells = new int[16];
+
+ for (int i = 0; i < 4; i++) {
+ int[] row = {
+ cells[i * 4],
+ cells[i * 4 + 1],
+ cells[i * 4 + 2],
+ cells[i * 4 + 3],
+ };
+
+ outputCells[i * 4] = MULT14[row[0]] ^ MULT11[row[1]] ^ MULT13[row[2]] ^ MULT9[row[3]];
+ outputCells[i * 4 + 1] = MULT9[row[0]] ^ MULT14[row[1]] ^ MULT11[row[2]] ^ MULT13[row[3]];
+ outputCells[i * 4 + 2] = MULT13[row[0]] ^ MULT9[row[1]] ^ MULT14[row[2]] ^ MULT11[row[3]];
+ outputCells[i * 4 + 3] = MULT11[row[0]] ^ MULT13[row[1]] ^ MULT9[row[2]] ^ MULT14[row[3]];
+ }
+ return mergeCellsIntoBlock(outputCells);
+ }
+
+ /**
+ * Encrypts the plaintext with the key and returns the result
+ *
+ * @param plainText which we want to encrypt
+ * @param key the key for encrypt
+ * @return EncryptedText
+ */
+ public static BigInteger encrypt(BigInteger plainText, BigInteger key) {
+ BigInteger[] roundKeys = keyExpansion(key);
+
+ // Initial round
+ plainText = addRoundKey(plainText, roundKeys[0]);
+
+ // Main rounds
+ for (int i = 1; i < 10; i++) {
+ plainText = subBytes(plainText);
+ plainText = shiftRows(plainText);
+ plainText = mixColumns(plainText);
+ plainText = addRoundKey(plainText, roundKeys[i]);
+ }
+
+ // Final round
+ plainText = subBytes(plainText);
+ plainText = shiftRows(plainText);
+ plainText = addRoundKey(plainText, roundKeys[10]);
+
+ return plainText;
+ }
+
+ /**
+ * Decrypts the ciphertext with the key and returns the result
+ *
+ * @param cipherText The Encrypted text which we want to decrypt
+ * @return decryptedText
+ */
+ public static BigInteger decrypt(BigInteger cipherText, BigInteger key) {
+ BigInteger[] roundKeys = keyExpansion(key);
+
+ // Invert final round
+ cipherText = addRoundKey(cipherText, roundKeys[10]);
+ cipherText = shiftRowsDec(cipherText);
+ cipherText = subBytesDec(cipherText);
+
+ // Invert main rounds
+ for (int i = 9; i > 0; i--) {
+ cipherText = addRoundKey(cipherText, roundKeys[i]);
+ cipherText = mixColumnsDec(cipherText);
+ cipherText = shiftRowsDec(cipherText);
+ cipherText = subBytesDec(cipherText);
+ }
+
+ // Invert initial round
+ cipherText = addRoundKey(cipherText, roundKeys[0]);
+
+ return cipherText;
+ }
+
+ public static void main(String[] args) {
+ try (Scanner input = new Scanner(System.in)) {
+ System.out.println("Enter (e) letter for encrpyt or (d) letter for decrypt :");
+ char choice = input.nextLine().charAt(0);
+ String in;
+ switch (choice) {
+ case 'E', 'e' -> {
+ System.out.println(
+ "Choose a plaintext block (128-Bit Integer in base 16):"
+ );
+ in = input.nextLine();
+ BigInteger plaintext = new BigInteger(in, 16);
+ System.out.println(
+ "Choose a Key (128-Bit Integer in base 16):"
+ );
+ in = input.nextLine();
+ BigInteger encryptionKey = new BigInteger(in, 16);
+ System.out.println(
+ "The encrypted message is: \n"
+ + encrypt(plaintext, encryptionKey).toString(16)
+ );
+ }
+ case 'D', 'd' -> {
+ System.out.println(
+ "Enter your ciphertext block (128-Bit Integer in base 16):"
+ );
+ in = input.nextLine();
+ BigInteger ciphertext = new BigInteger(in, 16);
+ System.out.println(
+ "Choose a Key (128-Bit Integer in base 16):"
+ );
+ in = input.nextLine();
+ BigInteger decryptionKey = new BigInteger(in, 16);
+ System.out.println(
+ "The deciphered message is:\n"
+ + decrypt(ciphertext, decryptionKey).toString(16)
+ );
+ }
+ default -> System.out.println("** End **");
+ }
+ }
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/AESEncryption.java b/src/main/java/com/thealgorithms/ciphers/AESEncryption.java
new file mode 100644
index 000000000000..14582205442f
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/AESEncryption.java
@@ -0,0 +1,104 @@
+package com.thealgorithms.ciphers;
+
+import java.security.InvalidAlgorithmParameterException;
+import java.security.InvalidKeyException;
+import java.security.NoSuchAlgorithmException;
+import javax.crypto.BadPaddingException;
+import javax.crypto.Cipher;
+import javax.crypto.IllegalBlockSizeException;
+import javax.crypto.KeyGenerator;
+import javax.crypto.NoSuchPaddingException;
+import javax.crypto.SecretKey;
+import javax.crypto.spec.GCMParameterSpec;
+
+/**
+ * This example program shows how AES encryption and decryption can be done in
+ * Java. Please note that secret key and encrypted text is unreadable binary and
+ * hence in the following program we display it in hexadecimal format of the
+ * underlying bytes.
+ */
+public final class AESEncryption {
+ private AESEncryption() {
+ }
+
+ private static final char[] HEX_ARRAY = "0123456789ABCDEF".toCharArray();
+ private static Cipher aesCipher;
+
+ /**
+ * 1. Generate a plain text for encryption 2. Get a secret key (printed in
+ * hexadecimal form). In actual use this must be encrypted and kept safe.
+ * The same key is required for decryption.
+ */
+ public static void main(String[] args) throws Exception {
+ String plainText = "Hello World";
+ SecretKey secKey = getSecretEncryptionKey();
+ byte[] cipherText = encryptText(plainText, secKey);
+ String decryptedText = decryptText(cipherText, secKey);
+
+ System.out.println("Original Text:" + plainText);
+ System.out.println("AES Key (Hex Form):" + bytesToHex(secKey.getEncoded()));
+ System.out.println("Encrypted Text (Hex Form):" + bytesToHex(cipherText));
+ System.out.println("Descrypted Text:" + decryptedText);
+ }
+
+ /**
+ * gets the AES encryption key. In your actual programs, this should be
+ * safely stored.
+ *
+ * @return secKey (Secret key that we encrypt using it)
+ * @throws NoSuchAlgorithmException (from KeyGenrator)
+ */
+ public static SecretKey getSecretEncryptionKey() throws NoSuchAlgorithmException {
+ KeyGenerator aesKeyGenerator = KeyGenerator.getInstance("AES");
+ aesKeyGenerator.init(128); // The AES key size in number of bits
+ return aesKeyGenerator.generateKey();
+ }
+
+ /**
+ * Encrypts plainText in AES using the secret key
+ *
+ * @return byteCipherText (The encrypted text)
+ * @throws NoSuchPaddingException (from Cipher)
+ * @throws NoSuchAlgorithmException (from Cipher)
+ * @throws InvalidKeyException (from Cipher)
+ * @throws BadPaddingException (from Cipher)
+ * @throws IllegalBlockSizeException (from Cipher)
+ */
+ public static byte[] encryptText(String plainText, SecretKey secKey) throws NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException, IllegalBlockSizeException, BadPaddingException {
+ // AES defaults to AES/ECB/PKCS5Padding in Java 7
+ aesCipher = Cipher.getInstance("AES/GCM/NoPadding");
+ aesCipher.init(Cipher.ENCRYPT_MODE, secKey);
+ return aesCipher.doFinal(plainText.getBytes());
+ }
+
+ /**
+ * Decrypts encrypted byte array using the key used for encryption.
+ *
+ * @return plainText
+ */
+ public static String decryptText(byte[] byteCipherText, SecretKey secKey) throws NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException, IllegalBlockSizeException, BadPaddingException, InvalidAlgorithmParameterException {
+ // AES defaults to AES/ECB/PKCS5Padding in Java 7
+ Cipher decryptionCipher = Cipher.getInstance("AES/GCM/NoPadding");
+ GCMParameterSpec gcmParameterSpec = new GCMParameterSpec(128, aesCipher.getIV());
+ decryptionCipher.init(Cipher.DECRYPT_MODE, secKey, gcmParameterSpec);
+ byte[] bytePlainText = decryptionCipher.doFinal(byteCipherText);
+ return new String(bytePlainText);
+ }
+
+ /**
+ * Convert a binary byte array into readable hex form Old library is
+ * deprecated on OpenJdk 11 and this is faster regarding other solution is
+ * using StringBuilder
+ *
+ * @return hexHash
+ */
+ public static String bytesToHex(byte[] bytes) {
+ char[] hexChars = new char[bytes.length * 2];
+ for (int j = 0; j < bytes.length; j++) {
+ int v = bytes[j] & 0xFF;
+ hexChars[j * 2] = HEX_ARRAY[v >>> 4];
+ hexChars[j * 2 + 1] = HEX_ARRAY[v & 0x0F];
+ }
+ return new String(hexChars);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/AffineCipher.java b/src/main/java/com/thealgorithms/ciphers/AffineCipher.java
new file mode 100644
index 000000000000..979f18532eaa
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/AffineCipher.java
@@ -0,0 +1,87 @@
+package com.thealgorithms.ciphers;
+
+/**
+ * The AffineCipher class implements the Affine cipher, a type of monoalphabetic substitution cipher.
+ * It encrypts and decrypts messages using a linear transformation defined by the formula:
+ *
+ * E(x) = (a * x + b) mod m
+ * D(y) = a^-1 * (y - b) mod m
+ *
+ * where:
+ * - E(x) is the encrypted character,
+ * - D(y) is the decrypted character,
+ * - a is the multiplicative key (must be coprime to m),
+ * - b is the additive key,
+ * - x is the index of the plaintext character,
+ * - y is the index of the ciphertext character,
+ * - m is the size of the alphabet (26 for the English alphabet).
+ *
+ * The class provides methods for encrypting and decrypting messages, as well as a main method to demonstrate its usage.
+ */
+final class AffineCipher {
+ private AffineCipher() {
+ }
+
+ // Key values of a and b
+ static int a = 17;
+ static int b = 20;
+
+ /**
+ * Encrypts a message using the Affine cipher.
+ *
+ * @param msg the plaintext message as a character array
+ * @return the encrypted ciphertext
+ */
+ static String encryptMessage(char[] msg) {
+ // Cipher Text initially empty
+ StringBuilder cipher = new StringBuilder();
+ for (int i = 0; i < msg.length; i++) {
+ // Avoid space to be encrypted
+ /* applying encryption formula ( a * x + b ) mod m
+ {here x is msg[i] and m is 26} and added 'A' to
+ bring it in the range of ASCII alphabet [65-90 | A-Z] */
+ if (msg[i] != ' ') {
+ cipher.append((char) ((((a * (msg[i] - 'A')) + b) % 26) + 'A'));
+ } else { // else simply append space character
+ cipher.append(msg[i]);
+ }
+ }
+ return cipher.toString();
+ }
+
+ /**
+ * Decrypts a ciphertext using the Affine cipher.
+ *
+ * @param cipher the ciphertext to decrypt
+ * @return the decrypted plaintext message
+ */
+ static String decryptCipher(String cipher) {
+ StringBuilder msg = new StringBuilder();
+ int aInv = 0;
+ int flag;
+
+ // Find a^-1 (the multiplicative inverse of a in the group of integers modulo m.)
+ for (int i = 0; i < 26; i++) {
+ flag = (a * i) % 26;
+
+ // Check if (a * i) % 26 == 1,
+ // then i will be the multiplicative inverse of a
+ if (flag == 1) {
+ aInv = i;
+ break;
+ }
+ }
+ for (int i = 0; i < cipher.length(); i++) {
+ /* Applying decryption formula a^-1 * (x - b) mod m
+ {here x is cipher[i] and m is 26} and added 'A'
+ to bring it in the range of ASCII alphabet [65-90 | A-Z] */
+ if (cipher.charAt(i) != ' ') {
+ msg.append((char) (((aInv * ((cipher.charAt(i) - 'A') - b + 26)) % 26) + 'A'));
+ } else { // else simply append space character
+ msg.append(cipher.charAt(i));
+ }
+ }
+
+ return msg.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/AtbashCipher.java b/src/main/java/com/thealgorithms/ciphers/AtbashCipher.java
new file mode 100644
index 000000000000..9169aa82bd75
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/AtbashCipher.java
@@ -0,0 +1,101 @@
+package com.thealgorithms.ciphers;
+
+/**
+ * The Atbash cipher is a classic substitution cipher that substitutes each letter
+ * with its opposite letter in the alphabet.
+ *
+ * For example:
+ * - 'A' becomes 'Z', 'B' becomes 'Y', 'C' becomes 'X', and so on.
+ * - Similarly, 'a' becomes 'z', 'b' becomes 'y', and so on.
+ *
+ * The cipher works identically for both uppercase and lowercase letters.
+ * Non-alphabetical characters remain unchanged in the output.
+ *
+ * This cipher is symmetric, meaning that applying the cipher twice will return
+ * the original text. Therefore, the same function is used for both encryption and decryption.
+ *
+ * Usage Example:
+ *
+ * AtbashCipher cipher = new AtbashCipher("Hello World!");
+ * String encrypted = cipher.convert(); // Output: "Svool Dliow!"
+ *
+ *
+ * @author Krounosity
+ * @see Atbash Cipher (Wikipedia)
+ */
+public class AtbashCipher {
+
+ private String toConvert;
+
+ public AtbashCipher() {
+ }
+
+ /**
+ * Constructor with a string parameter.
+ *
+ * @param str The string to be converted using the Atbash cipher
+ */
+ public AtbashCipher(String str) {
+ this.toConvert = str;
+ }
+
+ /**
+ * Returns the current string set for conversion.
+ *
+ * @return The string to be converted
+ */
+ public String getString() {
+ return toConvert;
+ }
+
+ /**
+ * Sets the string to be converted using the Atbash cipher.
+ *
+ * @param str The new string to convert
+ */
+ public void setString(String str) {
+ this.toConvert = str;
+ }
+
+ /**
+ * Checks if a character is uppercase.
+ *
+ * @param ch The character to check
+ * @return {@code true} if the character is uppercase, {@code false} otherwise
+ */
+ private boolean isCapital(char ch) {
+ return ch >= 'A' && ch <= 'Z';
+ }
+
+ /**
+ * Checks if a character is lowercase.
+ *
+ * @param ch The character to check
+ * @return {@code true} if the character is lowercase, {@code false} otherwise
+ */
+ private boolean isSmall(char ch) {
+ return ch >= 'a' && ch <= 'z';
+ }
+
+ /**
+ * Converts the input string using the Atbash cipher.
+ * Alphabetic characters are substituted with their opposite in the alphabet,
+ * while non-alphabetic characters remain unchanged.
+ *
+ * @return The converted string after applying the Atbash cipher
+ */
+ public String convert() {
+ StringBuilder convertedString = new StringBuilder();
+
+ for (char ch : toConvert.toCharArray()) {
+ if (isSmall(ch)) {
+ convertedString.append((char) ('z' - (ch - 'a')));
+ } else if (isCapital(ch)) {
+ convertedString.append((char) ('Z' - (ch - 'A')));
+ } else {
+ convertedString.append(ch);
+ }
+ }
+ return convertedString.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/Autokey.java b/src/main/java/com/thealgorithms/ciphers/Autokey.java
new file mode 100644
index 000000000000..bb67f512accf
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/Autokey.java
@@ -0,0 +1,55 @@
+package com.thealgorithms.ciphers;
+
+/**
+ * The Autokey Cipher is an interesting and historically significant encryption method,
+ * as it improves upon the classic Vigenère Cipher by using the plaintext itself to
+ * extend the key. This makes it harder to break using frequency analysis, as it
+ * doesn’t rely solely on a repeated key.
+ * https://en.wikipedia.org/wiki/Autokey_cipher
+ *
+ * @author bennybebo
+ */
+public class Autokey {
+
+ // Encrypts the plaintext using the Autokey cipher
+ public String encrypt(String plaintext, String keyword) {
+ plaintext = plaintext.toUpperCase().replaceAll("[^A-Z]", ""); // Sanitize input
+ keyword = keyword.toUpperCase();
+
+ StringBuilder extendedKey = new StringBuilder(keyword);
+ extendedKey.append(plaintext); // Extend key with plaintext
+
+ StringBuilder ciphertext = new StringBuilder();
+
+ for (int i = 0; i < plaintext.length(); i++) {
+ char plainChar = plaintext.charAt(i);
+ char keyChar = extendedKey.charAt(i);
+
+ int encryptedChar = (plainChar - 'A' + keyChar - 'A') % 26 + 'A';
+ ciphertext.append((char) encryptedChar);
+ }
+
+ return ciphertext.toString();
+ }
+
+ // Decrypts the ciphertext using the Autokey cipher
+ public String decrypt(String ciphertext, String keyword) {
+ ciphertext = ciphertext.toUpperCase().replaceAll("[^A-Z]", ""); // Sanitize input
+ keyword = keyword.toUpperCase();
+
+ StringBuilder plaintext = new StringBuilder();
+ StringBuilder extendedKey = new StringBuilder(keyword);
+
+ for (int i = 0; i < ciphertext.length(); i++) {
+ char cipherChar = ciphertext.charAt(i);
+ char keyChar = extendedKey.charAt(i);
+
+ int decryptedChar = (cipherChar - 'A' - (keyChar - 'A') + 26) % 26 + 'A';
+ plaintext.append((char) decryptedChar);
+
+ extendedKey.append((char) decryptedChar); // Extend key with each decrypted char
+ }
+
+ return plaintext.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/BaconianCipher.java b/src/main/java/com/thealgorithms/ciphers/BaconianCipher.java
new file mode 100644
index 000000000000..16dfd6e674af
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/BaconianCipher.java
@@ -0,0 +1,71 @@
+package com.thealgorithms.ciphers;
+
+import java.util.HashMap;
+import java.util.Map;
+
+/**
+ * The Baconian Cipher is a substitution cipher where each letter is represented
+ * by a group of five binary digits (A's and B's). It can also be used to hide
+ * messages within other texts, making it a simple form of steganography.
+ * https://en.wikipedia.org/wiki/Bacon%27s_cipher
+ *
+ * @author Bennybebo
+ */
+public class BaconianCipher {
+
+ private static final Map BACONIAN_MAP = new HashMap<>();
+ private static final Map REVERSE_BACONIAN_MAP = new HashMap<>();
+
+ static {
+ // Initialize the Baconian cipher mappings
+ String[] baconianAlphabet = {"AAAAA", "AAAAB", "AAABA", "AAABB", "AABAA", "AABAB", "AABBA", "AABBB", "ABAAA", "ABAAB", "ABABA", "ABABB", "ABBAA", "ABBAB", "ABBBA", "ABBBB", "BAAAA", "BAAAB", "BAABA", "BAABB", "BABAA", "BABAB", "BABBA", "BABBB", "BBAAA", "BBAAB"};
+ char letter = 'A';
+ for (String code : baconianAlphabet) {
+ BACONIAN_MAP.put(letter, code);
+ REVERSE_BACONIAN_MAP.put(code, letter);
+ letter++;
+ }
+
+ // Handle I/J as the same letter
+ BACONIAN_MAP.put('I', BACONIAN_MAP.get('J'));
+ REVERSE_BACONIAN_MAP.put(BACONIAN_MAP.get('I'), 'I');
+ }
+
+ /**
+ * Encrypts the given plaintext using the Baconian cipher.
+ *
+ * @param plaintext The plaintext message to encrypt.
+ * @return The ciphertext as a binary (A/B) sequence.
+ */
+ public String encrypt(String plaintext) {
+ StringBuilder ciphertext = new StringBuilder();
+ plaintext = plaintext.toUpperCase().replaceAll("[^A-Z]", ""); // Remove non-letter characters
+
+ for (char letter : plaintext.toCharArray()) {
+ ciphertext.append(BACONIAN_MAP.get(letter));
+ }
+
+ return ciphertext.toString();
+ }
+
+ /**
+ * Decrypts the given ciphertext encoded in binary (A/B) format using the Baconian cipher.
+ *
+ * @param ciphertext The ciphertext to decrypt.
+ * @return The decrypted plaintext message.
+ */
+ public String decrypt(String ciphertext) {
+ StringBuilder plaintext = new StringBuilder();
+
+ for (int i = 0; i < ciphertext.length(); i += 5) {
+ String code = ciphertext.substring(i, i + 5);
+ if (REVERSE_BACONIAN_MAP.containsKey(code)) {
+ plaintext.append(REVERSE_BACONIAN_MAP.get(code));
+ } else {
+ throw new IllegalArgumentException("Invalid Baconian code: " + code);
+ }
+ }
+
+ return plaintext.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/Blowfish.java b/src/main/java/com/thealgorithms/ciphers/Blowfish.java
new file mode 100644
index 000000000000..ea1807e62710
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/Blowfish.java
@@ -0,0 +1,1244 @@
+package com.thealgorithms.ciphers;
+
+/*
+ * Java program for Blowfish Algorithm
+ * Wikipedia: https://en.wikipedia.org/wiki/Blowfish_(cipher)
+ *
+ * Author: Akshay Dubey (https://github.com/itsAkshayDubey)
+ *
+ * */
+
+public class Blowfish {
+
+ // Initializing substitution boxes
+ String[][] sBox = {
+ {
+ "d1310ba6",
+ "98dfb5ac",
+ "2ffd72db",
+ "d01adfb7",
+ "b8e1afed",
+ "6a267e96",
+ "ba7c9045",
+ "f12c7f99",
+ "24a19947",
+ "b3916cf7",
+ "0801f2e2",
+ "858efc16",
+ "636920d8",
+ "71574e69",
+ "a458fea3",
+ "f4933d7e",
+ "0d95748f",
+ "728eb658",
+ "718bcd58",
+ "82154aee",
+ "7b54a41d",
+ "c25a59b5",
+ "9c30d539",
+ "2af26013",
+ "c5d1b023",
+ "286085f0",
+ "ca417918",
+ "b8db38ef",
+ "8e79dcb0",
+ "603a180e",
+ "6c9e0e8b",
+ "b01e8a3e",
+ "d71577c1",
+ "bd314b27",
+ "78af2fda",
+ "55605c60",
+ "e65525f3",
+ "aa55ab94",
+ "57489862",
+ "63e81440",
+ "55ca396a",
+ "2aab10b6",
+ "b4cc5c34",
+ "1141e8ce",
+ "a15486af",
+ "7c72e993",
+ "b3ee1411",
+ "636fbc2a",
+ "2ba9c55d",
+ "741831f6",
+ "ce5c3e16",
+ "9b87931e",
+ "afd6ba33",
+ "6c24cf5c",
+ "7a325381",
+ "28958677",
+ "3b8f4898",
+ "6b4bb9af",
+ "c4bfe81b",
+ "66282193",
+ "61d809cc",
+ "fb21a991",
+ "487cac60",
+ "5dec8032",
+ "ef845d5d",
+ "e98575b1",
+ "dc262302",
+ "eb651b88",
+ "23893e81",
+ "d396acc5",
+ "0f6d6ff3",
+ "83f44239",
+ "2e0b4482",
+ "a4842004",
+ "69c8f04a",
+ "9e1f9b5e",
+ "21c66842",
+ "f6e96c9a",
+ "670c9c61",
+ "abd388f0",
+ "6a51a0d2",
+ "d8542f68",
+ "960fa728",
+ "ab5133a3",
+ "6eef0b6c",
+ "137a3be4",
+ "ba3bf050",
+ "7efb2a98",
+ "a1f1651d",
+ "39af0176",
+ "66ca593e",
+ "82430e88",
+ "8cee8619",
+ "456f9fb4",
+ "7d84a5c3",
+ "3b8b5ebe",
+ "e06f75d8",
+ "85c12073",
+ "401a449f",
+ "56c16aa6",
+ "4ed3aa62",
+ "363f7706",
+ "1bfedf72",
+ "429b023d",
+ "37d0d724",
+ "d00a1248",
+ "db0fead3",
+ "49f1c09b",
+ "075372c9",
+ "80991b7b",
+ "25d479d8",
+ "f6e8def7",
+ "e3fe501a",
+ "b6794c3b",
+ "976ce0bd",
+ "04c006ba",
+ "c1a94fb6",
+ "409f60c4",
+ "5e5c9ec2",
+ "196a2463",
+ "68fb6faf",
+ "3e6c53b5",
+ "1339b2eb",
+ "3b52ec6f",
+ "6dfc511f",
+ "9b30952c",
+ "cc814544",
+ "af5ebd09",
+ "bee3d004",
+ "de334afd",
+ "660f2807",
+ "192e4bb3",
+ "c0cba857",
+ "45c8740f",
+ "d20b5f39",
+ "b9d3fbdb",
+ "5579c0bd",
+ "1a60320a",
+ "d6a100c6",
+ "402c7279",
+ "679f25fe",
+ "fb1fa3cc",
+ "8ea5e9f8",
+ "db3222f8",
+ "3c7516df",
+ "fd616b15",
+ "2f501ec8",
+ "ad0552ab",
+ "323db5fa",
+ "fd238760",
+ "53317b48",
+ "3e00df82",
+ "9e5c57bb",
+ "ca6f8ca0",
+ "1a87562e",
+ "df1769db",
+ "d542a8f6",
+ "287effc3",
+ "ac6732c6",
+ "8c4f5573",
+ "695b27b0",
+ "bbca58c8",
+ "e1ffa35d",
+ "b8f011a0",
+ "10fa3d98",
+ "fd2183b8",
+ "4afcb56c",
+ "2dd1d35b",
+ "9a53e479",
+ "b6f84565",
+ "d28e49bc",
+ "4bfb9790",
+ "e1ddf2da",
+ "a4cb7e33",
+ "62fb1341",
+ "cee4c6e8",
+ "ef20cada",
+ "36774c01",
+ "d07e9efe",
+ "2bf11fb4",
+ "95dbda4d",
+ "ae909198",
+ "eaad8e71",
+ "6b93d5a0",
+ "d08ed1d0",
+ "afc725e0",
+ "8e3c5b2f",
+ "8e7594b7",
+ "8ff6e2fb",
+ "f2122b64",
+ "8888b812",
+ "900df01c",
+ "4fad5ea0",
+ "688fc31c",
+ "d1cff191",
+ "b3a8c1ad",
+ "2f2f2218",
+ "be0e1777",
+ "ea752dfe",
+ "8b021fa1",
+ "e5a0cc0f",
+ "b56f74e8",
+ "18acf3d6",
+ "ce89e299",
+ "b4a84fe0",
+ "fd13e0b7",
+ "7cc43b81",
+ "d2ada8d9",
+ "165fa266",
+ "80957705",
+ "93cc7314",
+ "211a1477",
+ "e6ad2065",
+ "77b5fa86",
+ "c75442f5",
+ "fb9d35cf",
+ "ebcdaf0c",
+ "7b3e89a0",
+ "d6411bd3",
+ "ae1e7e49",
+ "00250e2d",
+ "2071b35e",
+ "226800bb",
+ "57b8e0af",
+ "2464369b",
+ "f009b91e",
+ "5563911d",
+ "59dfa6aa",
+ "78c14389",
+ "d95a537f",
+ "207d5ba2",
+ "02e5b9c5",
+ "83260376",
+ "6295cfa9",
+ "11c81968",
+ "4e734a41",
+ "b3472dca",
+ "7b14a94a",
+ "1b510052",
+ "9a532915",
+ "d60f573f",
+ "bc9bc6e4",
+ "2b60a476",
+ "81e67400",
+ "08ba6fb5",
+ "571be91f",
+ "f296ec6b",
+ "2a0dd915",
+ "b6636521",
+ "e7b9f9b6",
+ "ff34052e",
+ "c5855664",
+ "53b02d5d",
+ "a99f8fa1",
+ "08ba4799",
+ "6e85076a",
+ },
+ {
+ "4b7a70e9",
+ "b5b32944",
+ "db75092e",
+ "c4192623",
+ "ad6ea6b0",
+ "49a7df7d",
+ "9cee60b8",
+ "8fedb266",
+ "ecaa8c71",
+ "699a17ff",
+ "5664526c",
+ "c2b19ee1",
+ "193602a5",
+ "75094c29",
+ "a0591340",
+ "e4183a3e",
+ "3f54989a",
+ "5b429d65",
+ "6b8fe4d6",
+ "99f73fd6",
+ "a1d29c07",
+ "efe830f5",
+ "4d2d38e6",
+ "f0255dc1",
+ "4cdd2086",
+ "8470eb26",
+ "6382e9c6",
+ "021ecc5e",
+ "09686b3f",
+ "3ebaefc9",
+ "3c971814",
+ "6b6a70a1",
+ "687f3584",
+ "52a0e286",
+ "b79c5305",
+ "aa500737",
+ "3e07841c",
+ "7fdeae5c",
+ "8e7d44ec",
+ "5716f2b8",
+ "b03ada37",
+ "f0500c0d",
+ "f01c1f04",
+ "0200b3ff",
+ "ae0cf51a",
+ "3cb574b2",
+ "25837a58",
+ "dc0921bd",
+ "d19113f9",
+ "7ca92ff6",
+ "94324773",
+ "22f54701",
+ "3ae5e581",
+ "37c2dadc",
+ "c8b57634",
+ "9af3dda7",
+ "a9446146",
+ "0fd0030e",
+ "ecc8c73e",
+ "a4751e41",
+ "e238cd99",
+ "3bea0e2f",
+ "3280bba1",
+ "183eb331",
+ "4e548b38",
+ "4f6db908",
+ "6f420d03",
+ "f60a04bf",
+ "2cb81290",
+ "24977c79",
+ "5679b072",
+ "bcaf89af",
+ "de9a771f",
+ "d9930810",
+ "b38bae12",
+ "dccf3f2e",
+ "5512721f",
+ "2e6b7124",
+ "501adde6",
+ "9f84cd87",
+ "7a584718",
+ "7408da17",
+ "bc9f9abc",
+ "e94b7d8c",
+ "ec7aec3a",
+ "db851dfa",
+ "63094366",
+ "c464c3d2",
+ "ef1c1847",
+ "3215d908",
+ "dd433b37",
+ "24c2ba16",
+ "12a14d43",
+ "2a65c451",
+ "50940002",
+ "133ae4dd",
+ "71dff89e",
+ "10314e55",
+ "81ac77d6",
+ "5f11199b",
+ "043556f1",
+ "d7a3c76b",
+ "3c11183b",
+ "5924a509",
+ "f28fe6ed",
+ "97f1fbfa",
+ "9ebabf2c",
+ "1e153c6e",
+ "86e34570",
+ "eae96fb1",
+ "860e5e0a",
+ "5a3e2ab3",
+ "771fe71c",
+ "4e3d06fa",
+ "2965dcb9",
+ "99e71d0f",
+ "803e89d6",
+ "5266c825",
+ "2e4cc978",
+ "9c10b36a",
+ "c6150eba",
+ "94e2ea78",
+ "a5fc3c53",
+ "1e0a2df4",
+ "f2f74ea7",
+ "361d2b3d",
+ "1939260f",
+ "19c27960",
+ "5223a708",
+ "f71312b6",
+ "ebadfe6e",
+ "eac31f66",
+ "e3bc4595",
+ "a67bc883",
+ "b17f37d1",
+ "018cff28",
+ "c332ddef",
+ "be6c5aa5",
+ "65582185",
+ "68ab9802",
+ "eecea50f",
+ "db2f953b",
+ "2aef7dad",
+ "5b6e2f84",
+ "1521b628",
+ "29076170",
+ "ecdd4775",
+ "619f1510",
+ "13cca830",
+ "eb61bd96",
+ "0334fe1e",
+ "aa0363cf",
+ "b5735c90",
+ "4c70a239",
+ "d59e9e0b",
+ "cbaade14",
+ "eecc86bc",
+ "60622ca7",
+ "9cab5cab",
+ "b2f3846e",
+ "648b1eaf",
+ "19bdf0ca",
+ "a02369b9",
+ "655abb50",
+ "40685a32",
+ "3c2ab4b3",
+ "319ee9d5",
+ "c021b8f7",
+ "9b540b19",
+ "875fa099",
+ "95f7997e",
+ "623d7da8",
+ "f837889a",
+ "97e32d77",
+ "11ed935f",
+ "16681281",
+ "0e358829",
+ "c7e61fd6",
+ "96dedfa1",
+ "7858ba99",
+ "57f584a5",
+ "1b227263",
+ "9b83c3ff",
+ "1ac24696",
+ "cdb30aeb",
+ "532e3054",
+ "8fd948e4",
+ "6dbc3128",
+ "58ebf2ef",
+ "34c6ffea",
+ "fe28ed61",
+ "ee7c3c73",
+ "5d4a14d9",
+ "e864b7e3",
+ "42105d14",
+ "203e13e0",
+ "45eee2b6",
+ "a3aaabea",
+ "db6c4f15",
+ "facb4fd0",
+ "c742f442",
+ "ef6abbb5",
+ "654f3b1d",
+ "41cd2105",
+ "d81e799e",
+ "86854dc7",
+ "e44b476a",
+ "3d816250",
+ "cf62a1f2",
+ "5b8d2646",
+ "fc8883a0",
+ "c1c7b6a3",
+ "7f1524c3",
+ "69cb7492",
+ "47848a0b",
+ "5692b285",
+ "095bbf00",
+ "ad19489d",
+ "1462b174",
+ "23820e00",
+ "58428d2a",
+ "0c55f5ea",
+ "1dadf43e",
+ "233f7061",
+ "3372f092",
+ "8d937e41",
+ "d65fecf1",
+ "6c223bdb",
+ "7cde3759",
+ "cbee7460",
+ "4085f2a7",
+ "ce77326e",
+ "a6078084",
+ "19f8509e",
+ "e8efd855",
+ "61d99735",
+ "a969a7aa",
+ "c50c06c2",
+ "5a04abfc",
+ "800bcadc",
+ "9e447a2e",
+ "c3453484",
+ "fdd56705",
+ "0e1e9ec9",
+ "db73dbd3",
+ "105588cd",
+ "675fda79",
+ "e3674340",
+ "c5c43465",
+ "713e38d8",
+ "3d28f89e",
+ "f16dff20",
+ "153e21e7",
+ "8fb03d4a",
+ "e6e39f2b",
+ "db83adf7",
+ },
+ {
+ "e93d5a68",
+ "948140f7",
+ "f64c261c",
+ "94692934",
+ "411520f7",
+ "7602d4f7",
+ "bcf46b2e",
+ "d4a20068",
+ "d4082471",
+ "3320f46a",
+ "43b7d4b7",
+ "500061af",
+ "1e39f62e",
+ "97244546",
+ "14214f74",
+ "bf8b8840",
+ "4d95fc1d",
+ "96b591af",
+ "70f4ddd3",
+ "66a02f45",
+ "bfbc09ec",
+ "03bd9785",
+ "7fac6dd0",
+ "31cb8504",
+ "96eb27b3",
+ "55fd3941",
+ "da2547e6",
+ "abca0a9a",
+ "28507825",
+ "530429f4",
+ "0a2c86da",
+ "e9b66dfb",
+ "68dc1462",
+ "d7486900",
+ "680ec0a4",
+ "27a18dee",
+ "4f3ffea2",
+ "e887ad8c",
+ "b58ce006",
+ "7af4d6b6",
+ "aace1e7c",
+ "d3375fec",
+ "ce78a399",
+ "406b2a42",
+ "20fe9e35",
+ "d9f385b9",
+ "ee39d7ab",
+ "3b124e8b",
+ "1dc9faf7",
+ "4b6d1856",
+ "26a36631",
+ "eae397b2",
+ "3a6efa74",
+ "dd5b4332",
+ "6841e7f7",
+ "ca7820fb",
+ "fb0af54e",
+ "d8feb397",
+ "454056ac",
+ "ba489527",
+ "55533a3a",
+ "20838d87",
+ "fe6ba9b7",
+ "d096954b",
+ "55a867bc",
+ "a1159a58",
+ "cca92963",
+ "99e1db33",
+ "a62a4a56",
+ "3f3125f9",
+ "5ef47e1c",
+ "9029317c",
+ "fdf8e802",
+ "04272f70",
+ "80bb155c",
+ "05282ce3",
+ "95c11548",
+ "e4c66d22",
+ "48c1133f",
+ "c70f86dc",
+ "07f9c9ee",
+ "41041f0f",
+ "404779a4",
+ "5d886e17",
+ "325f51eb",
+ "d59bc0d1",
+ "f2bcc18f",
+ "41113564",
+ "257b7834",
+ "602a9c60",
+ "dff8e8a3",
+ "1f636c1b",
+ "0e12b4c2",
+ "02e1329e",
+ "af664fd1",
+ "cad18115",
+ "6b2395e0",
+ "333e92e1",
+ "3b240b62",
+ "eebeb922",
+ "85b2a20e",
+ "e6ba0d99",
+ "de720c8c",
+ "2da2f728",
+ "d0127845",
+ "95b794fd",
+ "647d0862",
+ "e7ccf5f0",
+ "5449a36f",
+ "877d48fa",
+ "c39dfd27",
+ "f33e8d1e",
+ "0a476341",
+ "992eff74",
+ "3a6f6eab",
+ "f4f8fd37",
+ "a812dc60",
+ "a1ebddf8",
+ "991be14c",
+ "db6e6b0d",
+ "c67b5510",
+ "6d672c37",
+ "2765d43b",
+ "dcd0e804",
+ "f1290dc7",
+ "cc00ffa3",
+ "b5390f92",
+ "690fed0b",
+ "667b9ffb",
+ "cedb7d9c",
+ "a091cf0b",
+ "d9155ea3",
+ "bb132f88",
+ "515bad24",
+ "7b9479bf",
+ "763bd6eb",
+ "37392eb3",
+ "cc115979",
+ "8026e297",
+ "f42e312d",
+ "6842ada7",
+ "c66a2b3b",
+ "12754ccc",
+ "782ef11c",
+ "6a124237",
+ "b79251e7",
+ "06a1bbe6",
+ "4bfb6350",
+ "1a6b1018",
+ "11caedfa",
+ "3d25bdd8",
+ "e2e1c3c9",
+ "44421659",
+ "0a121386",
+ "d90cec6e",
+ "d5abea2a",
+ "64af674e",
+ "da86a85f",
+ "bebfe988",
+ "64e4c3fe",
+ "9dbc8057",
+ "f0f7c086",
+ "60787bf8",
+ "6003604d",
+ "d1fd8346",
+ "f6381fb0",
+ "7745ae04",
+ "d736fccc",
+ "83426b33",
+ "f01eab71",
+ "b0804187",
+ "3c005e5f",
+ "77a057be",
+ "bde8ae24",
+ "55464299",
+ "bf582e61",
+ "4e58f48f",
+ "f2ddfda2",
+ "f474ef38",
+ "8789bdc2",
+ "5366f9c3",
+ "c8b38e74",
+ "b475f255",
+ "46fcd9b9",
+ "7aeb2661",
+ "8b1ddf84",
+ "846a0e79",
+ "915f95e2",
+ "466e598e",
+ "20b45770",
+ "8cd55591",
+ "c902de4c",
+ "b90bace1",
+ "bb8205d0",
+ "11a86248",
+ "7574a99e",
+ "b77f19b6",
+ "e0a9dc09",
+ "662d09a1",
+ "c4324633",
+ "e85a1f02",
+ "09f0be8c",
+ "4a99a025",
+ "1d6efe10",
+ "1ab93d1d",
+ "0ba5a4df",
+ "a186f20f",
+ "2868f169",
+ "dcb7da83",
+ "573906fe",
+ "a1e2ce9b",
+ "4fcd7f52",
+ "50115e01",
+ "a70683fa",
+ "a002b5c4",
+ "0de6d027",
+ "9af88c27",
+ "773f8641",
+ "c3604c06",
+ "61a806b5",
+ "f0177a28",
+ "c0f586e0",
+ "006058aa",
+ "30dc7d62",
+ "11e69ed7",
+ "2338ea63",
+ "53c2dd94",
+ "c2c21634",
+ "bbcbee56",
+ "90bcb6de",
+ "ebfc7da1",
+ "ce591d76",
+ "6f05e409",
+ "4b7c0188",
+ "39720a3d",
+ "7c927c24",
+ "86e3725f",
+ "724d9db9",
+ "1ac15bb4",
+ "d39eb8fc",
+ "ed545578",
+ "08fca5b5",
+ "d83d7cd3",
+ "4dad0fc4",
+ "1e50ef5e",
+ "b161e6f8",
+ "a28514d9",
+ "6c51133c",
+ "6fd5c7e7",
+ "56e14ec4",
+ "362abfce",
+ "ddc6c837",
+ "d79a3234",
+ "92638212",
+ "670efa8e",
+ "406000e0",
+ },
+ {
+ "3a39ce37",
+ "d3faf5cf",
+ "abc27737",
+ "5ac52d1b",
+ "5cb0679e",
+ "4fa33742",
+ "d3822740",
+ "99bc9bbe",
+ "d5118e9d",
+ "bf0f7315",
+ "d62d1c7e",
+ "c700c47b",
+ "b78c1b6b",
+ "21a19045",
+ "b26eb1be",
+ "6a366eb4",
+ "5748ab2f",
+ "bc946e79",
+ "c6a376d2",
+ "6549c2c8",
+ "530ff8ee",
+ "468dde7d",
+ "d5730a1d",
+ "4cd04dc6",
+ "2939bbdb",
+ "a9ba4650",
+ "ac9526e8",
+ "be5ee304",
+ "a1fad5f0",
+ "6a2d519a",
+ "63ef8ce2",
+ "9a86ee22",
+ "c089c2b8",
+ "43242ef6",
+ "a51e03aa",
+ "9cf2d0a4",
+ "83c061ba",
+ "9be96a4d",
+ "8fe51550",
+ "ba645bd6",
+ "2826a2f9",
+ "a73a3ae1",
+ "4ba99586",
+ "ef5562e9",
+ "c72fefd3",
+ "f752f7da",
+ "3f046f69",
+ "77fa0a59",
+ "80e4a915",
+ "87b08601",
+ "9b09e6ad",
+ "3b3ee593",
+ "e990fd5a",
+ "9e34d797",
+ "2cf0b7d9",
+ "022b8b51",
+ "96d5ac3a",
+ "017da67d",
+ "d1cf3ed6",
+ "7c7d2d28",
+ "1f9f25cf",
+ "adf2b89b",
+ "5ad6b472",
+ "5a88f54c",
+ "e029ac71",
+ "e019a5e6",
+ "47b0acfd",
+ "ed93fa9b",
+ "e8d3c48d",
+ "283b57cc",
+ "f8d56629",
+ "79132e28",
+ "785f0191",
+ "ed756055",
+ "f7960e44",
+ "e3d35e8c",
+ "15056dd4",
+ "88f46dba",
+ "03a16125",
+ "0564f0bd",
+ "c3eb9e15",
+ "3c9057a2",
+ "97271aec",
+ "a93a072a",
+ "1b3f6d9b",
+ "1e6321f5",
+ "f59c66fb",
+ "26dcf319",
+ "7533d928",
+ "b155fdf5",
+ "03563482",
+ "8aba3cbb",
+ "28517711",
+ "c20ad9f8",
+ "abcc5167",
+ "ccad925f",
+ "4de81751",
+ "3830dc8e",
+ "379d5862",
+ "9320f991",
+ "ea7a90c2",
+ "fb3e7bce",
+ "5121ce64",
+ "774fbe32",
+ "a8b6e37e",
+ "c3293d46",
+ "48de5369",
+ "6413e680",
+ "a2ae0810",
+ "dd6db224",
+ "69852dfd",
+ "09072166",
+ "b39a460a",
+ "6445c0dd",
+ "586cdecf",
+ "1c20c8ae",
+ "5bbef7dd",
+ "1b588d40",
+ "ccd2017f",
+ "6bb4e3bb",
+ "dda26a7e",
+ "3a59ff45",
+ "3e350a44",
+ "bcb4cdd5",
+ "72eacea8",
+ "fa6484bb",
+ "8d6612ae",
+ "bf3c6f47",
+ "d29be463",
+ "542f5d9e",
+ "aec2771b",
+ "f64e6370",
+ "740e0d8d",
+ "e75b1357",
+ "f8721671",
+ "af537d5d",
+ "4040cb08",
+ "4eb4e2cc",
+ "34d2466a",
+ "0115af84",
+ "e1b00428",
+ "95983a1d",
+ "06b89fb4",
+ "ce6ea048",
+ "6f3f3b82",
+ "3520ab82",
+ "011a1d4b",
+ "277227f8",
+ "611560b1",
+ "e7933fdc",
+ "bb3a792b",
+ "344525bd",
+ "a08839e1",
+ "51ce794b",
+ "2f32c9b7",
+ "a01fbac9",
+ "e01cc87e",
+ "bcc7d1f6",
+ "cf0111c3",
+ "a1e8aac7",
+ "1a908749",
+ "d44fbd9a",
+ "d0dadecb",
+ "d50ada38",
+ "0339c32a",
+ "c6913667",
+ "8df9317c",
+ "e0b12b4f",
+ "f79e59b7",
+ "43f5bb3a",
+ "f2d519ff",
+ "27d9459c",
+ "bf97222c",
+ "15e6fc2a",
+ "0f91fc71",
+ "9b941525",
+ "fae59361",
+ "ceb69ceb",
+ "c2a86459",
+ "12baa8d1",
+ "b6c1075e",
+ "e3056a0c",
+ "10d25065",
+ "cb03a442",
+ "e0ec6e0e",
+ "1698db3b",
+ "4c98a0be",
+ "3278e964",
+ "9f1f9532",
+ "e0d392df",
+ "d3a0342b",
+ "8971f21e",
+ "1b0a7441",
+ "4ba3348c",
+ "c5be7120",
+ "c37632d8",
+ "df359f8d",
+ "9b992f2e",
+ "e60b6f47",
+ "0fe3f11d",
+ "e54cda54",
+ "1edad891",
+ "ce6279cf",
+ "cd3e7e6f",
+ "1618b166",
+ "fd2c1d05",
+ "848fd2c5",
+ "f6fb2299",
+ "f523f357",
+ "a6327623",
+ "93a83531",
+ "56cccd02",
+ "acf08162",
+ "5a75ebb5",
+ "6e163697",
+ "88d273cc",
+ "de966292",
+ "81b949d0",
+ "4c50901b",
+ "71c65614",
+ "e6c6c7bd",
+ "327a140a",
+ "45e1d006",
+ "c3f27b9a",
+ "c9aa53fd",
+ "62a80f00",
+ "bb25bfe2",
+ "35bdd2f6",
+ "71126905",
+ "b2040222",
+ "b6cbcf7c",
+ "cd769c2b",
+ "53113ec0",
+ "1640e3d3",
+ "38abbd60",
+ "2547adf0",
+ "ba38209c",
+ "f746ce76",
+ "77afa1c5",
+ "20756060",
+ "85cbfe4e",
+ "8ae88dd8",
+ "7aaaf9b0",
+ "4cf9aa7e",
+ "1948c25c",
+ "02fb8a8c",
+ "01c36ae4",
+ "d6ebe1f9",
+ "90d4f869",
+ "a65cdea0",
+ "3f09252d",
+ "c208e69f",
+ "b74e6132",
+ "ce77e25b",
+ "578fdfe3",
+ "3ac372e6",
+ },
+ };
+
+ // Initializing subkeys with digits of pi
+ String[] subKeys = {
+ "243f6a88",
+ "85a308d3",
+ "13198a2e",
+ "03707344",
+ "a4093822",
+ "299f31d0",
+ "082efa98",
+ "ec4e6c89",
+ "452821e6",
+ "38d01377",
+ "be5466cf",
+ "34e90c6c",
+ "c0ac29b7",
+ "c97c50dd",
+ "3f84d5b5",
+ "b5470917",
+ "9216d5d9",
+ "8979fb1b",
+ };
+
+ // Initializing modVal to 2^32
+ long modVal = 4294967296L;
+
+ /**
+ * This method returns binary representation of the hexadecimal number passed as parameter
+ *
+ * @param hex Number for which binary representation is required
+ * @return String object which is a binary representation of the hex number passed as parameter
+ */
+ private String hexToBin(String hex) {
+ StringBuilder binary = new StringBuilder();
+ long num;
+ String binary4B;
+ int n = hex.length();
+ for (int i = 0; i < n; i++) {
+ num = Long.parseUnsignedLong(hex.charAt(i) + "", 16);
+ binary4B = Long.toBinaryString(num);
+
+ binary4B = "0000" + binary4B;
+
+ binary4B = binary4B.substring(binary4B.length() - 4);
+ binary.append(binary4B);
+ }
+ return binary.toString();
+ }
+
+ /**
+ * This method returns hexadecimal representation of the binary number passed as parameter
+ *
+ * @param binary Number for which hexadecimal representation is required
+ * @return String object which is a hexadecimal representation of the binary number passed as
+ * parameter
+ */
+ private String binToHex(String binary) {
+ long num = Long.parseUnsignedLong(binary, 2);
+ StringBuilder hex = new StringBuilder(Long.toHexString(num));
+ while (hex.length() < (binary.length() / 4)) {
+ hex.insert(0, "0");
+ }
+
+ return hex.toString();
+ }
+
+ /**
+ * This method returns a string obtained by XOR-ing two strings of same length passed a method
+ * parameters
+ *
+ * @param String a and b are string objects which will be XORed and are to be of same length
+ * @return String object obtained by XOR operation on String a and String b
+ * */
+ private String xor(String a, String b) {
+ a = hexToBin(a);
+ b = hexToBin(b);
+ StringBuilder ans = new StringBuilder();
+ for (int i = 0; i < a.length(); i++) {
+ ans.append((char) (((a.charAt(i) - '0') ^ (b.charAt(i) - '0')) + '0'));
+ }
+ ans = new StringBuilder(binToHex(ans.toString()));
+ return ans.toString();
+ }
+
+ /**
+ * This method returns addition of two hexadecimal numbers passed as parameters and moded with
+ * 2^32
+ *
+ * @param String a and b are hexadecimal numbers
+ * @return String object which is a is addition that is then moded with 2^32 of hex numbers
+ * passed as parameters
+ */
+ private String addBin(String a, String b) {
+ String ans = "";
+ long n1 = Long.parseUnsignedLong(a, 16);
+ long n2 = Long.parseUnsignedLong(b, 16);
+ n1 = (n1 + n2) % modVal;
+ ans = Long.toHexString(n1);
+ ans = "00000000" + ans;
+ return ans.substring(ans.length() - 8);
+ }
+
+ /*F-function splits the 32-bit input into four 8-bit quarters
+ and uses the quarters as input to the S-boxes.
+ The S-boxes accept 8-bit input and produce 32-bit output.
+ The outputs are added modulo 232 and XORed to produce the final 32-bit output
+ */
+ private String f(String plainText) {
+ String[] a = new String[4];
+ String ans = "";
+ for (int i = 0; i < 8; i += 2) {
+ // column number for S-box is a 8-bit value
+ long col = Long.parseUnsignedLong(hexToBin(plainText.substring(i, i + 2)), 2);
+ a[i / 2] = sBox[i / 2][(int) col];
+ }
+ ans = addBin(a[0], a[1]);
+ ans = xor(ans, a[2]);
+ ans = addBin(ans, a[3]);
+ return ans;
+ }
+
+ // generate subkeys
+ private void keyGenerate(String key) {
+ int j = 0;
+ for (int i = 0; i < subKeys.length; i++) {
+ // XOR-ing 32-bit parts of the key with initial subkeys
+ subKeys[i] = xor(subKeys[i], key.substring(j, j + 8));
+
+ j = (j + 8) % key.length();
+ }
+ }
+
+ // round function
+ private String round(int time, String plainText) {
+ String left;
+ String right;
+ left = plainText.substring(0, 8);
+ right = plainText.substring(8, 16);
+ left = xor(left, subKeys[time]);
+
+ // output from F function
+ String fOut = f(left);
+
+ right = xor(fOut, right);
+
+ // swap left and right
+ return right + left;
+ }
+
+ /**
+ * This method returns cipher text for the plaintext passed as the first parameter generated
+ * using the key passed as the second parameter
+ *
+ * @param String plainText is the text which is to be encrypted
+ * @param String key is the key which is to be used for generating cipher text
+ * @return String cipherText is the encrypted value
+ */
+ String encrypt(String plainText, String key) {
+ // generating key
+ keyGenerate(key);
+
+ for (int i = 0; i < 16; i++) {
+ plainText = round(i, plainText);
+ }
+
+ // postprocessing
+ String right = plainText.substring(0, 8);
+ String left = plainText.substring(8, 16);
+ right = xor(right, subKeys[16]);
+ left = xor(left, subKeys[17]);
+ return left + right;
+ }
+
+ /**
+ * This method returns plaintext for the ciphertext passed as the first parameter decoded
+ * using the key passed as the second parameter
+ *
+ * @param String ciphertext is the text which is to be decrypted
+ * @param String key is the key which is to be used for generating cipher text
+ * @return String plainText is the decrypted text
+ */
+ String decrypt(String cipherText, String key) {
+ // generating key
+ keyGenerate(key);
+
+ for (int i = 17; i > 1; i--) {
+ cipherText = round(i, cipherText);
+ }
+
+ // postprocessing
+ String right = cipherText.substring(0, 8);
+ String left = cipherText.substring(8, 16);
+ right = xor(right, subKeys[1]);
+ left = xor(left, subKeys[0]);
+ return left + right;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/Caesar.java b/src/main/java/com/thealgorithms/ciphers/Caesar.java
new file mode 100644
index 000000000000..23535bc2b5d2
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/Caesar.java
@@ -0,0 +1,99 @@
+package com.thealgorithms.ciphers;
+
+/**
+ * A Java implementation of Caesar Cipher. /It is a type of substitution cipher
+ * in which each letter in the plaintext is replaced by a letter some fixed
+ * number of positions down the alphabet. /
+ *
+ * @author FAHRI YARDIMCI
+ * @author khalil2535
+ */
+public class Caesar {
+ private static char normalizeShift(final int shift) {
+ return (char) (shift % 26);
+ }
+
+ /**
+ * Encrypt text by shifting every Latin char by add number shift for ASCII
+ * Example : A + 1 -> B
+ *
+ * @return Encrypted message
+ */
+ public String encode(String message, int shift) {
+ StringBuilder encoded = new StringBuilder();
+
+ final char shiftChar = normalizeShift(shift);
+
+ final int length = message.length();
+ for (int i = 0; i < length; i++) {
+ // int current = message.charAt(i); //using char to shift characters because
+ // ascii
+ // is in-order latin alphabet
+ char current = message.charAt(i); // Java law : char + int = char
+
+ if (isCapitalLatinLetter(current)) {
+ current += shiftChar;
+ encoded.append((char) (current > 'Z' ? current - 26 : current)); // 26 = number of latin letters
+ } else if (isSmallLatinLetter(current)) {
+ current += shiftChar;
+ encoded.append((char) (current > 'z' ? current - 26 : current)); // 26 = number of latin letters
+ } else {
+ encoded.append(current);
+ }
+ }
+ return encoded.toString();
+ }
+
+ /**
+ * Decrypt message by shifting back every Latin char to previous the ASCII
+ * Example : B - 1 -> A
+ *
+ * @return message
+ */
+ public String decode(String encryptedMessage, int shift) {
+ StringBuilder decoded = new StringBuilder();
+
+ final char shiftChar = normalizeShift(shift);
+
+ final int length = encryptedMessage.length();
+ for (int i = 0; i < length; i++) {
+ char current = encryptedMessage.charAt(i);
+ if (isCapitalLatinLetter(current)) {
+ current -= shiftChar;
+ decoded.append((char) (current < 'A' ? current + 26 : current)); // 26 = number of latin letters
+ } else if (isSmallLatinLetter(current)) {
+ current -= shiftChar;
+ decoded.append((char) (current < 'a' ? current + 26 : current)); // 26 = number of latin letters
+ } else {
+ decoded.append(current);
+ }
+ }
+ return decoded.toString();
+ }
+
+ /**
+ * @return true if character is capital Latin letter or false for others
+ */
+ private static boolean isCapitalLatinLetter(char c) {
+ return c >= 'A' && c <= 'Z';
+ }
+
+ /**
+ * @return true if character is small Latin letter or false for others
+ */
+ private static boolean isSmallLatinLetter(char c) {
+ return c >= 'a' && c <= 'z';
+ }
+
+ /**
+ * @return string array which contains all the possible decoded combination.
+ */
+ public String[] bruteforce(String encryptedMessage) {
+ String[] listOfAllTheAnswers = new String[27];
+ for (int i = 0; i <= 26; i++) {
+ listOfAllTheAnswers[i] = decode(encryptedMessage, i);
+ }
+
+ return listOfAllTheAnswers;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/ColumnarTranspositionCipher.java b/src/main/java/com/thealgorithms/ciphers/ColumnarTranspositionCipher.java
new file mode 100644
index 000000000000..b6b889b079ca
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/ColumnarTranspositionCipher.java
@@ -0,0 +1,186 @@
+package com.thealgorithms.ciphers;
+
+import java.util.Objects;
+
+/**
+ * Columnar Transposition Cipher Encryption and Decryption.
+ *
+ * @author freitzzz
+ */
+public final class ColumnarTranspositionCipher {
+ private ColumnarTranspositionCipher() {
+ }
+
+ private static String keyword;
+ private static Object[][] table;
+ private static String abecedarium;
+ public static final String ABECEDARIUM = "abcdefghijklmnopqrstuvwxyzABCDEFG"
+ + "HIJKLMNOPQRSTUVWXYZ0123456789,.;:-@";
+ private static final String ENCRYPTION_FIELD = "≈";
+ private static final char ENCRYPTION_FIELD_CHAR = '≈';
+
+ /**
+ * Encrypts a certain String with the Columnar Transposition Cipher Rule
+ *
+ * @param word Word being encrypted
+ * @param keyword String with keyword being used
+ * @return a String with the word encrypted by the Columnar Transposition
+ * Cipher Rule
+ */
+ public static String encrypt(final String word, final String keyword) {
+ ColumnarTranspositionCipher.keyword = keyword;
+ abecedariumBuilder();
+ table = tableBuilder(word);
+ Object[][] sortedTable = sortTable(table);
+ StringBuilder wordEncrypted = new StringBuilder();
+ for (int i = 0; i < sortedTable[0].length; i++) {
+ for (int j = 1; j < sortedTable.length; j++) {
+ wordEncrypted.append(sortedTable[j][i]);
+ }
+ }
+ return wordEncrypted.toString();
+ }
+
+ /**
+ * Encrypts a certain String with the Columnar Transposition Cipher Rule
+ *
+ * @param word Word being encrypted
+ * @param keyword String with keyword being used
+ * @param abecedarium String with the abecedarium being used. null for
+ * default one
+ * @return a String with the word encrypted by the Columnar Transposition
+ * Cipher Rule
+ */
+ public static String encrypt(String word, String keyword, String abecedarium) {
+ ColumnarTranspositionCipher.keyword = keyword;
+ ColumnarTranspositionCipher.abecedarium = Objects.requireNonNullElse(abecedarium, ABECEDARIUM);
+ table = tableBuilder(word);
+ Object[][] sortedTable = sortTable(table);
+
+ StringBuilder wordEncrypted = new StringBuilder();
+ for (int i = 0; i < sortedTable[0].length; i++) {
+ for (int j = 1; j < sortedTable.length; j++) {
+ wordEncrypted.append(sortedTable[j][i]);
+ }
+ }
+ return wordEncrypted.toString();
+ }
+
+ /**
+ * Decrypts a certain encrypted String with the Columnar Transposition
+ * Cipher Rule
+ *
+ * @return a String decrypted with the word encrypted by the Columnar
+ * Transposition Cipher Rule
+ */
+ public static String decrypt() {
+ StringBuilder wordDecrypted = new StringBuilder();
+ for (int i = 1; i < table.length; i++) {
+ for (Object item : table[i]) {
+ wordDecrypted.append(item);
+ }
+ }
+ return wordDecrypted.toString().replaceAll(ENCRYPTION_FIELD, "");
+ }
+
+ /**
+ * Builds a table with the word to be encrypted in rows by the Columnar
+ * Transposition Cipher Rule
+ *
+ * @return An Object[][] with the word to be encrypted filled in rows and
+ * columns
+ */
+ private static Object[][] tableBuilder(String word) {
+ Object[][] table = new Object[numberOfRows(word) + 1][keyword.length()];
+ char[] wordInChars = word.toCharArray();
+ // Fills in the respective numbers for the column
+ table[0] = findElements();
+ int charElement = 0;
+ for (int i = 1; i < table.length; i++) {
+ for (int j = 0; j < table[i].length; j++) {
+ if (charElement < wordInChars.length) {
+ table[i][j] = wordInChars[charElement];
+ charElement++;
+ } else {
+ table[i][j] = ENCRYPTION_FIELD_CHAR;
+ }
+ }
+ }
+ return table;
+ }
+
+ /**
+ * Determines the number of rows the table should have regarding the
+ * Columnar Transposition Cipher Rule
+ *
+ * @return an int with the number of rows that the table should have in
+ * order to respect the Columnar Transposition Cipher Rule.
+ */
+ private static int numberOfRows(String word) {
+ if (word.length() % keyword.length() != 0) {
+ return (word.length() / keyword.length()) + 1;
+ } else {
+ return word.length() / keyword.length();
+ }
+ }
+
+ /**
+ * @return charValues
+ */
+ private static Object[] findElements() {
+ Object[] charValues = new Object[keyword.length()];
+ for (int i = 0; i < charValues.length; i++) {
+ int charValueIndex = abecedarium.indexOf(keyword.charAt(i));
+ charValues[i] = charValueIndex > -1 ? charValueIndex : null;
+ }
+ return charValues;
+ }
+
+ /**
+ * @return tableSorted
+ */
+ private static Object[][] sortTable(Object[][] table) {
+ Object[][] tableSorted = new Object[table.length][table[0].length];
+ for (int i = 0; i < tableSorted.length; i++) {
+ System.arraycopy(table[i], 0, tableSorted[i], 0, tableSorted[i].length);
+ }
+ for (int i = 0; i < tableSorted[0].length; i++) {
+ for (int j = i + 1; j < tableSorted[0].length; j++) {
+ if ((int) tableSorted[0][i] > (int) table[0][j]) {
+ Object[] column = getColumn(tableSorted, tableSorted.length, i);
+ switchColumns(tableSorted, j, i, column);
+ }
+ }
+ }
+ return tableSorted;
+ }
+
+ /**
+ * @return columnArray
+ */
+ private static Object[] getColumn(Object[][] table, int rows, int column) {
+ Object[] columnArray = new Object[rows];
+ for (int i = 0; i < rows; i++) {
+ columnArray[i] = table[i][column];
+ }
+ return columnArray;
+ }
+
+ private static void switchColumns(Object[][] table, int firstColumnIndex, int secondColumnIndex, Object[] columnToSwitch) {
+ for (int i = 0; i < table.length; i++) {
+ table[i][secondColumnIndex] = table[i][firstColumnIndex];
+ table[i][firstColumnIndex] = columnToSwitch[i];
+ }
+ }
+
+ /**
+ * Creates an abecedarium with all available ascii values.
+ */
+ private static void abecedariumBuilder() {
+ StringBuilder t = new StringBuilder();
+ for (int i = 0; i < 256; i++) {
+ t.append((char) i);
+ }
+ abecedarium = t.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/DES.java b/src/main/java/com/thealgorithms/ciphers/DES.java
new file mode 100644
index 000000000000..7f3eed70f3c2
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/DES.java
@@ -0,0 +1,250 @@
+package com.thealgorithms.ciphers;
+
+/**
+ * This class is build to demonstrate the application of the DES-algorithm
+ * (https://en.wikipedia.org/wiki/Data_Encryption_Standard) on a plain English message. The supplied
+ * key must be in form of a 64 bit binary String.
+ */
+public class DES {
+
+ private String key;
+ private final String[] subKeys;
+
+ private void sanitize(String key) {
+ int length = key.length();
+ if (length != 64) {
+ throw new IllegalArgumentException("DES key must be supplied as a 64 character binary string");
+ }
+ }
+
+ DES(String key) {
+ sanitize(key);
+ this.key = key;
+ subKeys = getSubkeys(key);
+ }
+
+ public String getKey() {
+ return this.key;
+ }
+
+ public void setKey(String key) {
+ sanitize(key);
+ this.key = key;
+ }
+
+ // Permutation table to convert initial 64-bit key to 56 bit key
+ private static final int[] PC1 = {57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4};
+
+ // Lookup table used to shift the initial key, in order to generate the subkeys
+ private static final int[] KEY_SHIFTS = {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};
+
+ // Table to convert the 56 bit subkeys to 48 bit subkeys
+ private static final int[] PC2 = {14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32};
+
+ // Initial permutation of each 64 but message block
+ private static final int[] IP = {58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7};
+
+ // Expansion table to convert right half of message blocks from 32 bits to 48 bits
+ private static final int[] EXPANSION = {32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1};
+
+ // The eight substitution boxes are defined below
+ private static final int[][] S1 = {{14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7}, {0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8}, {4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0}, {15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13}};
+
+ private static final int[][] S2 = {{15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10}, {3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5}, {0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15}, {13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9}};
+
+ private static final int[][] S3 = {{10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8}, {13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1}, {13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7}, {1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12}};
+
+ private static final int[][] S4 = {{7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15}, {13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9}, {10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4}, {3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14}};
+
+ private static final int[][] S5 = {{2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9}, {14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6}, {4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14}, {11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3}};
+
+ private static final int[][] S6 = {{12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11}, {10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8}, {9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6}, {4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13}};
+
+ private static final int[][] S7 = {{4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1}, {13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6}, {1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2}, {6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12}};
+
+ private static final int[][] S8 = {{13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7}, {1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2}, {7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8}, {2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}};
+
+ private static final int[][][] S = {S1, S2, S3, S4, S5, S6, S7, S8};
+
+ // Permutation table, used in the Feistel function post s-box usage
+ static final int[] PERMUTATION = {16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25};
+
+ // Table used for final inversion of the message box after 16 rounds of Feistel Function
+ static final int[] IP_INVERSE = {40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25};
+
+ private String[] getSubkeys(String originalKey) {
+ StringBuilder permutedKey = new StringBuilder(); // Initial permutation of keys via pc1
+ int i;
+ int j;
+ for (i = 0; i < 56; i++) {
+ permutedKey.append(originalKey.charAt(PC1[i] - 1));
+ }
+ String[] subKeys = new String[16];
+ String initialPermutedKey = permutedKey.toString();
+ String c0 = initialPermutedKey.substring(0, 28);
+ String d0 = initialPermutedKey.substring(28);
+
+ // We will now operate on the left and right halves of the permutedKey
+ for (i = 0; i < 16; i++) {
+ String cN = c0.substring(KEY_SHIFTS[i]) + c0.substring(0, KEY_SHIFTS[i]);
+ String dN = d0.substring(KEY_SHIFTS[i]) + d0.substring(0, KEY_SHIFTS[i]);
+ subKeys[i] = cN + dN;
+ c0 = cN; // Re-assign the values to create running permutation
+ d0 = dN;
+ }
+
+ // Let us shrink the keys to 48 bits (well, characters here) using pc2
+ for (i = 0; i < 16; i++) {
+ String key = subKeys[i];
+ permutedKey.setLength(0);
+ for (j = 0; j < 48; j++) {
+ permutedKey.append(key.charAt(PC2[j] - 1));
+ }
+ subKeys[i] = permutedKey.toString();
+ }
+
+ return subKeys;
+ }
+
+ private String xOR(String a, String b) {
+ int i;
+ int l = a.length();
+ StringBuilder xor = new StringBuilder();
+ for (i = 0; i < l; i++) {
+ int firstBit = a.charAt(i) - 48; // 48 is '0' in ascii
+ int secondBit = b.charAt(i) - 48;
+ xor.append((firstBit ^ secondBit));
+ }
+ return xor.toString();
+ }
+
+ private String createPaddedString(String s, int desiredLength, char pad) {
+ int i;
+ int l = s.length();
+ StringBuilder paddedString = new StringBuilder();
+ int diff = desiredLength - l;
+ for (i = 0; i < diff; i++) {
+ paddedString.append(pad);
+ }
+ return paddedString.toString();
+ }
+
+ private String pad(String s, int desiredLength) {
+ return createPaddedString(s, desiredLength, '0') + s;
+ }
+
+ private String padLast(String s, int desiredLength) {
+ return s + createPaddedString(s, desiredLength, '\u0000');
+ }
+
+ private String feistel(String messageBlock, String key) {
+ int i;
+ StringBuilder expandedKey = new StringBuilder();
+ for (i = 0; i < 48; i++) {
+ expandedKey.append(messageBlock.charAt(EXPANSION[i] - 1));
+ }
+ String mixedKey = xOR(expandedKey.toString(), key);
+ StringBuilder substitutedString = new StringBuilder();
+
+ // Let us now use the s-boxes to transform each 6 bit (length here) block to 4 bits
+ for (i = 0; i < 48; i += 6) {
+ String block = mixedKey.substring(i, i + 6);
+ int row = (block.charAt(0) - 48) * 2 + (block.charAt(5) - 48);
+ int col = (block.charAt(1) - 48) * 8 + (block.charAt(2) - 48) * 4 + (block.charAt(3) - 48) * 2 + (block.charAt(4) - 48);
+ String substitutedBlock = pad(Integer.toBinaryString(S[i / 6][row][col]), 4);
+ substitutedString.append(substitutedBlock);
+ }
+
+ StringBuilder permutedString = new StringBuilder();
+ for (i = 0; i < 32; i++) {
+ permutedString.append(substitutedString.charAt(PERMUTATION[i] - 1));
+ }
+
+ return permutedString.toString();
+ }
+
+ private String encryptBlock(String message, String[] keys) {
+ StringBuilder permutedMessage = new StringBuilder();
+ int i;
+ for (i = 0; i < 64; i++) {
+ permutedMessage.append(message.charAt(IP[i] - 1));
+ }
+ String e0 = permutedMessage.substring(0, 32);
+ String f0 = permutedMessage.substring(32);
+
+ // Iterate 16 times
+ for (i = 0; i < 16; i++) {
+ String eN = f0; // Previous Right block
+ String fN = xOR(e0, feistel(f0, keys[i]));
+ e0 = eN;
+ f0 = fN;
+ }
+
+ String combinedBlock = f0 + e0; // Reverse the 16th block
+ permutedMessage.setLength(0);
+ for (i = 0; i < 64; i++) {
+ permutedMessage.append(combinedBlock.charAt(IP_INVERSE[i] - 1));
+ }
+ return permutedMessage.toString();
+ }
+
+ // To decode, we follow the same process as encoding, but with reversed keys
+ private String decryptBlock(String message, String[] keys) {
+ String[] reversedKeys = new String[keys.length];
+ for (int i = 0; i < keys.length; i++) {
+ reversedKeys[i] = keys[keys.length - i - 1];
+ }
+ return encryptBlock(message, reversedKeys);
+ }
+
+ /**
+ * @param message Message to be encrypted
+ * @return The encrypted message, as a binary string
+ */
+ public String encrypt(String message) {
+ StringBuilder encryptedMessage = new StringBuilder();
+ int l = message.length();
+ int i;
+ int j;
+ if (l % 8 != 0) {
+ int desiredLength = (l / 8 + 1) * 8;
+ l = desiredLength;
+ message = padLast(message, desiredLength);
+ }
+
+ for (i = 0; i < l; i += 8) {
+ String block = message.substring(i, i + 8);
+ StringBuilder bitBlock = new StringBuilder();
+ byte[] bytes = block.getBytes();
+ for (j = 0; j < 8; j++) {
+ bitBlock.append(pad(Integer.toBinaryString(bytes[j]), 8));
+ }
+ encryptedMessage.append(encryptBlock(bitBlock.toString(), subKeys));
+ }
+ return encryptedMessage.toString();
+ }
+
+ /**
+ * @param message The encrypted string. Expects it to be a multiple of 64 bits, in binary format
+ * @return The decrypted String, in plain English
+ */
+ public String decrypt(String message) {
+ StringBuilder decryptedMessage = new StringBuilder();
+ int l = message.length();
+ int i;
+ int j;
+ if (l % 64 != 0) {
+ throw new IllegalArgumentException("Encrypted message should be a multiple of 64 characters in length");
+ }
+ for (i = 0; i < l; i += 64) {
+ String block = message.substring(i, i + 64);
+ String result = decryptBlock(block, subKeys);
+ byte[] res = new byte[8];
+ for (j = 0; j < 64; j += 8) {
+ res[j / 8] = (byte) Integer.parseInt(result.substring(j, j + 8), 2);
+ }
+ decryptedMessage.append(new String(res));
+ }
+ return decryptedMessage.toString().replace("\0", ""); // Get rid of the null bytes used for padding
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/DiffieHellman.java b/src/main/java/com/thealgorithms/ciphers/DiffieHellman.java
new file mode 100644
index 000000000000..7470b40e001a
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/DiffieHellman.java
@@ -0,0 +1,36 @@
+package com.thealgorithms.ciphers;
+
+import java.math.BigInteger;
+
+public final class DiffieHellman {
+
+ private final BigInteger base;
+ private final BigInteger secret;
+ private final BigInteger prime;
+
+ // Constructor to initialize base, secret, and prime
+ public DiffieHellman(BigInteger base, BigInteger secret, BigInteger prime) {
+ // Check for non-null and positive values
+ if (base == null || secret == null || prime == null || base.signum() <= 0 || secret.signum() <= 0 || prime.signum() <= 0) {
+ throw new IllegalArgumentException("Base, secret, and prime must be non-null and positive values.");
+ }
+ this.base = base;
+ this.secret = secret;
+ this.prime = prime;
+ }
+
+ // Method to calculate public value (g^x mod p)
+ public BigInteger calculatePublicValue() {
+ // Returns g^x mod p
+ return base.modPow(secret, prime);
+ }
+
+ // Method to calculate the shared secret key (otherPublic^secret mod p)
+ public BigInteger calculateSharedSecret(BigInteger otherPublicValue) {
+ if (otherPublicValue == null || otherPublicValue.signum() <= 0) {
+ throw new IllegalArgumentException("Other public value must be non-null and positive.");
+ }
+ // Returns b^x mod p or a^y mod p
+ return otherPublicValue.modPow(secret, prime);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/ECC.java b/src/main/java/com/thealgorithms/ciphers/ECC.java
new file mode 100644
index 000000000000..7b1e37f0e1e1
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/ECC.java
@@ -0,0 +1,236 @@
+package com.thealgorithms.ciphers;
+
+import java.math.BigInteger;
+import java.security.SecureRandom;
+
+/**
+ * ECC - Elliptic Curve Cryptography
+ * Elliptic Curve Cryptography is a public-key cryptography method that uses the algebraic structure of
+ * elliptic curves over finite fields. ECC provides a higher level of security with smaller key sizes compared
+ * to other public-key methods like RSA, making it particularly suitable for environments where computational
+ * resources are limited, such as mobile devices and embedded systems.
+ *
+ * This class implements elliptic curve cryptography, providing encryption and decryption
+ * functionalities based on public and private key pairs.
+ *
+ * @author xuyang
+ */
+public class ECC {
+
+ private BigInteger privateKey; // Private key used for decryption
+ private ECPoint publicKey; // Public key used for encryption
+ private EllipticCurve curve; // Elliptic curve used in cryptography
+ private ECPoint basePoint; // Base point G on the elliptic curve
+
+ public ECC(int bits) {
+ generateKeys(bits); // Generates public-private key pair
+ }
+
+ public EllipticCurve getCurve() {
+ return curve; // Returns the elliptic curve
+ }
+
+ public void setCurve(EllipticCurve curve) {
+ this.curve = curve;
+ }
+
+ // Getter and Setter for private key
+ public BigInteger getPrivateKey() {
+ return privateKey;
+ }
+
+ public void setPrivateKey(BigInteger privateKey) {
+ this.privateKey = privateKey;
+ }
+
+ /**
+ * Encrypts the message using the public key.
+ * The message is transformed into an ECPoint and encrypted with elliptic curve operations.
+ *
+ * @param message The plain message to be encrypted
+ * @return The encrypted message as an array of ECPoints (R, S)
+ */
+ public ECPoint[] encrypt(String message) {
+ BigInteger m = new BigInteger(message.getBytes()); // Convert message to BigInteger
+ SecureRandom r = new SecureRandom(); // Generate random value for k
+ BigInteger k = new BigInteger(curve.getFieldSize(), r); // Generate random scalar k
+
+ // Calculate point r = k * G, where G is the base point
+ ECPoint rPoint = basePoint.multiply(k, curve.getP(), curve.getA());
+
+ // Calculate point s = k * publicKey + encodedMessage
+ ECPoint sPoint = publicKey.multiply(k, curve.getP(), curve.getA()).add(curve.encodeMessage(m), curve.getP(), curve.getA());
+
+ return new ECPoint[] {rPoint, sPoint}; // Return encrypted message as two ECPoints
+ }
+
+ /**
+ * Decrypts the encrypted message using the private key.
+ * The decryption process is the reverse of encryption, recovering the original message.
+ *
+ * @param encryptedMessage The encrypted message as an array of ECPoints (R, S)
+ * @return The decrypted plain message as a String
+ */
+ public String decrypt(ECPoint[] encryptedMessage) {
+ ECPoint rPoint = encryptedMessage[0]; // First part of ciphertext
+ ECPoint sPoint = encryptedMessage[1]; // Second part of ciphertext
+
+ // Perform decryption: s - r * privateKey
+ ECPoint decodedMessage = sPoint.subtract(rPoint.multiply(privateKey, curve.getP(), curve.getA()), curve.getP(), curve.getA());
+
+ BigInteger m = curve.decodeMessage(decodedMessage); // Decode the message from ECPoint
+
+ return new String(m.toByteArray()); // Convert BigInteger back to String
+ }
+
+ /**
+ * Generates a new public-private key pair for encryption and decryption.
+ *
+ * @param bits The size (in bits) of the keys to generate
+ */
+ public final void generateKeys(int bits) {
+ SecureRandom r = new SecureRandom();
+ curve = new EllipticCurve(bits); // Initialize a new elliptic curve
+ basePoint = curve.getBasePoint(); // Set the base point G
+
+ // Generate private key as a random BigInteger
+ privateKey = new BigInteger(bits, r);
+
+ // Generate public key as the point publicKey = privateKey * G
+ publicKey = basePoint.multiply(privateKey, curve.getP(), curve.getA());
+ }
+
+ /**
+ * Class representing an elliptic curve with the form y^2 = x^3 + ax + b.
+ */
+ public static class EllipticCurve {
+ private final BigInteger a; // Coefficient a in the curve equation
+ private final BigInteger b; // Coefficient b in the curve equation
+ private final BigInteger p; // Prime number p, defining the finite field
+ private final ECPoint basePoint; // Base point G on the curve
+
+ // Constructor with explicit parameters for a, b, p, and base point
+ public EllipticCurve(BigInteger a, BigInteger b, BigInteger p, ECPoint basePoint) {
+ this.a = a;
+ this.b = b;
+ this.p = p;
+ this.basePoint = basePoint;
+ }
+
+ // Constructor that randomly generates the curve parameters
+ public EllipticCurve(int bits) {
+ SecureRandom r = new SecureRandom();
+ this.p = BigInteger.probablePrime(bits, r); // Random prime p
+ this.a = new BigInteger(bits, r); // Random coefficient a
+ this.b = new BigInteger(bits, r); // Random coefficient b
+ this.basePoint = new ECPoint(BigInteger.valueOf(4), BigInteger.valueOf(8)); // Fixed base point G
+ }
+
+ public ECPoint getBasePoint() {
+ return basePoint;
+ }
+
+ public BigInteger getP() {
+ return p;
+ }
+
+ public BigInteger getA() {
+ return a;
+ }
+
+ public BigInteger getB() {
+ return b;
+ }
+
+ public int getFieldSize() {
+ return p.bitLength();
+ }
+
+ public ECPoint encodeMessage(BigInteger message) {
+ // Simple encoding of a message as an ECPoint (this is a simplified example)
+ return new ECPoint(message, message);
+ }
+
+ public BigInteger decodeMessage(ECPoint point) {
+ return point.getX(); // Decode the message from ECPoint (simplified)
+ }
+ }
+
+ /**
+ * Class representing a point on the elliptic curve.
+ */
+ public static class ECPoint {
+ private final BigInteger x; // X-coordinate of the point
+ private final BigInteger y; // Y-coordinate of the point
+
+ public ECPoint(BigInteger x, BigInteger y) {
+ this.x = x;
+ this.y = y;
+ }
+
+ public BigInteger getX() {
+ return x;
+ }
+
+ public BigInteger getY() {
+ return y;
+ }
+
+ @Override
+ public String toString() {
+ return "ECPoint(x=" + x.toString() + ", y=" + y.toString() + ")";
+ }
+
+ /**
+ * Add two points on the elliptic curve.
+ */
+ public ECPoint add(ECPoint other, BigInteger p, BigInteger a) {
+ if (this.x.equals(BigInteger.ZERO) && this.y.equals(BigInteger.ZERO)) {
+ return other; // If this point is the identity, return the other point
+ }
+ if (other.x.equals(BigInteger.ZERO) && other.y.equals(BigInteger.ZERO)) {
+ return this; // If the other point is the identity, return this point
+ }
+
+ BigInteger lambda;
+ if (this.equals(other)) {
+ // Special case: point doubling
+ lambda = this.x.pow(2).multiply(BigInteger.valueOf(3)).add(a).multiply(this.y.multiply(BigInteger.valueOf(2)).modInverse(p)).mod(p);
+ } else {
+ // General case: adding two different points
+ lambda = other.y.subtract(this.y).multiply(other.x.subtract(this.x).modInverse(p)).mod(p);
+ }
+
+ BigInteger xr = lambda.pow(2).subtract(this.x).subtract(other.x).mod(p);
+ BigInteger yr = lambda.multiply(this.x.subtract(xr)).subtract(this.y).mod(p);
+
+ return new ECPoint(xr, yr);
+ }
+
+ /**
+ * Subtract two points on the elliptic curve.
+ */
+ public ECPoint subtract(ECPoint other, BigInteger p, BigInteger a) {
+ ECPoint negOther = new ECPoint(other.x, p.subtract(other.y)); // Negate the Y coordinate
+ return this.add(negOther, p, a); // Add the negated point
+ }
+
+ /**
+ * Multiply a point by a scalar (repeated addition).
+ */
+ public ECPoint multiply(BigInteger k, BigInteger p, BigInteger a) {
+ ECPoint result = new ECPoint(BigInteger.ZERO, BigInteger.ZERO); // Identity point
+ ECPoint addend = this;
+
+ while (k.signum() > 0) {
+ if (k.testBit(0)) {
+ result = result.add(addend, p, a); // Add the current point
+ }
+ addend = addend.add(addend, p, a); // Double the point
+ k = k.shiftRight(1); // Divide k by 2
+ }
+
+ return result;
+ }
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/HillCipher.java b/src/main/java/com/thealgorithms/ciphers/HillCipher.java
new file mode 100644
index 000000000000..01b1aeb8bc6c
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/HillCipher.java
@@ -0,0 +1,103 @@
+package com.thealgorithms.ciphers;
+
+public class HillCipher {
+
+ // Encrypts the message using the key matrix
+ public String encrypt(String message, int[][] keyMatrix) {
+ message = message.toUpperCase().replaceAll("[^A-Z]", "");
+ int matrixSize = keyMatrix.length;
+ validateDeterminant(keyMatrix, matrixSize);
+
+ StringBuilder cipherText = new StringBuilder();
+ int[] messageVector = new int[matrixSize];
+ int[] cipherVector = new int[matrixSize];
+ int index = 0;
+
+ while (index < message.length()) {
+ for (int i = 0; i < matrixSize; i++) {
+ if (index < message.length()) {
+ messageVector[i] = message.charAt(index++) - 'A';
+ } else {
+ messageVector[i] = 'X' - 'A'; // Padding with 'X' if needed
+ }
+ }
+
+ for (int i = 0; i < matrixSize; i++) {
+ cipherVector[i] = 0;
+ for (int j = 0; j < matrixSize; j++) {
+ cipherVector[i] += keyMatrix[i][j] * messageVector[j];
+ }
+ cipherVector[i] = cipherVector[i] % 26;
+ cipherText.append((char) (cipherVector[i] + 'A'));
+ }
+ }
+
+ return cipherText.toString();
+ }
+
+ // Decrypts the message using the inverse key matrix
+ public String decrypt(String message, int[][] inverseKeyMatrix) {
+ message = message.toUpperCase().replaceAll("[^A-Z]", "");
+ int matrixSize = inverseKeyMatrix.length;
+ validateDeterminant(inverseKeyMatrix, matrixSize);
+
+ StringBuilder plainText = new StringBuilder();
+ int[] messageVector = new int[matrixSize];
+ int[] plainVector = new int[matrixSize];
+ int index = 0;
+
+ while (index < message.length()) {
+ for (int i = 0; i < matrixSize; i++) {
+ if (index < message.length()) {
+ messageVector[i] = message.charAt(index++) - 'A';
+ } else {
+ messageVector[i] = 'X' - 'A'; // Padding with 'X' if needed
+ }
+ }
+
+ for (int i = 0; i < matrixSize; i++) {
+ plainVector[i] = 0;
+ for (int j = 0; j < matrixSize; j++) {
+ plainVector[i] += inverseKeyMatrix[i][j] * messageVector[j];
+ }
+ plainVector[i] = plainVector[i] % 26;
+ plainText.append((char) (plainVector[i] + 'A'));
+ }
+ }
+
+ return plainText.toString();
+ }
+
+ // Validates that the determinant of the key matrix is not zero modulo 26
+ private void validateDeterminant(int[][] keyMatrix, int n) {
+ int det = determinant(keyMatrix, n) % 26;
+ if (det == 0) {
+ throw new IllegalArgumentException("Invalid key matrix. Determinant is zero modulo 26.");
+ }
+ }
+
+ // Computes the determinant of a matrix recursively
+ private int determinant(int[][] matrix, int n) {
+ int det = 0;
+ if (n == 1) {
+ return matrix[0][0];
+ }
+ int sign = 1;
+ int[][] subMatrix = new int[n - 1][n - 1];
+ for (int x = 0; x < n; x++) {
+ int subI = 0;
+ for (int i = 1; i < n; i++) {
+ int subJ = 0;
+ for (int j = 0; j < n; j++) {
+ if (j != x) {
+ subMatrix[subI][subJ++] = matrix[i][j];
+ }
+ }
+ subI++;
+ }
+ det += sign * matrix[0][x] * determinant(subMatrix, n - 1);
+ sign = -sign;
+ }
+ return det;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/MonoAlphabetic.java b/src/main/java/com/thealgorithms/ciphers/MonoAlphabetic.java
new file mode 100644
index 000000000000..1d5b7110a6f3
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/MonoAlphabetic.java
@@ -0,0 +1,48 @@
+package com.thealgorithms.ciphers;
+
+public final class MonoAlphabetic {
+
+ private MonoAlphabetic() {
+ throw new UnsupportedOperationException("Utility class");
+ }
+
+ // Encryption method
+ public static String encrypt(String data, String key) {
+ if (!data.matches("[A-Z]+")) {
+ throw new IllegalArgumentException("Input data contains invalid characters. Only uppercase A-Z are allowed.");
+ }
+ StringBuilder sb = new StringBuilder();
+
+ // Encrypt each character
+ for (char c : data.toCharArray()) {
+ int idx = charToPos(c); // Get the index of the character
+ sb.append(key.charAt(idx)); // Map to the corresponding character in the key
+ }
+ return sb.toString();
+ }
+
+ // Decryption method
+ public static String decrypt(String data, String key) {
+ StringBuilder sb = new StringBuilder();
+
+ // Decrypt each character
+ for (char c : data.toCharArray()) {
+ int idx = key.indexOf(c); // Find the index of the character in the key
+ if (idx == -1) {
+ throw new IllegalArgumentException("Input data contains invalid characters.");
+ }
+ sb.append(posToChar(idx)); // Convert the index back to the original character
+ }
+ return sb.toString();
+ }
+
+ // Helper method: Convert a character to its position in the alphabet
+ private static int charToPos(char c) {
+ return c - 'A'; // Subtract 'A' to get position (0 for A, 1 for B, etc.)
+ }
+
+ // Helper method: Convert a position in the alphabet to a character
+ private static char posToChar(int pos) {
+ return (char) (pos + 'A'); // Add 'A' to convert position back to character
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/PermutationCipher.java b/src/main/java/com/thealgorithms/ciphers/PermutationCipher.java
new file mode 100644
index 000000000000..ce443545db1d
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/PermutationCipher.java
@@ -0,0 +1,194 @@
+package com.thealgorithms.ciphers;
+
+import java.util.HashSet;
+import java.util.Set;
+
+/**
+ * A Java implementation of Permutation Cipher.
+ * It is a type of transposition cipher in which the plaintext is divided into blocks
+ * and the characters within each block are rearranged according to a fixed permutation key.
+ *
+ * For example, with key {3, 1, 2} and plaintext "HELLO", the text is divided into blocks
+ * of 3 characters: "HEL" and "LO" (with padding). The characters are then rearranged
+ * according to the key positions.
+ *
+ * @author GitHub Copilot
+ */
+public class PermutationCipher {
+
+ private static final char PADDING_CHAR = 'X';
+
+ /**
+ * Encrypts the given plaintext using the permutation cipher with the specified key.
+ *
+ * @param plaintext the text to encrypt
+ * @param key the permutation key (array of integers representing positions)
+ * @return the encrypted text
+ * @throws IllegalArgumentException if the key is invalid
+ */
+ public String encrypt(String plaintext, int[] key) {
+ validateKey(key);
+
+ if (plaintext == null || plaintext.isEmpty()) {
+ return plaintext;
+ }
+
+ // Remove spaces and convert to uppercase for consistent processing
+ String cleanText = plaintext.replaceAll("\\s+", "").toUpperCase();
+
+ // Pad the text to make it divisible by key length
+ String paddedText = padText(cleanText, key.length);
+
+ StringBuilder encrypted = new StringBuilder();
+
+ // Process text in blocks of key length
+ for (int i = 0; i < paddedText.length(); i += key.length) {
+ String block = paddedText.substring(i, Math.min(i + key.length, paddedText.length()));
+ encrypted.append(permuteBlock(block, key));
+ }
+
+ return encrypted.toString();
+ }
+
+ /**
+ * Decrypts the given ciphertext using the permutation cipher with the specified key.
+ *
+ * @param ciphertext the text to decrypt
+ * @param key the permutation key (array of integers representing positions)
+ * @return the decrypted text
+ * @throws IllegalArgumentException if the key is invalid
+ */
+ public String decrypt(String ciphertext, int[] key) {
+ validateKey(key);
+
+ if (ciphertext == null || ciphertext.isEmpty()) {
+ return ciphertext;
+ }
+
+ // Create the inverse permutation
+ int[] inverseKey = createInverseKey(key);
+
+ StringBuilder decrypted = new StringBuilder();
+
+ // Process text in blocks of key length
+ for (int i = 0; i < ciphertext.length(); i += key.length) {
+ String block = ciphertext.substring(i, Math.min(i + key.length, ciphertext.length()));
+ decrypted.append(permuteBlock(block, inverseKey));
+ }
+
+ // Remove padding characters from the end
+ return removePadding(decrypted.toString());
+ }
+ /**
+ * Validates that the permutation key is valid.
+ * A valid key must contain all integers from 1 to n exactly once, where n is the key length.
+ *
+ * @param key the permutation key to validate
+ * @throws IllegalArgumentException if the key is invalid
+ */
+ private void validateKey(int[] key) {
+ if (key == null || key.length == 0) {
+ throw new IllegalArgumentException("Key cannot be null or empty");
+ }
+
+ Set keySet = new HashSet<>();
+ for (int position : key) {
+ if (position < 1 || position > key.length) {
+ throw new IllegalArgumentException("Key must contain integers from 1 to " + key.length);
+ }
+ if (!keySet.add(position)) {
+ throw new IllegalArgumentException("Key must contain each position exactly once");
+ }
+ }
+ }
+
+ /**
+ * Pads the text with padding characters to make its length divisible by the block size.
+ *
+ * @param text the text to pad
+ * @param blockSize the size of each block
+ * @return the padded text
+ */
+ private String padText(String text, int blockSize) {
+ int remainder = text.length() % blockSize;
+ if (remainder == 0) {
+ return text;
+ }
+
+ int paddingNeeded = blockSize - remainder;
+ StringBuilder padded = new StringBuilder(text);
+ for (int i = 0; i < paddingNeeded; i++) {
+ padded.append(PADDING_CHAR);
+ }
+
+ return padded.toString();
+ }
+ /**
+ * Applies the permutation to a single block of text.
+ *
+ * @param block the block to permute
+ * @param key the permutation key
+ * @return the permuted block
+ */
+ private String permuteBlock(String block, int[] key) {
+ if (block.length() != key.length) {
+ // Handle case where block is shorter than key (shouldn't happen with proper padding)
+ block = padText(block, key.length);
+ }
+
+ char[] result = new char[key.length];
+ char[] blockChars = block.toCharArray();
+
+ for (int i = 0; i < key.length; i++) {
+ // Key positions are 1-based, so subtract 1 for 0-based array indexing
+ result[i] = blockChars[key[i] - 1];
+ }
+
+ return new String(result);
+ }
+
+ /**
+ * Creates the inverse permutation key for decryption.
+ *
+ * @param key the original permutation key
+ * @return the inverse key
+ */
+ private int[] createInverseKey(int[] key) {
+ int[] inverse = new int[key.length];
+
+ for (int i = 0; i < key.length; i++) {
+ // The inverse key maps each position to where it should go
+ inverse[key[i] - 1] = i + 1;
+ }
+
+ return inverse;
+ }
+
+ /**
+ * Removes padding characters from the end of the decrypted text.
+ *
+ * @param text the text to remove padding from
+ * @return the text without padding
+ */
+ private String removePadding(String text) {
+ if (text.isEmpty()) {
+ return text;
+ }
+
+ int i = text.length() - 1;
+ while (i >= 0 && text.charAt(i) == PADDING_CHAR) {
+ i--;
+ }
+
+ return text.substring(0, i + 1);
+ }
+
+ /**
+ * Gets the padding character used by this cipher.
+ *
+ * @return the padding character
+ */
+ public char getPaddingChar() {
+ return PADDING_CHAR;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/PlayfairCipher.java b/src/main/java/com/thealgorithms/ciphers/PlayfairCipher.java
new file mode 100644
index 000000000000..76ceb6dbce31
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/PlayfairCipher.java
@@ -0,0 +1,128 @@
+package com.thealgorithms.ciphers;
+
+public class PlayfairCipher {
+
+ private char[][] matrix;
+ private String key;
+
+ public PlayfairCipher(String key) {
+ this.key = key;
+ generateMatrix();
+ }
+
+ public String encrypt(String plaintext) {
+ plaintext = prepareText(plaintext.replace("J", "I"));
+ StringBuilder ciphertext = new StringBuilder();
+ for (int i = 0; i < plaintext.length(); i += 2) {
+ char char1 = plaintext.charAt(i);
+ char char2 = plaintext.charAt(i + 1);
+ int[] pos1 = findPosition(char1);
+ int[] pos2 = findPosition(char2);
+ int row1 = pos1[0];
+ int col1 = pos1[1];
+ int row2 = pos2[0];
+ int col2 = pos2[1];
+ if (row1 == row2) {
+ ciphertext.append(matrix[row1][(col1 + 1) % 5]);
+ ciphertext.append(matrix[row2][(col2 + 1) % 5]);
+ } else if (col1 == col2) {
+ ciphertext.append(matrix[(row1 + 1) % 5][col1]);
+ ciphertext.append(matrix[(row2 + 1) % 5][col2]);
+ } else {
+ ciphertext.append(matrix[row1][col2]);
+ ciphertext.append(matrix[row2][col1]);
+ }
+ }
+ return ciphertext.toString();
+ }
+
+ public String decrypt(String ciphertext) {
+ StringBuilder plaintext = new StringBuilder();
+ for (int i = 0; i < ciphertext.length(); i += 2) {
+ char char1 = ciphertext.charAt(i);
+ char char2 = ciphertext.charAt(i + 1);
+ int[] pos1 = findPosition(char1);
+ int[] pos2 = findPosition(char2);
+ int row1 = pos1[0];
+ int col1 = pos1[1];
+ int row2 = pos2[0];
+ int col2 = pos2[1];
+ if (row1 == row2) {
+ plaintext.append(matrix[row1][(col1 + 4) % 5]);
+ plaintext.append(matrix[row2][(col2 + 4) % 5]);
+ } else if (col1 == col2) {
+ plaintext.append(matrix[(row1 + 4) % 5][col1]);
+ plaintext.append(matrix[(row2 + 4) % 5][col2]);
+ } else {
+ plaintext.append(matrix[row1][col2]);
+ plaintext.append(matrix[row2][col1]);
+ }
+ }
+ return plaintext.toString();
+ }
+
+ private void generateMatrix() {
+ String keyWithoutDuplicates = removeDuplicateChars(key + "ABCDEFGHIKLMNOPQRSTUVWXYZ");
+ matrix = new char[5][5];
+ int index = 0;
+ for (int i = 0; i < 5; i++) {
+ for (int j = 0; j < 5; j++) {
+ matrix[i][j] = keyWithoutDuplicates.charAt(index);
+ index++;
+ }
+ }
+ }
+
+ private String removeDuplicateChars(String str) {
+ StringBuilder result = new StringBuilder();
+ for (int i = 0; i < str.length(); i++) {
+ if (result.indexOf(String.valueOf(str.charAt(i))) == -1) {
+ result.append(str.charAt(i));
+ }
+ }
+ return result.toString();
+ }
+
+ private String prepareText(String text) {
+ text = text.toUpperCase().replaceAll("[^A-Z]", "");
+ StringBuilder preparedText = new StringBuilder();
+ char prevChar = '\0';
+ for (char c : text.toCharArray()) {
+ if (c != prevChar) {
+ preparedText.append(c);
+ prevChar = c;
+ } else {
+ preparedText.append('X').append(c);
+ prevChar = '\0';
+ }
+ }
+ if (preparedText.length() % 2 != 0) {
+ preparedText.append('X');
+ }
+ return preparedText.toString();
+ }
+
+ private int[] findPosition(char c) {
+ int[] pos = new int[2];
+ for (int i = 0; i < 5; i++) {
+ for (int j = 0; j < 5; j++) {
+ if (matrix[i][j] == c) {
+ pos[0] = i;
+ pos[1] = j;
+ return pos;
+ }
+ }
+ }
+ return pos;
+ }
+
+ public void printMatrix() {
+ System.out.println("\nPlayfair Cipher Matrix:");
+ for (int i = 0; i < 5; i++) {
+ for (int j = 0; j < 5; j++) {
+ System.out.print(matrix[i][j] + " ");
+ }
+ System.out.println();
+ }
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/Polybius.java b/src/main/java/com/thealgorithms/ciphers/Polybius.java
new file mode 100644
index 000000000000..6b3cd6ccae81
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/Polybius.java
@@ -0,0 +1,62 @@
+package com.thealgorithms.ciphers;
+
+/**
+ * A Java implementation of Polybius Cipher
+ * Polybius is a substitution cipher method
+ * It was invented by a greek philosopher that name is Polybius
+ * Letters in alphabet takes place to two dimension table.
+ * Encrypted text is created according to row and column in two dimension table
+ * Decrypted text is generated by looking at the row and column respectively
+ * Additionally, some letters in english alphabet deliberately throws such as U because U is very
+ * similar with V
+ *
+ * @author Hikmet ÇAKIR
+ * @since 08-07-2022+03:00
+ */
+public final class Polybius {
+ private Polybius() {
+ }
+
+ private static final char[][] KEY = {
+ // 0 1 2 3 4
+ /* 0 */ {'A', 'B', 'C', 'D', 'E'},
+ /* 1 */ {'F', 'G', 'H', 'I', 'J'},
+ /* 2 */ {'K', 'L', 'M', 'N', 'O'},
+ /* 3 */ {'P', 'Q', 'R', 'S', 'T'},
+ /* 4 */ {'V', 'W', 'X', 'Y', 'Z'},
+ };
+
+ private static String findLocationByCharacter(final char character) {
+ final StringBuilder location = new StringBuilder();
+ for (int i = 0; i < KEY.length; i++) {
+ for (int j = 0; j < KEY[i].length; j++) {
+ if (character == KEY[i][j]) {
+ location.append(i).append(j);
+ break;
+ }
+ }
+ }
+ return location.toString();
+ }
+
+ public static String encrypt(final String plaintext) {
+ final char[] chars = plaintext.toUpperCase().toCharArray();
+ final StringBuilder ciphertext = new StringBuilder();
+ for (char aChar : chars) {
+ String location = findLocationByCharacter(aChar);
+ ciphertext.append(location);
+ }
+ return ciphertext.toString();
+ }
+
+ public static String decrypt(final String ciphertext) {
+ final char[] chars = ciphertext.toCharArray();
+ final StringBuilder plaintext = new StringBuilder();
+ for (int i = 0; i < chars.length; i += 2) {
+ int pozitionX = Character.getNumericValue(chars[i]);
+ int pozitionY = Character.getNumericValue(chars[i + 1]);
+ plaintext.append(KEY[pozitionX][pozitionY]);
+ }
+ return plaintext.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/ProductCipher.java b/src/main/java/com/thealgorithms/ciphers/ProductCipher.java
new file mode 100644
index 000000000000..d7eaea757001
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/ProductCipher.java
@@ -0,0 +1,73 @@
+package com.thealgorithms.ciphers;
+
+import java.util.Scanner;
+
+final class ProductCipher {
+ private ProductCipher() {
+ }
+
+ public static void main(String[] args) {
+ try (Scanner sc = new Scanner(System.in)) {
+ System.out.println("Enter the input to be encrypted: ");
+ String substitutionInput = sc.nextLine();
+ System.out.println(" ");
+ System.out.println("Enter a number: ");
+ int n = sc.nextInt();
+
+ // Substitution encryption
+ StringBuffer substitutionOutput = new StringBuffer();
+ for (int i = 0; i < substitutionInput.length(); i++) {
+ char c = substitutionInput.charAt(i);
+ substitutionOutput.append((char) (c + 5));
+ }
+ System.out.println(" ");
+ System.out.println("Substituted text: ");
+ System.out.println(substitutionOutput);
+
+ // Transposition encryption
+ String transpositionInput = substitutionOutput.toString();
+ int modulus = transpositionInput.length() % n;
+ if (modulus != 0) {
+ modulus = n - modulus;
+
+ for (; modulus != 0; modulus--) {
+ transpositionInput += "/";
+ }
+ }
+ StringBuffer transpositionOutput = new StringBuffer();
+ System.out.println(" ");
+ System.out.println("Transposition Matrix: ");
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < transpositionInput.length() / n; j++) {
+ char c = transpositionInput.charAt(i + (j * n));
+ System.out.print(c);
+ transpositionOutput.append(c);
+ }
+ System.out.println();
+ }
+ System.out.println(" ");
+ System.out.println("Final encrypted text: ");
+ System.out.println(transpositionOutput);
+
+ // Transposition decryption
+ n = transpositionOutput.length() / n;
+ StringBuffer transpositionPlaintext = new StringBuffer();
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < transpositionOutput.length() / n; j++) {
+ char c = transpositionOutput.charAt(i + (j * n));
+ transpositionPlaintext.append(c);
+ }
+ }
+
+ // Substitution decryption
+ StringBuffer plaintext = new StringBuffer();
+ for (int i = 0; i < transpositionPlaintext.length(); i++) {
+ char c = transpositionPlaintext.charAt(i);
+ plaintext.append((char) (c - 5));
+ }
+
+ System.out.println("Plaintext: ");
+ System.out.println(plaintext);
+ }
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/RSA.java b/src/main/java/com/thealgorithms/ciphers/RSA.java
new file mode 100644
index 000000000000..28af1a62032a
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/RSA.java
@@ -0,0 +1,119 @@
+package com.thealgorithms.ciphers;
+
+import java.math.BigInteger;
+import java.security.SecureRandom;
+
+/**
+ * RSA is an asymmetric cryptographic algorithm used for secure data encryption and decryption.
+ * It relies on a pair of keys: a public key (used for encryption) and a private key
+ * (used for decryption). The algorithm is based on the difficulty of factoring large prime numbers.
+ *
+ * This implementation includes key generation, encryption, and decryption methods that can handle both
+ * text-based messages and BigInteger inputs. For more details on RSA:
+ * RSA Cryptosystem - Wikipedia.
+ *
+ * Example Usage:
+ *
+ * RSA rsa = new RSA(1024);
+ * String encryptedMessage = rsa.encrypt("Hello RSA!");
+ * String decryptedMessage = rsa.decrypt(encryptedMessage);
+ * System.out.println(decryptedMessage); // Output: Hello RSA!
+ *
+ *
+ * Note: The key size directly affects the security and performance of the RSA algorithm.
+ * Larger keys are more secure but slower to compute.
+ *
+ * @author Nguyen Duy Tiep
+ * @version 23-Oct-17
+ */
+public class RSA {
+
+ private BigInteger modulus;
+ private BigInteger privateKey;
+ private BigInteger publicKey;
+
+ /**
+ * Constructor that generates RSA keys with the specified number of bits.
+ *
+ * @param bits The bit length of the keys to be generated. Common sizes include 512, 1024, 2048, etc.
+ */
+ public RSA(int bits) {
+ generateKeys(bits);
+ }
+
+ /**
+ * Encrypts a text message using the RSA public key.
+ *
+ * @param message The plaintext message to be encrypted.
+ * @throws IllegalArgumentException If the message is empty.
+ * @return The encrypted message represented as a String.
+ */
+ public synchronized String encrypt(String message) {
+ if (message.isEmpty()) {
+ throw new IllegalArgumentException("Message is empty");
+ }
+ return (new BigInteger(message.getBytes())).modPow(publicKey, modulus).toString();
+ }
+
+ /**
+ * Encrypts a BigInteger message using the RSA public key.
+ *
+ * @param message The plaintext message as a BigInteger.
+ * @return The encrypted message as a BigInteger.
+ */
+ public synchronized BigInteger encrypt(BigInteger message) {
+ return message.modPow(publicKey, modulus);
+ }
+
+ /**
+ * Decrypts an encrypted message (as String) using the RSA private key.
+ *
+ * @param encryptedMessage The encrypted message to be decrypted, represented as a String.
+ * @throws IllegalArgumentException If the message is empty.
+ * @return The decrypted plaintext message as a String.
+ */
+ public synchronized String decrypt(String encryptedMessage) {
+ if (encryptedMessage.isEmpty()) {
+ throw new IllegalArgumentException("Message is empty");
+ }
+ return new String((new BigInteger(encryptedMessage)).modPow(privateKey, modulus).toByteArray());
+ }
+
+ /**
+ * Decrypts an encrypted BigInteger message using the RSA private key.
+ *
+ * @param encryptedMessage The encrypted message as a BigInteger.
+ * @return The decrypted plaintext message as a BigInteger.
+ */
+ public synchronized BigInteger decrypt(BigInteger encryptedMessage) {
+ return encryptedMessage.modPow(privateKey, modulus);
+ }
+
+ /**
+ * Generates a new RSA key pair (public and private keys) with the specified bit length.
+ * Steps:
+ * 1. Generate two large prime numbers p and q.
+ * 2. Compute the modulus n = p * q.
+ * 3. Compute Euler's totient function: φ(n) = (p-1) * (q-1).
+ * 4. Choose a public key e (starting from 3) that is coprime with φ(n).
+ * 5. Compute the private key d as the modular inverse of e mod φ(n).
+ * The public key is (e, n) and the private key is (d, n).
+ *
+ * @param bits The bit length of the keys to be generated.
+ */
+ public final synchronized void generateKeys(int bits) {
+ SecureRandom random = new SecureRandom();
+ BigInteger p = new BigInteger(bits / 2, 100, random);
+ BigInteger q = new BigInteger(bits / 2, 100, random);
+ modulus = p.multiply(q);
+
+ BigInteger phi = (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE));
+
+ publicKey = BigInteger.valueOf(3L);
+ while (phi.gcd(publicKey).intValue() > 1) {
+ publicKey = publicKey.add(BigInteger.TWO);
+ }
+
+ privateKey = publicKey.modInverse(phi);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/RailFenceCipher.java b/src/main/java/com/thealgorithms/ciphers/RailFenceCipher.java
new file mode 100644
index 000000000000..f81252980468
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/RailFenceCipher.java
@@ -0,0 +1,147 @@
+package com.thealgorithms.ciphers;
+
+import java.util.Arrays;
+
+/**
+ * The rail fence cipher (also called a zigzag cipher) is a classical type of transposition cipher.
+ * It derives its name from the manner in which encryption is performed, in analogy to a fence built with horizontal rails.
+ * https://en.wikipedia.org/wiki/Rail_fence_cipher
+ * @author https://github.com/Krounosity
+ */
+
+public class RailFenceCipher {
+
+ // Encrypts the input string using the rail fence cipher method with the given number of rails.
+ public String encrypt(String str, int rails) {
+
+ // Base case of single rail or rails are more than the number of characters in the string
+ if (rails == 1 || rails >= str.length()) {
+ return str;
+ }
+
+ // Boolean flag to determine if the movement is downward or upward in the rail matrix.
+ boolean down = true;
+ // Create a 2D array to represent the rails (rows) and the length of the string (columns).
+ char[][] strRail = new char[rails][str.length()];
+
+ // Initialize all positions in the rail matrix with a placeholder character ('\n').
+ for (int i = 0; i < rails; i++) {
+ Arrays.fill(strRail[i], '\n');
+ }
+
+ int row = 0; // Start at the first row
+ int col = 0; // Start at the first column
+
+ int i = 0;
+
+ // Fill the rail matrix with characters from the string based on the rail pattern.
+ while (col < str.length()) {
+ // Change direction to down when at the first row.
+ if (row == 0) {
+ down = true;
+ }
+ // Change direction to up when at the last row.
+ else if (row == rails - 1) {
+ down = false;
+ }
+
+ // Place the character in the current position of the rail matrix.
+ strRail[row][col] = str.charAt(i);
+ col++; // Move to the next column.
+ // Move to the next row based on the direction.
+ if (down) {
+ row++;
+ } else {
+ row--;
+ }
+
+ i++;
+ }
+
+ // Construct the encrypted string by reading characters row by row.
+ StringBuilder encryptedString = new StringBuilder();
+ for (char[] chRow : strRail) {
+ for (char ch : chRow) {
+ if (ch != '\n') {
+ encryptedString.append(ch);
+ }
+ }
+ }
+ return encryptedString.toString();
+ }
+ // Decrypts the input string using the rail fence cipher method with the given number of rails.
+ public String decrypt(String str, int rails) {
+
+ // Base case of single rail or rails are more than the number of characters in the string
+ if (rails == 1 || rails >= str.length()) {
+ return str;
+ }
+ // Boolean flag to determine if the movement is downward or upward in the rail matrix.
+ boolean down = true;
+
+ // Create a 2D array to represent the rails (rows) and the length of the string (columns).
+ char[][] strRail = new char[rails][str.length()];
+
+ int row = 0; // Start at the first row
+ int col = 0; // Start at the first column
+
+ // Mark the pattern on the rail matrix using '*'.
+ while (col < str.length()) {
+ // Change direction to down when at the first row.
+ if (row == 0) {
+ down = true;
+ }
+ // Change direction to up when at the last row.
+ else if (row == rails - 1) {
+ down = false;
+ }
+
+ // Mark the current position in the rail matrix.
+ strRail[row][col] = '*';
+ col++; // Move to the next column.
+ // Move to the next row based on the direction.
+ if (down) {
+ row++;
+ } else {
+ row--;
+ }
+ }
+
+ int index = 0; // Index to track characters from the input string.
+ // Fill the rail matrix with characters from the input string based on the marked pattern.
+ for (int i = 0; i < rails; i++) {
+ for (int j = 0; j < str.length(); j++) {
+ if (strRail[i][j] == '*') {
+ strRail[i][j] = str.charAt(index++);
+ }
+ }
+ }
+
+ // Construct the decrypted string by following the zigzag pattern.
+ StringBuilder decryptedString = new StringBuilder();
+ row = 0; // Reset to the first row
+ col = 0; // Reset to the first column
+
+ while (col < str.length()) {
+ // Change direction to down when at the first row.
+ if (row == 0) {
+ down = true;
+ }
+ // Change direction to up when at the last row.
+ else if (row == rails - 1) {
+ down = false;
+ }
+ // Append the character from the rail matrix to the decrypted string.
+ decryptedString.append(strRail[row][col]);
+ col++; // Move to the next column.
+ // Move to the next row based on the direction.
+ if (down) {
+ row++;
+ } else {
+ row--;
+ }
+ }
+
+ return decryptedString.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/SimpleSubCipher.java b/src/main/java/com/thealgorithms/ciphers/SimpleSubCipher.java
new file mode 100644
index 000000000000..f6c88ef730ec
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/SimpleSubCipher.java
@@ -0,0 +1,85 @@
+package com.thealgorithms.ciphers;
+
+import java.util.HashMap;
+import java.util.Map;
+
+/**
+ * The simple substitution cipher is a cipher that has been in use for many
+ * hundreds of years (an excellent history is given in Simon Singhs 'the Code
+ * Book'). It basically consists of substituting every plaintext character for a
+ * different ciphertext character. It differs from the Caesar cipher in that the
+ * cipher alphabet is not simply the alphabet shifted, it is completely jumbled.
+ */
+public class SimpleSubCipher {
+
+ /**
+ * Encrypt text by replacing each element with its opposite character.
+ *
+ * @param message
+ * @param cipherSmall
+ * @return Encrypted message
+ */
+ public String encode(String message, String cipherSmall) {
+ StringBuilder encoded = new StringBuilder();
+
+ // This map is used to encode
+ Map cipherMap = new HashMap<>();
+
+ char beginSmallLetter = 'a';
+ char beginCapitalLetter = 'A';
+
+ cipherSmall = cipherSmall.toLowerCase();
+ String cipherCapital = cipherSmall.toUpperCase();
+
+ // To handle Small and Capital letters
+ for (int i = 0; i < cipherSmall.length(); i++) {
+ cipherMap.put(beginSmallLetter++, cipherSmall.charAt(i));
+ cipherMap.put(beginCapitalLetter++, cipherCapital.charAt(i));
+ }
+
+ for (int i = 0; i < message.length(); i++) {
+ if (Character.isAlphabetic(message.charAt(i))) {
+ encoded.append(cipherMap.get(message.charAt(i)));
+ } else {
+ encoded.append(message.charAt(i));
+ }
+ }
+
+ return encoded.toString();
+ }
+
+ /**
+ * Decrypt message by replacing each element with its opposite character in
+ * cipher.
+ *
+ * @param encryptedMessage
+ * @param cipherSmall
+ * @return message
+ */
+ public String decode(String encryptedMessage, String cipherSmall) {
+ StringBuilder decoded = new StringBuilder();
+
+ Map cipherMap = new HashMap<>();
+
+ char beginSmallLetter = 'a';
+ char beginCapitalLetter = 'A';
+
+ cipherSmall = cipherSmall.toLowerCase();
+ String cipherCapital = cipherSmall.toUpperCase();
+
+ for (int i = 0; i < cipherSmall.length(); i++) {
+ cipherMap.put(cipherSmall.charAt(i), beginSmallLetter++);
+ cipherMap.put(cipherCapital.charAt(i), beginCapitalLetter++);
+ }
+
+ for (int i = 0; i < encryptedMessage.length(); i++) {
+ if (Character.isAlphabetic(encryptedMessage.charAt(i))) {
+ decoded.append(cipherMap.get(encryptedMessage.charAt(i)));
+ } else {
+ decoded.append(encryptedMessage.charAt(i));
+ }
+ }
+
+ return decoded.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/Vigenere.java b/src/main/java/com/thealgorithms/ciphers/Vigenere.java
new file mode 100644
index 000000000000..0f117853bb85
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/Vigenere.java
@@ -0,0 +1,106 @@
+package com.thealgorithms.ciphers;
+
+/**
+ * A Java implementation of the Vigenère Cipher.
+ *
+ * The Vigenère Cipher is a polyalphabetic substitution cipher that uses a
+ * keyword to shift letters in the plaintext by different amounts, depending
+ * on the corresponding character in the keyword. It wraps around the alphabet,
+ * ensuring the shifts are within 'A'-'Z' or 'a'-'z'.
+ *
+ * Non-alphabetic characters (like spaces, punctuation) are kept unchanged.
+ *
+ * Encryption Example:
+ * - Plaintext: "Hello World!"
+ * - Key: "suchsecret"
+ * - Encrypted Text: "Zynsg Yfvev!"
+ *
+ * Decryption Example:
+ * - Ciphertext: "Zynsg Yfvev!"
+ * - Key: "suchsecret"
+ * - Decrypted Text: "Hello World!"
+ *
+ * Wikipedia Reference:
+ * Vigenère Cipher - Wikipedia
+ *
+ * @author straiffix
+ * @author beingmartinbmc
+ */
+public class Vigenere {
+
+ /**
+ * Encrypts a given message using the Vigenère Cipher with the specified key.
+ * Steps:
+ * 1. Iterate over each character in the message.
+ * 2. If the character is a letter, shift it by the corresponding character in the key.
+ * 3. Preserve the case of the letter.
+ * 4. Preserve non-alphabetic characters.
+ * 5. Move to the next character in the key (cyclic).
+ * 6. Return the encrypted message.
+ *
+ * @param message The plaintext message to encrypt.
+ * @param key The keyword used for encryption.
+ * @throws IllegalArgumentException if the key is empty.
+ * @return The encrypted message.
+ */
+ public String encrypt(final String message, final String key) {
+ if (key.isEmpty()) {
+ throw new IllegalArgumentException("Key cannot be empty.");
+ }
+
+ StringBuilder result = new StringBuilder();
+ int j = 0;
+ for (int i = 0; i < message.length(); i++) {
+ char c = message.charAt(i);
+ if (Character.isLetter(c)) {
+ if (Character.isUpperCase(c)) {
+ result.append((char) ((c + key.toUpperCase().charAt(j) - 2 * 'A') % 26 + 'A'));
+ } else {
+ result.append((char) ((c + key.toLowerCase().charAt(j) - 2 * 'a') % 26 + 'a'));
+ }
+ j = ++j % key.length();
+ } else {
+ result.append(c);
+ }
+ }
+ return result.toString();
+ }
+
+ /**
+ * Decrypts a given message encrypted with the Vigenère Cipher using the specified key.
+ * Steps:
+ * 1. Iterate over each character in the message.
+ * 2. If the character is a letter, shift it back by the corresponding character in the key.
+ * 3. Preserve the case of the letter.
+ * 4. Preserve non-alphabetic characters.
+ * 5. Move to the next character in the key (cyclic).
+ * 6. Return the decrypted message.
+ *
+ * @param message The encrypted message to decrypt.
+ * @param key The keyword used for decryption.
+ * @throws IllegalArgumentException if the key is empty.
+ * @return The decrypted plaintext message.
+ */
+ public String decrypt(final String message, final String key) {
+ if (key.isEmpty()) {
+ throw new IllegalArgumentException("Key cannot be empty.");
+ }
+
+ StringBuilder result = new StringBuilder();
+ int j = 0;
+ for (int i = 0; i < message.length(); i++) {
+ char c = message.charAt(i);
+ if (Character.isLetter(c)) {
+ if (Character.isUpperCase(c)) {
+ result.append((char) ('Z' - (25 - (c - key.toUpperCase().charAt(j))) % 26));
+ } else {
+ result.append((char) ('z' - (25 - (c - key.toLowerCase().charAt(j))) % 26));
+ }
+ j = ++j % key.length();
+ } else {
+ result.append(c);
+ }
+ }
+ return result.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/XORCipher.java b/src/main/java/com/thealgorithms/ciphers/XORCipher.java
new file mode 100644
index 000000000000..a612ccfbcdef
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/XORCipher.java
@@ -0,0 +1,95 @@
+package com.thealgorithms.ciphers;
+
+import java.nio.charset.Charset;
+import java.nio.charset.StandardCharsets;
+import java.util.HexFormat;
+
+/**
+ * A simple implementation of the XOR cipher that allows both encryption and decryption
+ * using a given key. This cipher works by applying the XOR bitwise operation between
+ * the bytes of the input text and the corresponding bytes of the key (repeating the key
+ * if necessary).
+ *
+ * Usage:
+ * - Encryption: Converts plaintext into a hexadecimal-encoded ciphertext.
+ * - Decryption: Converts the hexadecimal ciphertext back into plaintext.
+ *
+ * Characteristics:
+ * - Symmetric: The same key is used for both encryption and decryption.
+ * - Simple but vulnerable: XOR encryption is insecure for real-world cryptography,
+ * especially when the same key is reused.
+ *
+ * Example:
+ * Plaintext: "Hello!"
+ * Key: "key"
+ * Encrypted: "27090c03120b"
+ * Decrypted: "Hello!"
+ *
+ * Reference: XOR Cipher - Wikipedia
+ *
+ * @author lcsjunior
+ */
+public final class XORCipher {
+
+ // Default character encoding for string conversion
+ private static final Charset CS_DEFAULT = StandardCharsets.UTF_8;
+
+ private XORCipher() {
+ }
+
+ /**
+ * Applies the XOR operation between the input bytes and the key bytes.
+ * If the key is shorter than the input, it wraps around (cyclically).
+ *
+ * @param inputBytes The input byte array (plaintext or ciphertext).
+ * @param keyBytes The key byte array used for XOR operation.
+ * @return A new byte array containing the XOR result.
+ */
+ public static byte[] xor(final byte[] inputBytes, final byte[] keyBytes) {
+ byte[] outputBytes = new byte[inputBytes.length];
+ for (int i = 0; i < inputBytes.length; ++i) {
+ outputBytes[i] = (byte) (inputBytes[i] ^ keyBytes[i % keyBytes.length]);
+ }
+ return outputBytes;
+ }
+
+ /**
+ * Encrypts the given plaintext using the XOR cipher with the specified key.
+ * The result is a hexadecimal-encoded string representing the ciphertext.
+ *
+ * @param plainText The input plaintext to encrypt.
+ * @param key The encryption key.
+ * @throws IllegalArgumentException if the key is empty.
+ * @return A hexadecimal string representing the encrypted text.
+ */
+ public static String encrypt(final String plainText, final String key) {
+ if (key.isEmpty()) {
+ throw new IllegalArgumentException("Key must not be empty");
+ }
+
+ byte[] plainTextBytes = plainText.getBytes(CS_DEFAULT);
+ byte[] keyBytes = key.getBytes(CS_DEFAULT);
+ byte[] xorResult = xor(plainTextBytes, keyBytes);
+ return HexFormat.of().formatHex(xorResult);
+ }
+
+ /**
+ * Decrypts the given ciphertext (in hexadecimal format) using the XOR cipher
+ * with the specified key. The result is the original plaintext.
+ *
+ * @param cipherText The hexadecimal string representing the encrypted text.
+ * @param key The decryption key (must be the same as the encryption key).
+ * @throws IllegalArgumentException if the key is empty.
+ * @return The decrypted plaintext.
+ */
+ public static String decrypt(final String cipherText, final String key) {
+ if (key.isEmpty()) {
+ throw new IllegalArgumentException("Key must not be empty");
+ }
+
+ byte[] cipherBytes = HexFormat.of().parseHex(cipherText);
+ byte[] keyBytes = key.getBytes(CS_DEFAULT);
+ byte[] xorResult = xor(cipherBytes, keyBytes);
+ return new String(xorResult, CS_DEFAULT);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/a5/A5Cipher.java b/src/main/java/com/thealgorithms/ciphers/a5/A5Cipher.java
new file mode 100644
index 000000000000..cc2e9105229a
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/a5/A5Cipher.java
@@ -0,0 +1,63 @@
+package com.thealgorithms.ciphers.a5;
+
+import java.util.BitSet;
+
+/**
+ * The A5Cipher class implements the A5/1 stream cipher, which is a widely used
+ * encryption algorithm, particularly in mobile communications.
+ *
+ * This implementation uses a key stream generator to produce a stream of bits
+ * that are XORed with the plaintext bits to produce the ciphertext.
+ *
+ *
+ * For more details about the A5/1 algorithm, refer to
+ * Wikipedia.
+ *
+ */
+public class A5Cipher {
+
+ private final A5KeyStreamGenerator keyStreamGenerator;
+ private static final int KEY_STREAM_LENGTH = 228; // Length of the key stream in bits (28.5 bytes)
+
+ /**
+ * Constructs an A5Cipher instance with the specified session key and frame counter.
+ *
+ * @param sessionKey a BitSet representing the session key used for encryption.
+ * @param frameCounter a BitSet representing the frame counter that helps in key stream generation.
+ */
+ public A5Cipher(BitSet sessionKey, BitSet frameCounter) {
+ keyStreamGenerator = new A5KeyStreamGenerator();
+ keyStreamGenerator.initialize(sessionKey, frameCounter);
+ }
+
+ /**
+ * Encrypts the given plaintext bits using the A5/1 cipher algorithm.
+ *
+ * This method generates a key stream and XORs it with the provided plaintext
+ * bits to produce the ciphertext.
+ *
+ * @param plainTextBits a BitSet representing the plaintext bits to be encrypted.
+ * @return a BitSet containing the encrypted ciphertext bits.
+ */
+ public BitSet encrypt(BitSet plainTextBits) {
+ // create a copy
+ var result = new BitSet(KEY_STREAM_LENGTH);
+ result.xor(plainTextBits);
+
+ var key = keyStreamGenerator.getNextKeyStream();
+ result.xor(key);
+
+ return result;
+ }
+
+ /**
+ * Resets the internal counter of the key stream generator.
+ *
+ * This method can be called to re-initialize the state of the key stream
+ * generator, allowing for new key streams to be generated for subsequent
+ * encryptions.
+ */
+ public void resetCounter() {
+ keyStreamGenerator.reInitialize();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/a5/A5KeyStreamGenerator.java b/src/main/java/com/thealgorithms/ciphers/a5/A5KeyStreamGenerator.java
new file mode 100644
index 000000000000..ee837ef4241a
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/a5/A5KeyStreamGenerator.java
@@ -0,0 +1,121 @@
+package com.thealgorithms.ciphers.a5;
+
+import java.util.BitSet;
+
+/**
+ * The A5KeyStreamGenerator class is responsible for generating key streams
+ * for the A5/1 encryption algorithm using a combination of Linear Feedback Shift Registers (LFSRs).
+ *
+ *
+ * This class extends the CompositeLFSR and initializes a set of LFSRs with
+ * a session key and a frame counter to produce a pseudo-random key stream.
+ *
+ *
+ *
+ * Note: Proper exception handling for invalid usage is to be implemented.
+ *
+ */
+public class A5KeyStreamGenerator extends CompositeLFSR {
+
+ private BitSet initialFrameCounter;
+ private BitSet frameCounter;
+ private BitSet sessionKey;
+ private static final int INITIAL_CLOCKING_CYCLES = 100;
+ private static final int KEY_STREAM_LENGTH = 228;
+
+ /**
+ * Initializes the A5KeyStreamGenerator with the specified session key and frame counter.
+ *
+ *
+ * This method sets up the internal state of the LFSRs using the provided
+ * session key and frame counter. It creates three LFSRs with specific
+ * configurations and initializes them.
+ *
+ *
+ * @param sessionKey a BitSet representing the session key used for key stream generation.
+ * @param frameCounter a BitSet representing the frame counter that influences the key stream.
+ */
+ @Override
+ public void initialize(BitSet sessionKey, BitSet frameCounter) {
+ this.sessionKey = sessionKey;
+ this.frameCounter = (BitSet) frameCounter.clone();
+ this.initialFrameCounter = (BitSet) frameCounter.clone();
+ registers.clear();
+ LFSR lfsr1 = new LFSR(19, 8, new int[] {13, 16, 17, 18});
+ LFSR lfsr2 = new LFSR(22, 10, new int[] {20, 21});
+ LFSR lfsr3 = new LFSR(23, 10, new int[] {7, 20, 21, 22});
+ registers.add(lfsr1);
+ registers.add(lfsr2);
+ registers.add(lfsr3);
+ registers.forEach(lfsr -> lfsr.initialize(sessionKey, frameCounter));
+ }
+
+ /**
+ * Re-initializes the key stream generator with the original session key
+ * and frame counter. This method restores the generator to its initial
+ * state.
+ */
+ public void reInitialize() {
+ this.initialize(sessionKey, initialFrameCounter);
+ }
+
+ /**
+ * Generates the next key stream of bits.
+ *
+ *
+ * This method performs an initial set of clocking cycles and then retrieves
+ * a key stream of the specified length. After generation, it re-initializes
+ * the internal registers.
+ *
+ *
+ * @return a BitSet containing the generated key stream bits.
+ */
+ public BitSet getNextKeyStream() {
+ for (int cycle = 1; cycle <= INITIAL_CLOCKING_CYCLES; ++cycle) {
+ this.clock();
+ }
+
+ BitSet result = new BitSet(KEY_STREAM_LENGTH);
+ for (int cycle = 1; cycle <= KEY_STREAM_LENGTH; ++cycle) {
+ boolean outputBit = this.clock();
+ result.set(cycle - 1, outputBit);
+ }
+
+ reInitializeRegisters();
+ return result;
+ }
+
+ /**
+ * Re-initializes the registers for the LFSRs.
+ *
+ *
+ * This method increments the frame counter and re-initializes each LFSR
+ * with the current session key and frame counter.
+ *
+ */
+ private void reInitializeRegisters() {
+ incrementFrameCounter();
+ registers.forEach(lfsr -> lfsr.initialize(sessionKey, frameCounter));
+ }
+
+ /**
+ * Increments the current frame counter.
+ *
+ *
+ * This method uses a utility function to increment the frame counter,
+ * which influences the key stream generation process.
+ *
+ */
+ private void incrementFrameCounter() {
+ Utils.increment(frameCounter, FRAME_COUNTER_LENGTH);
+ }
+
+ /**
+ * Retrieves the current frame counter.
+ *
+ * @return a BitSet representing the current state of the frame counter.
+ */
+ public BitSet getFrameCounter() {
+ return frameCounter;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/a5/BaseLFSR.java b/src/main/java/com/thealgorithms/ciphers/a5/BaseLFSR.java
new file mode 100644
index 000000000000..18ad913784dc
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/a5/BaseLFSR.java
@@ -0,0 +1,10 @@
+package com.thealgorithms.ciphers.a5;
+
+import java.util.BitSet;
+
+public interface BaseLFSR {
+ void initialize(BitSet sessionKey, BitSet frameCounter);
+ boolean clock();
+ int SESSION_KEY_LENGTH = 64;
+ int FRAME_COUNTER_LENGTH = 22;
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/a5/CompositeLFSR.java b/src/main/java/com/thealgorithms/ciphers/a5/CompositeLFSR.java
new file mode 100644
index 000000000000..029a93848c28
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/a5/CompositeLFSR.java
@@ -0,0 +1,69 @@
+package com.thealgorithms.ciphers.a5;
+
+import java.util.ArrayList;
+import java.util.List;
+import java.util.Map;
+import java.util.TreeMap;
+
+/**
+ * The CompositeLFSR class represents a composite implementation of
+ * Linear Feedback Shift Registers (LFSRs) for cryptographic purposes.
+ *
+ *
+ * This abstract class manages a collection of LFSR instances and
+ * provides a mechanism for irregular clocking based on the
+ * majority bit among the registers. It implements the BaseLFSR
+ * interface, requiring subclasses to define specific LFSR behaviors.
+ *
+ */
+public abstract class CompositeLFSR implements BaseLFSR {
+
+ protected final List registers = new ArrayList<>();
+
+ /**
+ * Performs a clocking operation on the composite LFSR.
+ *
+ *
+ * This method determines the majority bit across all registers and
+ * clocks each register based on its clock bit. If a register's
+ * clock bit matches the majority bit, it is clocked (shifted).
+ * The method also computes and returns the XOR of the last bits
+ * of all registers.
+ *
+ *
+ * @return the XOR value of the last bits of all registers.
+ */
+ @Override
+ public boolean clock() {
+ boolean majorityBit = getMajorityBit();
+ boolean result = false;
+ for (var register : registers) {
+ result ^= register.getLastBit();
+ if (register.getClockBit() == majorityBit) {
+ register.clock();
+ }
+ }
+ return result;
+ }
+
+ /**
+ * Calculates the majority bit among all registers.
+ *
+ *
+ * This private method counts the number of true and false clock bits
+ * across all LFSR registers. It returns true if the count of true
+ * bits is greater than or equal to the count of false bits; otherwise,
+ * it returns false.
+ *
+ *
+ * @return true if the majority clock bits are true; false otherwise.
+ */
+ private boolean getMajorityBit() {
+ Map bitCount = new TreeMap<>();
+ bitCount.put(Boolean.FALSE, 0);
+ bitCount.put(Boolean.TRUE, 0);
+
+ registers.forEach(lfsr -> bitCount.put(lfsr.getClockBit(), bitCount.get(lfsr.getClockBit()) + 1));
+ return bitCount.get(Boolean.FALSE) <= bitCount.get(Boolean.TRUE);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/a5/LFSR.java b/src/main/java/com/thealgorithms/ciphers/a5/LFSR.java
new file mode 100644
index 000000000000..dc42ae0a7a5e
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/a5/LFSR.java
@@ -0,0 +1,79 @@
+package com.thealgorithms.ciphers.a5;
+
+import java.util.BitSet;
+
+public class LFSR implements BaseLFSR {
+
+ private final BitSet register;
+ private final int length;
+ private final int clockBitIndex;
+ private final int[] tappingBitsIndices;
+
+ public LFSR(int length, int clockBitIndex, int[] tappingBitsIndices) {
+ this.length = length;
+ this.clockBitIndex = clockBitIndex;
+ this.tappingBitsIndices = tappingBitsIndices;
+ register = new BitSet(length);
+ }
+
+ @Override
+ public void initialize(BitSet sessionKey, BitSet frameCounter) {
+ register.clear();
+ clock(sessionKey, SESSION_KEY_LENGTH);
+ clock(frameCounter, FRAME_COUNTER_LENGTH);
+ }
+
+ private void clock(BitSet key, int keyLength) {
+ // We start from reverse because LFSR 0 index is the left most bit
+ // while key 0 index is right most bit, so we reverse it
+ for (int i = keyLength - 1; i >= 0; --i) {
+ var newBit = key.get(i) ^ xorTappingBits();
+ pushBit(newBit);
+ }
+ }
+
+ @Override
+ public boolean clock() {
+ return pushBit(xorTappingBits());
+ }
+
+ public boolean getClockBit() {
+ return register.get(clockBitIndex);
+ }
+
+ public boolean get(int bitIndex) {
+ return register.get(bitIndex);
+ }
+
+ public boolean getLastBit() {
+ return register.get(length - 1);
+ }
+
+ private boolean xorTappingBits() {
+ boolean result = false;
+ for (int i : tappingBitsIndices) {
+ result ^= register.get(i);
+ }
+ return result;
+ }
+
+ private boolean pushBit(boolean bit) {
+ boolean discardedBit = rightShift();
+ register.set(0, bit);
+ return discardedBit;
+ }
+
+ private boolean rightShift() {
+ boolean discardedBit = get(length - 1);
+ for (int i = length - 1; i > 0; --i) {
+ register.set(i, get(i - 1));
+ }
+ register.set(0, false);
+ return discardedBit;
+ }
+
+ @Override
+ public String toString() {
+ return register.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/ciphers/a5/Utils.java b/src/main/java/com/thealgorithms/ciphers/a5/Utils.java
new file mode 100644
index 000000000000..b4addf18dd9d
--- /dev/null
+++ b/src/main/java/com/thealgorithms/ciphers/a5/Utils.java
@@ -0,0 +1,25 @@
+package com.thealgorithms.ciphers.a5;
+
+// Source
+// http://www.java2s.com/example/java-utility-method/bitset/increment-bitset-bits-int-size-9fd84.html
+// package com.java2s;
+// License from project: Open Source License
+
+import java.util.BitSet;
+
+public final class Utils {
+ private Utils() {
+ }
+
+ public static boolean increment(BitSet bits, int size) {
+ int i = size - 1;
+ while (i >= 0 && bits.get(i)) {
+ bits.set(i--, false); /*from w w w . j a v a 2s .c o m*/
+ }
+ if (i < 0) {
+ return false;
+ }
+ bits.set(i, true);
+ return true;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/compression/ArithmeticCoding.java b/src/main/java/com/thealgorithms/compression/ArithmeticCoding.java
new file mode 100644
index 000000000000..b5ccf359d1be
--- /dev/null
+++ b/src/main/java/com/thealgorithms/compression/ArithmeticCoding.java
@@ -0,0 +1,157 @@
+package com.thealgorithms.compression;
+
+import java.math.BigDecimal;
+import java.math.MathContext;
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.HashMap;
+import java.util.List;
+import java.util.Map;
+
+/**
+ * An implementation of the Arithmetic Coding algorithm.
+ *
+ *
+ * Arithmetic coding is a form of entropy encoding used in lossless data
+ * compression. It encodes an entire message into a single number, a fraction n
+ * where (0.0 <= n < 1.0). Unlike Huffman coding, which assigns a specific
+ * bit sequence to each symbol, arithmetic coding represents the message as a
+ * sub-interval of the [0, 1) interval.
+ *
+ *
+ *
+ * This implementation uses BigDecimal for precision to handle the shrinking
+ * intervals, making it suitable for educational purposes to demonstrate the
+ * core logic.
+ *
+ *
+ *
+ * Time Complexity: O(n*m) for compression and decompression where n is the
+ * length of the input and m is the number of unique symbols, due to the need
+ * to calculate symbol probabilities.
+ *
+ *
+ *
+ * References:
+ *
+ *
+ */
+public final class ArithmeticCoding {
+
+ private ArithmeticCoding() {
+ }
+
+ /**
+ * Compresses a string using the Arithmetic Coding algorithm.
+ *
+ * @param uncompressed The string to be compressed.
+ * @return The compressed representation as a BigDecimal number.
+ * @throws IllegalArgumentException if the input string is null or empty.
+ */
+ public static BigDecimal compress(String uncompressed) {
+ if (uncompressed == null || uncompressed.isEmpty()) {
+ throw new IllegalArgumentException("Input string cannot be null or empty.");
+ }
+
+ Map probabilityTable = calculateProbabilities(uncompressed);
+
+ BigDecimal low = BigDecimal.ZERO;
+ BigDecimal high = BigDecimal.ONE;
+
+ for (char symbol : uncompressed.toCharArray()) {
+ BigDecimal range = high.subtract(low);
+ Symbol sym = probabilityTable.get(symbol);
+
+ high = low.add(range.multiply(sym.high()));
+ low = low.add(range.multiply(sym.low()));
+ }
+
+ return low; // Return the lower bound of the final interval
+ }
+
+ /**
+ * Decompresses a BigDecimal number back into the original string.
+ *
+ * @param compressed The compressed BigDecimal number.
+ * @param length The length of the original uncompressed string.
+ * @param probabilityTable The probability table used during compression.
+ * @return The original, uncompressed string.
+ */
+ public static String decompress(BigDecimal compressed, int length, Map probabilityTable) {
+ StringBuilder decompressed = new StringBuilder();
+
+ // Create a sorted list of symbols for deterministic decompression, matching the
+ // order used in calculateProbabilities
+ List> sortedSymbols = new ArrayList<>(probabilityTable.entrySet());
+ sortedSymbols.sort(Map.Entry.comparingByKey());
+
+ BigDecimal low = BigDecimal.ZERO;
+ BigDecimal high = BigDecimal.ONE;
+
+ for (int i = 0; i < length; i++) {
+ BigDecimal range = high.subtract(low);
+
+ // Find which symbol the compressed value falls into
+ for (Map.Entry entry : sortedSymbols) {
+ Symbol sym = entry.getValue();
+
+ // Calculate the actual range for this symbol in the current interval
+ BigDecimal symLow = low.add(range.multiply(sym.low()));
+ BigDecimal symHigh = low.add(range.multiply(sym.high()));
+
+ // Check if the compressed value falls within this symbol's range
+ if (compressed.compareTo(symLow) >= 0 && compressed.compareTo(symHigh) < 0) {
+ decompressed.append(entry.getKey());
+
+ // Update the interval for the next iteration
+ low = symLow;
+ high = symHigh;
+ break;
+ }
+ }
+ }
+
+ return decompressed.toString();
+ }
+
+ /**
+ * Calculates the frequency and probability range for each character in the
+ * input string in a deterministic order.
+ *
+ * @param text The input string.
+ * @return A map from each character to a Symbol object containing its
+ * probability range.
+ */
+ public static Map calculateProbabilities(String text) {
+ Map frequencies = new HashMap<>();
+ for (char c : text.toCharArray()) {
+ frequencies.put(c, frequencies.getOrDefault(c, 0) + 1);
+ }
+
+ // Sort the characters to ensure a deterministic order for the probability table
+ List sortedKeys = new ArrayList<>(frequencies.keySet());
+ Collections.sort(sortedKeys);
+
+ Map probabilityTable = new HashMap<>();
+ BigDecimal currentLow = BigDecimal.ZERO;
+ int total = text.length();
+
+ for (char symbol : sortedKeys) {
+ BigDecimal probability = BigDecimal.valueOf(frequencies.get(symbol)).divide(BigDecimal.valueOf(total), MathContext.DECIMAL128);
+ BigDecimal high = currentLow.add(probability);
+ probabilityTable.put(symbol, new Symbol(currentLow, high));
+ currentLow = high;
+ }
+
+ return probabilityTable;
+ }
+
+ /**
+ * Helper class to store the probability range [low, high) for a symbol.
+ */
+ public record Symbol(BigDecimal low, BigDecimal high) {
+ }
+}
diff --git a/src/main/java/com/thealgorithms/compression/LZW.java b/src/main/java/com/thealgorithms/compression/LZW.java
new file mode 100644
index 000000000000..c8383815ad4f
--- /dev/null
+++ b/src/main/java/com/thealgorithms/compression/LZW.java
@@ -0,0 +1,136 @@
+package com.thealgorithms.compression;
+
+import java.util.ArrayList;
+import java.util.HashMap;
+import java.util.List;
+import java.util.Map;
+
+/**
+ * An implementation of the Lempel-Ziv-Welch (LZW) algorithm.
+ *
+ *
+ * LZW is a universal lossless data compression algorithm created by Abraham
+ * Lempel, Jacob Ziv, and Terry Welch. It works by building a dictionary of
+ * strings encountered during compression and replacing occurrences of those
+ * strings with a shorter code.
+ *
+ *
+ *
+ * This implementation handles standard ASCII characters and provides methods for
+ * both compression and decompression.
+ *
+ * - Compressing "TOBEORNOTTOBEORTOBEORNOT" results in a list of integer
+ * codes.
+ * - Decompressing that list of codes results back in the original
+ * string.
+ *
+ *
+ *
+ *
+ * Time Complexity: O(n) for both compression and decompression, where n is the
+ * length of the input string.
+ *
+ *
+ *
+ * References:
+ *
+ *
+ */
+public final class LZW {
+
+ /**
+ * Private constructor to prevent instantiation of this utility class.
+ */
+ private LZW() {
+ }
+
+ /**
+ * Compresses a string using the LZW algorithm.
+ *
+ * @param uncompressed The string to be compressed. Can be null.
+ * @return A list of integers representing the compressed data. Returns an empty
+ * list if the input is null or empty.
+ */
+ public static List compress(String uncompressed) {
+ if (uncompressed == null || uncompressed.isEmpty()) {
+ return new ArrayList<>();
+ }
+
+ // Initialize dictionary with single characters (ASCII 0-255)
+ int dictSize = 256;
+ Map dictionary = new HashMap<>();
+ for (int i = 0; i < dictSize; i++) {
+ dictionary.put("" + (char) i, i);
+ }
+
+ String w = "";
+ List result = new ArrayList<>();
+ for (char c : uncompressed.toCharArray()) {
+ String wc = w + c;
+ if (dictionary.containsKey(wc)) {
+ // If the new string is in the dictionary, extend the current string
+ w = wc;
+ } else {
+ // Otherwise, output the code for the current string
+ result.add(dictionary.get(w));
+ // Add the new string to the dictionary
+ dictionary.put(wc, dictSize++);
+ // Start a new current string
+ w = "" + c;
+ }
+ }
+
+ // Output the code for the last remaining string
+ result.add(dictionary.get(w));
+ return result;
+ }
+
+ /**
+ * Decompresses a list of integers back into a string using the LZW algorithm.
+ *
+ * @param compressed A list of integers representing the compressed data. Can be
+ * null.
+ * @return The original, uncompressed string. Returns an empty string if the
+ * input is null or empty.
+ */
+ public static String decompress(List compressed) {
+ if (compressed == null || compressed.isEmpty()) {
+ return "";
+ }
+
+ // Initialize dictionary with single characters (ASCII 0-255)
+ int dictSize = 256;
+ Map dictionary = new HashMap<>();
+ for (int i = 0; i < dictSize; i++) {
+ dictionary.put(i, "" + (char) i);
+ }
+
+ // Decompress the first code
+ String w = "" + (char) (int) compressed.removeFirst();
+ StringBuilder result = new StringBuilder(w);
+
+ for (int k : compressed) {
+ String entry;
+ if (dictionary.containsKey(k)) {
+ // The code is in the dictionary
+ entry = dictionary.get(k);
+ } else if (k == dictSize) {
+ // Special case for sequences like "ababab"
+ entry = w + w.charAt(0);
+ } else {
+ throw new IllegalArgumentException("Bad compressed k: " + k);
+ }
+
+ result.append(entry);
+
+ // Add new sequence to the dictionary
+ dictionary.put(dictSize++, w + entry.charAt(0));
+
+ w = entry;
+ }
+ return result.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/compression/RunLengthEncoding.java b/src/main/java/com/thealgorithms/compression/RunLengthEncoding.java
new file mode 100644
index 000000000000..8d065f4648df
--- /dev/null
+++ b/src/main/java/com/thealgorithms/compression/RunLengthEncoding.java
@@ -0,0 +1,87 @@
+package com.thealgorithms.compression;
+
+/**
+ * An implementation of the Run-Length Encoding (RLE) algorithm.
+ *
+ * Run-Length Encoding is a simple form of lossless data compression in which
+ * runs of data (sequences in which the same data value occurs in many
+ * consecutive data elements) are stored as a single data value and count,
+ * rather than as the original run.
+ *
+ *
This implementation provides methods for both compressing and decompressing
+ * a string. For example:
+ *
+ * - Compressing "AAAABBBCCDAA" results in "4A3B2C1D2A".
+ * - Decompressing "4A3B2C1D2A" results in "AAAABBBCCDAA".
+ *
+ *
+ * Time Complexity: O(n) for both compression and decompression, where n is the
+ * length of the input string.
+ *
+ *
References:
+ *
+ */
+public final class RunLengthEncoding {
+
+ /**
+ * Private constructor to prevent instantiation of this utility class.
+ */
+ private RunLengthEncoding() {
+ }
+
+ /**
+ * Compresses a string using the Run-Length Encoding algorithm.
+ *
+ * @param text The string to be compressed. Must not be null.
+ * @return The compressed string. Returns an empty string if the input is empty.
+ */
+ public static String compress(String text) {
+ if (text == null || text.isEmpty()) {
+ return "";
+ }
+
+ StringBuilder compressed = new StringBuilder();
+ int count = 1;
+
+ for (int i = 0; i < text.length(); i++) {
+ // Check if it's the last character or if the next character is different
+ if (i == text.length() - 1 || text.charAt(i) != text.charAt(i + 1)) {
+ compressed.append(count);
+ compressed.append(text.charAt(i));
+ count = 1; // Reset count for the new character
+ } else {
+ count++;
+ }
+ }
+ return compressed.toString();
+ }
+
+ /**
+ * Decompresses a string that was compressed using the Run-Length Encoding algorithm.
+ *
+ * @param compressedText The compressed string. Must not be null.
+ * @return The original, uncompressed string.
+ */
+ public static String decompress(String compressedText) {
+ if (compressedText == null || compressedText.isEmpty()) {
+ return "";
+ }
+
+ StringBuilder decompressed = new StringBuilder();
+ int count = 0;
+
+ for (char ch : compressedText.toCharArray()) {
+ if (Character.isDigit(ch)) {
+ // Build the number for runs of 10 or more (e.g., "12A")
+ count = count * 10 + ch - '0';
+ } else {
+ // Append the character 'count' times
+ decompressed.append(String.valueOf(ch).repeat(Math.max(0, count)));
+ count = 0; // Reset count for the next sequence
+ }
+ }
+ return decompressed.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/compression/ShannonFano.java b/src/main/java/com/thealgorithms/compression/ShannonFano.java
new file mode 100644
index 000000000000..aa5d7ad91b2f
--- /dev/null
+++ b/src/main/java/com/thealgorithms/compression/ShannonFano.java
@@ -0,0 +1,159 @@
+package com.thealgorithms.compression;
+
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.HashMap;
+import java.util.List;
+import java.util.Map;
+import java.util.stream.Collectors;
+
+/**
+ * An implementation of the Shannon-Fano algorithm for generating prefix codes.
+ *
+ * Shannon-Fano coding is an entropy encoding technique for lossless data
+ * compression. It assigns variable-length codes to symbols based on their
+ * frequencies of occurrence. It is a precursor to Huffman coding and works by
+ * recursively partitioning a sorted list of symbols into two sub-lists with
+ * nearly equal total frequencies.
+ *
+ *
The algorithm works as follows:
+ *
+ * - Count the frequency of each symbol in the input data.
+ * - Sort the symbols in descending order of their frequencies.
+ * - Recursively divide the list of symbols into two parts with sums of
+ * frequencies as close as possible to each other.
+ * - Assign a '0' bit to the codes in the first part and a '1' bit to the codes
+ * in the second part.
+ * - Repeat the process for each part until a part contains only one symbol.
+ *
+ *
+ * Time Complexity: O(n^2) in this implementation due to the partitioning logic,
+ * or O(n log n) if a more optimized partitioning strategy is used.
+ * Sorting takes O(n log n), where n is the number of unique symbols.
+ *
+ *
References:
+ *
+ */
+public final class ShannonFano {
+
+ /**
+ * Private constructor to prevent instantiation of this utility class.
+ */
+ private ShannonFano() {
+ }
+
+ /**
+ * A private inner class to represent a symbol and its frequency.
+ * Implements Comparable to allow sorting based on frequency.
+ */
+ private static class Symbol implements Comparable {
+ final char character;
+ final int frequency;
+ String code = "";
+
+ Symbol(char character, int frequency) {
+ this.character = character;
+ this.frequency = frequency;
+ }
+
+ @Override
+ public int compareTo(Symbol other) {
+ return Integer.compare(other.frequency, this.frequency); // Sort descending
+ }
+ }
+
+ /**
+ * Generates Shannon-Fano codes for the symbols in a given text.
+ *
+ * @param text The input string for which to generate codes. Must not be null.
+ * @return A map where keys are characters and values are their corresponding Shannon-Fano codes.
+ */
+ public static Map generateCodes(String text) {
+ if (text == null || text.isEmpty()) {
+ return Collections.emptyMap();
+ }
+
+ Map frequencyMap = new HashMap<>();
+ for (char c : text.toCharArray()) {
+ frequencyMap.put(c, frequencyMap.getOrDefault(c, 0) + 1);
+ }
+
+ List symbols = new ArrayList<>();
+ for (Map.Entry entry : frequencyMap.entrySet()) {
+ symbols.add(new Symbol(entry.getKey(), entry.getValue()));
+ }
+
+ Collections.sort(symbols);
+
+ // Special case: only one unique symbol
+ if (symbols.size() == 1) {
+ symbols.getFirst().code = "0";
+ } else {
+ buildCodeTree(symbols, 0, symbols.size() - 1, "");
+ }
+
+ return symbols.stream().collect(Collectors.toMap(s -> s.character, s -> s.code));
+ }
+
+ /**
+ * Recursively builds the Shannon-Fano code tree by partitioning the list of symbols.
+ * Uses index-based approach to avoid sublist creation issues.
+ *
+ * @param symbols The sorted list of symbols to be processed.
+ * @param start The start index of the current partition.
+ * @param end The end index of the current partition (inclusive).
+ * @param prefix The current prefix code being built for the symbols in this partition.
+ */
+ private static void buildCodeTree(List symbols, int start, int end, String prefix) {
+ // The initial check in generateCodes ensures start <= end is always true here.
+ // The base case is when a partition has only one symbol.
+ if (start == end) {
+ symbols.get(start).code = prefix;
+ return;
+ }
+
+ // Find the optimal split point
+ int splitIndex = findSplitIndex(symbols, start, end);
+
+ // Recursively process left and right partitions with updated prefixes
+ buildCodeTree(symbols, start, splitIndex, prefix + "0");
+ buildCodeTree(symbols, splitIndex + 1, end, prefix + "1");
+ }
+
+ /**
+ * Finds the index that splits the range into two parts with the most balanced frequency sums.
+ * This method tries every possible split point and returns the index that minimizes the
+ * absolute difference between the two partition sums.
+ *
+ * @param symbols The sorted list of symbols.
+ * @param start The start index of the range.
+ * @param end The end index of the range (inclusive).
+ * @return The index of the last element in the first partition.
+ */
+ private static int findSplitIndex(List symbols, int start, int end) {
+ // Calculate total frequency for the entire range
+ long totalFrequency = 0;
+ for (int i = start; i <= end; i++) {
+ totalFrequency += symbols.get(i).frequency;
+ }
+
+ long leftSum = 0;
+ long minDifference = Long.MAX_VALUE;
+ int splitIndex = start;
+
+ // Try every possible split point and find the one with minimum difference
+ for (int i = start; i < end; i++) {
+ leftSum += symbols.get(i).frequency;
+ long rightSum = totalFrequency - leftSum;
+ long difference = Math.abs(leftSum - rightSum);
+
+ if (difference < minDifference) {
+ minDifference = difference;
+ splitIndex = i;
+ }
+ }
+ return splitIndex;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/AffineConverter.java b/src/main/java/com/thealgorithms/conversions/AffineConverter.java
new file mode 100644
index 000000000000..199a6dd517d5
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/AffineConverter.java
@@ -0,0 +1,64 @@
+package com.thealgorithms.conversions;
+
+/**
+ * A utility class to perform affine transformations of the form:
+ * y = slope * x + intercept.
+ *
+ * This class supports inversion and composition of affine transformations.
+ * It is immutable, meaning each instance represents a fixed transformation.
+ */
+public final class AffineConverter {
+ private final double slope;
+ private final double intercept;
+
+ /**
+ * Constructs an AffineConverter with the given slope and intercept.
+ *
+ * @param inSlope The slope of the affine transformation.
+ * @param inIntercept The intercept (constant term) of the affine transformation.
+ * @throws IllegalArgumentException if either parameter is NaN.
+ */
+ public AffineConverter(final double inSlope, final double inIntercept) {
+ if (Double.isNaN(inSlope) || Double.isNaN(inIntercept)) {
+ throw new IllegalArgumentException("Slope and intercept must be valid numbers.");
+ }
+ slope = inSlope;
+ intercept = inIntercept;
+ }
+
+ /**
+ * Converts the given input value using the affine transformation:
+ * result = slope * inValue + intercept.
+ *
+ * @param inValue The input value to convert.
+ * @return The transformed value.
+ */
+ public double convert(final double inValue) {
+ return slope * inValue + intercept;
+ }
+
+ /**
+ * Returns a new AffineConverter representing the inverse of the current transformation.
+ * The inverse of y = slope * x + intercept is x = (y - intercept) / slope.
+ *
+ * @return A new AffineConverter representing the inverse transformation.
+ * @throws AssertionError if the slope is zero, as the inverse would be undefined.
+ */
+ public AffineConverter invert() {
+ assert slope != 0.0 : "Slope cannot be zero for inversion.";
+ return new AffineConverter(1.0 / slope, -intercept / slope);
+ }
+
+ /**
+ * Composes this affine transformation with another, returning a new AffineConverter.
+ * If this transformation is f(x) and the other is g(x), the result is f(g(x)).
+ *
+ * @param other Another AffineConverter to compose with.
+ * @return A new AffineConverter representing the composition of the two transformations.
+ */
+ public AffineConverter compose(final AffineConverter other) {
+ double newSlope = slope * other.slope;
+ double newIntercept = slope * other.intercept + intercept;
+ return new AffineConverter(newSlope, newIntercept);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/AnyBaseToAnyBase.java b/src/main/java/com/thealgorithms/conversions/AnyBaseToAnyBase.java
new file mode 100644
index 000000000000..7a9448fd8fe7
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/AnyBaseToAnyBase.java
@@ -0,0 +1,181 @@
+package com.thealgorithms.conversions;
+
+import java.util.Arrays;
+import java.util.HashSet;
+import java.util.InputMismatchException;
+import java.util.Scanner;
+
+/**
+ * Class for converting from "any" base to "any" other base, when "any" means
+ * from 2-36. Works by going from base 1 to decimal to base 2. Includes
+ * auxiliary method for determining whether a number is valid for a given base.
+ *
+ * @author Michael Rolland
+ * @version 2017.10.10
+ */
+public final class AnyBaseToAnyBase {
+ private AnyBaseToAnyBase() {
+ }
+
+ /**
+ * Smallest and largest base you want to accept as valid input
+ */
+ static final int MINIMUM_BASE = 2;
+
+ static final int MAXIMUM_BASE = 36;
+
+ public static void main(String[] args) {
+ Scanner in = new Scanner(System.in);
+ String n;
+ int b1;
+ int b2;
+ while (true) {
+ try {
+ System.out.print("Enter number: ");
+ n = in.next();
+ System.out.print("Enter beginning base (between " + MINIMUM_BASE + " and " + MAXIMUM_BASE + "): ");
+ b1 = in.nextInt();
+ if (b1 > MAXIMUM_BASE || b1 < MINIMUM_BASE) {
+ System.out.println("Invalid base!");
+ continue;
+ }
+ if (!validForBase(n, b1)) {
+ System.out.println("The number is invalid for this base!");
+ continue;
+ }
+ System.out.print("Enter end base (between " + MINIMUM_BASE + " and " + MAXIMUM_BASE + "): ");
+ b2 = in.nextInt();
+ if (b2 > MAXIMUM_BASE || b2 < MINIMUM_BASE) {
+ System.out.println("Invalid base!");
+ continue;
+ }
+ break;
+ } catch (InputMismatchException e) {
+ System.out.println("Invalid input.");
+ in.next();
+ }
+ }
+ System.out.println(base2base(n, b1, b2));
+ in.close();
+ }
+
+ /**
+ * Checks if a number (as a String) is valid for a given base.
+ */
+ public static boolean validForBase(String n, int base) {
+ char[] validDigits = {
+ '0',
+ '1',
+ '2',
+ '3',
+ '4',
+ '5',
+ '6',
+ '7',
+ '8',
+ '9',
+ 'A',
+ 'B',
+ 'C',
+ 'D',
+ 'E',
+ 'F',
+ 'G',
+ 'H',
+ 'I',
+ 'J',
+ 'K',
+ 'L',
+ 'M',
+ 'N',
+ 'O',
+ 'P',
+ 'Q',
+ 'R',
+ 'S',
+ 'T',
+ 'U',
+ 'V',
+ 'W',
+ 'X',
+ 'Y',
+ 'Z',
+ };
+ // digitsForBase contains all the valid digits for the base given
+ char[] digitsForBase = Arrays.copyOfRange(validDigits, 0, base);
+
+ // Convert character array into set for convenience of contains() method
+ HashSet digitsList = new HashSet<>();
+ for (int i = 0; i < digitsForBase.length; i++) {
+ digitsList.add(digitsForBase[i]);
+ }
+
+ // Check that every digit in n is within the list of valid digits for that base.
+ for (char c : n.toCharArray()) {
+ if (!digitsList.contains(c)) {
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ /**
+ * Method to convert any integer from base b1 to base b2. Works by
+ * converting from b1 to decimal, then decimal to b2.
+ *
+ * @param n The integer to be converted.
+ * @param b1 Beginning base.
+ * @param b2 End base.
+ * @return n in base b2.
+ */
+ public static String base2base(String n, int b1, int b2) {
+ // Declare variables: decimal value of n,
+ // character of base b1, character of base b2,
+ // and the string that will be returned.
+ int decimalValue = 0;
+ int charB2;
+ char charB1;
+ StringBuilder output = new StringBuilder();
+ // Go through every character of n
+ for (int i = 0; i < n.length(); i++) {
+ // store the character in charB1
+ charB1 = n.charAt(i);
+ // if it is a non-number, convert it to a decimal value >9 and store it in charB2
+ if (charB1 >= 'A' && charB1 <= 'Z') {
+ charB2 = 10 + (charB1 - 'A');
+ } // Else, store the integer value in charB2
+ else {
+ charB2 = charB1 - '0';
+ }
+ // Convert the digit to decimal and add it to the
+ // decimalValue of n
+ decimalValue = decimalValue * b1 + charB2;
+ }
+
+ // Converting the decimal value to base b2:
+ // A number is converted from decimal to another base
+ // by continuously dividing by the base and recording
+ // the remainder until the quotient is zero. The number in the
+ // new base is the remainders, with the last remainder
+ // being the left-most digit.
+ if (0 == decimalValue) {
+ return "0";
+ }
+ // While the quotient is NOT zero:
+ while (decimalValue != 0) {
+ // If the remainder is a digit < 10, simply add it to
+ // the left side of the new number.
+ if (decimalValue % b2 < 10) {
+ output.insert(0, decimalValue % b2);
+ } // If the remainder is >= 10, add a character with the
+ // corresponding value to the new number. (A = 10, B = 11, C = 12, ...)
+ else {
+ output.insert(0, (char) ((decimalValue % b2) + 55));
+ }
+ // Divide by the new base again
+ decimalValue /= b2;
+ }
+ return output.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/AnyBaseToDecimal.java b/src/main/java/com/thealgorithms/conversions/AnyBaseToDecimal.java
new file mode 100644
index 000000000000..cdab98c7c28a
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/AnyBaseToDecimal.java
@@ -0,0 +1,52 @@
+package com.thealgorithms.conversions;
+
+/**
+ * @author Varun Upadhyay (...)
+ */
+public final class AnyBaseToDecimal {
+ private static final int CHAR_OFFSET_FOR_DIGIT = '0';
+ private static final int CHAR_OFFSET_FOR_UPPERCASE = 'A' - 10;
+
+ private AnyBaseToDecimal() {
+ }
+
+ /**
+ * Convert any radix to a decimal number.
+ *
+ * @param input the string to be converted
+ * @param radix the radix (base) of the input string
+ * @return the decimal equivalent of the input string
+ * @throws NumberFormatException if the input string or radix is invalid
+ */
+ public static int convertToDecimal(String input, int radix) {
+ int result = 0;
+ int power = 1;
+
+ for (int i = input.length() - 1; i >= 0; i--) {
+ int digit = valOfChar(input.charAt(i));
+ if (digit >= radix) {
+ throw new NumberFormatException("For input string: " + input);
+ }
+ result += digit * power;
+ power *= radix;
+ }
+ return result;
+ }
+
+ /**
+ * Convert a character to its integer value.
+ *
+ * @param character the character to be converted
+ * @return the integer value represented by the character
+ * @throws NumberFormatException if the character is not an uppercase letter or a digit
+ */
+ private static int valOfChar(char character) {
+ if (Character.isDigit(character)) {
+ return character - CHAR_OFFSET_FOR_DIGIT;
+ } else if (Character.isUpperCase(character)) {
+ return character - CHAR_OFFSET_FOR_UPPERCASE;
+ } else {
+ throw new NumberFormatException("invalid character:" + character);
+ }
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/AnytoAny.java b/src/main/java/com/thealgorithms/conversions/AnytoAny.java
new file mode 100644
index 000000000000..e7bdbc2b79c4
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/AnytoAny.java
@@ -0,0 +1,68 @@
+package com.thealgorithms.conversions;
+
+/**
+ * A utility class for converting numbers from any base to any other base.
+ *
+ * This class provides a method to convert a source number from a given base
+ * to a destination number in another base. Valid bases range from 2 to 10.
+ */
+public final class AnytoAny {
+ private AnytoAny() {
+ }
+
+ /**
+ * Converts a number from a source base to a destination base.
+ *
+ * @param sourceNumber The number in the source base (as an integer).
+ * @param sourceBase The base of the source number (between 2 and 10).
+ * @param destBase The base to which the number should be converted (between 2 and 10).
+ * @throws IllegalArgumentException if the bases are not between 2 and 10.
+ * @return The converted number in the destination base (as an integer).
+ */
+ public static int convertBase(int sourceNumber, int sourceBase, int destBase) {
+ if (sourceBase < 2 || sourceBase > 10 || destBase < 2 || destBase > 10) {
+ throw new IllegalArgumentException("Bases must be between 2 and 10.");
+ }
+
+ int decimalValue = toDecimal(sourceNumber, sourceBase);
+ return fromDecimal(decimalValue, destBase);
+ }
+
+ /**
+ * Converts a number from a given base to its decimal representation (base 10).
+ *
+ * @param number The number in the original base.
+ * @param base The base of the given number.
+ * @return The decimal representation of the number.
+ */
+ private static int toDecimal(int number, int base) {
+ int decimalValue = 0;
+ int multiplier = 1;
+
+ while (number != 0) {
+ decimalValue += (number % 10) * multiplier;
+ multiplier *= base;
+ number /= 10;
+ }
+ return decimalValue;
+ }
+
+ /**
+ * Converts a decimal (base 10) number to a specified base.
+ *
+ * @param decimal The decimal number to convert.
+ * @param base The destination base for conversion.
+ * @return The number in the specified base.
+ */
+ private static int fromDecimal(int decimal, int base) {
+ int result = 0;
+ int multiplier = 1;
+
+ while (decimal != 0) {
+ result += (decimal % base) * multiplier;
+ multiplier *= 10;
+ decimal /= base;
+ }
+ return result;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/Base64.java b/src/main/java/com/thealgorithms/conversions/Base64.java
new file mode 100644
index 000000000000..5219c4ba7f4e
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/Base64.java
@@ -0,0 +1,196 @@
+package com.thealgorithms.conversions;
+
+import java.nio.charset.StandardCharsets;
+import java.util.ArrayList;
+import java.util.List;
+
+/**
+ * Base64 is a group of binary-to-text encoding schemes that represent binary data
+ * in an ASCII string format by translating it into a radix-64 representation.
+ * Each base64 digit represents exactly 6 bits of data.
+ *
+ * Base64 encoding is commonly used when there is a need to encode binary data
+ * that needs to be stored and transferred over media that are designed to deal
+ * with textual data.
+ *
+ * Wikipedia Reference: https://en.wikipedia.org/wiki/Base64
+ * Author: Nithin U.
+ * Github: https://github.com/NithinU2802
+ */
+
+public final class Base64 {
+
+ // Base64 character set
+ private static final String BASE64_CHARS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
+ private static final char PADDING_CHAR = '=';
+
+ private Base64() {
+ }
+
+ /**
+ * Encodes the given byte array to a Base64 encoded string.
+ *
+ * @param input the byte array to encode
+ * @return the Base64 encoded string
+ * @throws IllegalArgumentException if input is null
+ */
+ public static String encode(byte[] input) {
+ if (input == null) {
+ throw new IllegalArgumentException("Input cannot be null");
+ }
+
+ if (input.length == 0) {
+ return "";
+ }
+
+ StringBuilder result = new StringBuilder();
+ int padding = 0;
+
+ // Process input in groups of 3 bytes
+ for (int i = 0; i < input.length; i += 3) {
+ // Get up to 3 bytes
+ int byte1 = input[i] & 0xFF;
+ int byte2 = (i + 1 < input.length) ? (input[i + 1] & 0xFF) : 0;
+ int byte3 = (i + 2 < input.length) ? (input[i + 2] & 0xFF) : 0;
+
+ // Calculate padding needed
+ if (i + 1 >= input.length) {
+ padding = 2;
+ } else if (i + 2 >= input.length) {
+ padding = 1;
+ }
+
+ // Combine 3 bytes into a 24-bit number
+ int combined = (byte1 << 16) | (byte2 << 8) | byte3;
+
+ // Extract four 6-bit groups
+ result.append(BASE64_CHARS.charAt((combined >> 18) & 0x3F));
+ result.append(BASE64_CHARS.charAt((combined >> 12) & 0x3F));
+ result.append(BASE64_CHARS.charAt((combined >> 6) & 0x3F));
+ result.append(BASE64_CHARS.charAt(combined & 0x3F));
+ }
+
+ // Replace padding characters
+ if (padding > 0) {
+ result.setLength(result.length() - padding);
+ for (int i = 0; i < padding; i++) {
+ result.append(PADDING_CHAR);
+ }
+ }
+
+ return result.toString();
+ }
+
+ /**
+ * Encodes the given string to a Base64 encoded string using UTF-8 encoding.
+ *
+ * @param input the string to encode
+ * @return the Base64 encoded string
+ * @throws IllegalArgumentException if input is null
+ */
+ public static String encode(String input) {
+ if (input == null) {
+ throw new IllegalArgumentException("Input cannot be null");
+ }
+
+ return encode(input.getBytes(StandardCharsets.UTF_8));
+ }
+
+ /**
+ * Decodes the given Base64 encoded string to a byte array.
+ *
+ * @param input the Base64 encoded string to decode
+ * @return the decoded byte array
+ * @throws IllegalArgumentException if input is null or contains invalid Base64 characters
+ */
+ public static byte[] decode(String input) {
+ if (input == null) {
+ throw new IllegalArgumentException("Input cannot be null");
+ }
+
+ if (input.isEmpty()) {
+ return new byte[0];
+ }
+
+ // Strict RFC 4648 compliance: length must be a multiple of 4
+ if (input.length() % 4 != 0) {
+ throw new IllegalArgumentException("Invalid Base64 input length; must be multiple of 4");
+ }
+
+ // Validate padding: '=' can only appear at the end (last 1 or 2 chars)
+ int firstPadding = input.indexOf('=');
+ if (firstPadding != -1 && firstPadding < input.length() - 2) {
+ throw new IllegalArgumentException("Padding '=' can only appear at the end (last 1 or 2 characters)");
+ }
+
+ List result = new ArrayList<>();
+
+ // Process input in groups of 4 characters
+ for (int i = 0; i < input.length(); i += 4) {
+ // Get up to 4 characters
+ int char1 = getBase64Value(input.charAt(i));
+ int char2 = getBase64Value(input.charAt(i + 1));
+ int char3 = input.charAt(i + 2) == '=' ? 0 : getBase64Value(input.charAt(i + 2));
+ int char4 = input.charAt(i + 3) == '=' ? 0 : getBase64Value(input.charAt(i + 3));
+
+ // Combine four 6-bit groups into a 24-bit number
+ int combined = (char1 << 18) | (char2 << 12) | (char3 << 6) | char4;
+
+ // Extract three 8-bit bytes
+ result.add((byte) ((combined >> 16) & 0xFF));
+ if (input.charAt(i + 2) != '=') {
+ result.add((byte) ((combined >> 8) & 0xFF));
+ }
+ if (input.charAt(i + 3) != '=') {
+ result.add((byte) (combined & 0xFF));
+ }
+ }
+
+ // Convert List to byte[]
+ byte[] resultArray = new byte[result.size()];
+ for (int i = 0; i < result.size(); i++) {
+ resultArray[i] = result.get(i);
+ }
+
+ return resultArray;
+ }
+
+ /**
+ * Decodes the given Base64 encoded string to a string using UTF-8 encoding.
+ *
+ * @param input the Base64 encoded string to decode
+ * @return the decoded string
+ * @throws IllegalArgumentException if input is null or contains invalid Base64 characters
+ */
+ public static String decodeToString(String input) {
+ if (input == null) {
+ throw new IllegalArgumentException("Input cannot be null");
+ }
+
+ byte[] decodedBytes = decode(input);
+ return new String(decodedBytes, StandardCharsets.UTF_8);
+ }
+
+ /**
+ * Gets the numeric value of a Base64 character.
+ *
+ * @param c the Base64 character
+ * @return the numeric value (0-63)
+ * @throws IllegalArgumentException if character is not a valid Base64 character
+ */
+ private static int getBase64Value(char c) {
+ if (c >= 'A' && c <= 'Z') {
+ return c - 'A';
+ } else if (c >= 'a' && c <= 'z') {
+ return c - 'a' + 26;
+ } else if (c >= '0' && c <= '9') {
+ return c - '0' + 52;
+ } else if (c == '+') {
+ return 62;
+ } else if (c == '/') {
+ return 63;
+ } else {
+ throw new IllegalArgumentException("Invalid Base64 character: " + c);
+ }
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/BinaryToDecimal.java b/src/main/java/com/thealgorithms/conversions/BinaryToDecimal.java
new file mode 100644
index 000000000000..36c0790e565f
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/BinaryToDecimal.java
@@ -0,0 +1,33 @@
+package com.thealgorithms.conversions;
+
+/**
+ * This class converts a Binary number to a Decimal number
+ */
+final class BinaryToDecimal {
+ private static final int BINARY_BASE = 2;
+
+ private BinaryToDecimal() {
+ }
+
+ /**
+ * Converts a binary number to its decimal equivalent.
+ *
+ * @param binaryNumber The binary number to convert.
+ * @return The decimal equivalent of the binary number.
+ * @throws IllegalArgumentException If the binary number contains digits other than 0 and 1.
+ */
+ public static long binaryToDecimal(long binaryNumber) {
+ long decimalValue = 0;
+ long power = 0;
+
+ while (binaryNumber != 0) {
+ long digit = binaryNumber % 10;
+ if (digit > 1) {
+ throw new IllegalArgumentException("Incorrect binary digit: " + digit);
+ }
+ decimalValue += (long) (digit * Math.pow(BINARY_BASE, power++));
+ binaryNumber /= 10;
+ }
+ return decimalValue;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/BinaryToHexadecimal.java b/src/main/java/com/thealgorithms/conversions/BinaryToHexadecimal.java
new file mode 100644
index 000000000000..9ff2f593fe1f
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/BinaryToHexadecimal.java
@@ -0,0 +1,63 @@
+package com.thealgorithms.conversions;
+
+import java.util.HashMap;
+import java.util.Map;
+
+/**
+ * Converts any Binary Number to a Hexadecimal Number
+ *
+ * @author Nishita Aggarwal
+ */
+public final class BinaryToHexadecimal {
+ private static final int BITS_IN_HEX_DIGIT = 4;
+ private static final int BASE_BINARY = 2;
+ private static final int BASE_DECIMAL = 10;
+ private static final int HEX_START_DECIMAL = 10;
+ private static final int HEX_END_DECIMAL = 15;
+
+ private BinaryToHexadecimal() {
+ }
+
+ /**
+ * Converts a binary number to a hexadecimal number.
+ *
+ * @param binary The binary number to convert.
+ * @return The hexadecimal representation of the binary number.
+ * @throws IllegalArgumentException If the binary number contains digits other than 0 and 1.
+ */
+ public static String binToHex(int binary) {
+ Map hexMap = initializeHexMap();
+ StringBuilder hex = new StringBuilder();
+
+ while (binary != 0) {
+ int decimalValue = 0;
+ for (int i = 0; i < BITS_IN_HEX_DIGIT; i++) {
+ int currentBit = binary % BASE_DECIMAL;
+ if (currentBit > 1) {
+ throw new IllegalArgumentException("Incorrect binary digit: " + currentBit);
+ }
+ binary /= BASE_DECIMAL;
+ decimalValue += (int) (currentBit * Math.pow(BASE_BINARY, i));
+ }
+ hex.insert(0, hexMap.get(decimalValue));
+ }
+
+ return !hex.isEmpty() ? hex.toString() : "0";
+ }
+
+ /**
+ * Initializes the hexadecimal map with decimal to hexadecimal mappings.
+ *
+ * @return The initialized map containing mappings from decimal numbers to hexadecimal digits.
+ */
+ private static Map initializeHexMap() {
+ Map hexMap = new HashMap<>();
+ for (int i = 0; i < BASE_DECIMAL; i++) {
+ hexMap.put(i, String.valueOf(i));
+ }
+ for (int i = HEX_START_DECIMAL; i <= HEX_END_DECIMAL; i++) {
+ hexMap.put(i, String.valueOf((char) ('A' + i - HEX_START_DECIMAL)));
+ }
+ return hexMap;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/BinaryToOctal.java b/src/main/java/com/thealgorithms/conversions/BinaryToOctal.java
new file mode 100644
index 000000000000..5407c8525a23
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/BinaryToOctal.java
@@ -0,0 +1,45 @@
+package com.thealgorithms.conversions;
+
+public final class BinaryToOctal {
+ private static final int BITS_PER_OCTAL_DIGIT = 3;
+ private static final int BINARY_BASE = 2;
+ private static final int DECIMAL_BASE = 10;
+
+ private BinaryToOctal() {
+ }
+
+ /**
+ * This method converts a binary number to an octal number.
+ *
+ * @param binary The binary number
+ * @return The octal number
+ * @throws IllegalArgumentException if the input is not a valid binary number
+ */
+ public static String convertBinaryToOctal(int binary) {
+ if (binary == 0) {
+ return "0";
+ }
+
+ if (!String.valueOf(binary).matches("[01]+")) {
+ throw new IllegalArgumentException("Input is not a valid binary number.");
+ }
+
+ StringBuilder octal = new StringBuilder();
+ int currentBit;
+ int bitValueMultiplier = 1;
+
+ while (binary != 0) {
+ int octalDigit = 0;
+ for (int i = 0; i < BITS_PER_OCTAL_DIGIT && binary != 0; i++) {
+ currentBit = binary % DECIMAL_BASE;
+ binary /= DECIMAL_BASE;
+ octalDigit += currentBit * bitValueMultiplier;
+ bitValueMultiplier *= BINARY_BASE;
+ }
+ octal.insert(0, octalDigit);
+ bitValueMultiplier = 1; // Reset multiplier for the next group
+ }
+
+ return octal.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/CoordinateConverter.java b/src/main/java/com/thealgorithms/conversions/CoordinateConverter.java
new file mode 100644
index 000000000000..2766a3a1cf89
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/CoordinateConverter.java
@@ -0,0 +1,57 @@
+package com.thealgorithms.conversions;
+
+/**
+ * A utility class to convert between Cartesian and Polar coordinate systems.
+ *
+ * This class provides methods to perform the following conversions:
+ *
+ * - Cartesian to Polar coordinates
+ * - Polar to Cartesian coordinates
+ *
+ *
+ * The class is final and cannot be instantiated.
+ */
+public final class CoordinateConverter {
+
+ private CoordinateConverter() {
+ // Prevent instantiation
+ }
+
+ /**
+ * Converts Cartesian coordinates to Polar coordinates.
+ *
+ * @param x the x-coordinate in the Cartesian system; must be a finite number
+ * @param y the y-coordinate in the Cartesian system; must be a finite number
+ * @return an array where the first element is the radius (r) and the second element is the angle (theta) in degrees
+ * @throws IllegalArgumentException if x or y is not a finite number
+ */
+ public static double[] cartesianToPolar(double x, double y) {
+ if (!Double.isFinite(x) || !Double.isFinite(y)) {
+ throw new IllegalArgumentException("x and y must be finite numbers.");
+ }
+ double r = Math.sqrt(x * x + y * y);
+ double theta = Math.toDegrees(Math.atan2(y, x));
+ return new double[] {r, theta};
+ }
+
+ /**
+ * Converts Polar coordinates to Cartesian coordinates.
+ *
+ * @param r the radius in the Polar system; must be non-negative
+ * @param thetaDegrees the angle (theta) in degrees in the Polar system; must be a finite number
+ * @return an array where the first element is the x-coordinate and the second element is the y-coordinate in the Cartesian system
+ * @throws IllegalArgumentException if r is negative or thetaDegrees is not a finite number
+ */
+ public static double[] polarToCartesian(double r, double thetaDegrees) {
+ if (r < 0) {
+ throw new IllegalArgumentException("Radius (r) must be non-negative.");
+ }
+ if (!Double.isFinite(thetaDegrees)) {
+ throw new IllegalArgumentException("Theta (angle) must be a finite number.");
+ }
+ double theta = Math.toRadians(thetaDegrees);
+ double x = r * Math.cos(theta);
+ double y = r * Math.sin(theta);
+ return new double[] {x, y};
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/DecimalToAnyBase.java b/src/main/java/com/thealgorithms/conversions/DecimalToAnyBase.java
new file mode 100644
index 000000000000..a5615dc002f5
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/DecimalToAnyBase.java
@@ -0,0 +1,69 @@
+package com.thealgorithms.conversions;
+
+import java.util.ArrayList;
+import java.util.List;
+
+/**
+ * Class that provides methods to convert a decimal number to a string representation
+ * in any specified base between 2 and 36.
+ *
+ * @author Varun Upadhyay (...)
+ */
+public final class DecimalToAnyBase {
+ private static final int MIN_BASE = 2;
+ private static final int MAX_BASE = 36;
+ private static final char ZERO_CHAR = '0';
+ private static final char A_CHAR = 'A';
+ private static final int DIGIT_OFFSET = 10;
+
+ private DecimalToAnyBase() {
+ }
+
+ /**
+ * Converts a decimal number to a string representation in the specified base.
+ * For example, converting the decimal number 10 to base 2 would return "1010".
+ *
+ * @param decimal the decimal number to convert
+ * @param base the base to convert to (must be between {@value #MIN_BASE} and {@value #MAX_BASE})
+ * @return the string representation of the number in the specified base
+ * @throws IllegalArgumentException if the base is out of the supported range
+ */
+ public static String convertToAnyBase(int decimal, int base) {
+ if (base < MIN_BASE || base > MAX_BASE) {
+ throw new IllegalArgumentException("Base must be between " + MIN_BASE + " and " + MAX_BASE);
+ }
+
+ if (decimal == 0) {
+ return String.valueOf(ZERO_CHAR);
+ }
+
+ List digits = new ArrayList<>();
+ while (decimal > 0) {
+ digits.add(convertToChar(decimal % base));
+ decimal /= base;
+ }
+
+ StringBuilder result = new StringBuilder(digits.size());
+ for (int i = digits.size() - 1; i >= 0; i--) {
+ result.append(digits.get(i));
+ }
+
+ return result.toString();
+ }
+
+ /**
+ * Converts an integer value to its corresponding character in the specified base.
+ * This method is used to convert values from 0 to 35 into their appropriate character representation.
+ * For example, 0-9 are represented as '0'-'9', and 10-35 are represented as 'A'-'Z'.
+ *
+ * @param value the integer value to convert (should be less than the base value)
+ * @return the character representing the value in the specified base
+ */
+ private static char convertToChar(int value) {
+ if (value >= 0 && value <= 9) {
+ return (char) (ZERO_CHAR + value);
+ } else {
+ return (char) (A_CHAR + value - DIGIT_OFFSET);
+ }
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/DecimalToBinary.java b/src/main/java/com/thealgorithms/conversions/DecimalToBinary.java
new file mode 100644
index 000000000000..e8d033e0093c
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/DecimalToBinary.java
@@ -0,0 +1,49 @@
+package com.thealgorithms.conversions;
+
+/**
+ * This class provides methods to convert a decimal number to a binary number.
+ */
+final class DecimalToBinary {
+ private static final int BINARY_BASE = 2;
+ private static final int DECIMAL_MULTIPLIER = 10;
+
+ private DecimalToBinary() {
+ }
+
+ /**
+ * Converts a decimal number to a binary number using a conventional algorithm.
+ * @param decimalNumber the decimal number to convert
+ * @return the binary representation of the decimal number
+ */
+ public static int convertUsingConventionalAlgorithm(int decimalNumber) {
+ int binaryNumber = 0;
+ int position = 1;
+
+ while (decimalNumber > 0) {
+ int remainder = decimalNumber % BINARY_BASE;
+ binaryNumber += remainder * position;
+ position *= DECIMAL_MULTIPLIER;
+ decimalNumber /= BINARY_BASE;
+ }
+
+ return binaryNumber;
+ }
+
+ /**
+ * Converts a decimal number to a binary number using a bitwise algorithm.
+ * @param decimalNumber the decimal number to convert
+ * @return the binary representation of the decimal number
+ */
+ public static int convertUsingBitwiseAlgorithm(int decimalNumber) {
+ int binaryNumber = 0;
+ int position = 1;
+
+ while (decimalNumber > 0) {
+ int leastSignificantBit = decimalNumber & 1;
+ binaryNumber += leastSignificantBit * position;
+ position *= DECIMAL_MULTIPLIER;
+ decimalNumber >>= 1;
+ }
+ return binaryNumber;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/DecimalToHexadecimal.java b/src/main/java/com/thealgorithms/conversions/DecimalToHexadecimal.java
new file mode 100644
index 000000000000..47a1e36b27e3
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/DecimalToHexadecimal.java
@@ -0,0 +1,42 @@
+package com.thealgorithms.conversions;
+
+/**
+ * This class provides a method to convert a decimal number to a hexadecimal string.
+ */
+final class DecimalToHexadecimal {
+ private static final int SIZE_OF_INT_IN_HALF_BYTES = 8;
+ private static final int NUMBER_OF_BITS_IN_HALF_BYTE = 4;
+ private static final int HALF_BYTE_MASK = 0x0F;
+ private static final char[] HEX_DIGITS = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
+
+ private DecimalToHexadecimal() {
+ }
+
+ /**
+ * Converts a decimal number to a hexadecimal string.
+ * @param decimal the decimal number to convert
+ * @return the hexadecimal representation of the decimal number
+ */
+ public static String decToHex(int decimal) {
+ StringBuilder hexBuilder = new StringBuilder(SIZE_OF_INT_IN_HALF_BYTES);
+ for (int i = SIZE_OF_INT_IN_HALF_BYTES - 1; i >= 0; --i) {
+ int currentHalfByte = decimal & HALF_BYTE_MASK;
+ hexBuilder.insert(0, HEX_DIGITS[currentHalfByte]);
+ decimal >>= NUMBER_OF_BITS_IN_HALF_BYTE;
+ }
+ return removeLeadingZeros(hexBuilder.toString().toLowerCase());
+ }
+
+ private static String removeLeadingZeros(String str) {
+ if (str == null || str.isEmpty()) {
+ return str;
+ }
+
+ int i = 0;
+ while (i < str.length() && str.charAt(i) == '0') {
+ i++;
+ }
+
+ return i == str.length() ? "0" : str.substring(i);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/DecimalToOctal.java b/src/main/java/com/thealgorithms/conversions/DecimalToOctal.java
new file mode 100644
index 000000000000..75687fc589ae
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/DecimalToOctal.java
@@ -0,0 +1,38 @@
+package com.thealgorithms.conversions;
+
+/**
+ * This class converts Decimal numbers to Octal Numbers
+ */
+public final class DecimalToOctal {
+ private static final int OCTAL_BASE = 8;
+ private static final int INITIAL_OCTAL_VALUE = 0;
+ private static final int INITIAL_PLACE_VALUE = 1;
+
+ private DecimalToOctal() {
+ }
+
+ /**
+ * Converts a decimal number to its octal equivalent.
+ *
+ * @param decimal The decimal number to convert.
+ * @return The octal equivalent as an integer.
+ * @throws IllegalArgumentException if the decimal number is negative.
+ */
+ public static int convertToOctal(int decimal) {
+ if (decimal < 0) {
+ throw new IllegalArgumentException("Decimal number cannot be negative.");
+ }
+
+ int octal = INITIAL_OCTAL_VALUE;
+ int placeValue = INITIAL_PLACE_VALUE;
+
+ while (decimal != 0) {
+ int remainder = decimal % OCTAL_BASE;
+ octal += remainder * placeValue;
+ decimal /= OCTAL_BASE;
+ placeValue *= 10;
+ }
+
+ return octal;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/EndianConverter.java b/src/main/java/com/thealgorithms/conversions/EndianConverter.java
new file mode 100644
index 000000000000..0d69098e8255
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/EndianConverter.java
@@ -0,0 +1,47 @@
+package com.thealgorithms.conversions;
+
+/**
+ * Utility class for converting integers between big-endian and little-endian formats.
+ *
+ * Endianness defines how byte sequences represent multi-byte data types:
+ *
+ * - Big-endian: The most significant byte (MSB) comes first.
+ * - Little-endian: The least significant byte (LSB) comes first.
+ *
+ *
+ * Example conversion:
+ *
+ * - Big-endian to little-endian: {@code 0x12345678} → {@code 0x78563412}
+ * - Little-endian to big-endian: {@code 0x78563412} → {@code 0x12345678}
+ *
+ *
+ * Note: Both conversions in this utility are equivalent since reversing the bytes is symmetric.
+ *
+ * This class only supports 32-bit integers.
+ *
+ * @author Hardvan
+ */
+public final class EndianConverter {
+ private EndianConverter() {
+ }
+
+ /**
+ * Converts a 32-bit integer from big-endian to little-endian.
+ *
+ * @param value the integer in big-endian format
+ * @return the integer in little-endian format
+ */
+ public static int bigToLittleEndian(int value) {
+ return Integer.reverseBytes(value);
+ }
+
+ /**
+ * Converts a 32-bit integer from little-endian to big-endian.
+ *
+ * @param value the integer in little-endian format
+ * @return the integer in big-endian format
+ */
+ public static int littleToBigEndian(int value) {
+ return Integer.reverseBytes(value);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/HexToOct.java b/src/main/java/com/thealgorithms/conversions/HexToOct.java
new file mode 100644
index 000000000000..d3a672d37424
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/HexToOct.java
@@ -0,0 +1,62 @@
+package com.thealgorithms.conversions;
+
+/**
+ * Converts any Hexadecimal Number to Octal
+ *
+ * @author Tanmay Joshi
+ */
+public final class HexToOct {
+ private HexToOct() {
+ }
+
+ /**
+ * Converts a Hexadecimal number to a Decimal number.
+ *
+ * @param hex The Hexadecimal number as a String.
+ * @return The Decimal equivalent as an integer.
+ */
+ public static int hexToDecimal(String hex) {
+ String hexDigits = "0123456789ABCDEF";
+ hex = hex.toUpperCase();
+ int decimalValue = 0;
+
+ for (int i = 0; i < hex.length(); i++) {
+ char hexChar = hex.charAt(i);
+ int digitValue = hexDigits.indexOf(hexChar);
+ decimalValue = 16 * decimalValue + digitValue;
+ }
+
+ return decimalValue;
+ }
+
+ /**
+ * Converts a Decimal number to an Octal number.
+ *
+ * @param decimal The Decimal number as an integer.
+ * @return The Octal equivalent as an integer.
+ */
+ public static int decimalToOctal(int decimal) {
+ int octalValue = 0;
+ int placeValue = 1;
+
+ while (decimal > 0) {
+ int remainder = decimal % 8;
+ octalValue += remainder * placeValue;
+ decimal /= 8;
+ placeValue *= 10;
+ }
+
+ return octalValue;
+ }
+
+ /**
+ * Converts a Hexadecimal number to an Octal number.
+ *
+ * @param hex The Hexadecimal number as a String.
+ * @return The Octal equivalent as an integer.
+ */
+ public static int hexToOctal(String hex) {
+ int decimalValue = hexToDecimal(hex);
+ return decimalToOctal(decimalValue);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/HexaDecimalToBinary.java b/src/main/java/com/thealgorithms/conversions/HexaDecimalToBinary.java
new file mode 100644
index 000000000000..c0eb9a01ba17
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/HexaDecimalToBinary.java
@@ -0,0 +1,62 @@
+package com.thealgorithms.conversions;
+
+/**
+ * Utility class for converting hexadecimal numbers to binary representation.
+ *
+ * A hexadecimal number consists of digits from {@code [0-9]} and {@code [A-F]} (case-insensitive),
+ * while binary representation uses only {@code [0, 1]}.
+ *
+ * This class provides methods to:
+ *
+ * - Convert a hexadecimal string to its binary string equivalent.
+ * - Ensure the binary output is padded to 8 bits (1 byte).
+ *
+ *
+ * Example:
+ *
+ * - {@code "A1"} → {@code "10100001"}
+ * - {@code "1"} → {@code "00000001"}
+ *
+ *
+ * This class assumes that the input hexadecimal string is valid.
+ */
+public class HexaDecimalToBinary {
+
+ /**
+ * Converts a hexadecimal string to its binary string equivalent.
+ * The binary output is padded to a minimum of 8 bits (1 byte).
+ * Steps:
+ *
+ * - Convert the hexadecimal string to an integer.
+ * - Convert the integer to a binary string.
+ * - Pad the binary string to ensure it is at least 8 bits long.
+ * - Return the padded binary string.
+ *
+ *
+ * @param numHex the hexadecimal string (e.g., "A1", "7F")
+ * @throws NumberFormatException if the input string is not a valid hexadecimal number
+ * @return the binary string representation, padded to 8 bits (e.g., "10100001")
+ */
+ public String convert(String numHex) {
+ int conHex = Integer.parseInt(numHex, 16);
+ String binary = Integer.toBinaryString(conHex);
+ return completeDigits(binary);
+ }
+
+ /**
+ * Pads the binary string to ensure it is at least 8 bits long.
+ * If the binary string is shorter than 8 bits, it adds leading zeros.
+ *
+ * @param binNum the binary string to pad
+ * @return the padded binary string with a minimum length of 8
+ */
+ public String completeDigits(String binNum) {
+ final int byteSize = 8;
+ StringBuilder binNumBuilder = new StringBuilder(binNum);
+ while (binNumBuilder.length() < byteSize) {
+ binNumBuilder.insert(0, "0");
+ }
+ binNum = binNumBuilder.toString();
+ return binNum;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/HexaDecimalToDecimal.java b/src/main/java/com/thealgorithms/conversions/HexaDecimalToDecimal.java
new file mode 100644
index 000000000000..2cf6024d90a3
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/HexaDecimalToDecimal.java
@@ -0,0 +1,45 @@
+package com.thealgorithms.conversions;
+
+/**
+ * Utility class for converting a hexadecimal string to its decimal representation.
+ *
+ * A hexadecimal number uses the base-16 numeral system, with the following characters:
+ *
+ * - Digits: 0-9
+ * - Letters: A-F (case-insensitive)
+ *
+ * Each character represents a power of 16. For example:
+ *
+ * Hexadecimal "A1" = 10*16^1 + 1*16^0 = 161 (decimal)
+ *
+ *
+ * This class provides a method to perform the conversion without using built-in Java utilities.
+ */
+public final class HexaDecimalToDecimal {
+ private HexaDecimalToDecimal() {
+ }
+
+ /**
+ * Converts a hexadecimal string to its decimal integer equivalent.
+ * The input string is case-insensitive, and must contain valid hexadecimal characters [0-9, A-F].
+ *
+ * @param hex the hexadecimal string to convert
+ * @return the decimal integer representation of the input hexadecimal string
+ * @throws IllegalArgumentException if the input string contains invalid characters
+ */
+ public static int getHexaToDec(String hex) {
+ String digits = "0123456789ABCDEF";
+ hex = hex.toUpperCase();
+ int val = 0;
+
+ for (int i = 0; i < hex.length(); i++) {
+ int d = digits.indexOf(hex.charAt(i));
+ if (d == -1) {
+ throw new IllegalArgumentException("Invalid hexadecimal character: " + hex.charAt(i));
+ }
+ val = 16 * val + d;
+ }
+
+ return val;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/IPConverter.java b/src/main/java/com/thealgorithms/conversions/IPConverter.java
new file mode 100644
index 000000000000..765cb0201dd5
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/IPConverter.java
@@ -0,0 +1,58 @@
+package com.thealgorithms.conversions;
+
+/**
+ * Converts an IPv4 address to its binary equivalent and vice-versa.
+ * IP to Binary: Converts an IPv4 address to its binary equivalent.
+ * Example: 127.3.4.5 -> 01111111.00000011.00000100.00000101
+ *
+ * Binary to IP: Converts a binary equivalent to an IPv4 address.
+ * Example: 01111111.00000011.00000100.00000101 -> 127.3.4.5
+ *
+ * @author Hardvan
+ */
+public final class IPConverter {
+ private IPConverter() {
+ }
+
+ /**
+ * Converts an IPv4 address to its binary equivalent.
+ * @param ip The IPv4 address to convert.
+ * @return The binary equivalent of the IPv4 address.
+ */
+ public static String ipToBinary(String ip) {
+ StringBuilder binary = new StringBuilder();
+ for (String octet : ip.split("\\.")) {
+ binary.append(octetToBinary(Integer.parseInt(octet))).append(".");
+ }
+ return binary.substring(0, binary.length() - 1);
+ }
+
+ /**
+ * Converts a single octet to its 8-bit binary representation.
+ * @param octet The octet to convert (0-255).
+ * @return The 8-bit binary representation as a String.
+ */
+ private static String octetToBinary(int octet) {
+ char[] binary = {'0', '0', '0', '0', '0', '0', '0', '0'};
+ for (int i = 7; i >= 0; i--) {
+ if ((octet & 1) == 1) {
+ binary[i] = '1';
+ }
+ octet >>>= 1;
+ }
+ return new String(binary);
+ }
+
+ /**
+ * Converts a binary equivalent to an IPv4 address.
+ * @param binary The binary equivalent to convert.
+ * @return The IPv4 address of the binary equivalent.
+ */
+ public static String binaryToIP(String binary) {
+ StringBuilder ip = new StringBuilder();
+ for (String octet : binary.split("\\.")) {
+ ip.append(Integer.parseInt(octet, 2)).append(".");
+ }
+ return ip.substring(0, ip.length() - 1);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/IPv6Converter.java b/src/main/java/com/thealgorithms/conversions/IPv6Converter.java
new file mode 100644
index 000000000000..d42ffd027514
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/IPv6Converter.java
@@ -0,0 +1,98 @@
+package com.thealgorithms.conversions;
+
+import java.net.InetAddress;
+import java.net.UnknownHostException;
+import java.util.Arrays;
+
+/**
+ * A utility class for converting between IPv6 and IPv4 addresses.
+ *
+ * - Converts IPv4 to IPv6-mapped IPv6 address.
+ * - Extracts IPv4 address from IPv6-mapped IPv6.
+ * - Handles exceptions for invalid inputs.
+ *
+ * @author Hardvan
+ */
+public final class IPv6Converter {
+ private IPv6Converter() {
+ }
+
+ /**
+ * Converts an IPv4 address (e.g., "192.0.2.128") to an IPv6-mapped IPv6 address.
+ * Example: IPv4 "192.0.2.128" -> IPv6 "::ffff:192.0.2.128"
+ *
+ * @param ipv4Address The IPv4 address in string format.
+ * @return The corresponding IPv6-mapped IPv6 address.
+ * @throws UnknownHostException If the IPv4 address is invalid.
+ * @throws IllegalArgumentException If the IPv6 address is not a mapped IPv4 address.
+ */
+ public static String ipv4ToIpv6(String ipv4Address) throws UnknownHostException {
+ if (ipv4Address == null || ipv4Address.isEmpty()) {
+ throw new UnknownHostException("IPv4 address is empty.");
+ }
+
+ InetAddress ipv4 = InetAddress.getByName(ipv4Address);
+ byte[] ipv4Bytes = ipv4.getAddress();
+
+ // Create IPv6-mapped IPv6 address (starts with ::ffff:)
+ byte[] ipv6Bytes = new byte[16];
+ ipv6Bytes[10] = (byte) 0xff;
+ ipv6Bytes[11] = (byte) 0xff;
+ System.arraycopy(ipv4Bytes, 0, ipv6Bytes, 12, 4);
+
+ // Manually format to "::ffff:x.x.x.x" format
+ StringBuilder ipv6String = new StringBuilder("::ffff:");
+ for (int i = 12; i < 16; i++) {
+ ipv6String.append(ipv6Bytes[i] & 0xFF);
+ if (i < 15) {
+ ipv6String.append('.');
+ }
+ }
+ return ipv6String.toString();
+ }
+
+ /**
+ * Extracts the IPv4 address from an IPv6-mapped IPv6 address.
+ * Example: IPv6 "::ffff:192.0.2.128" -> IPv4 "192.0.2.128"
+ *
+ * @param ipv6Address The IPv6 address in string format.
+ * @return The extracted IPv4 address.
+ * @throws UnknownHostException If the IPv6 address is invalid or not a mapped IPv4 address.
+ */
+ public static String ipv6ToIpv4(String ipv6Address) throws UnknownHostException {
+ InetAddress ipv6 = InetAddress.getByName(ipv6Address);
+ byte[] ipv6Bytes = ipv6.getAddress();
+
+ // Check if the address is an IPv6-mapped IPv4 address
+ if (isValidIpv6MappedIpv4(ipv6Bytes)) {
+ byte[] ipv4Bytes = Arrays.copyOfRange(ipv6Bytes, 12, 16);
+ InetAddress ipv4 = InetAddress.getByAddress(ipv4Bytes);
+ return ipv4.getHostAddress();
+ } else {
+ throw new IllegalArgumentException("Not a valid IPv6-mapped IPv4 address.");
+ }
+ }
+
+ /**
+ * Helper function to check if the given byte array represents
+ * an IPv6-mapped IPv4 address (prefix 0:0:0:0:0:ffff).
+ *
+ * @param ipv6Bytes Byte array representation of the IPv6 address.
+ * @return True if the address is IPv6-mapped IPv4, otherwise false.
+ */
+ private static boolean isValidIpv6MappedIpv4(byte[] ipv6Bytes) {
+ // IPv6-mapped IPv4 addresses are 16 bytes long, with the first 10 bytes set to 0,
+ // followed by 0xff, 0xff, and the last 4 bytes representing the IPv4 address.
+ if (ipv6Bytes.length != 16) {
+ return false;
+ }
+
+ for (int i = 0; i < 10; i++) {
+ if (ipv6Bytes[i] != 0) {
+ return false;
+ }
+ }
+
+ return ipv6Bytes[10] == (byte) 0xff && ipv6Bytes[11] == (byte) 0xff;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/IntegerToEnglish.java b/src/main/java/com/thealgorithms/conversions/IntegerToEnglish.java
new file mode 100644
index 000000000000..e85c608af5d0
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/IntegerToEnglish.java
@@ -0,0 +1,108 @@
+package com.thealgorithms.conversions;
+
+import java.util.Map;
+
+/**
+ * A utility class to convert integers to their English word representation.
+ *
+ * The class supports conversion of numbers from 0 to 2,147,483,647
+ * (the maximum value of a 32-bit signed integer). It divides the number
+ * into groups of three digits (thousands, millions, billions, etc.) and
+ * translates each group into words.
+ *
+ * Example Usage
+ *
+ * IntegerToEnglish.integerToEnglishWords(12345);
+ * // Output: "Twelve Thousand Three Hundred Forty Five"
+ *
+ *
+ * This class uses two maps:
+ *
+ * - BASE_NUMBERS_MAP: Holds English words for numbers 0-20, multiples of 10 up to 90, and 100.
+ * - THOUSAND_POWER_MAP: Maps powers of 1000 (e.g., Thousand, Million, Billion).
+ *
+ */
+public final class IntegerToEnglish {
+
+ private static final Map BASE_NUMBERS_MAP = Map.ofEntries(Map.entry(0, ""), Map.entry(1, "One"), Map.entry(2, "Two"), Map.entry(3, "Three"), Map.entry(4, "Four"), Map.entry(5, "Five"), Map.entry(6, "Six"), Map.entry(7, "Seven"), Map.entry(8, "Eight"), Map.entry(9, "Nine"),
+ Map.entry(10, "Ten"), Map.entry(11, "Eleven"), Map.entry(12, "Twelve"), Map.entry(13, "Thirteen"), Map.entry(14, "Fourteen"), Map.entry(15, "Fifteen"), Map.entry(16, "Sixteen"), Map.entry(17, "Seventeen"), Map.entry(18, "Eighteen"), Map.entry(19, "Nineteen"), Map.entry(20, "Twenty"),
+ Map.entry(30, "Thirty"), Map.entry(40, "Forty"), Map.entry(50, "Fifty"), Map.entry(60, "Sixty"), Map.entry(70, "Seventy"), Map.entry(80, "Eighty"), Map.entry(90, "Ninety"), Map.entry(100, "Hundred"));
+
+ private static final Map THOUSAND_POWER_MAP = Map.ofEntries(Map.entry(1, "Thousand"), Map.entry(2, "Million"), Map.entry(3, "Billion"));
+
+ private IntegerToEnglish() {
+ }
+
+ /**
+ * Converts numbers less than 1000 into English words.
+ *
+ * @param number the integer value (0-999) to convert
+ * @return the English word representation of the input number
+ */
+ private static String convertToWords(int number) {
+ int remainder = number % 100;
+ StringBuilder result = new StringBuilder();
+
+ if (remainder <= 20) {
+ result.append(BASE_NUMBERS_MAP.get(remainder));
+ } else if (BASE_NUMBERS_MAP.containsKey(remainder)) {
+ result.append(BASE_NUMBERS_MAP.get(remainder));
+ } else {
+ int tensDigit = remainder / 10;
+ int onesDigit = remainder % 10;
+ String tens = BASE_NUMBERS_MAP.getOrDefault(tensDigit * 10, "");
+ String ones = BASE_NUMBERS_MAP.getOrDefault(onesDigit, "");
+ result.append(tens);
+ if (ones != null && !ones.isEmpty()) {
+ result.append(" ").append(ones);
+ }
+ }
+
+ int hundredsDigit = number / 100;
+ if (hundredsDigit > 0) {
+ if (result.length() > 0) {
+ result.insert(0, " ");
+ }
+ result.insert(0, String.format("%s Hundred", BASE_NUMBERS_MAP.get(hundredsDigit)));
+ }
+
+ return result.toString().trim();
+ }
+
+ /**
+ * Converts a non-negative integer to its English word representation.
+ *
+ * @param number the integer to convert (0-2,147,483,647)
+ * @return the English word representation of the input number
+ */
+ public static String integerToEnglishWords(int number) {
+ if (number == 0) {
+ return "Zero";
+ }
+
+ StringBuilder result = new StringBuilder();
+ int index = 0;
+
+ while (number > 0) {
+ int remainder = number % 1000;
+ number /= 1000;
+
+ if (remainder > 0) {
+ String subResult = convertToWords(remainder);
+ if (!subResult.isEmpty()) {
+ if (index > 0) {
+ subResult += " " + THOUSAND_POWER_MAP.get(index);
+ }
+ if (result.length() > 0) {
+ result.insert(0, " ");
+ }
+ result.insert(0, subResult);
+ }
+ }
+
+ index++;
+ }
+
+ return result.toString().trim();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/IntegerToRoman.java b/src/main/java/com/thealgorithms/conversions/IntegerToRoman.java
new file mode 100644
index 000000000000..fec437668fe6
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/IntegerToRoman.java
@@ -0,0 +1,68 @@
+package com.thealgorithms.conversions;
+
+/**
+ * A utility class to convert integers into Roman numerals.
+ *
+ * Roman numerals follow these rules:
+ *
+ * - I = 1
+ * - IV = 4
+ * - V = 5
+ * - IX = 9
+ * - X = 10
+ * - XL = 40
+ * - L = 50
+ * - XC = 90
+ * - C = 100
+ * - D = 500
+ * - M = 1000
+ *
+ *
+ * Conversion is based on repeatedly subtracting the largest possible Roman numeral value
+ * from the input number until it reaches zero. For example, 1994 is converted as:
+ *
+ * 1994 -> MCMXCIV (1000 + 900 + 90 + 4)
+ *
+ */
+public final class IntegerToRoman {
+
+ // Array of Roman numeral values in descending order
+ private static final int[] ALL_ROMAN_NUMBERS_IN_ARABIC = {1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1};
+
+ // Corresponding Roman numeral symbols
+ private static final String[] ALL_ROMAN_NUMBERS = {"M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"};
+
+ private IntegerToRoman() {
+ }
+
+ /**
+ * Converts an integer to its Roman numeral representation.
+ * Steps:
+ *
+ * - Iterate over the Roman numeral values in descending order
+ * - Calculate how many times a numeral fits
+ * - Append the corresponding symbol
+ * - Subtract the value from the number
+ * - Repeat until the number is zero
+ * - Return the Roman numeral representation
+ *
+ *
+ * @param num the integer value to convert (must be greater than 0)
+ * @return the Roman numeral representation of the input integer
+ * or an empty string if the input is non-positive
+ */
+ public static String integerToRoman(int num) {
+ if (num <= 0) {
+ return "";
+ }
+
+ StringBuilder builder = new StringBuilder();
+ for (int i = 0; i < ALL_ROMAN_NUMBERS_IN_ARABIC.length; i++) {
+ int times = num / ALL_ROMAN_NUMBERS_IN_ARABIC[i];
+ builder.append(ALL_ROMAN_NUMBERS[i].repeat(Math.max(0, times)));
+ num -= times * ALL_ROMAN_NUMBERS_IN_ARABIC[i];
+ }
+
+ return builder.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/MorseCodeConverter.java b/src/main/java/com/thealgorithms/conversions/MorseCodeConverter.java
new file mode 100644
index 000000000000..a3973da0c586
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/MorseCodeConverter.java
@@ -0,0 +1,98 @@
+package com.thealgorithms.conversions;
+
+import java.util.HashMap;
+import java.util.Map;
+
+/**
+ * Converts text to Morse code and vice-versa.
+ * Text to Morse code: Each letter is separated by a space and each word is separated by a pipe (|).
+ * Example: "HELLO WORLD" -> ".... . .-.. .-.. --- | .-- --- .-. .-.. -.."
+ *
+ * Morse code to text: Each letter is separated by a space and each word is separated by a pipe (|).
+ * Example: ".... . .-.. .-.. --- | .-- --- .-. .-.. -.." -> "HELLO WORLD"
+ *
+ * Applications: Used in radio communications and algorithmic challenges.
+ *
+ * @author Hardvan
+ */
+public final class MorseCodeConverter {
+ private MorseCodeConverter() {
+ }
+
+ private static final Map MORSE_MAP = new HashMap<>();
+ private static final Map REVERSE_MAP = new HashMap<>();
+
+ static {
+ MORSE_MAP.put('A', ".-");
+ MORSE_MAP.put('B', "-...");
+ MORSE_MAP.put('C', "-.-.");
+ MORSE_MAP.put('D', "-..");
+ MORSE_MAP.put('E', ".");
+ MORSE_MAP.put('F', "..-.");
+ MORSE_MAP.put('G', "--.");
+ MORSE_MAP.put('H', "....");
+ MORSE_MAP.put('I', "..");
+ MORSE_MAP.put('J', ".---");
+ MORSE_MAP.put('K', "-.-");
+ MORSE_MAP.put('L', ".-..");
+ MORSE_MAP.put('M', "--");
+ MORSE_MAP.put('N', "-.");
+ MORSE_MAP.put('O', "---");
+ MORSE_MAP.put('P', ".--.");
+ MORSE_MAP.put('Q', "--.-");
+ MORSE_MAP.put('R', ".-.");
+ MORSE_MAP.put('S', "...");
+ MORSE_MAP.put('T', "-");
+ MORSE_MAP.put('U', "..-");
+ MORSE_MAP.put('V', "...-");
+ MORSE_MAP.put('W', ".--");
+ MORSE_MAP.put('X', "-..-");
+ MORSE_MAP.put('Y', "-.--");
+ MORSE_MAP.put('Z', "--..");
+
+ // Build reverse map for decoding
+ MORSE_MAP.forEach((k, v) -> REVERSE_MAP.put(v, k));
+ }
+
+ /**
+ * Converts text to Morse code.
+ * Each letter is separated by a space and each word is separated by a pipe (|).
+ *
+ * @param text The text to convert to Morse code.
+ * @return The Morse code representation of the text.
+ */
+ public static String textToMorse(String text) {
+ StringBuilder morse = new StringBuilder();
+ String[] words = text.toUpperCase().split(" ");
+ for (int i = 0; i < words.length; i++) {
+ for (char c : words[i].toCharArray()) {
+ morse.append(MORSE_MAP.getOrDefault(c, "")).append(" ");
+ }
+ if (i < words.length - 1) {
+ morse.append("| ");
+ }
+ }
+ return morse.toString().trim();
+ }
+
+ /**
+ * Converts Morse code to text.
+ * Each letter is separated by a space and each word is separated by a pipe (|).
+ *
+ * @param morse The Morse code to convert to text.
+ * @return The text representation of the Morse code.
+ */
+ public static String morseToText(String morse) {
+ StringBuilder text = new StringBuilder();
+ String[] words = morse.split(" \\| ");
+ for (int i = 0; i < words.length; i++) {
+ for (String code : words[i].split(" ")) {
+ text.append(REVERSE_MAP.getOrDefault(code, '?'));
+ }
+ if (i < words.length - 1) {
+ text.append(" ");
+ }
+ }
+ return text.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/NumberToWords.java b/src/main/java/com/thealgorithms/conversions/NumberToWords.java
new file mode 100644
index 000000000000..e39c5b2dea86
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/NumberToWords.java
@@ -0,0 +1,100 @@
+package com.thealgorithms.conversions;
+
+import java.math.BigDecimal;
+
+/**
+ A Java-based utility for converting numeric values into their English word
+ representations. Whether you need to convert a small number, a large number
+ with millions and billions, or even a number with decimal places, this utility
+ has you covered.
+ *
+ */
+public final class NumberToWords {
+
+ private NumberToWords() {
+ }
+
+ private static final String[] UNITS = {"", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine", "Ten", "Eleven", "Twelve", "Thirteen", "Fourteen", "Fifteen", "Sixteen", "Seventeen", "Eighteen", "Nineteen"};
+
+ private static final String[] TENS = {"", "", "Twenty", "Thirty", "Forty", "Fifty", "Sixty", "Seventy", "Eighty", "Ninety"};
+
+ private static final String[] POWERS = {"", "Thousand", "Million", "Billion", "Trillion"};
+
+ private static final String ZERO = "Zero";
+ private static final String POINT = " Point";
+ private static final String NEGATIVE = "Negative ";
+
+ public static String convert(BigDecimal number) {
+ if (number == null) {
+ return "Invalid Input";
+ }
+
+ // Check for negative sign
+ boolean isNegative = number.signum() < 0;
+
+ // Split the number into whole and fractional parts
+ BigDecimal[] parts = number.abs().divideAndRemainder(BigDecimal.ONE);
+ BigDecimal wholePart = parts[0]; // Keep whole part as BigDecimal
+ String fractionalPartStr = parts[1].compareTo(BigDecimal.ZERO) > 0 ? parts[1].toPlainString().substring(2) : ""; // Get fractional part only if it exists
+
+ // Convert whole part to words
+ StringBuilder result = new StringBuilder();
+ if (isNegative) {
+ result.append(NEGATIVE);
+ }
+ result.append(convertWholeNumberToWords(wholePart));
+
+ // Convert fractional part to words
+ if (!fractionalPartStr.isEmpty()) {
+ result.append(POINT);
+ for (char digit : fractionalPartStr.toCharArray()) {
+ int digitValue = Character.getNumericValue(digit);
+ result.append(" ").append(digitValue == 0 ? ZERO : UNITS[digitValue]);
+ }
+ }
+
+ return result.toString().trim();
+ }
+
+ private static String convertWholeNumberToWords(BigDecimal number) {
+ if (number.compareTo(BigDecimal.ZERO) == 0) {
+ return ZERO;
+ }
+
+ StringBuilder words = new StringBuilder();
+ int power = 0;
+
+ while (number.compareTo(BigDecimal.ZERO) > 0) {
+ // Get the last three digits
+ BigDecimal[] divisionResult = number.divideAndRemainder(BigDecimal.valueOf(1000));
+ int chunk = divisionResult[1].intValue();
+
+ if (chunk > 0) {
+ String chunkWords = convertChunk(chunk);
+ if (power > 0) {
+ words.insert(0, POWERS[power] + " ");
+ }
+ words.insert(0, chunkWords + " ");
+ }
+
+ number = divisionResult[0]; // Continue with the remaining part
+ power++;
+ }
+
+ return words.toString().trim();
+ }
+
+ private static String convertChunk(int number) {
+ String chunkWords;
+
+ if (number < 20) {
+ chunkWords = UNITS[number];
+ } else if (number < 100) {
+ chunkWords = TENS[number / 10] + (number % 10 > 0 ? " " + UNITS[number % 10] : "");
+ } else {
+ chunkWords = UNITS[number / 100] + " Hundred" + (number % 100 > 0 ? " " + convertChunk(number % 100) : "");
+ }
+
+ return chunkWords;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/OctalToBinary.java b/src/main/java/com/thealgorithms/conversions/OctalToBinary.java
new file mode 100644
index 000000000000..a66db97633b4
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/OctalToBinary.java
@@ -0,0 +1,82 @@
+package com.thealgorithms.conversions;
+
+/**
+ * A utility class to convert an octal (base-8) number into its binary (base-2) representation.
+ *
+ * This class provides methods to:
+ *
+ * - Convert an octal number to its binary equivalent
+ * - Convert individual octal digits to binary
+ *
+ *
+ * Octal to Binary Conversion:
+ * An octal number is converted to binary by converting each octal digit to its 3-bit binary equivalent.
+ * The result is a long representing the full binary equivalent of the octal number.
+ *
+ * Example Usage
+ *
+ * long binary = OctalToBinary.convertOctalToBinary(52); // Output: 101010 (52 in octal is 101010 in binary)
+ *
+ *
+ * @author Bama Charan Chhandogi
+ * @see Octal Number System
+ * @see Binary Number System
+ */
+public final class OctalToBinary {
+ private OctalToBinary() {
+ }
+
+ /**
+ * Converts an octal number to its binary representation.
+ *
+ * Each octal digit is individually converted to its 3-bit binary equivalent, and the binary
+ * digits are concatenated to form the final binary number.
+ *
+ * @param octalNumber the octal number to convert (non-negative integer)
+ * @return the binary equivalent as a long
+ */
+ public static long convertOctalToBinary(int octalNumber) {
+ long binaryNumber = 0;
+ int digitPosition = 1;
+
+ while (octalNumber != 0) {
+ int octalDigit = octalNumber % 10;
+ long binaryDigit = convertOctalDigitToBinary(octalDigit);
+
+ binaryNumber += binaryDigit * digitPosition;
+
+ octalNumber /= 10;
+ digitPosition *= 1000;
+ }
+
+ return binaryNumber;
+ }
+
+ /**
+ * Converts a single octal digit (0-7) to its binary equivalent.
+ *
+ * For example:
+ *
+ * - Octal digit 7 is converted to binary 111
+ * - Octal digit 3 is converted to binary 011
+ *
+ *
+ *
+ * @param octalDigit a single octal digit (0-7)
+ * @return the binary equivalent as a long
+ */
+ public static long convertOctalDigitToBinary(int octalDigit) {
+ long binaryDigit = 0;
+ int binaryMultiplier = 1;
+
+ while (octalDigit != 0) {
+ int octalDigitRemainder = octalDigit % 2;
+ binaryDigit += octalDigitRemainder * binaryMultiplier;
+
+ octalDigit /= 2;
+ binaryMultiplier *= 10;
+ }
+
+ return binaryDigit;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/OctalToDecimal.java b/src/main/java/com/thealgorithms/conversions/OctalToDecimal.java
new file mode 100644
index 000000000000..d91ce6eb3634
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/OctalToDecimal.java
@@ -0,0 +1,42 @@
+package com.thealgorithms.conversions;
+
+/**
+ * Class for converting an octal number to a decimal number. Octal numbers are based on 8, using digits from 0 to 7.
+ *
+ */
+public final class OctalToDecimal {
+ private static final int OCTAL_BASE = 8;
+
+ private OctalToDecimal() {
+ }
+
+ /**
+ * Converts a given octal number (as a string) to its decimal representation.
+ * If the input is not a valid octal number (i.e., contains characters other than 0-7),
+ * the method throws an IllegalArgumentException.
+ *
+ * @param inputOctal The octal number as a string
+ * @return The decimal equivalent of the octal number
+ * @throws IllegalArgumentException if the input is not a valid octal number
+ */
+ public static int convertOctalToDecimal(String inputOctal) {
+ if (inputOctal == null || inputOctal.isEmpty()) {
+ throw new IllegalArgumentException("Input cannot be null or empty");
+ }
+
+ int decimalValue = 0;
+
+ for (int i = 0; i < inputOctal.length(); i++) {
+ char currentChar = inputOctal.charAt(i);
+
+ if (currentChar < '0' || currentChar > '7') {
+ throw new IllegalArgumentException("Incorrect input: Expecting an octal number (digits 0-7)");
+ }
+
+ int currentDigit = currentChar - '0';
+ decimalValue = decimalValue * OCTAL_BASE + currentDigit;
+ }
+
+ return decimalValue;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/OctalToHexadecimal.java b/src/main/java/com/thealgorithms/conversions/OctalToHexadecimal.java
new file mode 100644
index 000000000000..bac56dc2e221
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/OctalToHexadecimal.java
@@ -0,0 +1,61 @@
+package com.thealgorithms.conversions;
+
+/**
+ * Class for converting an Octal number to its Hexadecimal equivalent.
+ *
+ * @author Tanmay Joshi
+ */
+public final class OctalToHexadecimal {
+ private static final int OCTAL_BASE = 8;
+ private static final int HEX_BASE = 16;
+ private static final String HEX_DIGITS = "0123456789ABCDEF";
+
+ private OctalToHexadecimal() {
+ }
+
+ /**
+ * Converts an Octal number (as a string) to its Decimal equivalent.
+ *
+ * @param octalNumber The Octal number as a string
+ * @return The Decimal equivalent of the Octal number
+ * @throws IllegalArgumentException if the input contains invalid octal digits
+ */
+ public static int octalToDecimal(String octalNumber) {
+ if (octalNumber == null || octalNumber.isEmpty()) {
+ throw new IllegalArgumentException("Input cannot be null or empty");
+ }
+
+ int decimalValue = 0;
+ for (int i = 0; i < octalNumber.length(); i++) {
+ char currentChar = octalNumber.charAt(i);
+ if (currentChar < '0' || currentChar > '7') {
+ throw new IllegalArgumentException("Incorrect octal digit: " + currentChar);
+ }
+ int currentDigit = currentChar - '0';
+ decimalValue = decimalValue * OCTAL_BASE + currentDigit;
+ }
+
+ return decimalValue;
+ }
+
+ /**
+ * Converts a Decimal number to its Hexadecimal equivalent.
+ *
+ * @param decimalNumber The Decimal number
+ * @return The Hexadecimal equivalent of the Decimal number
+ */
+ public static String decimalToHexadecimal(int decimalNumber) {
+ if (decimalNumber == 0) {
+ return "0";
+ }
+
+ StringBuilder hexValue = new StringBuilder();
+ while (decimalNumber > 0) {
+ int digit = decimalNumber % HEX_BASE;
+ hexValue.insert(0, HEX_DIGITS.charAt(digit));
+ decimalNumber /= HEX_BASE;
+ }
+
+ return hexValue.toString();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/PhoneticAlphabetConverter.java b/src/main/java/com/thealgorithms/conversions/PhoneticAlphabetConverter.java
new file mode 100644
index 000000000000..730ce2214e2d
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/PhoneticAlphabetConverter.java
@@ -0,0 +1,84 @@
+package com.thealgorithms.conversions;
+
+import java.util.HashMap;
+import java.util.Map;
+
+/**
+ * Converts text to the NATO phonetic alphabet.
+ * Examples:
+ * "ABC" -> "Alpha Bravo Charlie"
+ * "Hello" -> "Hotel Echo Lima Lima Oscar"
+ * "123" -> "One Two Three"
+ * "A1B2C3" -> "Alpha One Bravo Two Charlie Three"
+ *
+ * @author Hardvan
+ */
+public final class PhoneticAlphabetConverter {
+ private PhoneticAlphabetConverter() {
+ }
+
+ private static final Map PHONETIC_MAP = new HashMap<>();
+
+ static {
+ PHONETIC_MAP.put('A', "Alpha");
+ PHONETIC_MAP.put('B', "Bravo");
+ PHONETIC_MAP.put('C', "Charlie");
+ PHONETIC_MAP.put('D', "Delta");
+ PHONETIC_MAP.put('E', "Echo");
+ PHONETIC_MAP.put('F', "Foxtrot");
+ PHONETIC_MAP.put('G', "Golf");
+ PHONETIC_MAP.put('H', "Hotel");
+ PHONETIC_MAP.put('I', "India");
+ PHONETIC_MAP.put('J', "Juliett");
+ PHONETIC_MAP.put('K', "Kilo");
+ PHONETIC_MAP.put('L', "Lima");
+ PHONETIC_MAP.put('M', "Mike");
+ PHONETIC_MAP.put('N', "November");
+ PHONETIC_MAP.put('O', "Oscar");
+ PHONETIC_MAP.put('P', "Papa");
+ PHONETIC_MAP.put('Q', "Quebec");
+ PHONETIC_MAP.put('R', "Romeo");
+ PHONETIC_MAP.put('S', "Sierra");
+ PHONETIC_MAP.put('T', "Tango");
+ PHONETIC_MAP.put('U', "Uniform");
+ PHONETIC_MAP.put('V', "Victor");
+ PHONETIC_MAP.put('W', "Whiskey");
+ PHONETIC_MAP.put('X', "X-ray");
+ PHONETIC_MAP.put('Y', "Yankee");
+ PHONETIC_MAP.put('Z', "Zulu");
+ PHONETIC_MAP.put('0', "Zero");
+ PHONETIC_MAP.put('1', "One");
+ PHONETIC_MAP.put('2', "Two");
+ PHONETIC_MAP.put('3', "Three");
+ PHONETIC_MAP.put('4', "Four");
+ PHONETIC_MAP.put('5', "Five");
+ PHONETIC_MAP.put('6', "Six");
+ PHONETIC_MAP.put('7', "Seven");
+ PHONETIC_MAP.put('8', "Eight");
+ PHONETIC_MAP.put('9', "Nine");
+ }
+
+ /**
+ * Converts text to the NATO phonetic alphabet.
+ * Steps:
+ * 1. Convert the text to uppercase.
+ * 2. Iterate over each character in the text.
+ * 3. Get the phonetic equivalent of the character from the map.
+ * 4. Append the phonetic equivalent to the result.
+ * 5. Append a space to separate the phonetic equivalents.
+ * 6. Return the result.
+ *
+ * @param text the text to convert
+ * @return the NATO phonetic alphabet
+ */
+ public static String textToPhonetic(String text) {
+ StringBuilder phonetic = new StringBuilder();
+ for (char c : text.toUpperCase().toCharArray()) {
+ if (Character.isWhitespace(c)) {
+ continue;
+ }
+ phonetic.append(PHONETIC_MAP.getOrDefault(c, String.valueOf(c))).append(" ");
+ }
+ return phonetic.toString().trim();
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/RgbHsvConversion.java b/src/main/java/com/thealgorithms/conversions/RgbHsvConversion.java
new file mode 100644
index 000000000000..84cbff09db6b
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/RgbHsvConversion.java
@@ -0,0 +1,168 @@
+package com.thealgorithms.conversions;
+
+import java.util.Arrays;
+
+/**
+ * The RGB color model is an additive color model in which red, green, and blue
+ * light are added together in various ways to reproduce a broad array of
+ * colors. The name of the model comes from the initials of the three additive
+ * primary colors, red, green, and blue. Meanwhile, the HSV representation
+ * models how colors appear under light. In it, colors are represented using
+ * three components: hue, saturation and (brightness-)value. This class provides
+ * methods for converting colors from one representation to the other.
+ * (description adapted from [1] and
+ * [2]).
+ */
+public final class RgbHsvConversion {
+ private RgbHsvConversion() {
+ }
+
+ public static void main(String[] args) {
+ // Expected RGB-values taken from https://www.rapidtables.com/convert/color/hsv-to-rgb.html
+
+ // Test hsvToRgb-method
+ assert Arrays.equals(hsvToRgb(0, 0, 0), new int[] {0, 0, 0});
+ assert Arrays.equals(hsvToRgb(0, 0, 1), new int[] {255, 255, 255});
+ assert Arrays.equals(hsvToRgb(0, 1, 1), new int[] {255, 0, 0});
+ assert Arrays.equals(hsvToRgb(60, 1, 1), new int[] {255, 255, 0});
+ assert Arrays.equals(hsvToRgb(120, 1, 1), new int[] {0, 255, 0});
+ assert Arrays.equals(hsvToRgb(240, 1, 1), new int[] {0, 0, 255});
+ assert Arrays.equals(hsvToRgb(300, 1, 1), new int[] {255, 0, 255});
+ assert Arrays.equals(hsvToRgb(180, 0.5, 0.5), new int[] {64, 128, 128});
+ assert Arrays.equals(hsvToRgb(234, 0.14, 0.88), new int[] {193, 196, 224});
+ assert Arrays.equals(hsvToRgb(330, 0.75, 0.5), new int[] {128, 32, 80});
+
+ // Test rgbToHsv-method
+ // approximate-assertions needed because of small deviations due to converting between
+ // int-values and double-values.
+ assert approximatelyEqualHsv(rgbToHsv(0, 0, 0), new double[] {0, 0, 0});
+ assert approximatelyEqualHsv(rgbToHsv(255, 255, 255), new double[] {0, 0, 1});
+ assert approximatelyEqualHsv(rgbToHsv(255, 0, 0), new double[] {0, 1, 1});
+ assert approximatelyEqualHsv(rgbToHsv(255, 255, 0), new double[] {60, 1, 1});
+ assert approximatelyEqualHsv(rgbToHsv(0, 255, 0), new double[] {120, 1, 1});
+ assert approximatelyEqualHsv(rgbToHsv(0, 0, 255), new double[] {240, 1, 1});
+ assert approximatelyEqualHsv(rgbToHsv(255, 0, 255), new double[] {300, 1, 1});
+ assert approximatelyEqualHsv(rgbToHsv(64, 128, 128), new double[] {180, 0.5, 0.5});
+ assert approximatelyEqualHsv(rgbToHsv(193, 196, 224), new double[] {234, 0.14, 0.88});
+ assert approximatelyEqualHsv(rgbToHsv(128, 32, 80), new double[] {330, 0.75, 0.5});
+ }
+
+ /**
+ * Conversion from the HSV-representation to the RGB-representation.
+ *
+ * @param hue Hue of the color.
+ * @param saturation Saturation of the color.
+ * @param value Brightness-value of the color.
+ * @return The tuple of RGB-components.
+ */
+ public static int[] hsvToRgb(double hue, double saturation, double value) {
+ if (hue < 0 || hue > 360) {
+ throw new IllegalArgumentException("hue should be between 0 and 360");
+ }
+
+ if (saturation < 0 || saturation > 1) {
+ throw new IllegalArgumentException("saturation should be between 0 and 1");
+ }
+
+ if (value < 0 || value > 1) {
+ throw new IllegalArgumentException("value should be between 0 and 1");
+ }
+
+ double chroma = value * saturation;
+ double hueSection = hue / 60;
+ double secondLargestComponent = chroma * (1 - Math.abs(hueSection % 2 - 1));
+ double matchValue = value - chroma;
+
+ return getRgbBySection(hueSection, chroma, matchValue, secondLargestComponent);
+ }
+
+ /**
+ * Conversion from the RGB-representation to the HSV-representation.
+ *
+ * @param red Red-component of the color.
+ * @param green Green-component of the color.
+ * @param blue Blue-component of the color.
+ * @return The tuple of HSV-components.
+ */
+ public static double[] rgbToHsv(int red, int green, int blue) {
+ if (red < 0 || red > 255) {
+ throw new IllegalArgumentException("red should be between 0 and 255");
+ }
+
+ if (green < 0 || green > 255) {
+ throw new IllegalArgumentException("green should be between 0 and 255");
+ }
+
+ if (blue < 0 || blue > 255) {
+ throw new IllegalArgumentException("blue should be between 0 and 255");
+ }
+
+ double dRed = (double) red / 255;
+ double dGreen = (double) green / 255;
+ double dBlue = (double) blue / 255;
+ double value = Math.max(Math.max(dRed, dGreen), dBlue);
+ double chroma = value - Math.min(Math.min(dRed, dGreen), dBlue);
+ double saturation = value == 0 ? 0 : chroma / value;
+ double hue;
+
+ if (chroma == 0) {
+ hue = 0;
+ } else if (value == dRed) {
+ hue = 60 * (0 + (dGreen - dBlue) / chroma);
+ } else if (value == dGreen) {
+ hue = 60 * (2 + (dBlue - dRed) / chroma);
+ } else {
+ hue = 60 * (4 + (dRed - dGreen) / chroma);
+ }
+
+ hue = (hue + 360) % 360;
+
+ return new double[] {hue, saturation, value};
+ }
+
+ private static boolean approximatelyEqualHsv(double[] hsv1, double[] hsv2) {
+ boolean bHue = Math.abs(hsv1[0] - hsv2[0]) < 0.2;
+ boolean bSaturation = Math.abs(hsv1[1] - hsv2[1]) < 0.002;
+ boolean bValue = Math.abs(hsv1[2] - hsv2[2]) < 0.002;
+
+ return bHue && bSaturation && bValue;
+ }
+
+ private static int[] getRgbBySection(double hueSection, double chroma, double matchValue, double secondLargestComponent) {
+ int red;
+ int green;
+ int blue;
+
+ if (hueSection >= 0 && hueSection <= 1) {
+ red = convertToInt(chroma + matchValue);
+ green = convertToInt(secondLargestComponent + matchValue);
+ blue = convertToInt(matchValue);
+ } else if (hueSection > 1 && hueSection <= 2) {
+ red = convertToInt(secondLargestComponent + matchValue);
+ green = convertToInt(chroma + matchValue);
+ blue = convertToInt(matchValue);
+ } else if (hueSection > 2 && hueSection <= 3) {
+ red = convertToInt(matchValue);
+ green = convertToInt(chroma + matchValue);
+ blue = convertToInt(secondLargestComponent + matchValue);
+ } else if (hueSection > 3 && hueSection <= 4) {
+ red = convertToInt(matchValue);
+ green = convertToInt(secondLargestComponent + matchValue);
+ blue = convertToInt(chroma + matchValue);
+ } else if (hueSection > 4 && hueSection <= 5) {
+ red = convertToInt(secondLargestComponent + matchValue);
+ green = convertToInt(matchValue);
+ blue = convertToInt(chroma + matchValue);
+ } else {
+ red = convertToInt(chroma + matchValue);
+ green = convertToInt(matchValue);
+ blue = convertToInt(secondLargestComponent + matchValue);
+ }
+
+ return new int[] {red, green, blue};
+ }
+
+ private static int convertToInt(double input) {
+ return (int) Math.round(255 * input);
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/RomanToInteger.java b/src/main/java/com/thealgorithms/conversions/RomanToInteger.java
new file mode 100644
index 000000000000..a634c720326f
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/RomanToInteger.java
@@ -0,0 +1,91 @@
+package com.thealgorithms.conversions;
+
+import java.util.HashMap;
+import java.util.Map;
+
+/**
+ * A utility class to convert Roman numerals into integers.
+ *
+ * Roman numerals are based on seven symbols given below:
+ *
+ * - I = 1
+ * - V = 5
+ * - X = 10
+ * - L = 50
+ * - C = 100
+ * - D = 500
+ * - M = 1000
+ *
+ *
+ * If a smaller numeral appears before a larger numeral, it is subtracted.
+ * Otherwise, it is added. For example:
+ *
+ * MCMXCIV = 1000 + (1000 - 100) + (100 - 10) + (5 - 1) = 1994
+ *
+ */
+public final class RomanToInteger {
+
+ private static final Map ROMAN_TO_INT = new HashMap<>() {
+ {
+ put('I', 1);
+ put('V', 5);
+ put('X', 10);
+ put('L', 50);
+ put('C', 100);
+ put('D', 500);
+ put('M', 1000);
+ }
+ };
+
+ private RomanToInteger() {
+ }
+
+ /**
+ * Converts a single Roman numeral character to its integer value.
+ *
+ * @param symbol the Roman numeral character
+ * @return the corresponding integer value
+ * @throws IllegalArgumentException if the symbol is not a valid Roman numeral
+ */
+ private static int romanSymbolToInt(final char symbol) {
+ return ROMAN_TO_INT.computeIfAbsent(symbol, c -> { throw new IllegalArgumentException("Unknown Roman symbol: " + c); });
+ }
+
+ /**
+ * Converts a Roman numeral string to its integer equivalent.
+ * Steps:
+ *
+ * - Iterate over the string from right to left.
+ * - For each character, convert it to an integer value.
+ * - If the current value is greater than or equal to the max previous value, add it.
+ * - Otherwise, subtract it from the sum.
+ * - Update the max previous value.
+ * - Return the sum.
+ *
+ *
+ * @param roman the Roman numeral string
+ * @return the integer value of the Roman numeral
+ * @throws IllegalArgumentException if the input contains invalid Roman characters
+ * @throws NullPointerException if the input is {@code null}
+ */
+ public static int romanToInt(String roman) {
+ if (roman == null) {
+ throw new NullPointerException("Input cannot be null");
+ }
+
+ roman = roman.toUpperCase();
+ int sum = 0;
+ int maxPrevValue = 0;
+ for (int i = roman.length() - 1; i >= 0; i--) {
+ int currentValue = romanSymbolToInt(roman.charAt(i));
+ if (currentValue >= maxPrevValue) {
+ sum += currentValue;
+ maxPrevValue = currentValue;
+ } else {
+ sum -= currentValue;
+ }
+ }
+
+ return sum;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/TimeConverter.java b/src/main/java/com/thealgorithms/conversions/TimeConverter.java
new file mode 100644
index 000000000000..41cae37d7ad1
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/TimeConverter.java
@@ -0,0 +1,97 @@
+package com.thealgorithms.conversions;
+
+import java.util.Locale;
+import java.util.Map;
+
+/**
+ * A utility class to convert between different units of time.
+ *
+ * This class supports conversions between the following units:
+ *
+ * - seconds
+ * - minutes
+ * - hours
+ * - days
+ * - weeks
+ * - months (approximated as 30.44 days)
+ * - years (approximated as 365.25 days)
+ *
+ *
+ * The conversion is based on predefined constants in seconds.
+ * Results are rounded to three decimal places for consistency.
+ *
+ *
This class is final and cannot be instantiated.
+ *
+ * @see Wikipedia: Unit of time
+ */
+public final class TimeConverter {
+
+ private TimeConverter() {
+ // Prevent instantiation
+ }
+
+ /**
+ * Supported time units with their equivalent in seconds.
+ */
+ private enum TimeUnit {
+ SECONDS(1.0),
+ MINUTES(60.0),
+ HOURS(3600.0),
+ DAYS(86400.0),
+ WEEKS(604800.0),
+ MONTHS(2629800.0), // 30.44 days
+ YEARS(31557600.0); // 365.25 days
+
+ private final double seconds;
+
+ TimeUnit(double seconds) {
+ this.seconds = seconds;
+ }
+
+ public double toSeconds(double value) {
+ return value * seconds;
+ }
+
+ public double fromSeconds(double secondsValue) {
+ return secondsValue / seconds;
+ }
+ }
+
+ private static final Map UNIT_LOOKUP
+ = Map.ofEntries(Map.entry("seconds", TimeUnit.SECONDS), Map.entry("minutes", TimeUnit.MINUTES), Map.entry("hours", TimeUnit.HOURS), Map.entry("days", TimeUnit.DAYS), Map.entry("weeks", TimeUnit.WEEKS), Map.entry("months", TimeUnit.MONTHS), Map.entry("years", TimeUnit.YEARS));
+
+ /**
+ * Converts a time value from one unit to another.
+ *
+ * @param timeValue the numeric value of time to convert; must be non-negative
+ * @param unitFrom the unit of the input value (e.g., "minutes", "hours")
+ * @param unitTo the unit to convert into (e.g., "seconds", "days")
+ * @return the converted value in the target unit, rounded to three decimals
+ * @throws IllegalArgumentException if {@code timeValue} is negative
+ * @throws IllegalArgumentException if either {@code unitFrom} or {@code unitTo} is not supported
+ */
+ public static double convertTime(double timeValue, String unitFrom, String unitTo) {
+ if (timeValue < 0) {
+ throw new IllegalArgumentException("timeValue must be a non-negative number.");
+ }
+
+ TimeUnit from = resolveUnit(unitFrom);
+ TimeUnit to = resolveUnit(unitTo);
+
+ double secondsValue = from.toSeconds(timeValue);
+ double converted = to.fromSeconds(secondsValue);
+
+ return Math.round(converted * 1000.0) / 1000.0;
+ }
+
+ private static TimeUnit resolveUnit(String unit) {
+ if (unit == null) {
+ throw new IllegalArgumentException("Unit cannot be null.");
+ }
+ TimeUnit resolved = UNIT_LOOKUP.get(unit.toLowerCase(Locale.ROOT));
+ if (resolved == null) {
+ throw new IllegalArgumentException("Invalid unit '" + unit + "'. Supported units are: " + UNIT_LOOKUP.keySet());
+ }
+ return resolved;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/TurkishToLatinConversion.java b/src/main/java/com/thealgorithms/conversions/TurkishToLatinConversion.java
new file mode 100644
index 000000000000..30030de6c1bd
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/TurkishToLatinConversion.java
@@ -0,0 +1,56 @@
+package com.thealgorithms.conversions;
+
+/**
+ * Converts turkish character to latin character
+ *
+ * @author Özgün Gökşenli
+ */
+public final class TurkishToLatinConversion {
+ private TurkishToLatinConversion() {
+ }
+
+ /**
+ * This method converts a turkish character to latin character.
+ * Steps:
+ * 1. Define turkish characters and their corresponding latin characters
+ * 2. Replace all turkish characters with their corresponding latin characters
+ * 3. Return the converted string
+ *
+ * @param param String paramter
+ * @return String
+ */
+ public static String convertTurkishToLatin(String param) {
+ char[] turkishChars = new char[] {
+ 0x131,
+ 0x130,
+ 0xFC,
+ 0xDC,
+ 0xF6,
+ 0xD6,
+ 0x15F,
+ 0x15E,
+ 0xE7,
+ 0xC7,
+ 0x11F,
+ 0x11E,
+ };
+ char[] latinChars = new char[] {
+ 'i',
+ 'I',
+ 'u',
+ 'U',
+ 'o',
+ 'O',
+ 's',
+ 'S',
+ 'c',
+ 'C',
+ 'g',
+ 'G',
+ };
+ for (int i = 0; i < turkishChars.length; i++) {
+ param = param.replaceAll(String.valueOf(turkishChars[i]), String.valueOf(latinChars[i]));
+ }
+ return param;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/UnitConversions.java b/src/main/java/com/thealgorithms/conversions/UnitConversions.java
new file mode 100644
index 000000000000..15f74a21a17e
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/UnitConversions.java
@@ -0,0 +1,51 @@
+package com.thealgorithms.conversions;
+
+import static java.util.Map.entry;
+
+import java.util.Map;
+import org.apache.commons.lang3.tuple.Pair;
+
+/**
+ * A utility class to perform unit conversions between different measurement systems.
+ *
+ * Currently, the class supports temperature conversions between several scales:
+ * Celsius, Fahrenheit, Kelvin, Réaumur, Delisle, and Rankine.
+ *
+ *
Example Usage
+ *
+ * double result = UnitConversions.TEMPERATURE.convert("Celsius", "Fahrenheit", 100.0);
+ * // Output: 212.0 (Celsius to Fahrenheit conversion of 100°C)
+ *
+ *
+ * This class makes use of an {@link UnitsConverter} that handles the conversion logic
+ * based on predefined affine transformations. These transformations include scaling factors
+ * and offsets for temperature conversions.
+ *
+ *
Temperature Scales Supported
+ *
+ * - Celsius
+ * - Fahrenheit
+ * - Kelvin
+ * - Réaumur
+ * - Delisle
+ * - Rankine
+ *
+ */
+public final class UnitConversions {
+ private UnitConversions() {
+ }
+
+ /**
+ * A preconfigured instance of {@link UnitsConverter} for temperature conversions.
+ * The converter handles conversions between the following temperature units:
+ *
+ * - Kelvin to Celsius
+ * - Celsius to Fahrenheit
+ * - Réaumur to Celsius
+ * - Delisle to Celsius
+ * - Rankine to Kelvin
+ *
+ */
+ public static final UnitsConverter TEMPERATURE = new UnitsConverter(Map.ofEntries(entry(Pair.of("Kelvin", "Celsius"), new AffineConverter(1.0, -273.15)), entry(Pair.of("Celsius", "Fahrenheit"), new AffineConverter(9.0 / 5.0, 32.0)),
+ entry(Pair.of("Réaumur", "Celsius"), new AffineConverter(5.0 / 4.0, 0.0)), entry(Pair.of("Delisle", "Celsius"), new AffineConverter(-2.0 / 3.0, 100.0)), entry(Pair.of("Rankine", "Kelvin"), new AffineConverter(5.0 / 9.0, 0.0))));
+}
diff --git a/src/main/java/com/thealgorithms/conversions/UnitsConverter.java b/src/main/java/com/thealgorithms/conversions/UnitsConverter.java
new file mode 100644
index 000000000000..00690b2c0f9b
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/UnitsConverter.java
@@ -0,0 +1,147 @@
+package com.thealgorithms.conversions;
+
+import java.util.HashMap;
+import java.util.HashSet;
+import java.util.Map;
+import java.util.NoSuchElementException;
+import java.util.Set;
+import org.apache.commons.lang3.tuple.Pair;
+
+/**
+ * A class that handles unit conversions using affine transformations.
+ *
+ * The {@code UnitsConverter} allows converting values between different units using
+ * pre-defined affine conversion formulas. Each conversion is represented by an
+ * {@link AffineConverter} that defines the scaling and offset for the conversion.
+ *
+ *
For each unit, both direct conversions (e.g., Celsius to Fahrenheit) and inverse
+ * conversions (e.g., Fahrenheit to Celsius) are generated automatically. It also computes
+ * transitive conversions (e.g., Celsius to Kelvin via Fahrenheit if both conversions exist).
+ *
+ *
Key features include:
+ *
+ * - Automatic handling of inverse conversions (e.g., Fahrenheit to Celsius).
+ * - Compositional conversions, meaning if conversions between A -> B and B -> C exist,
+ * it can automatically generate A -> C conversion.
+ * - Supports multiple unit systems as long as conversions are provided in pairs.
+ *
+ *
+ * Example Usage
+ *
+ * Map<Pair<String, String>, AffineConverter> basicConversions = Map.ofEntries(
+ * entry(Pair.of("Celsius", "Fahrenheit"), new AffineConverter(9.0 / 5.0, 32.0)),
+ * entry(Pair.of("Kelvin", "Celsius"), new AffineConverter(1.0, -273.15))
+ * );
+ *
+ * UnitsConverter converter = new UnitsConverter(basicConversions);
+ * double result = converter.convert("Celsius", "Fahrenheit", 100.0);
+ * // Output: 212.0 (Celsius to Fahrenheit conversion of 100°C)
+ *
+ *
+ * Exception Handling
+ *
+ * - If the input unit and output unit are the same, an {@link IllegalArgumentException} is thrown.
+ * - If a conversion between the requested units does not exist, a {@link NoSuchElementException} is thrown.
+ *
+ */
+public final class UnitsConverter {
+ private final Map, AffineConverter> conversions;
+ private final Set units;
+
+ private static void putIfNeeded(Map, AffineConverter> conversions, final String inputUnit, final String outputUnit, final AffineConverter converter) {
+ if (!inputUnit.equals(outputUnit)) {
+ final var key = Pair.of(inputUnit, outputUnit);
+ conversions.putIfAbsent(key, converter);
+ }
+ }
+
+ private static Map, AffineConverter> addInversions(final Map, AffineConverter> knownConversions) {
+ Map, AffineConverter> res = new HashMap, AffineConverter>();
+ for (final var curConversion : knownConversions.entrySet()) {
+ final var inputUnit = curConversion.getKey().getKey();
+ final var outputUnit = curConversion.getKey().getValue();
+ putIfNeeded(res, inputUnit, outputUnit, curConversion.getValue());
+ putIfNeeded(res, outputUnit, inputUnit, curConversion.getValue().invert());
+ }
+ return res;
+ }
+
+ private static Map, AffineConverter> addCompositions(final Map, AffineConverter> knownConversions) {
+ Map, AffineConverter> res = new HashMap, AffineConverter>();
+ for (final var first : knownConversions.entrySet()) {
+ final var firstKey = first.getKey();
+ putIfNeeded(res, firstKey.getKey(), firstKey.getValue(), first.getValue());
+ for (final var second : knownConversions.entrySet()) {
+ final var secondKey = second.getKey();
+ if (firstKey.getValue().equals(secondKey.getKey())) {
+ final var newConversion = second.getValue().compose(first.getValue());
+ putIfNeeded(res, firstKey.getKey(), secondKey.getValue(), newConversion);
+ }
+ }
+ }
+ return res;
+ }
+
+ private static Map, AffineConverter> addAll(final Map, AffineConverter> knownConversions) {
+ final var res = addInversions(knownConversions);
+ return addCompositions(res);
+ }
+
+ private static Map, AffineConverter> computeAllConversions(final Map, AffineConverter> basicConversions) {
+ var tmp = basicConversions;
+ var res = addAll(tmp);
+ while (res.size() != tmp.size()) {
+ tmp = res;
+ res = addAll(tmp);
+ }
+ return res;
+ }
+
+ private static Set extractUnits(final Map, AffineConverter> conversions) {
+ Set res = new HashSet<>();
+ for (final var conversion : conversions.entrySet()) {
+ res.add(conversion.getKey().getKey());
+ }
+ return res;
+ }
+
+ /**
+ * Constructor for {@code UnitsConverter}.
+ *
+ * Accepts a map of basic conversions and automatically generates inverse and
+ * transitive conversions.
+ *
+ * @param basicConversions the initial set of unit conversions to add.
+ */
+ public UnitsConverter(final Map, AffineConverter> basicConversions) {
+ conversions = computeAllConversions(basicConversions);
+ units = extractUnits(conversions);
+ }
+
+ /**
+ * Converts a value from one unit to another.
+ *
+ * @param inputUnit the unit of the input value.
+ * @param outputUnit the unit to convert the value into.
+ * @param value the value to convert.
+ * @return the converted value in the target unit.
+ * @throws IllegalArgumentException if inputUnit equals outputUnit.
+ * @throws NoSuchElementException if no conversion exists between the units.
+ */
+ public double convert(final String inputUnit, final String outputUnit, final double value) {
+ if (inputUnit.equals(outputUnit)) {
+ throw new IllegalArgumentException("inputUnit must be different from outputUnit.");
+ }
+ final var conversionKey = Pair.of(inputUnit, outputUnit);
+ return conversions.computeIfAbsent(conversionKey, k -> { throw new NoSuchElementException("No converter for: " + k); }).convert(value);
+ }
+
+ /**
+ * Retrieves the set of all units supported by this converter.
+ *
+ * @return a set of available units.
+ */
+ public Set availableUnits() {
+ return units;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/conversions/WordsToNumber.java b/src/main/java/com/thealgorithms/conversions/WordsToNumber.java
new file mode 100644
index 000000000000..e2b81a0f4b47
--- /dev/null
+++ b/src/main/java/com/thealgorithms/conversions/WordsToNumber.java
@@ -0,0 +1,343 @@
+package com.thealgorithms.conversions;
+
+import java.io.Serial;
+import java.math.BigDecimal;
+import java.util.ArrayDeque;
+import java.util.ArrayList;
+import java.util.Collection;
+import java.util.List;
+
+/**
+ A Java-based utility for converting English word representations of numbers
+ into their numeric form. This utility supports whole numbers, decimals,
+ large values up to trillions, and even scientific notation where applicable.
+ It ensures accurate parsing while handling edge cases like negative numbers,
+ improper word placements, and ambiguous inputs.
+ *
+ */
+
+public final class WordsToNumber {
+
+ private WordsToNumber() {
+ }
+
+ private enum NumberWord {
+ ZERO("zero", 0),
+ ONE("one", 1),
+ TWO("two", 2),
+ THREE("three", 3),
+ FOUR("four", 4),
+ FIVE("five", 5),
+ SIX("six", 6),
+ SEVEN("seven", 7),
+ EIGHT("eight", 8),
+ NINE("nine", 9),
+ TEN("ten", 10),
+ ELEVEN("eleven", 11),
+ TWELVE("twelve", 12),
+ THIRTEEN("thirteen", 13),
+ FOURTEEN("fourteen", 14),
+ FIFTEEN("fifteen", 15),
+ SIXTEEN("sixteen", 16),
+ SEVENTEEN("seventeen", 17),
+ EIGHTEEN("eighteen", 18),
+ NINETEEN("nineteen", 19),
+ TWENTY("twenty", 20),
+ THIRTY("thirty", 30),
+ FORTY("forty", 40),
+ FIFTY("fifty", 50),
+ SIXTY("sixty", 60),
+ SEVENTY("seventy", 70),
+ EIGHTY("eighty", 80),
+ NINETY("ninety", 90);
+
+ private final String word;
+ private final int value;
+
+ NumberWord(String word, int value) {
+ this.word = word;
+ this.value = value;
+ }
+
+ public static Integer getValue(String word) {
+ for (NumberWord num : values()) {
+ if (word.equals(num.word)) {
+ return num.value;
+ }
+ }
+ return null;
+ }
+ }
+
+ private enum PowerOfTen {
+ THOUSAND("thousand", new BigDecimal("1000")),
+ MILLION("million", new BigDecimal("1000000")),
+ BILLION("billion", new BigDecimal("1000000000")),
+ TRILLION("trillion", new BigDecimal("1000000000000"));
+
+ private final String word;
+ private final BigDecimal value;
+
+ PowerOfTen(String word, BigDecimal value) {
+ this.word = word;
+ this.value = value;
+ }
+
+ public static BigDecimal getValue(String word) {
+ for (PowerOfTen power : values()) {
+ if (word.equals(power.word)) {
+ return power.value;
+ }
+ }
+ return null;
+ }
+ }
+
+ public static String convert(String numberInWords) {
+ if (numberInWords == null) {
+ throw new WordsToNumberException(WordsToNumberException.ErrorType.NULL_INPUT, "");
+ }
+
+ ArrayDeque wordDeque = preprocessWords(numberInWords);
+ BigDecimal completeNumber = convertWordQueueToBigDecimal(wordDeque);
+
+ return completeNumber.toString();
+ }
+
+ public static BigDecimal convertToBigDecimal(String numberInWords) {
+ String conversionResult = convert(numberInWords);
+ return new BigDecimal(conversionResult);
+ }
+
+ private static ArrayDeque preprocessWords(String numberInWords) {
+ String[] wordSplitArray = numberInWords.trim().split("[ ,-]");
+ ArrayDeque wordDeque = new ArrayDeque<>();
+ for (String word : wordSplitArray) {
+ if (word.isEmpty()) {
+ continue;
+ }
+ wordDeque.add(word.toLowerCase());
+ }
+ if (wordDeque.isEmpty()) {
+ throw new WordsToNumberException(WordsToNumberException.ErrorType.NULL_INPUT, "");
+ }
+ return wordDeque;
+ }
+
+ private static void handleConjunction(boolean prevNumWasHundred, boolean prevNumWasPowerOfTen, ArrayDeque wordDeque) {
+ if (wordDeque.isEmpty()) {
+ throw new WordsToNumberException(WordsToNumberException.ErrorType.INVALID_CONJUNCTION, "");
+ }
+
+ String nextWord = wordDeque.pollFirst();
+ String afterNextWord = wordDeque.peekFirst();
+
+ wordDeque.addFirst(nextWord);
+
+ Integer number = NumberWord.getValue(nextWord);
+
+ boolean isPrevWordValid = prevNumWasHundred || prevNumWasPowerOfTen;
+ boolean isNextWordValid = number != null && (number >= 10 || afterNextWord == null || "point".equals(afterNextWord));
+
+ if (!isPrevWordValid || !isNextWordValid) {
+ throw new WordsToNumberException(WordsToNumberException.ErrorType.INVALID_CONJUNCTION, "");
+ }
+ }
+
+ private static BigDecimal handleHundred(BigDecimal currentChunk, String word, boolean prevNumWasPowerOfTen) {
+ boolean currentChunkIsZero = currentChunk.compareTo(BigDecimal.ZERO) == 0;
+ if (currentChunk.compareTo(BigDecimal.TEN) >= 0 || prevNumWasPowerOfTen) {
+ throw new WordsToNumberException(WordsToNumberException.ErrorType.UNEXPECTED_WORD, word);
+ }
+ if (currentChunkIsZero) {
+ currentChunk = currentChunk.add(BigDecimal.ONE);
+ }
+ return currentChunk.multiply(BigDecimal.valueOf(100));
+ }
+
+ private static void handlePowerOfTen(List chunks, BigDecimal currentChunk, BigDecimal powerOfTen, String word, boolean prevNumWasPowerOfTen) {
+ boolean currentChunkIsZero = currentChunk.compareTo(BigDecimal.ZERO) == 0;
+ if (currentChunkIsZero || prevNumWasPowerOfTen) {
+ throw new WordsToNumberException(WordsToNumberException.ErrorType.UNEXPECTED_WORD, word);
+ }
+ BigDecimal nextChunk = currentChunk.multiply(powerOfTen);
+
+ if (!(chunks.isEmpty() || isAdditionSafe(chunks.getLast(), nextChunk))) {
+ throw new WordsToNumberException(WordsToNumberException.ErrorType.UNEXPECTED_WORD, word);
+ }
+ chunks.add(nextChunk);
+ }
+
+ private static BigDecimal handleNumber(Collection chunks, BigDecimal currentChunk, String word, Integer number) {
+ boolean currentChunkIsZero = currentChunk.compareTo(BigDecimal.ZERO) == 0;
+ if (number == 0 && !(currentChunkIsZero && chunks.isEmpty())) {
+ throw new WordsToNumberException(WordsToNumberException.ErrorType.UNEXPECTED_WORD, word);
+ }
+ BigDecimal bigDecimalNumber = BigDecimal.valueOf(number);
+
+ if (!currentChunkIsZero && !isAdditionSafe(currentChunk, bigDecimalNumber)) {
+ throw new WordsToNumberException(WordsToNumberException.ErrorType.UNEXPECTED_WORD, word);
+ }
+ return currentChunk.add(bigDecimalNumber);
+ }
+
+ private static void handlePoint(Collection chunks, BigDecimal currentChunk, ArrayDeque wordDeque) {
+ boolean currentChunkIsZero = currentChunk.compareTo(BigDecimal.ZERO) == 0;
+ if (!currentChunkIsZero) {
+ chunks.add(currentChunk);
+ }
+
+ String decimalPart = convertDecimalPart(wordDeque);
+ chunks.add(new BigDecimal(decimalPart));
+ }
+
+ private static void handleNegative(boolean isNegative) {
+ if (isNegative) {
+ throw new WordsToNumberException(WordsToNumberException.ErrorType.MULTIPLE_NEGATIVES, "");
+ }
+ throw new WordsToNumberException(WordsToNumberException.ErrorType.INVALID_NEGATIVE, "");
+ }
+
+ private static BigDecimal convertWordQueueToBigDecimal(ArrayDeque wordDeque) {
+ BigDecimal currentChunk = BigDecimal.ZERO;
+ List chunks = new ArrayList<>();
+
+ boolean isNegative = "negative".equals(wordDeque.peek());
+ if (isNegative) {
+ wordDeque.poll();
+ }
+
+ boolean prevNumWasHundred = false;
+ boolean prevNumWasPowerOfTen = false;
+
+ while (!wordDeque.isEmpty()) {
+ String word = wordDeque.poll();
+
+ switch (word) {
+ case "and" -> {
+ handleConjunction(prevNumWasHundred, prevNumWasPowerOfTen, wordDeque);
+ continue;
+ }
+ case "hundred" -> {
+ currentChunk = handleHundred(currentChunk, word, prevNumWasPowerOfTen);
+ prevNumWasHundred = true;
+ continue;
+ }
+ default -> {
+
+ }
+ }
+ prevNumWasHundred = false;
+
+ BigDecimal powerOfTen = PowerOfTen.getValue(word);
+ if (powerOfTen != null) {
+ handlePowerOfTen(chunks, currentChunk, powerOfTen, word, prevNumWasPowerOfTen);
+ currentChunk = BigDecimal.ZERO;
+ prevNumWasPowerOfTen = true;
+ continue;
+ }
+ prevNumWasPowerOfTen = false;
+
+ Integer number = NumberWord.getValue(word);
+ if (number != null) {
+ currentChunk = handleNumber(chunks, currentChunk, word, number);
+ continue;
+ }
+
+ switch (word) {
+ case "point" -> {
+ handlePoint(chunks, currentChunk, wordDeque);
+ currentChunk = BigDecimal.ZERO;
+ continue;
+ }
+ case "negative" -> {
+ handleNegative(isNegative);
+ }
+ default -> {
+
+ }
+ }
+
+ throw new WordsToNumberException(WordsToNumberException.ErrorType.UNKNOWN_WORD, word);
+ }
+
+ if (currentChunk.compareTo(BigDecimal.ZERO) != 0) {
+ chunks.add(currentChunk);
+ }
+
+ BigDecimal completeNumber = combineChunks(chunks);
+ return isNegative ? completeNumber.multiply(BigDecimal.valueOf(-1))
+ :
+ completeNumber;
+ }
+
+ private static boolean isAdditionSafe(BigDecimal currentChunk, BigDecimal number) {
+ int chunkDigitCount = currentChunk.toString().length();
+ int numberDigitCount = number.toString().length();
+ return chunkDigitCount > numberDigitCount;
+ }
+
+ private static String convertDecimalPart(ArrayDeque wordDeque) {
+ StringBuilder decimalPart = new StringBuilder(".");
+
+ while (!wordDeque.isEmpty()) {
+ String word = wordDeque.poll();
+ Integer number = NumberWord.getValue(word);
+ if (number == null) {
+ throw new WordsToNumberException(WordsToNumberException.ErrorType.UNEXPECTED_WORD_AFTER_POINT, word);
+ }
+ decimalPart.append(number);
+ }
+
+ boolean missingNumbers = decimalPart.length() == 1;
+ if (missingNumbers) {
+ throw new WordsToNumberException(WordsToNumberException.ErrorType.MISSING_DECIMAL_NUMBERS, "");
+ }
+ return decimalPart.toString();
+ }
+
+ private static BigDecimal combineChunks(List chunks) {
+ BigDecimal completeNumber = BigDecimal.ZERO;
+ for (BigDecimal chunk : chunks) {
+ completeNumber = completeNumber.add(chunk);
+ }
+ return completeNumber;
+ }
+ }
+
+ class WordsToNumberException extends RuntimeException {
+
+ @Serial private static final long serialVersionUID = 1L;
+
+ enum ErrorType {
+ NULL_INPUT("'null' or empty input provided"),
+ UNKNOWN_WORD("Unknown Word: "),
+ UNEXPECTED_WORD("Unexpected Word: "),
+ UNEXPECTED_WORD_AFTER_POINT("Unexpected Word (after Point): "),
+ MISSING_DECIMAL_NUMBERS("Decimal part is missing numbers."),
+ MULTIPLE_NEGATIVES("Multiple 'Negative's detected."),
+ INVALID_NEGATIVE("Incorrect 'negative' placement"),
+ INVALID_CONJUNCTION("Incorrect 'and' placement");
+
+ private final String message;
+
+ ErrorType(String message) {
+ this.message = message;
+ }
+
+ public String formatMessage(String details) {
+ return "Invalid Input. " + message + (details.isEmpty() ? "" : details);
+ }
+ }
+
+ public final ErrorType errorType;
+
+ WordsToNumberException(ErrorType errorType, String details) {
+ super(errorType.formatMessage(details));
+ this.errorType = errorType;
+ }
+
+ public ErrorType getErrorType() {
+ return errorType;
+ }
+ }
diff --git a/src/main/java/com/thealgorithms/datastructures/Node.java b/src/main/java/com/thealgorithms/datastructures/Node.java
new file mode 100644
index 000000000000..c8d0e6cb4f7d
--- /dev/null
+++ b/src/main/java/com/thealgorithms/datastructures/Node.java
@@ -0,0 +1,32 @@
+package com.thealgorithms.datastructures;
+
+import java.util.ArrayList;
+import java.util.List;
+
+public class Node {
+
+ private final T value;
+ private final List> children;
+
+ public Node(final T value) {
+ this.value = value;
+ this.children = new ArrayList<>();
+ }
+
+ public Node(final T value, final List> children) {
+ this.value = value;
+ this.children = children;
+ }
+
+ public T getValue() {
+ return value;
+ }
+
+ public void addChild(Node child) {
+ children.add(child);
+ }
+
+ public List> getChildren() {
+ return children;
+ }
+}
diff --git a/src/main/java/com/thealgorithms/datastructures/bags/Bag.java b/src/main/java/com/thealgorithms/datastructures/bags/Bag.java
new file mode 100644
index 000000000000..afc3bbe40cce
--- /dev/null
+++ b/src/main/java/com/thealgorithms/datastructures/bags/Bag.java
@@ -0,0 +1,138 @@
+package com.thealgorithms.datastructures.bags;
+
+import java.util.Iterator;
+import java.util.NoSuchElementException;
+
+/**
+ * A generic collection that allows adding and iterating over elements but does not support
+ * element removal. This class implements a simple bag data structure, which can hold duplicate
+ * elements and provides operations to check for membership and the size of the collection.
+ *
+ * Bag is not thread-safe and should not be accessed by multiple threads concurrently.
+ *
+ * @param the type of elements in this bag
+ */
+public class Bag implements Iterable {
+
+ private Node firstElement; // Reference to the first element in the bag
+ private int size; // Count of elements in the bag
+
+ // Node class representing each element in the bag
+ private static final class Node {
+ private E content;
+ private Node nextElement;
+ }
+
+ /**
+ * Constructs an empty bag.
+ * This initializes the bag with zero elements.
+ */
+ public Bag() {
+ firstElement = null;
+ size = 0;
+ }
+
+ /**
+ * Checks if the bag is empty.
+ *
+ * @return {@code true} if the bag contains no elements; {@code false} otherwise
+ */
+ public boolean isEmpty() {
+ return size == 0;
+ }
+
+ /**
+ * Returns the number of elements in the bag.
+ *
+ * @return the number of elements currently in the bag
+ */
+ public int size() {
+ return size;
+ }
+
+ /**
+ * Adds an element to the bag.
+ *
+ *
This method adds the specified element to the bag. Duplicates are allowed, and the
+ * bag will maintain the order in which elements are added.
+ *
+ * @param element the element to add; must not be {@code null}
+ */
+ public void add(E element) {
+ Node newNode = new Node<>();
+ newNode.content = element;
+ newNode.nextElement = firstElement;
+ firstElement = newNode;
+ size++;
+ }
+
+ /**
+ * Checks if the bag contains a specific element.
+ *
+ * This method uses the {@code equals} method of the element to determine membership.
+ *
+ * @param element the element to check for; must not be {@code null}
+ * @return {@code true} if the bag contains the specified element; {@code false} otherwise
+ */
+ public boolean contains(E element) {
+ for (E value : this) {
+ if (value.equals(element)) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ /**
+ * Returns an iterator over the elements in this bag.
+ *
+ *
The iterator provides a way to traverse the elements in the order they were added.
+ *
+ * @return an iterator that iterates over the elements in the bag
+ */
+ @Override
+ public Iterator iterator() {
+ return new ListIterator<>(firstElement);
+ }
+
+ // Private class for iterating over elements
+ private static class ListIterator implements Iterator {
+
+ private Node currentElement;
+
+ /**
+ * Constructs a ListIterator starting from the given first element.
+ *
+ * @param firstElement the first element of the bag to iterate over
+ */
+ ListIterator(Node firstElement) {
+ this.currentElement = firstElement;
+ }
+
+ /**
+ * Checks if there are more elements to iterate over.
+ *
+ * @return {@code true} if there are more elements; {@code false} otherwise
+ */
+ @Override
+ public boolean hasNext() {
+ return currentElement != null;
+ }
+
+ /**
+ * Returns the next element in the iteration.
+ *
+ * @return the next element in the bag
+ * @throws NoSuchElementException if there are no more elements to return
+ */
+ @Override
+ public E next() {
+ if (!hasNext()) {
+ throw new NoSuchElementException("No more elements in the bag.");
+ }
+ E element = currentElement.content;
+ currentElement = currentElement.nextElement;
+ return element;
+ }
+ }
+}
diff --git a/src/main/java/com/thealgorithms/datastructures/bloomfilter/BloomFilter.java b/src/main/java/com/thealgorithms/datastructures/bloomfilter/BloomFilter.java
new file mode 100644
index 000000000000..c84f25bd78e6
--- /dev/null
+++ b/src/main/java/com/thealgorithms/datastructures/bloomfilter/BloomFilter.java
@@ -0,0 +1,166 @@
+package com.thealgorithms.datastructures.bloomfilter;
+
+import java.util.Arrays;
+import java.util.BitSet;
+
+/**
+ * A generic BloomFilter implementation for probabilistic membership checking.
+ *
+ * Bloom filters are space-efficient data structures that provide a fast way to test whether an
+ * element is a member of a set. They may produce false positives, indicating an element is
+ * in the set when it is not, but they will never produce false negatives.
+ *
+ *
+ * @param The type of elements to be stored in the Bloom filter.
+ */
+@SuppressWarnings("rawtypes")
+public class BloomFilter {
+
+ private final int numberOfHashFunctions;
+ private final BitSet bitArray;
+ private final Hash[] hashFunctions;
+
+ /**
+ * Constructs a BloomFilter with a specified number of hash functions and bit array size.
+ *
+ * @param numberOfHashFunctions the number of hash functions to use
+ * @param bitArraySize the size of the bit array, which determines the capacity of the filter
+ * @throws IllegalArgumentException if numberOfHashFunctions or bitArraySize is less than 1
+ */
+ @SuppressWarnings("unchecked")
+ public BloomFilter(int numberOfHashFunctions, int bitArraySize) {
+ if (numberOfHashFunctions < 1 || bitArraySize < 1) {
+ throw new IllegalArgumentException("Number of hash functions and bit array size must be greater than 0");
+ }
+ this.numberOfHashFunctions = numberOfHashFunctions;
+ this.bitArray = new BitSet(bitArraySize);
+ this.hashFunctions = new Hash[numberOfHashFunctions];
+ initializeHashFunctions();
+ }
+
+ /**
+ * Initializes the hash functions with unique indices to ensure different hashing.
+ */
+ private void initializeHashFunctions() {
+ for (int i = 0; i < numberOfHashFunctions; i++) {
+ hashFunctions[i] = new Hash<>(i);
+ }
+ }
+
+ /**
+ * Inserts an element into the Bloom filter.
+ *
+ * This method hashes the element using all defined hash functions and sets the corresponding
+ * bits in the bit array.
+ *
+ *
+ * @param key the element to insert into the Bloom filter
+ */
+ public void insert(T key) {
+ for (Hash hash : hashFunctions) {
+ int position = Math.abs(hash.compute(key) % bitArray.size());
+ bitArray.set(position);
+ }
+ }
+
+ /**
+ * Checks if an element might be in the Bloom filter.
+ *
+ * This method checks the bits at the positions computed by each hash function. If any of these
+ * bits are not set, the element is definitely not in the filter. If all bits are set, the element
+ * might be in the filter.
+ *
+ *
+ * @param key the element to check for membership in the Bloom filter
+ * @return {@code true} if the element might be in the Bloom filter, {@code false} if it is definitely not
+ */
+ public boolean contains(T key) {
+ for (Hash hash : hashFunctions) {
+ int position = Math.abs(hash.compute(key) % bitArray.size());
+ if (!bitArray.get(position)) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ /**
+ * Inner class representing a hash function used by the Bloom filter.
+ *
+ * Each instance of this class represents a different hash function based on its index.
+ *
+ *
+ * @param The type of elements to be hashed.
+ */
+ private static class Hash {
+
+ private final int index;
+
+ /**
+ * Constructs a Hash function with a specified index.
+ *
+ * @param index the index of this hash function, used to create a unique hash
+ */
+ Hash(int index) {
+ this.index = index;
+ }
+
+ /**
+ * Computes the hash of the given key.
+ *
+ * The hash value is calculated by multiplying the index of the hash function
+ * with the ASCII sum of the string representation of the key.
+ *
+ *
+ * @param key the element to hash
+ * @return the computed hash value
+ */
+ public int compute(T key) {
+ return index * contentHash(key);
+ }
+
+ /**
+ * Computes the ASCII value sum of the characters in a string.
+ *
+ * This method iterates through each character of the string and accumulates
+ * their ASCII values to produce a single integer value.
+ *
+ *
+ * @param word the string to compute
+ * @return the sum of ASCII values of the characters in the string
+ */
+ private int asciiString(String word) {
+ int sum = 0;
+ for (char c : word.toCharArray()) {
+ sum += c;
+ }
+ return sum;
+ }
+
+ /**
+ * Computes a content-based hash for arrays; falls back to ASCII-sum of String value otherwise.
+ */
+ private int contentHash(Object key) {
+ if (key instanceof int[]) {
+ return Arrays.hashCode((int[]) key);
+ } else if (key instanceof long[]) {
+ return Arrays.hashCode((long[]) key);
+ } else if (key instanceof byte[]) {
+ return Arrays.hashCode((byte[]) key);
+ } else if (key instanceof short[]) {
+ return Arrays.hashCode((short[]) key);
+ } else if (key instanceof char[]) {
+ return Arrays.hashCode((char[]) key);
+ } else if (key instanceof boolean[]) {
+ return Arrays.hashCode((boolean[]) key);
+ } else if (key instanceof float[]) {
+ return Arrays.hashCode((float[]) key);
+ } else if (key instanceof double[]) {
+ return Arrays.hashCode((double[]) key);
+ } else if (key instanceof Object[]) {
+ return Arrays.deepHashCode((Object[]) key);
+ }
+ return asciiString(String.valueOf(key));
+ }
+ }
+}
diff --git a/src/main/java/com/thealgorithms/datastructures/buffers/CircularBuffer.java b/src/main/java/com/thealgorithms/datastructures/buffers/CircularBuffer.java
new file mode 100644
index 000000000000..3b89c2119ae0
--- /dev/null
+++ b/src/main/java/com/thealgorithms/datastructures/buffers/CircularBuffer.java
@@ -0,0 +1,133 @@
+package com.thealgorithms.datastructures.buffers;
+
+import java.util.concurrent.atomic.AtomicInteger;
+
+/**
+ * The {@code CircularBuffer} class implements a generic circular (or ring) buffer.
+ * A circular buffer is a fixed-size data structure that operates in a FIFO (First In, First Out) manner.
+ * The buffer allows you to overwrite old data when the buffer is full and efficiently use limited memory.
+ * When the buffer is full, adding a new item will overwrite the oldest data.
+ *
+ * @param - The type of elements stored in the circular buffer.
+ */
+@SuppressWarnings("unchecked")
+public class CircularBuffer
- {
+ private final Item[] buffer;
+ private final CircularPointer putPointer;
+ private final CircularPointer getPointer;
+ private final AtomicInteger size = new AtomicInteger(0);
+
+ /**
+ * Constructor to initialize the circular buffer with a specified size.
+ *
+ * @param size The size of the circular buffer.
+ * @throws IllegalArgumentException if the size is zero or negative.
+ */
+ public CircularBuffer(int size) {
+ if (size <= 0) {
+ throw new IllegalArgumentException("Buffer size must be positive");
+ }
+ // noinspection unchecked
+ this.buffer = (Item[]) new Object[size];
+ this.putPointer = new CircularPointer(0, size);
+ this.getPointer = new CircularPointer(0, size);
+ }
+
+ /**
+ * Checks if the circular buffer is empty.
+ * This method is based on the current size of the buffer.
+ *
+ * @return {@code true} if the buffer is empty, {@code false} otherwise.
+ */
+ public boolean isEmpty() {
+ return size.get() == 0;
+ }
+
+ /**
+ * Checks if the circular buffer is full.
+ * The buffer is considered full when its size equals its capacity.
+ *
+ * @return {@code true} if the buffer is full, {@code false} otherwise.
+ */
+ public boolean isFull() {
+ return size.get() == buffer.length;
+ }
+
+ /**
+ * Retrieves and removes the item at the front of the buffer (FIFO).
+ * This operation will move the {@code getPointer} forward.
+ *
+ * @return The item at the front of the buffer, or {@code null} if the buffer is empty.
+ */
+ public Item get() {
+ if (isEmpty()) {
+ return null;
+ }
+
+ Item item = buffer[getPointer.getAndIncrement()];
+ size.decrementAndGet();
+ return item;
+ }
+
+ /**
+ * Adds an item to the end of the buffer (FIFO).
+ * If the buffer is full, this operation will overwrite the oldest data.
+ *
+ * @param item The item to be added.
+ * @throws IllegalArgumentException if the item is null.
+ * @return {@code true} if the item was successfully added, {@code false} if the buffer was full and the item overwrote existing data.
+ */
+ public boolean put(Item item) {
+ if (item == null) {
+ throw new IllegalArgumentException("Null items are not allowed");
+ }
+
+ boolean wasEmpty = isEmpty();
+ if (isFull()) {
+ getPointer.getAndIncrement(); // Move get pointer to discard oldest item
+ } else {
+ size.incrementAndGet();
+ }
+
+ buffer[putPointer.getAndIncrement()] = item;
+ return wasEmpty;
+ }
+
+ /**
+ * The {@code CircularPointer} class is a helper class used to track the current index (pointer)
+ * in the circular buffer.
+ * The max value represents the capacity of the buffer.
+ * The `CircularPointer` class ensures that the pointer automatically wraps around to 0
+ * when it reaches the maximum index.
+ * This is achieved in the `getAndIncrement` method, where the pointer
+ * is incremented and then taken modulo the maximum value (`max`).
+ * This operation ensures that the pointer always stays within the bounds of the buffer.
+ */
+ private static class CircularPointer {
+ private int pointer;
+ private final int max;
+
+ /**
+ * Constructor to initialize the circular pointer.
+ *
+ * @param pointer The initial position of the pointer.
+ * @param max The maximum size (capacity) of the circular buffer.
+ */
+ CircularPointer(int pointer, int max) {
+ this.pointer = pointer;
+ this.max = max;
+ }
+
+ /**
+ * Increments the pointer by 1 and wraps it around to 0 if it reaches the maximum value.
+ * This ensures the pointer always stays within the buffer's bounds.
+ *
+ * @return The current pointer value before incrementing.
+ */
+ public int getAndIncrement() {
+ int tmp = pointer;
+ pointer = (pointer + 1) % max;
+ return tmp;
+ }
+ }
+}
diff --git a/src/main/java/com/thealgorithms/datastructures/caches/FIFOCache.java b/src/main/java/com/thealgorithms/datastructures/caches/FIFOCache.java
new file mode 100644
index 000000000000..fa048434a187
--- /dev/null
+++ b/src/main/java/com/thealgorithms/datastructures/caches/FIFOCache.java
@@ -0,0 +1,549 @@
+package com.thealgorithms.datastructures.caches;
+
+import java.util.Iterator;
+import java.util.LinkedHashMap;
+import java.util.LinkedHashSet;
+import java.util.Map;
+import java.util.Set;
+import java.util.concurrent.atomic.AtomicInteger;
+import java.util.concurrent.locks.Lock;
+import java.util.concurrent.locks.ReentrantLock;
+import java.util.function.BiConsumer;
+
+/**
+ * A thread-safe generic cache implementation using the First-In-First-Out eviction policy.
+ *
+ * The cache holds a fixed number of entries, defined by its capacity. When the cache is full and a
+ * new entry is added, the oldest entry in the cache is selected and evicted to make space.
+ *
+ * Optionally, entries can have a time-to-live (TTL) in milliseconds. If a TTL is set, entries will
+ * automatically expire and be removed upon access or insertion attempts.
+ *
+ * Features:
+ *
+ * - Removes oldest entry when capacity is exceeded
+ * - Optional TTL (time-to-live in milliseconds) per entry or default TTL for all entries
+ * - Thread-safe access using locking
+ * - Hit and miss counters for cache statistics
+ * - Eviction listener callback support
+ *
+ *
+ * @param the type of keys maintained by this cache
+ * @param the type of mapped values
+ * See FIFO
+ * @author Kevin Babu (GitHub)
+ */
+public final class FIFOCache {
+
+ private final int capacity;
+ private final long defaultTTL;
+ private final Map> cache;
+ private final Lock lock;
+
+ private long hits = 0;
+ private long misses = 0;
+ private final BiConsumer evictionListener;
+ private final EvictionStrategy evictionStrategy;
+
+ /**
+ * Internal structure to store value + expiry timestamp.
+ *
+ * @param the type of the value being cached
+ */
+ private static class CacheEntry {
+ V value;
+ long expiryTime;
+
+ /**
+ * Constructs a new {@code CacheEntry} with the specified value and time-to-live (TTL).
+ * If TTL is 0, the entry is kept indefinitely, that is, unless it is the first value,
+ * then it will be removed according to the FIFO principle
+ *
+ * @param value the value to cache
+ * @param ttlMillis the time-to-live in milliseconds
+ */
+ CacheEntry(V value, long ttlMillis) {
+ this.value = value;
+ if (ttlMillis == 0) {
+ this.expiryTime = Long.MAX_VALUE;
+ } else {
+ this.expiryTime = System.currentTimeMillis() + ttlMillis;
+ }
+ }
+
+ /**
+ * Checks if the cache entry has expired.
+ *
+ * @return {@code true} if the current time is past the expiration time; {@code false} otherwise
+ */
+ boolean isExpired() {
+ return System.currentTimeMillis() > expiryTime;
+ }
+ }
+
+ /**
+ * Constructs a new {@code FIFOCache} instance using the provided {@link Builder}.
+ *
+ * This constructor initializes the cache with the specified capacity and default TTL,
+ * sets up internal data structures (a {@code LinkedHashMap} for cache entries and configures eviction.
+ *
+ * @param builder the {@code Builder} object containing configuration parameters
+ */
+ private FIFOCache(Builder builder) {
+ this.capacity = builder.capacity;
+ this.defaultTTL = builder.defaultTTL;
+ this.cache = new LinkedHashMap<>();
+ this.lock = new ReentrantLock();
+ this.evictionListener = builder.evictionListener;
+ this.evictionStrategy = builder.evictionStrategy;
+ }
+
+ /**
+ * Retrieves the value associated with the specified key from the cache.
+ *
+ * If the key is not present or the corresponding entry has expired, this method
+ * returns {@code null}. If an expired entry is found, it will be removed and the
+ * eviction listener (if any) will be notified. Cache hit-and-miss statistics are
+ * also updated accordingly.
+ *
+ * @param key the key whose associated value is to be returned; must not be {@code null}
+ * @return the cached value associated with the key, or {@code null} if not present or expired
+ * @throws IllegalArgumentException if {@code key} is {@code null}
+ */
+ public V get(K key) {
+ if (key == null) {
+ throw new IllegalArgumentException("Key must not be null");
+ }
+
+ lock.lock();
+ try {
+ evictionStrategy.onAccess(this);
+
+ CacheEntry entry = cache.get(key);
+ if (entry == null || entry.isExpired()) {
+ if (entry != null) {
+ cache.remove(key);
+ notifyEviction(key, entry.value);
+ }
+ misses++;
+ return null;
+ }
+ hits++;
+ return entry.value;
+ } finally {
+ lock.unlock();
+ }
+ }
+
+ /**
+ * Adds a key-value pair to the cache using the default time-to-live (TTL).
+ *
+ * The key may overwrite an existing entry. The actual insertion is delegated
+ * to the overloaded {@link #put(K, V, long)} method.
+ *
+ * @param key the key to cache the value under
+ * @param value the value to be cached
+ */
+ public void put(K key, V value) {
+ put(key, value, defaultTTL);
+ }
+
+ /**
+ * Adds a key-value pair to the cache with a specified time-to-live (TTL).
+ *
+ *
If the key already exists, its value is removed, re-inserted at tail and its TTL is reset.
+ * If the key does not exist and the cache is full, the oldest entry is evicted to make space.
+ * Expired entries are also cleaned up prior to any eviction. The eviction listener
+ * is notified when an entry gets evicted.
+ *
+ * @param key the key to associate with the cached value; must not be {@code null}
+ * @param value the value to be cached; must not be {@code null}
+ * @param ttlMillis the time-to-live for this entry in milliseconds; must be >= 0
+ * @throws IllegalArgumentException if {@code key} or {@code value} is {@code null}, or if {@code ttlMillis} is negative
+ */
+ public void put(K key, V value, long ttlMillis) {
+ if (key == null || value == null) {
+ throw new IllegalArgumentException("Key and value must not be null");
+ }
+ if (ttlMillis < 0) {
+ throw new IllegalArgumentException("TTL must be >= 0");
+ }
+
+ lock.lock();
+ try {
+ // If key already exists, remove it
+ CacheEntry oldEntry = cache.remove(key);
+ if (oldEntry != null && !oldEntry.isExpired()) {
+ notifyEviction(key, oldEntry.value);
+ }
+
+ // Evict expired entries to make space for new entry
+ evictExpired();
+
+ // If no expired entry was removed, remove the oldest
+ if (cache.size() >= capacity) {
+ Iterator>> it = cache.entrySet().iterator();
+ if (it.hasNext()) {
+ Map.Entry> eldest = it.next();
+ it.remove();
+ notifyEviction(eldest.getKey(), eldest.getValue().value);
+ }
+ }
+
+ // Insert new entry at tail
+ cache.put(key, new CacheEntry<>(value, ttlMillis));
+ } finally {
+ lock.unlock();
+ }
+ }
+
+ /**
+ * Removes all expired entries from the cache.
+ *
+ * This method iterates through the list of cached keys and checks each associated
+ * entry for expiration. Expired entries are removed the cache map. For each eviction,
+ * the eviction listener is notified.
+ */
+ private int evictExpired() {
+ int count = 0;
+ Iterator>> it = cache.entrySet().iterator();
+
+ while (it.hasNext()) {
+ Map.Entry