-
-
Notifications
You must be signed in to change notification settings - Fork 214
/
Copy pathcmath.po
439 lines (381 loc) · 18.4 KB
/
cmath.po
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# Copyright (C) 2001-2024, Python Software Foundation
# This file is distributed under the same license as the Python package.
#
# Translators:
msgid ""
msgstr ""
"Project-Id-Version: Python 3.13\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2024-11-05 00:13+0000\n"
"PO-Revision-Date: 2024-03-14 09:26+0800\n"
"Last-Translator: Enkai Huang <[email protected]>\n"
"Language-Team: Chinese - TAIWAN (https://github.com/python/python-docs-zh-"
"tw)\n"
"Language: zh_TW\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=1; plural=0;\n"
"X-Generator: Poedit 3.4.2\n"
#: ../../library/cmath.rst:2
msgid ":mod:`!cmath` --- Mathematical functions for complex numbers"
msgstr ":mod:`!cmath` --- 複數的數學函式"
#: ../../library/cmath.rst:9
msgid ""
"This module provides access to mathematical functions for complex numbers. "
"The functions in this module accept integers, floating-point numbers or "
"complex numbers as arguments. They will also accept any Python object that "
"has either a :meth:`~object.__complex__` or a :meth:`~object.__float__` "
"method: these methods are used to convert the object to a complex or "
"floating-point number, respectively, and the function is then applied to the "
"result of the conversion."
msgstr ""
"本模組提供一些適用於複數的數學函式。本模組中的函式接受整數、浮點數或複數作為"
"引數。它們也接受任何具有 :meth:`~object.__complex__` 或 :meth:`~object."
"__float__` 方法的 Python 物件:這些方法分別用於將物件轉換為複數或浮點數,然後"
"再將函式應用於轉換後的結果。"
#: ../../library/cmath.rst:18
msgid ""
"For functions involving branch cuts, we have the problem of deciding how to "
"define those functions on the cut itself. Following Kahan's \"Branch cuts "
"for complex elementary functions\" paper, as well as Annex G of C99 and "
"later C standards, we use the sign of zero to distinguish one side of the "
"branch cut from the other: for a branch cut along (a portion of) the real "
"axis we look at the sign of the imaginary part, while for a branch cut along "
"the imaginary axis we look at the sign of the real part."
msgstr ""
"對於涉及分枝切割 (branch cut) 的函式,我們面臨的問題是決定如何定義在切割本身"
"上的這些函式。遵循 Kahan 的論文 \"Branch cuts for complex elementary "
"functions\",以及 C99 的附錄 G 和後來的 C 標準,我們使用零符號來區分分枝切割"
"的兩側:對於沿著(一部分)實數軸的分枝切割,我們查看虛部的符號,而對於沿虛軸"
"的分枝切割,我們則查看實部的符號。"
#: ../../library/cmath.rst:26
msgid ""
"For example, the :func:`cmath.sqrt` function has a branch cut along the "
"negative real axis. An argument of ``complex(-2.0, -0.0)`` is treated as "
"though it lies *below* the branch cut, and so gives a result on the negative "
"imaginary axis::"
msgstr ""
"例如 :func:`cmath.sqrt` 函式具有一條沿負實軸的分枝切割。 引數 "
"``complex(-2.0, -0.0)`` 被視為位於分枝切割 *下方* 處理,因此給出的結果在負虛"
"軸上: ::"
#: ../../library/cmath.rst:31
msgid ""
">>> cmath.sqrt(complex(-2.0, -0.0))\n"
"-1.4142135623730951j"
msgstr ""
">>> cmath.sqrt(complex(-2.0, -0.0))\n"
"-1.4142135623730951j"
#: ../../library/cmath.rst:34
msgid ""
"But an argument of ``complex(-2.0, 0.0)`` is treated as though it lies above "
"the branch cut::"
msgstr "但是引數 ``complex(-2.0, 0.0)`` 會被當成位於分枝切割上方處理: ::"
#: ../../library/cmath.rst:37
msgid ""
">>> cmath.sqrt(complex(-2.0, 0.0))\n"
"1.4142135623730951j"
msgstr ""
">>> cmath.sqrt(complex(-2.0, 0.0))\n"
"1.4142135623730951j"
#: ../../library/cmath.rst:42
msgid "Conversions to and from polar coordinates"
msgstr "轉換到極座標和從極座標做轉換"
#: ../../library/cmath.rst:44
msgid ""
"A Python complex number ``z`` is stored internally using *rectangular* or "
"*Cartesian* coordinates. It is completely determined by its *real part* ``z."
"real`` and its *imaginary part* ``z.imag``."
msgstr ""
"Python 複數 ``z`` 是用 *直角坐標* 或 *笛卡爾坐標* 儲存在內部的。它完全是由其 "
"*實部* ``z.real`` 和 *虛部* ``z.imag`` 所決定。"
#: ../../library/cmath.rst:48
msgid ""
"*Polar coordinates* give an alternative way to represent a complex number. "
"In polar coordinates, a complex number *z* is defined by the modulus *r* and "
"the phase angle *phi*. The modulus *r* is the distance from *z* to the "
"origin, while the phase *phi* is the counterclockwise angle, measured in "
"radians, from the positive x-axis to the line segment that joins the origin "
"to *z*."
msgstr ""
"*極座標* 提供了另一種表示複數的方法。在極座標中,複數 *z* 由絕對值 (modulus) "
"*r* 和相位角 (phase) *phi* 定義。絕對值 *r* 是從 *z* 到原點的距離,而相位角 "
"*phi* 是從正 x 軸到連接原點到 *z* 的線段的逆時針角度(以弧度為單位)。"
#: ../../library/cmath.rst:55
msgid ""
"The following functions can be used to convert from the native rectangular "
"coordinates to polar coordinates and back."
msgstr "以下的函式可用於原始直角座標與極座標之間的相互轉換。"
#: ../../library/cmath.rst:60
msgid ""
"Return the phase of *x* (also known as the *argument* of *x*), as a float. "
"``phase(x)`` is equivalent to ``math.atan2(x.imag, x.real)``. The result "
"lies in the range [-\\ *π*, *π*], and the branch cut for this operation lies "
"along the negative real axis. The sign of the result is the same as the "
"sign of ``x.imag``, even when ``x.imag`` is zero::"
msgstr ""
"以浮點數的形式回傳 *x* 的相位角(也稱為 *x* 的 *引數* )。 ``phase(x)`` 等價"
"於 ``math.atan2(x.imag, x.real)``。結果將位於 [-\\ *π*, *π*] 的範圍內,且此操"
"作的分枝切割將位於負實軸上。結果的符號會與 ``x.imag`` 的符號相同,即使 ``x."
"imag`` 為零: ::"
#: ../../library/cmath.rst:66
msgid ""
">>> phase(complex(-1.0, 0.0))\n"
"3.141592653589793\n"
">>> phase(complex(-1.0, -0.0))\n"
"-3.141592653589793"
msgstr ""
">>> phase(complex(-1.0, 0.0))\n"
"3.141592653589793\n"
">>> phase(complex(-1.0, -0.0))\n"
"-3.141592653589793"
#: ../../library/cmath.rst:74
msgid ""
"The modulus (absolute value) of a complex number *x* can be computed using "
"the built-in :func:`abs` function. There is no separate :mod:`cmath` module "
"function for this operation."
msgstr ""
"複數 *x* 的絕對值可以使用內建的 :func:`abs` 函式計算。沒有單獨的 :mod:"
"`cmath` 模組函式適用於此操作。"
#: ../../library/cmath.rst:81
msgid ""
"Return the representation of *x* in polar coordinates. Returns a pair ``(r, "
"phi)`` where *r* is the modulus of *x* and phi is the phase of *x*. "
"``polar(x)`` is equivalent to ``(abs(x), phase(x))``."
msgstr ""
"回傳 *x* 在極座標中的表達方式。回傳一組數對 ``(r, phi)``, *r* 是 *x* 的絕對"
"值, *phi* 是 *x* 的相位角。 ``polar(x)`` 相當於 ``(abs(x), phase(x))``。"
#: ../../library/cmath.rst:89
msgid ""
"Return the complex number *x* with polar coordinates *r* and *phi*. "
"Equivalent to ``complex(r * math.cos(phi), r * math.sin(phi))``."
msgstr ""
"透過極座標 *r* 和 *phi* 回傳複數 *x*。相當於 ``complex(r * math.cos(phi), r "
"* math.sin(phi))``。"
#: ../../library/cmath.rst:94
msgid "Power and logarithmic functions"
msgstr "冪函數和對數函數"
#: ../../library/cmath.rst:98
msgid ""
"Return *e* raised to the power *x*, where *e* is the base of natural "
"logarithms."
msgstr "回傳 *e* 的 *x* 次方,其中 *e* 是自然對數的底數。"
#: ../../library/cmath.rst:104
msgid ""
"Returns the logarithm of *x* to the given *base*. If the *base* is not "
"specified, returns the natural logarithm of *x*. There is one branch cut, "
"from 0 along the negative real axis to -∞."
msgstr ""
"回傳 *x* 給定 *base* 的對數。如果未指定 *base*,則傳回 *x* 的自然對數。存在一"
"條分枝切割,從 0 沿負實數軸到 -∞。"
#: ../../library/cmath.rst:111
msgid ""
"Return the base-10 logarithm of *x*. This has the same branch cut as :func:"
"`log`."
msgstr "回傳 *x* 以 10 為底的對數。它與 :func:`log` 具有相同的分枝切割。"
#: ../../library/cmath.rst:117
msgid ""
"Return the square root of *x*. This has the same branch cut as :func:`log`."
msgstr "回傳 *x* 的平方根。它與 :func:`log` 具有相同的分枝切割。"
#: ../../library/cmath.rst:121
msgid "Trigonometric functions"
msgstr "三角函數"
#: ../../library/cmath.rst:125
msgid ""
"Return the arc cosine of *x*. There are two branch cuts: One extends right "
"from 1 along the real axis to ∞. The other extends left from -1 along the "
"real axis to -∞."
msgstr ""
"回傳 *x* 的反餘弦值。存在兩條分枝切割:一條是從 1 沿著實數軸向右延伸到 ∞。另"
"一條從 -1 沿實數軸向左延伸到 -∞。"
#: ../../library/cmath.rst:132
msgid ""
"Return the arc sine of *x*. This has the same branch cuts as :func:`acos`."
msgstr "回傳 *x* 的反正弦值。它與 :func:`acos` 具有相同的分枝切割。"
#: ../../library/cmath.rst:137
msgid ""
"Return the arc tangent of *x*. There are two branch cuts: One extends from "
"``1j`` along the imaginary axis to ``∞j``. The other extends from ``-1j`` "
"along the imaginary axis to ``-∞j``."
msgstr ""
"回傳 *x* 的反正切值。有兩條分枝切割:一條是從 ``1j`` 沿著虛軸延伸到 ``∞j``。"
"另一條從 ``-1j`` 沿著虛軸延伸到 ``-∞j``。"
#: ../../library/cmath.rst:144
msgid "Return the cosine of *x*."
msgstr "回傳 *x* 的餘弦值。"
#: ../../library/cmath.rst:149
msgid "Return the sine of *x*."
msgstr "回傳 *x* 的正弦值。"
#: ../../library/cmath.rst:154
msgid "Return the tangent of *x*."
msgstr "回傳 *x* 的正切值。"
#: ../../library/cmath.rst:158
msgid "Hyperbolic functions"
msgstr "雙曲函數"
#: ../../library/cmath.rst:162
msgid ""
"Return the inverse hyperbolic cosine of *x*. There is one branch cut, "
"extending left from 1 along the real axis to -∞."
msgstr ""
"回傳 *x* 的反雙曲餘弦值。存在一條分枝切割,從 1 沿實數軸向左延伸到 -∞。"
#: ../../library/cmath.rst:168
msgid ""
"Return the inverse hyperbolic sine of *x*. There are two branch cuts: One "
"extends from ``1j`` along the imaginary axis to ``∞j``. The other extends "
"from ``-1j`` along the imaginary axis to ``-∞j``."
msgstr ""
"回傳 *x* 的反雙曲正弦值。存在兩條分枝切割:一條是從 ``1j`` 沿著虛軸延伸到 "
"``∞j``。另一條從 ``-1j`` 沿著虛軸延伸到 ``-∞j``。"
#: ../../library/cmath.rst:175
msgid ""
"Return the inverse hyperbolic tangent of *x*. There are two branch cuts: One "
"extends from ``1`` along the real axis to ``∞``. The other extends from "
"``-1`` along the real axis to ``-∞``."
msgstr ""
"回傳 *x* 的反雙曲正切值。存在兩條分枝切割:一條是從 ``1`` 沿著實數軸延伸到 "
"``∞``。另一條從 ``-1`` 沿著實數軸延伸到 ``-∞``。"
#: ../../library/cmath.rst:182
msgid "Return the hyperbolic cosine of *x*."
msgstr "回傳 *x* 的反雙曲餘弦值。"
#: ../../library/cmath.rst:187
msgid "Return the hyperbolic sine of *x*."
msgstr "回傳 *x* 的反雙曲正弦值。"
#: ../../library/cmath.rst:192
msgid "Return the hyperbolic tangent of *x*."
msgstr "回傳 *x* 的反雙曲正切值。"
#: ../../library/cmath.rst:196
msgid "Classification functions"
msgstr "分類函式"
#: ../../library/cmath.rst:200
msgid ""
"Return ``True`` if both the real and imaginary parts of *x* are finite, and "
"``False`` otherwise."
msgstr "如果 *x* 的實部和虛部都是有限的,則回傳 ``True``,否則回傳 ``False``。"
#: ../../library/cmath.rst:208
msgid ""
"Return ``True`` if either the real or the imaginary part of *x* is an "
"infinity, and ``False`` otherwise."
msgstr "如果 *x* 的實部或虛部是無窮大,則回傳 ``True``,否則回傳 ``False``。"
#: ../../library/cmath.rst:214
msgid ""
"Return ``True`` if either the real or the imaginary part of *x* is a NaN, "
"and ``False`` otherwise."
msgstr "如果 *x* 的實部或虛部為 NaN,則回傳 ``True``,否則回傳 ``False``。"
#: ../../library/cmath.rst:220
msgid ""
"Return ``True`` if the values *a* and *b* are close to each other and "
"``False`` otherwise."
msgstr "如果 *a* 和 *b* 的值相互接近,則回傳 ``True``,否則回傳 ``False``。"
#: ../../library/cmath.rst:223
msgid ""
"Whether or not two values are considered close is determined according to "
"given absolute and relative tolerances. If no errors occur, the result will "
"be: ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``."
msgstr ""
"兩數是否足夠接近取決於給定的絕對及相對容許偏差 (tolerance)。如果沒有錯誤發"
"生,結果將為:``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``。"
#: ../../library/cmath.rst:227
msgid ""
"*rel_tol* is the relative tolerance -- it is the maximum allowed difference "
"between *a* and *b*, relative to the larger absolute value of *a* or *b*. "
"For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default "
"tolerance is ``1e-09``, which assures that the two values are the same "
"within about 9 decimal digits. *rel_tol* must be nonnegative and less than "
"``1.0``."
msgstr ""
"*rel_tol* 為相對容許偏差 ── *a* 與 *b* 兩數差的最大容許值,與 *a* 及 *b* 兩數"
"的絕對值中較大者相關。例如欲設置 5% 的容許偏差,則傳入 ``rel_tol=0.05``。其預"
"設值為 ``1e-09``,該值可確保兩數於大約 9 個十進數位內相同。*rel_tol* 須不為負"
"且小於 ``1.0``。"
#: ../../library/cmath.rst:234
msgid ""
"*abs_tol* is the absolute tolerance; it defaults to ``0.0`` and it must be "
"nonnegative. When comparing ``x`` to ``0.0``, ``isclose(x, 0)`` is computed "
"as ``abs(x) <= rel_tol * abs(x)``, which is ``False`` for any ``x`` and "
"rel_tol less than ``1.0``. So add an appropriate positive abs_tol argument "
"to the call."
msgstr ""
#: ../../library/cmath.rst:240
msgid ""
"The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be "
"handled according to IEEE rules. Specifically, ``NaN`` is not considered "
"close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only "
"considered close to themselves."
msgstr ""
"定義於 IEEE 754 浮點標準中的特殊值 ``NaN``、``inf`` 和 ``-inf`` 會根據該標準"
"處理。更明確地說,``NaN`` 不會與包含自身在內的任何數字足夠接近,而 ``inf`` "
"及 ``-inf`` 皆只與自身接近。"
#: ../../library/cmath.rst:249
msgid ":pep:`485` -- A function for testing approximate equality"
msgstr ":pep:`485` ── 用於測試近似相等的函式"
#: ../../library/cmath.rst:253
msgid "Constants"
msgstr "常數"
#: ../../library/cmath.rst:257
msgid "The mathematical constant *π*, as a float."
msgstr "數學常數 *π*,作為一個浮點數。"
#: ../../library/cmath.rst:262
msgid "The mathematical constant *e*, as a float."
msgstr "數學常數 *e*,作為一個浮點數。"
#: ../../library/cmath.rst:267
msgid "The mathematical constant *τ*, as a float."
msgstr "數學常數 *τ*,作為一個浮點數。"
#: ../../library/cmath.rst:274
msgid "Floating-point positive infinity. Equivalent to ``float('inf')``."
msgstr "正無窮大的浮點數。相當於 ``float('inf')``。"
#: ../../library/cmath.rst:281
msgid ""
"Complex number with zero real part and positive infinity imaginary part. "
"Equivalent to ``complex(0.0, float('inf'))``."
msgstr "實部為零和虛部為正無窮的複數。相當於 ``complex(0.0, float('inf'))``。"
#: ../../library/cmath.rst:289
msgid ""
"A floating-point \"not a number\" (NaN) value. Equivalent to "
"``float('nan')``."
msgstr "浮點「非數字」 (NaN) 值。相當於 ``float('nan')``。"
#: ../../library/cmath.rst:297
msgid ""
"Complex number with zero real part and NaN imaginary part. Equivalent to "
"``complex(0.0, float('nan'))``."
msgstr "實部為零和虛部為 NaN 的複數。相當於 ``complex(0.0, float('nan'))``。"
#: ../../library/cmath.rst:305
msgid ""
"Note that the selection of functions is similar, but not identical, to that "
"in module :mod:`math`. The reason for having two modules is that some users "
"aren't interested in complex numbers, and perhaps don't even know what they "
"are. They would rather have ``math.sqrt(-1)`` raise an exception than "
"return a complex number. Also note that the functions defined in :mod:"
"`cmath` always return a complex number, even if the answer can be expressed "
"as a real number (in which case the complex number has an imaginary part of "
"zero)."
msgstr ""
"請注意,函式的選擇與模組 :mod:`math` 的類似,但並不完全相同。擁有兩個模組的原"
"因是有些用戶對複數不感興趣,甚至根本就不知道它們是什麼。他們寧願讓 ``math."
"sqrt(-1)`` 引發異常,也不願它回傳複數。另請注意, :mod:`cmath` 中所定義的函式"
"始終都會回傳複數,即使答案可以表示為實數(在這種情況下,複數的虛部為零)。"
#: ../../library/cmath.rst:313
msgid ""
"A note on branch cuts: They are curves along which the given function fails "
"to be continuous. They are a necessary feature of many complex functions. "
"It is assumed that if you need to compute with complex functions, you will "
"understand about branch cuts. Consult almost any (not too elementary) book "
"on complex variables for enlightenment. For information of the proper "
"choice of branch cuts for numerical purposes, a good reference should be the "
"following:"
msgstr ""
"關於分枝切割的註釋:它們是沿著給定的不連續函式的曲線。它們是許多複變函數的必"
"要特徵。假設你需要使用複變函數進行計算,你將會了解分枝切割的概念。請參閱幾乎"
"所有關於複變函數的(不是太初級的)書籍以獲得啟發。對於如何正確地基於數值目的"
"選擇分枝切割的相關訊息,以下內容應該是一個很好的參考:"
#: ../../library/cmath.rst:323
msgid ""
"Kahan, W: Branch cuts for complex elementary functions; or, Much ado about "
"nothing's sign bit. In Iserles, A., and Powell, M. (eds.), The state of the "
"art in numerical analysis. Clarendon Press (1987) pp165--211."
msgstr ""
#: ../../library/cmath.rst:303
msgid "module"
msgstr "module(模組)"
#: ../../library/cmath.rst:303
msgid "math"
msgstr "math(數學)"