forked from Vector35/binaryninja-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenericformatter.cpp
842 lines (741 loc) · 24.3 KB
/
genericformatter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
#include <ctype.h>
#include <stack>
#include "genericformatter.h"
using namespace BinaryNinja;
using namespace std;
enum ItemType
{
Atom,
Comment,
Operator,
FieldAccessor,
Argument,
ArgumentSeparator,
Statement,
StatementSeparator,
Group,
Container,
StartOfContainer,
ContainerContents,
EndOfContainer,
};
static string TrimString(const string& str)
{
size_t startPos = 0;
size_t endPos = 0;
bool start = true;
for (size_t i = 0; i < str.size(); i++)
{
if (isspace(str[i]))
{
if (start)
{
startPos = i + 1;
endPos = i + 1;
}
}
else
{
start = false;
endPos = i + 1;
}
}
return str.substr(startPos, endPos - startPos);
}
static string TrimLeadingWhitespace(const string& str)
{
size_t startPos = 0;
for (size_t i = 0; i < str.size(); i++)
{
if (!isspace(str[i]))
{
startPos = i;
break;
}
}
return str.substr(startPos);
}
static string TrimTrailingWhitespace(const string& str)
{
if (str.empty())
return str;
size_t endPos = str.size();
for (size_t i = str.size() - 1; i > 0; i--)
{
if (!isspace(str[i]))
{
endPos = i + 1;
break;
}
}
return str.substr(0, endPos);
}
static const map<string, BNOperatorPrecedence> g_operatorPrecedenceMap = {{"=", AssignmentOperatorPrecedence},
{":=", AssignmentOperatorPrecedence}, {"+=", AssignmentOperatorPrecedence}, {"-=", AssignmentOperatorPrecedence},
{"*=", AssignmentOperatorPrecedence}, {"/=", AssignmentOperatorPrecedence}, {"s/=", AssignmentOperatorPrecedence},
{"u/=", AssignmentOperatorPrecedence}, {"%=", AssignmentOperatorPrecedence}, {"s%=", AssignmentOperatorPrecedence},
{"u%=", AssignmentOperatorPrecedence}, {"&=", AssignmentOperatorPrecedence}, {"|=", AssignmentOperatorPrecedence},
{"^=", AssignmentOperatorPrecedence}, {">>=", AssignmentOperatorPrecedence}, {"s>>=", AssignmentOperatorPrecedence},
{"u>>=", AssignmentOperatorPrecedence}, {"<<=", AssignmentOperatorPrecedence},
{"s<<=", AssignmentOperatorPrecedence}, {"u<<=", AssignmentOperatorPrecedence}, {"?", TernaryOperatorPrecedence},
{":", TernaryOperatorPrecedence}, {"||", LogicalOrOperatorPrecedence}, {"or", LogicalOrOperatorPrecedence},
{"&&", LogicalAndOperatorPrecedence}, {"and", LogicalAndOperatorPrecedence}, {"&", BitwiseAndOperatorPrecedence},
{"|", BitwiseOrOperatorPrecedence}, {"^", BitwiseXorOperatorPrecedence}, {"==", EqualityOperatorPrecedence},
{"===", EqualityOperatorPrecedence}, {"!=", EqualityOperatorPrecedence}, {"!==", EqualityOperatorPrecedence},
{"<>", EqualityOperatorPrecedence}, {"<", CompareOperatorPrecedence}, {"s<", CompareOperatorPrecedence},
{"u<", CompareOperatorPrecedence}, {"<=", CompareOperatorPrecedence}, {"s<=", CompareOperatorPrecedence},
{"u<=", CompareOperatorPrecedence}, {">", CompareOperatorPrecedence}, {"s>", CompareOperatorPrecedence},
{"u>", CompareOperatorPrecedence}, {">=", CompareOperatorPrecedence}, {"s>=", CompareOperatorPrecedence},
{"u>=", CompareOperatorPrecedence}, {"<<", ShiftOperatorPrecedence}, {"s<<", ShiftOperatorPrecedence},
{"u<<", ShiftOperatorPrecedence}, {">>", ShiftOperatorPrecedence}, {"s>>", ShiftOperatorPrecedence},
{"u>>", ShiftOperatorPrecedence}, {"+", AddOperatorPrecedence}, {"-", AddOperatorPrecedence},
{"*", MultiplyOperatorPrecedence}, {"/", MultiplyOperatorPrecedence}, {"s/", MultiplyOperatorPrecedence},
{"u/", MultiplyOperatorPrecedence}, {"%", MultiplyOperatorPrecedence}, {"s%", MultiplyOperatorPrecedence},
{"u%", MultiplyOperatorPrecedence}, {"!", UnaryOperatorPrecedence}, {"not", UnaryOperatorPrecedence},
{"~", UnaryOperatorPrecedence}};
static BNOperatorPrecedence GetOperatorPrecedence(const InstructionTextToken& token, size_t* ternary = nullptr)
{
string trimmedText = TrimString(token.text);
auto i = g_operatorPrecedenceMap.find(trimmedText);
if (i != g_operatorPrecedenceMap.end())
{
if (i->second == TernaryOperatorPrecedence && ternary)
{
// HLIL uses ':' in additional contexts, so look for active ternary operators before
// treating it as part of a ternary
if (trimmedText == "?")
{
(*ternary)++;
}
else if (trimmedText == ":")
{
if (*ternary)
(*ternary)--;
else
return MemberAndFunctionOperatorPrecedence;
}
}
return i->second;
}
return MemberAndFunctionOperatorPrecedence;
}
struct Item
{
ItemType type;
vector<Item> items;
vector<InstructionTextToken> tokens;
size_t width;
void AppendAllTokens(vector<InstructionTextToken>& output, bool& firstTokenOfLine)
{
if (firstTokenOfLine)
{
if (!tokens.empty())
{
InstructionTextToken token = tokens.front();
string trimmedText = TrimLeadingWhitespace(token.text);
token.width -= token.text.size() - trimmedText.size();
token.text = trimmedText;
output.push_back(token);
output.insert(output.end(), tokens.begin() + 1, tokens.end());
firstTokenOfLine = false;
}
}
else
{
output.insert(output.end(), tokens.begin(), tokens.end());
}
for (auto& item : items)
item.AppendAllTokens(output, firstTokenOfLine);
}
void AddTokenToLastAtom(const InstructionTextToken& token)
{
if (!tokens.empty())
tokens.push_back(token);
else if (items.empty())
items.push_back(Item {Atom, {}, {token}, 0});
else
items.back().AddTokenToLastAtom(token);
}
void CalculateWidth()
{
width = 0;
for (auto& token : tokens)
width += token.width;
for (auto& item : items)
{
item.CalculateWidth();
width += item.width;
}
}
};
struct ItemLayoutStackEntry
{
vector<Item> items;
size_t additionalContinuationIndentation;
size_t desiredWidth;
size_t desiredContinuationWidth;
bool newLineOnReenteringScope;
};
static vector<Item> CreateStatementItems(const vector<Item>& items)
{
vector<Item> result, pending;
bool hasArgs = false;
for (auto& i : items)
{
if (i.type == StatementSeparator)
{
if (pending.empty())
{
result.push_back(Item {Atom, {}, {i.tokens}, 0});
}
else
{
for (auto& j : i.tokens)
pending.back().AddTokenToLastAtom(j);
result.push_back(Item {Statement, pending, {}, 0});
}
pending.clear();
hasArgs = true;
}
else if (i.type == StartOfContainer && pending.empty())
{
result.push_back(i);
}
else if (i.type == EndOfContainer && hasArgs && !pending.empty())
{
result.push_back(Item {Statement, pending, {}, 0});
result.push_back(i);
pending.clear();
}
else
{
pending.push_back(Item {i.type, CreateStatementItems(i.items), i.tokens, 0});
}
}
if (!pending.empty())
{
if (hasArgs)
result.push_back(Item {Statement, pending, {}, 0});
else
result.insert(result.end(), pending.begin(), pending.end());
}
return result;
}
static vector<Item> CreateAssignmentOperatorGroups(const vector<Item>& items)
{
vector<Item> result, pending;
bool hasOperators = false;
for (auto& i : items)
{
if (i.type == Operator && !i.tokens.empty())
{
BNOperatorPrecedence precedence = GetOperatorPrecedence(i.tokens[0]);
if (precedence == AssignmentOperatorPrecedence)
{
if (pending.empty())
{
result.push_back(Item {Atom, {}, {i.tokens}, 0});
}
else
{
for (auto& j : i.tokens)
pending.back().AddTokenToLastAtom(j);
result.push_back(Item {Statement, pending, {}, 0});
}
pending.clear();
hasOperators = true;
continue;
}
}
if (i.type == StartOfContainer && pending.empty())
{
result.push_back(i);
}
else if (i.type == EndOfContainer && hasOperators && !pending.empty())
{
result.push_back(Item {Group, pending, {}, 0});
result.push_back(i);
pending.clear();
}
else
{
pending.push_back(Item {i.type, CreateAssignmentOperatorGroups(i.items), i.tokens, 0});
}
}
if (!pending.empty())
{
if (hasOperators)
result.push_back(Item {Group, pending, {}, 0});
else
result.insert(result.end(), pending.begin(), pending.end());
}
return result;
}
static vector<Item> CreateArgumentItems(const vector<Item>& items, bool inContainer)
{
vector<Item> result, pending;
bool hasArgs = false;
for (auto& i : items)
{
if (i.type == ArgumentSeparator)
{
if (pending.empty())
{
result.push_back(Item {Atom, {}, {i.tokens}, 0});
}
else
{
for (auto& j : i.tokens)
pending.back().AddTokenToLastAtom(j);
result.push_back(Item {inContainer ? Argument : Group, pending, {}, 0});
}
pending.clear();
hasArgs = true;
}
else if (i.type == StartOfContainer && pending.empty())
{
result.push_back(i);
}
else if (i.type == EndOfContainer && hasArgs && !pending.empty())
{
result.push_back(Item {inContainer ? Argument : Group, pending, {}, 0});
result.push_back(i);
pending.clear();
}
else
{
pending.push_back(Item {i.type, CreateArgumentItems(i.items, i.type == Container), i.tokens, 0});
}
}
if (!pending.empty())
{
if (hasArgs)
result.push_back(Item {inContainer ? Argument : Group, pending, {}, 0});
else
result.insert(result.end(), pending.begin(), pending.end());
}
return result;
}
static vector<Item> CreateOperatorGroups(const vector<Item>& items)
{
vector<Item> result, pending;
bool hasOperators = false;
for (auto& i : items)
{
if (i.type == Operator)
{
if (pending.size() == 1)
result.push_back(pending[0]);
else if (!pending.empty())
result.push_back(Item {Group, pending, {}, 0});
result.push_back(i);
pending.clear();
hasOperators = true;
continue;
}
if (i.type == StartOfContainer && pending.empty())
{
result.push_back(i);
}
else if (i.type == EndOfContainer && hasOperators && pending.size() > 1)
{
result.push_back(Item {Group, pending, {}, 0});
result.push_back(i);
pending.clear();
}
else
{
pending.push_back(Item {i.type, CreateOperatorGroups(i.items), i.tokens, 0});
}
}
if (!pending.empty())
{
if (hasOperators && pending.size() > 1)
result.push_back(Item {Group, pending, {}, 0});
else
result.insert(result.end(), pending.begin(), pending.end());
}
return result;
}
static vector<Item> CreateOperatorPrecedenceGroups(const vector<Item>& items)
{
// Look for the operator with the lowest precedence. These will be grouped first.
optional<BNOperatorPrecedence> lowestPrecedence;
size_t ternary = 0;
for (auto i = items.begin(); i != items.end(); ++i)
{
if (i != items.begin() && i->type == Operator && !i->tokens.empty())
{
BNOperatorPrecedence precedence = GetOperatorPrecedence(i->tokens[0], &ternary);
if (!lowestPrecedence.has_value() || precedence < lowestPrecedence.value())
lowestPrecedence = precedence;
}
}
// If there were no operators, no need to group at this level. Just traverse down into child items.
if (!lowestPrecedence.has_value())
{
vector<Item> result;
result.reserve(items.size());
for (auto& i : items)
result.push_back({i.type, CreateOperatorPrecedenceGroups(i.items), i.tokens, 0});
return result;
}
// Go through the items and split the items into groups around the lowest precedence operator
vector<Item> result, pending;
ternary = 0;
for (auto i = items.begin(); i != items.end(); ++i)
{
if (i != items.begin() && i->type == Operator && !i->tokens.empty())
{
BNOperatorPrecedence precedence = GetOperatorPrecedence(i->tokens[0], &ternary);
if (precedence == lowestPrecedence.value())
{
if (pending.size() == 1)
result.push_back(pending[0]);
else if (!pending.empty())
result.push_back(Item {Group, pending, {}, 0});
else
result.insert(result.end(), pending.begin(), pending.end());
pending.clear();
}
}
if (i->type == StartOfContainer && pending.empty())
{
result.push_back(*i);
}
else if (i->type == EndOfContainer && pending.size() > 1 && !result.empty())
{
result.push_back(Item {Group, pending, {}, 0});
result.push_back(*i);
pending.clear();
}
else
{
pending.push_back(*i);
}
}
if (!pending.empty())
{
if (pending.size() > 1 && !result.empty())
result.push_back(Item {Group, pending, {}, 0});
else
result.insert(result.end(), pending.begin(), pending.end());
}
// Recurse into these groups and process the next lowest precedence in each
vector<Item> processed;
processed.reserve(result.size());
for (auto& i : result)
processed.push_back({i.type, CreateOperatorPrecedenceGroups(i.items), i.tokens, 0});
return processed;
}
static vector<Item> RelocateStartAndEndOfContainerItems(const vector<Item>& items)
{
vector<Item> result;
for (auto& i : items)
{
if (!result.empty() && i.type == Container && !i.items.empty() && i.items.front().type == StartOfContainer)
{
Item startOfContainer = i.items.front();
for (auto& j : startOfContainer.tokens)
result.back().AddTokenToLastAtom(j);
vector<Item> containerItems(i.items.begin() + 1, i.items.end());
containerItems = RelocateStartAndEndOfContainerItems(containerItems);
result.push_back({Container, containerItems, {}, 0});
}
else if (i.type == EndOfContainer && !result.empty())
{
for (auto& j : i.tokens)
result.back().AddTokenToLastAtom(j);
}
else
{
result.push_back(Item {i.type, RelocateStartAndEndOfContainerItems(i.items), i.tokens, 0});
}
}
return result;
}
GenericLineFormatter::GenericLineFormatter(): LineFormatter("GenericLineFormatter")
{
}
vector<DisassemblyTextLine> GenericLineFormatter::FormatLines(
const vector<DisassemblyTextLine>& lines, const LineFormatterSettings& settings)
{
vector<DisassemblyTextLine> result;
for (size_t i = 0; i < lines.size(); i++)
{
const DisassemblyTextLine& currentLine = lines[i];
size_t totalLength = currentLine.GetTotalWidth();
size_t indentation = currentLine.GetAddressAndIndentationWidth();
// Check width against settings
size_t contentLength = totalLength - indentation;
if (totalLength <= settings.desiredLineLength || contentLength <= settings.minimumContentLength)
{
// Line fits, emit as-is
result.push_back(currentLine);
continue;
}
// Calculate indentation for continuation lines. If the next line in the input is more indented, make
// the continuation lines more indented than that to separate the continuation from the new scope.
size_t continuationIndentation = indentation + settings.tabWidth;
if ((i + 1) < lines.size())
{
size_t nextLineIndentation = lines[i + 1].GetAddressAndIndentationWidth();
if (nextLineIndentation > indentation)
continuationIndentation = nextLineIndentation + settings.tabWidth;
}
size_t additionalContinuationIndentation = continuationIndentation - indentation;
// Compute the target length for this line
size_t desiredWidth = settings.minimumContentLength;
if (indentation < settings.desiredLineLength)
{
size_t remainingWidth = settings.desiredLineLength - indentation;
if (remainingWidth > desiredWidth)
desiredWidth = remainingWidth;
}
// Compute the target length for the continuation lines
size_t desiredContinuationWidth = settings.minimumContentLength;
if (continuationIndentation < settings.desiredLineLength)
{
size_t remainingWidth = settings.desiredLineLength - continuationIndentation;
if (remainingWidth > desiredContinuationWidth)
desiredContinuationWidth = remainingWidth;
}
// Gather the indentation tokens at the beginning of the line
vector<InstructionTextToken> indentationTokens = currentLine.GetAddressAndIndentationTokens();
size_t tokenIndex = indentationTokens.size();
// First break the line down into nested container items. A container is anything between a pair of
// BraceTokens (except for strings, where the entire string, including the quotes, are treated as
// a single atom).
vector<Item> items;
stack<vector<Item>> itemStack;
for (; tokenIndex < currentLine.tokens.size(); tokenIndex++)
{
const InstructionTextToken& token = currentLine.tokens[tokenIndex];
string trimmedText = TrimString(token.text);
switch (token.type)
{
case BraceToken:
if (tokenIndex + 1 < currentLine.tokens.size()
&& currentLine.tokens[tokenIndex + 1].type == StringToken)
{
// Treat string tokens surrounded by brace tokens as a unit (this is usually the quotes
// surrounding the string)
Item atom;
atom.type = Atom;
atom.tokens.push_back(token);
atom.tokens.push_back(currentLine.tokens[tokenIndex + 1]);
atom.width = 0;
tokenIndex++;
if (tokenIndex + 1 < currentLine.tokens.size()
&& currentLine.tokens[tokenIndex + 1].type == BraceToken)
{
atom.tokens.push_back(currentLine.tokens[tokenIndex + 1]);
tokenIndex++;
}
items.push_back(atom);
break;
}
if (trimmedText == "(" || trimmedText == "[" || trimmedText == "{")
{
// Create a ContainerContents item and place it onto the item stack. This will hold anything
// inside the container once the end of the container is found.
items.push_back(Item {Container, {}, {}, 0});
itemStack.push(items);
// Starting a new context
items.clear();
items.push_back(Item {StartOfContainer, {}, {token}, 0});
}
else if (trimmedText == ")" || trimmedText == "]" || trimmedText == "}")
{
items.push_back(Item {EndOfContainer, {}, {token}, 0});
if (itemStack.empty())
break;
// Go back up the item stack and add the items to the container
vector<Item> parent = itemStack.top();
itemStack.pop();
parent.back().items.insert(parent.back().items.end(), items.begin(), items.end());
items = parent;
}
break;
case CommentToken:
{
// The rest of the line is a comment. There may be tokens that are not of CommentToken type, but
// these are used to create clickable items when things are referenced by the comment.
Item comment {Comment, {}, {}, 0};
for (; tokenIndex < currentLine.tokens.size(); tokenIndex++)
comment.tokens.push_back(currentLine.tokens[tokenIndex]);
items.push_back(comment);
break;
}
case TextToken:
if (trimmedText == ",")
items.push_back(Item {ArgumentSeparator, {}, {token}, 0});
else if ((!trimmedText.empty() && trimmedText[0] == '.') || trimmedText == "->")
items.push_back(Item {FieldAccessor, {}, {token}, 0});
else if (trimmedText == ";")
items.push_back(Item {StatementSeparator, {}, {token}, 0});
else if (trimmedText == ":" && !items.empty())
items.back().AddTokenToLastAtom(token);
else
items.push_back(Item {Atom, {}, {token}, 0});
break;
case OperationToken:
if ((!trimmedText.empty() && trimmedText[0] == '.') || trimmedText == "->")
items.push_back(Item {FieldAccessor, {}, {token}, 0});
else
items.push_back(Item {Operator, {}, {token}, 0});
break;
default:
items.push_back(Item {Atom, {}, {token}, 0});
break;
}
}
while (!itemStack.empty())
{
vector<Item> parent = itemStack.top();
itemStack.pop();
parent.back().items.insert(parent.back().items.end(), items.begin(), items.end());
items = parent;
}
// Process the items to find semicolons, and create statement items containing the group of items making
// up each statement.
items = CreateStatementItems(items);
// Process the items to find assignment operators, and group up the source and destination items. This needs
// to be done before creating arguments to better handle multiple return value constructs.
items = CreateAssignmentOperatorGroups(items);
// Process the items to find commas, and create argument items containing the group of items making
// up each argument.
items = CreateArgumentItems(items, false);
// Process the items to find operators, and create group items containing the operands
items = CreateOperatorGroups(items);
// Process the items to group operations by operator precedence
items = CreateOperatorPrecedenceGroups(items);
// Move start of container items to the last token of the previous item, and end of container items to
// the previous atom.
items = RelocateStartAndEndOfContainerItems(items);
// Now that items are done, compute widths for layout
for (auto& j : items)
j.CalculateWidth();
DisassemblyTextLine outputLine = currentLine;
outputLine.tokens = indentationTokens;
size_t currentWidth = 0;
bool firstTokenOfLine = true;
stack<ItemLayoutStackEntry> layoutStack;
layoutStack.push({items, additionalContinuationIndentation, desiredWidth, desiredContinuationWidth, false});
auto newLine = [&]() {
if (!firstTokenOfLine)
{
string lastTokenText = outputLine.tokens.back().text;
string trimmedText = TrimTrailingWhitespace(lastTokenText);
outputLine.tokens.back().width -= lastTokenText.size() - trimmedText.size();
outputLine.tokens.back().text = trimmedText;
}
result.push_back(outputLine);
outputLine.tokens = indentationTokens;
// Make sure any collapsible state indicators are set to padding so that the indicators don't
// show up more than once for a single scope.
for (auto& outToken : outputLine.tokens)
{
if (outToken.type == CollapseStateIndicatorToken)
outToken.context = ContentCollapsiblePadding;
}
outputLine.tokens.emplace_back(TextToken, string(additionalContinuationIndentation, ' '));
currentWidth = 0;
desiredWidth = desiredContinuationWidth;
firstTokenOfLine = true;
};
while (!layoutStack.empty())
{
ItemLayoutStackEntry layoutStackEntry = layoutStack.top();
layoutStack.pop();
items = layoutStackEntry.items;
additionalContinuationIndentation = layoutStackEntry.additionalContinuationIndentation;
desiredWidth = layoutStackEntry.desiredWidth;
desiredContinuationWidth = layoutStackEntry.desiredContinuationWidth;
// Check to see if the scope we are returning to needs a new line. This is used when an argument
// spans multiple lines. The rest of the arguments are placed on separate lines from the long argument.
if (layoutStackEntry.newLineOnReenteringScope && currentWidth > 0)
newLine();
for (auto item = items.begin(); item != items.end();)
{
if (currentWidth + item->width > desiredWidth)
{
// Current item is too wide to fit on the current line, will need to start a new line.
auto next = item;
++next;
// If we are already on a fresh line, or the item is too wide to fit on a new line of its
// own, we have to start emitting tokens and wrap in the middle of the item. If the item
// is a container, always use the splitting behavior.
if (currentWidth == 0 || item->width > desiredContinuationWidth || item->type == Container)
{
if (item->type == Argument && currentWidth != 0)
{
// If an argument is too wide to show on a single line all by itself, start the argument
// on a new line, and add additional indentation for the continuation of the argument.
if (next != items.end())
{
layoutStack.push({vector(next, items.end()), additionalContinuationIndentation,
desiredWidth, desiredContinuationWidth, true});
}
newLine();
additionalContinuationIndentation += settings.tabWidth;
if (desiredContinuationWidth < settings.minimumContentLength + settings.tabWidth)
desiredContinuationWidth = settings.minimumContentLength;
else
desiredContinuationWidth -= settings.tabWidth;
layoutStack.push({item->items, additionalContinuationIndentation, desiredWidth,
desiredContinuationWidth, false});
break;
}
if (item->tokens.empty())
{
// Item contains other items. Place the context onto the layout stack and resume processing.
if (next != items.end())
{
layoutStack.push({vector(next, items.end()), additionalContinuationIndentation,
desiredWidth, desiredContinuationWidth, false});
}
layoutStack.push({item->items, additionalContinuationIndentation, desiredWidth,
desiredContinuationWidth, false});
break;
}
// Item is an atom. We just have to emit the tokens even though it is too wide.
item->AppendAllTokens(outputLine.tokens, firstTokenOfLine);
++item;
continue;
}
// Start a new line and add the item on the fresh line.
newLine();
continue;
}
// Item fits, emit all tokens for it
item->AppendAllTokens(outputLine.tokens, firstTokenOfLine);
currentWidth += item->width;
++item;
}
}
// Emit the last line if it had tokens
if (currentWidth > 0)
newLine();
}
return result;
}
extern "C"
{
BN_DECLARE_CORE_ABI_VERSION
#ifndef DEMO_EDITION
BINARYNINJAPLUGIN void CorePluginDependencies()
{
}
#endif
#ifdef DEMO_EDITION
bool GenericFormatterPluginInit()
#else
BINARYNINJAPLUGIN bool CorePluginInit()
#endif
{
GenericLineFormatter* formatter = new GenericLineFormatter();
LineFormatter::Register(formatter);
return true;
}
}