diff --git a/docs/stable/.buildinfo b/docs/stable/.buildinfo index 84cdbd6ab202..3449402f7a16 100644 --- a/docs/stable/.buildinfo +++ b/docs/stable/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 93625c989914b71802289037a0f16437 +config: 892a2ec27a03fe01b7f360c8920a2882 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/stable/_images/add_histogram.png b/docs/stable/_images/add_histogram.png deleted file mode 100644 index d9185e4b10b5..000000000000 Binary files a/docs/stable/_images/add_histogram.png and /dev/null differ diff --git a/docs/stable/_images/add_hparam.png b/docs/stable/_images/add_hparam.png deleted file mode 100644 index 5cebef5b5889..000000000000 Binary files a/docs/stable/_images/add_hparam.png and /dev/null differ diff --git a/docs/stable/_images/add_image.png b/docs/stable/_images/add_image.png deleted file mode 100644 index 0b675524b459..000000000000 Binary files a/docs/stable/_images/add_image.png and /dev/null differ diff --git a/docs/stable/_images/add_images.png b/docs/stable/_images/add_images.png deleted file mode 100644 index 5fcbf36580b7..000000000000 Binary files a/docs/stable/_images/add_images.png and /dev/null differ diff --git a/docs/stable/_images/add_scalar.png b/docs/stable/_images/add_scalar.png deleted file mode 100644 index a872b93eca32..000000000000 Binary files a/docs/stable/_images/add_scalar.png and /dev/null differ diff --git a/docs/stable/_images/add_scalars.png b/docs/stable/_images/add_scalars.png deleted file mode 100644 index 2a31a4b76cf9..000000000000 Binary files a/docs/stable/_images/add_scalars.png and /dev/null differ diff --git a/docs/stable/_modules/index.html b/docs/stable/_modules/index.html index dbd0a4b2c340..24ba1abb638e 100644 --- a/docs/stable/_modules/index.html +++ b/docs/stable/_modules/index.html @@ -494,7 +494,6 @@

All modules for which code is available

  • torch.utils.data.distributed
  • torch.utils.data.sampler
  • torch.utils.mobile_optimizer
  • -
  • torch.utils.tensorboard.writer
  • torchvision
  • diff --git a/docs/stable/generated/torch.addcmul.html b/docs/stable/generated/torch.addcmul.html index 2fa6651dc4be..4dc7d1c8d464 100644 --- a/docs/stable/generated/torch.addcmul.html +++ b/docs/stable/generated/torch.addcmul.html @@ -346,9 +346,10 @@

    torch.addcmultensor2, multiply the result by the scalar value and add it to input.

    -outi=inputi+value×tensor1i×tensor2i\text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i +outi=inputi+value×tensor1i×tensor2i\text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i + + -

    The shapes of tensor, tensor1, and tensor2 must be broadcastable.

    For inputs of type FloatTensor or DoubleTensor, value must be @@ -359,7 +360,8 @@

    torch.addcmulTensor) – the tensor to be added

  • tensor1 (Tensor) – the tensor to be multiplied

  • tensor2 (Tensor) – the tensor to be multiplied

  • -
  • value (Number, optional) – multiplier for tensor1.tensor2tensor1 .* tensor2 +

  • value (Number, optional) – multiplier for tensor1.tensor2tensor1 .* tensor2 +

  • out (Tensor, optional) – the output tensor.

  • diff --git a/docs/stable/generated/torch.addmm.html b/docs/stable/generated/torch.addmm.html index 3c6ba275a5f6..eeb7e76bd17b 100644 --- a/docs/stable/generated/torch.addmm.html +++ b/docs/stable/generated/torch.addmm.html @@ -344,20 +344,25 @@

    torch.addmmtorch.addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) → Tensor

    Performs a matrix multiplication of the matrices mat1 and mat2. The matrix input is added to the final result.

    -

    If mat1 is a (n×m)(n \times m) +

    If mat1 is a (n×m)(n \times m) + tensor, mat2 is a -(m×p)(m \times p) +(m×p)(m \times p) + tensor, then input must be -broadcastable with a (n×p)(n \times p) +broadcastable with a (n×p)(n \times p) + tensor -and out will be a (n×p)(n \times p) +and out will be a (n×p)(n \times p) + tensor.

    alpha and beta are scaling factors on matrix-vector product between mat1 and mat2 and the added matrix input respectively.

    -out=β input+α (mat1i@mat2i)\text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) +out=β input+α (mat1i@mat2i)\text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) + + -

    For inputs of type FloatTensor or DoubleTensor, arguments beta and alpha must be real numbers, otherwise they should be integers.

    @@ -366,10 +371,13 @@

    torch.addmmTensor) – matrix to be added

  • mat1 (Tensor) – the first matrix to be multiplied

  • mat2 (Tensor) – the second matrix to be multiplied

  • -
  • beta (Number, optional) – multiplier for input (β\beta +

  • beta (Number, optional) – multiplier for input (β\beta + )

  • -
  • alpha (Number, optional) – multiplier for mat1@mat2mat1 @ mat2 - (α\alpha +

  • alpha (Number, optional) – multiplier for mat1@mat2mat1 @ mat2 + + (α\alpha + )

  • out (Tensor, optional) – the output tensor.

  • diff --git a/docs/stable/generated/torch.addmv.html b/docs/stable/generated/torch.addmv.html index e08897716924..9a72fa3d4127 100644 --- a/docs/stable/generated/torch.addmv.html +++ b/docs/stable/generated/torch.addmv.html @@ -345,7 +345,8 @@

    torch.addmvmat and the vector vec. The vector input is added to the final result.

    -

    If mat is a (n×m)(n \times m) +

    If mat is a (n×m)(n \times m) + tensor, vec is a 1-D tensor of size m, then input must be broadcastable with a 1-D tensor of size n and @@ -353,9 +354,10 @@

    torch.addmvalpha and beta are scaling factors on matrix-vector product between mat and vec and the added tensor input respectively.

    -out=β input+α (mat@vec)\text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) +out=β input+α (mat@vec)\text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) + + -

    For inputs of type FloatTensor or DoubleTensor, arguments beta and alpha must be real numbers, otherwise they should be integers

    @@ -364,10 +366,13 @@

    torch.addmvTensor) – vector to be added

  • mat (Tensor) – matrix to be multiplied

  • vec (Tensor) – vector to be multiplied

  • -
  • beta (Number, optional) – multiplier for input (β\beta +

  • beta (Number, optional) – multiplier for input (β\beta + )

  • -
  • alpha (Number, optional) – multiplier for mat@vecmat @ vec - (α\alpha +

  • alpha (Number, optional) – multiplier for mat@vecmat @ vec + + (α\alpha + )

  • out (Tensor, optional) – the output tensor.

  • diff --git a/docs/stable/generated/torch.addr.html b/docs/stable/generated/torch.addr.html index 9e7e6f996d16..005fd8206b83 100644 --- a/docs/stable/generated/torch.addr.html +++ b/docs/stable/generated/torch.addr.html @@ -348,15 +348,18 @@

    torch.addrvec1 and vec2 and the added matrix input respectively.

    -out=β input+α (vec1vec2)\text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) +out=β input+α (vec1vec2)\text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) + + -

    If vec1 is a vector of size n and vec2 is a vector of size m, then input must be broadcastable with a matrix of size -(n×m)(n \times m) +(n×m)(n \times m) + and out will be a matrix of size -(n×m)(n \times m) +(n×m)(n \times m) + .

    For inputs of type FloatTensor or DoubleTensor, arguments beta and alpha must be real numbers, otherwise they should be integers

    @@ -366,10 +369,13 @@

    torch.addrTensor) – matrix to be added

  • vec1 (Tensor) – the first vector of the outer product

  • vec2 (Tensor) – the second vector of the outer product

  • -
  • beta (Number, optional) – multiplier for input (β\beta +

  • beta (Number, optional) – multiplier for input (β\beta + )

  • -
  • alpha (Number, optional) – multiplier for vec1vec2\text{vec1} \otimes \text{vec2} - (α\alpha +

  • alpha (Number, optional) – multiplier for vec1vec2\text{vec1} \otimes \text{vec2} + + (α\alpha + )

  • out (Tensor, optional) – the output tensor.

  • diff --git a/docs/stable/generated/torch.allclose.html b/docs/stable/generated/torch.allclose.html index cd887a3b5a29..bed2cfa35f2e 100644 --- a/docs/stable/generated/torch.allclose.html +++ b/docs/stable/generated/torch.allclose.html @@ -344,9 +344,10 @@

    torch.allclosetorch.allclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) → bool

    This function checks if all input and other satisfy the condition:

    -inputotheratol+rtol×other\lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert +inputotheratol+rtol×other\lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert + + -

    elementwise, for all elements of input and other. The behaviour of this function is analogous to numpy.allclose

    diff --git a/docs/stable/generated/torch.angle.html b/docs/stable/generated/torch.angle.html index c4a1cf01bef4..aae63c13ab81 100644 --- a/docs/stable/generated/torch.angle.html +++ b/docs/stable/generated/torch.angle.html @@ -344,9 +344,10 @@

    torch.angletorch.angle(input, out=None) → Tensor

    Computes the element-wise angle (in radians) of the given input tensor.

    -outi=angle(inputi)\text{out}_{i} = angle(\text{input}_{i}) +outi=angle(inputi)\text{out}_{i} = angle(\text{input}_{i}) + + -
    Parameters
      diff --git a/docs/stable/generated/torch.arange.html b/docs/stable/generated/torch.arange.html index 4edb45ba64b7..1c4b2c7d6617 100644 --- a/docs/stable/generated/torch.arange.html +++ b/docs/stable/generated/torch.arange.html @@ -342,7 +342,8 @@

      torch.arange
      torch.arange(start=0, end, step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
      -

      Returns a 1-D tensor of size endstartstep\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil +

      Returns a 1-D tensor of size endstartstep\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil + with values from the interval [start, end) taken with common difference step beginning from start.

      @@ -350,9 +351,10 @@

      torch.arangeend; to avoid inconsistency, we advise adding a small epsilon to end in such cases.

      -outi+1=outi+step\text{out}_{{i+1}} = \text{out}_{i} + \text{step} +outi+1=outi+step\text{out}_{{i+1}} = \text{out}_{i} + \text{step} + + -
      Parameters
        diff --git a/docs/stable/generated/torch.asin.html b/docs/stable/generated/torch.asin.html index 68ff1cd85adb..5c454f23b236 100644 --- a/docs/stable/generated/torch.asin.html +++ b/docs/stable/generated/torch.asin.html @@ -344,9 +344,10 @@

        torch.asintorch.asin(input, out=None) → Tensor

        Returns a new tensor with the arcsine of the elements of input.

        -outi=sin1(inputi)\text{out}_{i} = \sin^{-1}(\text{input}_{i}) +outi=sin1(inputi)\text{out}_{i} = \sin^{-1}(\text{input}_{i}) + + -
        Parameters
          diff --git a/docs/stable/generated/torch.asinh.html b/docs/stable/generated/torch.asinh.html index 27abe2798e3f..dadf0b94f585 100644 --- a/docs/stable/generated/torch.asinh.html +++ b/docs/stable/generated/torch.asinh.html @@ -344,9 +344,10 @@

          torch.asinhtorch.asinh(input, out=None) → Tensor

          Returns a new tensor with the inverse hyperbolic sine of the elements of input.

          -outi=sinh1(inputi)\text{out}_{i} = \sinh^{-1}(\text{input}_{i}) +outi=sinh1(inputi)\text{out}_{i} = \sinh^{-1}(\text{input}_{i}) + + -
          Parameters

          input (Tensor) – the input tensor.

          diff --git a/docs/stable/generated/torch.atan.html b/docs/stable/generated/torch.atan.html index 2bf3ff5dd832..d387439e171c 100644 --- a/docs/stable/generated/torch.atan.html +++ b/docs/stable/generated/torch.atan.html @@ -344,9 +344,10 @@

          torch.atantorch.atan(input, out=None) → Tensor

          Returns a new tensor with the arctangent of the elements of input.

          -outi=tan1(inputi)\text{out}_{i} = \tan^{-1}(\text{input}_{i}) +outi=tan1(inputi)\text{out}_{i} = \tan^{-1}(\text{input}_{i}) + + -
          Parameters
            diff --git a/docs/stable/generated/torch.atan2.html b/docs/stable/generated/torch.atan2.html index 80a98926b866..02e3c61a1eb9 100644 --- a/docs/stable/generated/torch.atan2.html +++ b/docs/stable/generated/torch.atan2.html @@ -342,15 +342,20 @@

            torch.atan2
            torch.atan2(input, other, out=None) → Tensor
            -

            Element-wise arctangent of inputi/otheri\text{input}_{i} / \text{other}_{i} +

            Element-wise arctangent of inputi/otheri\text{input}_{i} / \text{other}_{i} + with consideration of the quadrant. Returns a new tensor with the signed angles -in radians between vector (otheri,inputi)(\text{other}_{i}, \text{input}_{i}) +in radians between vector (otheri,inputi)(\text{other}_{i}, \text{input}_{i}) + -and vector (1,0)(1, 0) -. (Note that otheri\text{other}_{i} +and vector (1,0)(1, 0) + +. (Note that otheri\text{other}_{i} + , the second -parameter, is the x-coordinate, while inputi\text{input}_{i} +parameter, is the x-coordinate, while inputi\text{input}_{i} + , the first parameter, is the y-coordinate.)

            The shapes of input and other must be diff --git a/docs/stable/generated/torch.atanh.html b/docs/stable/generated/torch.atanh.html index 6744fd08bcb1..62b1029e9a97 100644 --- a/docs/stable/generated/torch.atanh.html +++ b/docs/stable/generated/torch.atanh.html @@ -350,9 +350,10 @@

            torch.atanh -outi=tanh1(inputi)\text{out}_{i} = \tanh^{-1}(\text{input}_{i}) +outi=tanh1(inputi)\text{out}_{i} = \tanh^{-1}(\text{input}_{i}) + + -
            Parameters

            input (Tensor) – the input tensor.

            diff --git a/docs/stable/generated/torch.baddbmm.html b/docs/stable/generated/torch.baddbmm.html index 7a168e5ca177..ef2a4de9dcf9 100644 --- a/docs/stable/generated/torch.baddbmm.html +++ b/docs/stable/generated/torch.baddbmm.html @@ -347,20 +347,25 @@

            torch.baddbmminput is added to the final result.

            batch1 and batch2 must be 3-D tensors each containing the same number of matrices.

            -

            If batch1 is a (b×n×m)(b \times n \times m) +

            If batch1 is a (b×n×m)(b \times n \times m) + tensor, batch2 is a -(b×m×p)(b \times m \times p) +(b×m×p)(b \times m \times p) + tensor, then input must be broadcastable with a -(b×n×p)(b \times n \times p) +(b×n×p)(b \times n \times p) + tensor and out will be a -(b×n×p)(b \times n \times p) +(b×n×p)(b \times n \times p) + tensor. Both alpha and beta mean the same as the scaling factors used in torch.addbmm().

            -outi=β inputi+α (batch1i@batch2i)\text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) +outi=β inputi+α (batch1i@batch2i)\text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) + + -

            For inputs of type FloatTensor or DoubleTensor, arguments beta and alpha must be real numbers, otherwise they should be integers.

            @@ -369,10 +374,13 @@

            torch.baddbmmTensor) – the tensor to be added

          • batch1 (Tensor) – the first batch of matrices to be multiplied

          • batch2 (Tensor) – the second batch of matrices to be multiplied

          • -
          • beta (Number, optional) – multiplier for input (β\beta +

          • beta (Number, optional) – multiplier for input (β\beta + )

          • -
          • alpha (Number, optional) – multiplier for batch1@batch2\text{batch1} \mathbin{@} \text{batch2} - (α\alpha +

          • alpha (Number, optional) – multiplier for batch1@batch2\text{batch1} \mathbin{@} \text{batch2} + + (α\alpha + )

          • out (Tensor, optional) – the output tensor.

          diff --git a/docs/stable/generated/torch.bartlett_window.html b/docs/stable/generated/torch.bartlett_window.html index 23714eebeb86..aa57ce6b4de6 100644 --- a/docs/stable/generated/torch.bartlett_window.html +++ b/docs/stable/generated/torch.bartlett_window.html @@ -344,27 +344,32 @@

          torch.bartlett_windowtorch.bartlett_window(window_length, periodic=True, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

          Bartlett window function.

          -w[n]=12nN11={2nN1if 0nN1222nN1if N12<n<N,w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases} +w[n]=12nN11={2nN1if 0nN1222nN1if N12<n<N,w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases} \frac{2n}{N - 1} & \text{if } 0 \leq n \leq \frac{N - 1}{2} \\ 2 - \frac{2n}{N - 1} & \text{if } \frac{N - 1}{2} < n < N \\ \end{cases}, - -

          where NN + + +

          where NN + is the full window size.

          The input window_length is a positive integer controlling the returned window size. periodic flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like -torch.stft(). Therefore, if periodic is true, the NN +torch.stft(). Therefore, if periodic is true, the NN + in -above formula is in fact window_length+1\text{window\_length} + 1 +above formula is in fact window_length+1\text{window\_length} + 1 + . Also, we always have torch.bartlett_window(L, periodic=True) equal to torch.bartlett_window(L + 1, periodic=False)[:-1]).

          Note

          -

          If window_length =1=1 +

          If window_length =1=1 + , the returned window contains a single value 1.

          @@ -386,7 +391,8 @@

          torch.bartlett_window

          Returns
          -

          A 1-D tensor of size (window_length,)(\text{window\_length},) +

          A 1-D tensor of size (window_length,)(\text{window\_length},) + containing the window

          Return type
          diff --git a/docs/stable/generated/torch.bernoulli.html b/docs/stable/generated/torch.bernoulli.html index c582c39c9f34..693626518a44 100644 --- a/docs/stable/generated/torch.bernoulli.html +++ b/docs/stable/generated/torch.bernoulli.html @@ -346,18 +346,23 @@

          torch.bernoulliinput tensor should be a tensor containing probabilities to be used for drawing the binary random number. Hence, all values in input have to be in the range: -0inputi10 \leq \text{input}_i \leq 1 +0inputi10 \leq \text{input}_i \leq 1 + .

          -

          The ith\text{i}^{th} +

          The ith\text{i}^{th} + element of the output tensor will draw a -value 11 - according to the ith\text{i}^{th} +value 11 + + according to the ith\text{i}^{th} + probability value given in input.

          -outiBernoulli(p=inputi)\text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i}) +outiBernoulli(p=inputi)\text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i}) + + -

          The returned out tensor only has values 0 or 1 and is of the same shape as input.

          out can have integral dtype, but input must have floating diff --git a/docs/stable/generated/torch.blackman_window.html b/docs/stable/generated/torch.blackman_window.html index 15224eba783c..fd8dbc5e8aca 100644 --- a/docs/stable/generated/torch.blackman_window.html +++ b/docs/stable/generated/torch.blackman_window.html @@ -344,24 +344,29 @@

          torch.blackman_windowtorch.blackman_window(window_length, periodic=True, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

          Blackman window function.

          -w[n]=0.420.5cos(2πnN1)+0.08cos(4πnN1)w[n] = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{N - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{N - 1} \right) +w[n]=0.420.5cos(2πnN1)+0.08cos(4πnN1)w[n] = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{N - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{N - 1} \right) + + + +

          where NN - -

          where NN is the full window size.

          The input window_length is a positive integer controlling the returned window size. periodic flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like -torch.stft(). Therefore, if periodic is true, the NN +torch.stft(). Therefore, if periodic is true, the NN + in -above formula is in fact window_length+1\text{window\_length} + 1 +above formula is in fact window_length+1\text{window\_length} + 1 + . Also, we always have torch.blackman_window(L, periodic=True) equal to torch.blackman_window(L + 1, periodic=False)[:-1]).

          Note

          -

          If window_length =1=1 +

          If window_length =1=1 + , the returned window contains a single value 1.

          @@ -383,7 +388,8 @@

          torch.blackman_window

          Returns
          -

          A 1-D tensor of size (window_length,)(\text{window\_length},) +

          A 1-D tensor of size (window_length,)(\text{window\_length},) + containing the window

          Return type
          diff --git a/docs/stable/generated/torch.bmm.html b/docs/stable/generated/torch.bmm.html index 0d431ec1eba3..19c1783362a6 100644 --- a/docs/stable/generated/torch.bmm.html +++ b/docs/stable/generated/torch.bmm.html @@ -346,16 +346,20 @@

          torch.bmmmat2.

          input and mat2 must be 3-D tensors each containing the same number of matrices.

          -

          If input is a (b×n×m)(b \times n \times m) +

          If input is a (b×n×m)(b \times n \times m) + tensor, mat2 is a -(b×m×p)(b \times m \times p) +(b×m×p)(b \times m \times p) + tensor, out will be a -(b×n×p)(b \times n \times p) +(b×n×p)(b \times n \times p) + tensor.

          -outi=inputi@mat2i\text{out}_i = \text{input}_i \mathbin{@} \text{mat2}_i +outi=inputi@mat2i\text{out}_i = \text{input}_i \mathbin{@} \text{mat2}_i + + -

          Note

          This function does not broadcast. diff --git a/docs/stable/generated/torch.cdist.html b/docs/stable/generated/torch.cdist.html index 2d56d131c797..be92332d7921 100644 --- a/docs/stable/generated/torch.cdist.html +++ b/docs/stable/generated/torch.cdist.html @@ -341,17 +341,20 @@

          torch.cdist

          -torch.cdist(x1: torch.Tensor, x2: torch.Tensor, p: float = 2.0, compute_mode: str = 'use_mm_for_euclid_dist_if_necessary') → torch.Tensor[source]
          +torch.cdist(x1, x2, p=2.0, compute_mode='use_mm_for_euclid_dist_if_necessary')[source]

          Computes batched the p-norm distance between each pair of the two collections of row vectors.

          Parameters

          If upper is True, and AA + is a batch of symmetric positive-definite matrices, then the returned tensor will be composed of upper-triangular Cholesky factors of each of the individual matrices. Similarly, when upper is False, the returned @@ -362,8 +366,10 @@

          torch.cholesky
          Parameters
            -
          • input (Tensor) – the input tensor AA - of size (,n,n)(*, n, n) +

          • input (Tensor) – the input tensor AA + + of size (,n,n)(*, n, n) + where * is zero or more batch dimensions consisting of symmetric positive-definite matrices.

          • upper (bool, optional) – flag that indicates whether to return a diff --git a/docs/stable/generated/torch.cholesky_inverse.html b/docs/stable/generated/torch.cholesky_inverse.html index db0ad622225a..612b16187581 100644 --- a/docs/stable/generated/torch.cholesky_inverse.html +++ b/docs/stable/generated/torch.cholesky_inverse.html @@ -342,29 +342,36 @@

            torch.cholesky_inverse
            torch.cholesky_inverse(input, upper=False, out=None) → Tensor
            -

            Computes the inverse of a symmetric positive-definite matrix AA +

            Computes the inverse of a symmetric positive-definite matrix AA + using its -Cholesky factor uu +Cholesky factor uu + : returns matrix inv. The inverse is computed using LAPACK routines dpotri and spotri (and the corresponding MAGMA routines).

            -

            If upper is False, uu +

            If upper is False, uu + is lower triangular such that the returned tensor is

            -inv=(uuT)1inv = (uu^{{T}})^{{-1}} +inv=(uuT)1inv = (uu^{{T}})^{{-1}} + + + +

            If upper is True or not provided, uu - -

            If upper is True or not provided, uu is upper triangular such that the returned tensor is

            -inv=(uTu)1inv = (u^T u)^{{-1}} +inv=(uTu)1inv = (u^T u)^{{-1}} + + -
            Parameters
              -
            • input (Tensor) – the input 2-D tensor uu +

            • input (Tensor) – the input 2-D tensor uu + , a upper or lower triangular Cholesky factor

            • upper (bool, optional) – whether to return a lower (default) or upper triangular matrix

            • diff --git a/docs/stable/generated/torch.cholesky_solve.html b/docs/stable/generated/torch.cholesky_solve.html index 19611bc647ff..4ffd9d9d6f1d 100644 --- a/docs/stable/generated/torch.cholesky_solve.html +++ b/docs/stable/generated/torch.cholesky_solve.html @@ -343,37 +343,48 @@

              torch.cholesky_solve torch.cholesky_solve(input, input2, upper=False, out=None) → Tensor

              Solves a linear system of equations with a positive semidefinite -matrix to be inverted given its Cholesky factor matrix uu +matrix to be inverted given its Cholesky factor matrix uu + .

              -

              If upper is False, uu +

              If upper is False, uu + is and lower triangular and c is returned such that:

              -c=(uuT)1bc = (u u^T)^{{-1}} b +c=(uuT)1bc = (u u^T)^{{-1}} b + + + +

              If upper is True or not provided, uu - -

              If upper is True or not provided, uu is upper triangular and c is returned such that:

              -c=(uTu)1bc = (u^T u)^{{-1}} b +c=(uTu)1bc = (u^T u)^{{-1}} b + + -

              torch.cholesky_solve(b, u) can take in 2D inputs b, u or inputs that are batches of 2D matrices. If the inputs are batches, then returns batched outputs c

              Parameters
                -
              • input (Tensor) – input matrix bb - of size (,m,k)(*, m, k) +

              • input (Tensor) – input matrix bb + + of size (,m,k)(*, m, k) + , -where * +where * + is zero or more batch dimensions

              • -
              • input2 (Tensor) – input matrix uu - of size (,m,m)(*, m, m) +

              • input2 (Tensor) – input matrix uu + + of size (,m,m)(*, m, m) + , -where * +where * + is zero of more batch dimensions composed of upper or lower triangular Cholesky factor

              • upper (bool, optional) – whether to consider the Cholesky factor as a diff --git a/docs/stable/generated/torch.clamp.html b/docs/stable/generated/torch.clamp.html index 90202efc6607..c15bf5abf2d0 100644 --- a/docs/stable/generated/torch.clamp.html +++ b/docs/stable/generated/torch.clamp.html @@ -345,13 +345,14 @@

                torch.clampinput into the range [ min, max ] and return a resulting tensor:

                -yi={minif xi<minxiif minximaxmaxif xi>maxy_i = \begin{cases} +yi={minif xi<minxiif minximaxmaxif xi>maxy_i = \begin{cases} \text{min} & \text{if } x_i < \text{min} \\ x_i & \text{if } \text{min} \leq x_i \leq \text{max} \\ \text{max} & \text{if } x_i > \text{max} \end{cases} - + +

                If input is of type FloatTensor or DoubleTensor, args min and max must be real numbers, otherwise they should be integers.

                diff --git a/docs/stable/generated/torch.combinations.html b/docs/stable/generated/torch.combinations.html index faa1b5945a1b..7803bc5d5983 100644 --- a/docs/stable/generated/torch.combinations.html +++ b/docs/stable/generated/torch.combinations.html @@ -342,7 +342,8 @@

                torch.combinations
                torch.combinations(input, r=2, with_replacement=False) → seq
                -

                Compute combinations of length rr +

                Compute combinations of length rr + of the given tensor. The behavior is similar to python’s itertools.combinations when with_replacement is set to False, and itertools.combinations_with_replacement when with_replacement is set to True.

                diff --git a/docs/stable/generated/torch.conj.html b/docs/stable/generated/torch.conj.html index 1b5ad6ccf528..739944dea16d 100644 --- a/docs/stable/generated/torch.conj.html +++ b/docs/stable/generated/torch.conj.html @@ -344,9 +344,10 @@

                torch.conjtorch.conj(input, out=None) → Tensor

                Computes the element-wise conjugate of the given input tensor.

                -outi=conj(inputi)\text{out}_{i} = conj(\text{input}_{i}) +outi=conj(inputi)\text{out}_{i} = conj(\text{input}_{i}) + + -
                Parameters
                  diff --git a/docs/stable/generated/torch.cos.html b/docs/stable/generated/torch.cos.html index 0f43a7f0308e..243aa004dc7e 100644 --- a/docs/stable/generated/torch.cos.html +++ b/docs/stable/generated/torch.cos.html @@ -344,9 +344,10 @@

                  torch.costorch.cos(input, out=None) → Tensor

                  Returns a new tensor with the cosine of the elements of input.

                  -outi=cos(inputi)\text{out}_{i} = \cos(\text{input}_{i}) +outi=cos(inputi)\text{out}_{i} = \cos(\text{input}_{i}) + + -
                  Parameters
                    diff --git a/docs/stable/generated/torch.cosh.html b/docs/stable/generated/torch.cosh.html index f8f6a1eee20b..be358df1c1ba 100644 --- a/docs/stable/generated/torch.cosh.html +++ b/docs/stable/generated/torch.cosh.html @@ -345,9 +345,10 @@

                    torch.coshinput.

                    -outi=cosh(inputi)\text{out}_{i} = \cosh(\text{input}_{i}) +outi=cosh(inputi)\text{out}_{i} = \cosh(\text{input}_{i}) + + -
                    Parameters
                      diff --git a/docs/stable/generated/torch.cummax.html b/docs/stable/generated/torch.cummax.html index 9c99386144ac..6cebcc945bbb 100644 --- a/docs/stable/generated/torch.cummax.html +++ b/docs/stable/generated/torch.cummax.html @@ -346,6 +346,10 @@

                      torch.cummaxinput in the dimension dim. And indices is the index location of each maximum value found in the dimension dim.

                      +yi=max(x1,x2,x3,,xi)y_i = max(x_1, x_2, x_3, \dots, x_i) + + +
                      Parameters
                        diff --git a/docs/stable/generated/torch.cummin.html b/docs/stable/generated/torch.cummin.html index ef6d7e449401..30637225cdbb 100644 --- a/docs/stable/generated/torch.cummin.html +++ b/docs/stable/generated/torch.cummin.html @@ -346,6 +346,10 @@

                        torch.cummininput in the dimension dim. And indices is the index location of each maximum value found in the dimension dim.

                        +yi=min(x1,x2,x3,,xi)y_i = min(x_1, x_2, x_3, \dots, x_i) + + +
                        Parameters
                          diff --git a/docs/stable/generated/torch.cumprod.html b/docs/stable/generated/torch.cumprod.html index b7183363cdd9..ea5f16d3075d 100644 --- a/docs/stable/generated/torch.cumprod.html +++ b/docs/stable/generated/torch.cumprod.html @@ -347,6 +347,10 @@

                          torch.cumprodinput is a vector of size N, the result will also be a vector of size N, with elements.

                          +yi=x1×x2×x3××xiy_i = x_1 \times x_2\times x_3\times \dots \times x_i + + +
                          Parameters
                            diff --git a/docs/stable/generated/torch.cumsum.html b/docs/stable/generated/torch.cumsum.html index 15ab224c9d2b..cdfd572c002a 100644 --- a/docs/stable/generated/torch.cumsum.html +++ b/docs/stable/generated/torch.cumsum.html @@ -347,6 +347,10 @@

                            torch.cumsuminput is a vector of size N, the result will also be a vector of size N, with elements.

                            +yi=x1+x2+x3++xiy_i = x_1 + x_2 + x_3 + \dots + x_i + + +
                            Parameters
                              diff --git a/docs/stable/generated/torch.diag_embed.html b/docs/stable/generated/torch.diag_embed.html index f36ea78221a6..17dfd3fea91c 100644 --- a/docs/stable/generated/torch.diag_embed.html +++ b/docs/stable/generated/torch.diag_embed.html @@ -354,7 +354,8 @@

                              torch.diag_embedoffset other than 00 +Note that for offset other than 00 + , the order of dim1 and dim2 matters. Exchanging them is equivalent to changing the sign of offset.

                              diff --git a/docs/stable/generated/torch.digamma.html b/docs/stable/generated/torch.digamma.html index ced9ce513f04..ab0f4489f96d 100644 --- a/docs/stable/generated/torch.digamma.html +++ b/docs/stable/generated/torch.digamma.html @@ -344,9 +344,10 @@

                              torch.digammatorch.digamma(input, out=None) → Tensor

                              Computes the logarithmic derivative of the gamma function on input.

                              -ψ(x)=ddxln(Γ(x))=Γ(x)Γ(x)\psi(x) = \frac{d}{dx} \ln\left(\Gamma\left(x\right)\right) = \frac{\Gamma'(x)}{\Gamma(x)} +ψ(x)=ddxln(Γ(x))=Γ(x)Γ(x)\psi(x) = \frac{d}{dx} \ln\left(\Gamma\left(x\right)\right) = \frac{\Gamma'(x)}{\Gamma(x)} + + -
                              Parameters

                              input (Tensor) – the tensor to compute the digamma function on

                              diff --git a/docs/stable/generated/torch.div.html b/docs/stable/generated/torch.div.html index 1b0d5849824c..6e50fd94ab7a 100644 --- a/docs/stable/generated/torch.div.html +++ b/docs/stable/generated/torch.div.html @@ -351,9 +351,10 @@

                              torch.divtorch.floor_divide() (// in Python), instead.

                              -outi=inputiother\text{out}_i = \frac{\text{input}_i}{\text{other}} +outi=inputiother\text{out}_i = \frac{\text{input}_i}{\text{other}} + + -

                              If the torch.dtype of input and other differ, the torch.dtype of the result tensor is determined following rules described in the type promotion documentation. If @@ -387,9 +388,10 @@

                              torch.divinput is divided by each element of the tensor other. The resulting tensor is returned.

                              -outi=inputiotheri\text{out}_i = \frac{\text{input}_i}{\text{other}_i} +outi=inputiotheri\text{out}_i = \frac{\text{input}_i}{\text{other}_i} + + -

                              The shapes of input and other must be broadcastable. If the torch.dtype of input and other differ, the torch.dtype of the result tensor is determined following rules described in the type promotion documentation. If out is specified, the result must be diff --git a/docs/stable/generated/torch.eig.html b/docs/stable/generated/torch.eig.html index dc56b8d9f208..99f10c85bdf2 100644 --- a/docs/stable/generated/torch.eig.html +++ b/docs/stable/generated/torch.eig.html @@ -351,7 +351,8 @@

                              torch.eig
                              Parameters
                                -
                              • input (Tensor) – the square matrix of shape (n×n)(n \times n) +

                              • input (Tensor) – the square matrix of shape (n×n)(n \times n) + for which the eigenvalues and eigenvectors will be computed

                              • eigenvectors (bool) – True to compute both eigenvalues and eigenvectors; @@ -363,21 +364,25 @@

                                torch.eig

                                A namedtuple (eigenvalues, eigenvectors) containing

                                  -
                                • eigenvalues (Tensor): Shape (n×2)(n \times 2) +

                                • eigenvalues (Tensor): Shape (n×2)(n \times 2) + . Each row is an eigenvalue of input, where the first element is the real part and the second element is the imaginary part. The eigenvalues are not necessarily ordered.

                                • eigenvectors (Tensor): If eigenvectors=False, it’s an empty tensor. -Otherwise, this tensor of shape (n×n)(n \times n) +Otherwise, this tensor of shape (n×n)(n \times n) + can be used to compute normalized (unit length) eigenvectors of corresponding eigenvalues as follows. If the corresponding eigenvalues[j] is a real number, column eigenvectors[:, j] is the eigenvector corresponding to eigenvalues[j]. If the corresponding eigenvalues[j] and eigenvalues[j + 1] form a complex conjugate pair, then the true eigenvectors can be computed as -true eigenvector[j]=eigenvectors[:,j]+i×eigenvectors[:,j+1]\text{true eigenvector}[j] = eigenvectors[:, j] + i \times eigenvectors[:, j + 1] +true eigenvector[j]=eigenvectors[:,j]+i×eigenvectors[:,j+1]\text{true eigenvector}[j] = eigenvectors[:, j] + i \times eigenvectors[:, j + 1] + , -true eigenvector[j+1]=eigenvectors[:,j]i×eigenvectors[:,j+1]\text{true eigenvector}[j + 1] = eigenvectors[:, j] - i \times eigenvectors[:, j + 1] +true eigenvector[j+1]=eigenvectors[:,j]i×eigenvectors[:,j+1]\text{true eigenvector}[j + 1] = eigenvectors[:, j] - i \times eigenvectors[:, j + 1] + .

                                diff --git a/docs/stable/generated/torch.erf.html b/docs/stable/generated/torch.erf.html index bc348fc6ed20..b320c84f9c9b 100644 --- a/docs/stable/generated/torch.erf.html +++ b/docs/stable/generated/torch.erf.html @@ -344,16 +344,21 @@

                                torch.erftorch.erf(input, out=None) → Tensor

                                Computes the error function of each element. The error function is defined as follows:

                                -erf(x)=2π0xet2dt\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt - - +erf(x)=2π0xet2dt\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt + + +
                                Parameters
                                  diff --git a/docs/stable/generated/torch.erfc.html b/docs/stable/generated/torch.erfc.html index 53bb93dee26d..3acd8dc24ebe 100644 --- a/docs/stable/generated/torch.erfc.html +++ b/docs/stable/generated/torch.erfc.html @@ -345,16 +345,21 @@

                                  torch.erfcinput. The complementary error function is defined as follows:

                                  -erfc(x)=12π0xet2dt\mathrm{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt - - +erfc(x)=12π0xet2dt\mathrm{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt + + +
                                  Parameters
                                  diff --git a/docs/stable/generated/torch.nn.Module.html b/docs/stable/generated/torch.nn.Module.html index 168da5056bde..6c74247a1df3 100644 --- a/docs/stable/generated/torch.nn.Module.html +++ b/docs/stable/generated/torch.nn.Module.html @@ -380,7 +380,7 @@

                                  Module
                                  -apply(fn: Callable[[Module], None]) → T[source]
                                  +apply(fn: Callable[Module, None]) → T[source]

                                  Applies fn recursively to every submodule (as returned by .children()) as well as self. Typical use includes initializing the parameters of a model (see also torch.nn.init).

                                  @@ -841,7 +841,7 @@

                                  Module
                                  -register_forward_hook(hook: Callable[[...], None]) → torch.utils.hooks.RemovableHandle[source]
                                  +register_forward_hook(hook: Callable[..., None]) → torch.utils.hooks.RemovableHandle[source]

                                  Registers a forward hook on the module.

                                  The hook will be called every time after forward() has computed an output. It should have the following signature:

                                  @@ -866,7 +866,7 @@

                                  Module
                                  -register_forward_pre_hook(hook: Callable[[...], None]) → torch.utils.hooks.RemovableHandle[source]
                                  +register_forward_pre_hook(hook: Callable[..., None]) → torch.utils.hooks.RemovableHandle[source]

                                  Registers a forward pre-hook on the module.

                                  The hook will be called every time before forward() is invoked. It should have the following signature:

                                  diff --git a/docs/stable/generated/torch.nn.MultiLabelMarginLoss.html b/docs/stable/generated/torch.nn.MultiLabelMarginLoss.html index a1b084685667..bb4dd613881b 100644 --- a/docs/stable/generated/torch.nn.MultiLabelMarginLoss.html +++ b/docs/stable/generated/torch.nn.MultiLabelMarginLoss.html @@ -343,24 +343,35 @@

                                  MultiLabelMarginLoss class torch.nn.MultiLabelMarginLoss(size_average=None, reduce=None, reduction: str = 'mean')[source]

                                  Creates a criterion that optimizes a multi-class multi-classification -hinge loss (margin-based loss) between input xx +hinge loss (margin-based loss) between input xx + (a 2D mini-batch Tensor) -and output yy +and output yy + (which is a 2D Tensor of target class indices). For each sample in the mini-batch:

                                  -loss(x,y)=ijmax(0,1(x[y[j]]x[i]))x.size(0)\text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)} - - -

                                  where x{0,,x.size(0)1}x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\} -, y{0,,y.size(0)1}y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\} -, 0y[j]x.size(0)10 \leq y[j] \leq \text{x.size}(0)-1 -, and iy[j]i \neq y[j] - for all ii - and jj +loss(x,y)=ijmax(0,1(x[y[j]]x[i]))x.size(0)\text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)} + + + +

                                  where x{0,  ,  x.size(0)1}x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\} + +, y{0,  ,  y.size(0)1}y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\} + +, 0y[j]x.size(0)10 \leq y[j] \leq \text{x.size}(0)-1 + +, and iy[j]i \neq y[j] + + for all ii + + and jj + .

                                  -

                                  yy - and xx +

                                  yy + + and xx + must have the same size.

                                  The criterion only considers a contiguous block of non-negative targets that starts at the front.

                                  @@ -388,14 +399,19 @@

                                  MultiLabelMarginLoss
                                  Shape:
                                    -
                                  • Input: (C)(C) - or (N,C)(N, C) +

                                  • Input: (C)(C) + + or (N,C)(N, C) + where N is the batch size and C is the number of classes.

                                  • -
                                  • Target: (C)(C) - or (N,C)(N, C) +

                                  • Target: (C)(C) + + or (N,C)(N, C) + , label targets padded by -1 ensuring same shape as the input.

                                  • -
                                  • Output: scalar. If reduction is 'none', then (N)(N) +

                                  • Output: scalar. If reduction is 'none', then (N)(N) + .

                                  diff --git a/docs/stable/generated/torch.nn.MultiLabelSoftMarginLoss.html b/docs/stable/generated/torch.nn.MultiLabelSoftMarginLoss.html index 3e0e07c82bb8..93d8801117db 100644 --- a/docs/stable/generated/torch.nn.MultiLabelSoftMarginLoss.html +++ b/docs/stable/generated/torch.nn.MultiLabelSoftMarginLoss.html @@ -343,20 +343,26 @@

                                  MultiLabelSoftMarginLoss class torch.nn.MultiLabelSoftMarginLoss(weight: Optional[torch.Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean')[source]

                                  Creates a criterion that optimizes a multi-label one-versus-all -loss based on max-entropy, between input xx - and target yy +loss based on max-entropy, between input xx + + and target yy + of size -(N,C)(N, C) +(N,C)(N, C) + . For each sample in the minibatch:

                                  -loss(x,y)=1Ciy[i]log((1+exp(x[i]))1)+(1y[i])log(exp(x[i])(1+exp(x[i])))loss(x, y) = - \frac{1}{C} * \sum_i y[i] * \log((1 + \exp(-x[i]))^{-1}) +loss(x,y)=1Ciy[i]log((1+exp(x[i]))1)+(1y[i])log(exp(x[i])(1+exp(x[i])))loss(x, y) = - \frac{1}{C} * \sum_i y[i] * \log((1 + \exp(-x[i]))^{-1}) + (1-y[i]) * \log\left(\frac{\exp(-x[i])}{(1 + \exp(-x[i]))}\right) - -

                                  where i{0,,x.nElement()1}i \in \left\{0, \; \cdots , \; \text{x.nElement}() - 1\right\} + + +

                                  where i{0,  ,  x.nElement()1}i \in \left\{0, \; \cdots , \; \text{x.nElement}() - 1\right\} + , -y[i]{0,1}y[i] \in \left\{0, \; 1\right\} +y[i]{0,  1}y[i] \in \left\{0, \; 1\right\} + .

                                  Parameters
                                  @@ -384,11 +390,14 @@

                                  MultiLabelSoftMarginLoss
                                  Shape:
                                    -
                                  • Input: (N,C)(N, C) +

                                  • Input: (N,C)(N, C) + where N is the batch size and C is the number of classes.

                                  • -
                                  • Target: (N,C)(N, C) +

                                  • Target: (N,C)(N, C) + , label targets padded by -1 ensuring same shape as the input.

                                  • -
                                  • Output: scalar. If reduction is 'none', then (N)(N) +

                                  • Output: scalar. If reduction is 'none', then (N)(N) + .

                                  diff --git a/docs/stable/generated/torch.nn.MultiMarginLoss.html b/docs/stable/generated/torch.nn.MultiMarginLoss.html index 770d4e2ce3a0..2839b83b19a1 100644 --- a/docs/stable/generated/torch.nn.MultiMarginLoss.html +++ b/docs/stable/generated/torch.nn.MultiMarginLoss.html @@ -343,40 +343,53 @@

                                  MultiMarginLoss class torch.nn.MultiMarginLoss(p: int = 1, margin: float = 1.0, weight: Optional[torch.Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean')[source]

                                  Creates a criterion that optimizes a multi-class classification hinge -loss (margin-based loss) between input xx +loss (margin-based loss) between input xx + (a 2D mini-batch Tensor) and -output yy +output yy + (which is a 1D tensor of target class indices, -0yx.size(1)10 \leq y \leq \text{x.size}(1)-1 +0yx.size(1)10 \leq y \leq \text{x.size}(1)-1 + ):

                                  -

                                  For each mini-batch sample, the loss in terms of the 1D input xx +

                                  For each mini-batch sample, the loss in terms of the 1D input xx + and scalar -output yy +output yy + is:

                                  -loss(x,y)=imax(0,marginx[y]+x[i]))px.size(0)\text{loss}(x, y) = \frac{\sum_i \max(0, \text{margin} - x[y] + x[i]))^p}{\text{x.size}(0)} +loss(x,y)=imax(0,marginx[y]+x[i]))px.size(0)\text{loss}(x, y) = \frac{\sum_i \max(0, \text{margin} - x[y] + x[i]))^p}{\text{x.size}(0)} + + + +

                                  where x{0,  ,  x.size(0)1}x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\} - -

                                  where x{0,,x.size(0)1}x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\} -and iyi \neq y +and iyi \neq y + .

                                  Optionally, you can give non-equal weighting on the classes by passing a 1D weight tensor into the constructor.

                                  The loss function then becomes:

                                  -loss(x,y)=imax(0,w[y](marginx[y]+x[i]))p)x.size(0)\text{loss}(x, y) = \frac{\sum_i \max(0, w[y] * (\text{margin} - x[y] + x[i]))^p)}{\text{x.size}(0)} +loss(x,y)=imax(0,w[y](marginx[y]+x[i]))p)x.size(0)\text{loss}(x, y) = \frac{\sum_i \max(0, w[y] * (\text{margin} - x[y] + x[i]))^p)}{\text{x.size}(0)} + + -
                                  Parameters
                                    -
                                  • p (int, optional) – Has a default value of 11 -. 11 - and 22 +

                                  • p (int, optional) – Has a default value of 11 + +. 11 + + and 22 + are the only supported values.

                                  • -
                                  • margin (float, optional) – Has a default value of 11 +

                                  • margin (float, optional) – Has a default value of 11 + .

                                  • weight (Tensor, optional) – a manual rescaling weight given to each class. If given, it has to be a Tensor of size C. Otherwise, it is diff --git a/docs/stable/generated/torch.nn.MultiheadAttention.html b/docs/stable/generated/torch.nn.MultiheadAttention.html index 6a5a03b3607b..fac1a085735f 100644 --- a/docs/stable/generated/torch.nn.MultiheadAttention.html +++ b/docs/stable/generated/torch.nn.MultiheadAttention.html @@ -346,6 +346,11 @@

                                    MultiheadAttention +MultiHead(Q,K,V)=Concat(head1,,headh)WOwhereheadi=Attention(QWiQ,KWiK,VWiV)\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O +\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) + + +
                                    Parameters
                                      @@ -370,7 +375,7 @@

                                      MultiheadAttention
                                      -forward(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, key_padding_mask: Optional[torch.Tensor] = None, need_weights: bool = True, attn_mask: Optional[torch.Tensor] = None) → Tuple[torch.Tensor, Optional[torch.Tensor]][source]
                                      +forward(query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None)[source]
                                      Parameters
                                        @@ -390,23 +395,29 @@

                                        MultiheadAttention
                                        Shape:
                                        diff --git a/docs/stable/generated/torch.nn.NLLLoss.html b/docs/stable/generated/torch.nn.NLLLoss.html index dd7e37c9ecde..505d91729d6a 100644 --- a/docs/stable/generated/torch.nn.NLLLoss.html +++ b/docs/stable/generated/torch.nn.NLLLoss.html @@ -349,42 +349,60 @@

                                        NLLLoss(minibatch,C)(minibatch, C) - or (minibatch,C,d1,d2,...,dK)(minibatch, C, d_1, d_2, ..., d_K) +(minibatch,C)(minibatch, C) + + or (minibatch,C,d1,d2,...,dK)(minibatch, C, d_1, d_2, ..., d_K) + -with K1K \geq 1 +with K1K \geq 1 + for the K-dimensional case (described later).

                                        Obtaining log-probabilities in a neural network is easily achieved by adding a LogSoftmax layer in the last layer of your network. You may use CrossEntropyLoss instead, if you prefer not to add an extra layer.

                                        -

                                        The target that this loss expects should be a class index in the range [0,C1][0, C-1] +

                                        The target that this loss expects should be a class index in the range [0,C1][0, C-1] + where C = number of classes; if ignore_index is specified, this loss also accepts this class index (this index may not necessarily be in the class range).

                                        The unreduced (i.e. with reduction set to 'none') loss can be described as:

                                        -

                                        where xx - is the input, yy - is the target, ww +(x,y)=L={l1,,lN},ln=wynxn,yn,wc=weight[c]1{cignore_index},\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad +l_n = - w_{y_n} x_{n,y_n}, \quad +w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore\_index}\}, + + + +

                                        where xx + + is the input, yy + + is the target, ww + is the weight, and -NN +NN + is the batch size. If reduction is not 'none' (default 'mean'), then

                                        -(x,y)={n=1N1n=1Nwynln,if reduction=’mean’;n=1Nln,if reduction=’sum’.\ell(x, y) = \begin{cases} +(x,y)={n=1N1n=1Nwynln,if reduction=’mean’;n=1Nln,if reduction=’sum’.\ell(x, y) = \begin{cases} \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, & \text{if reduction} = \text{'mean';}\\ \sum_{n=1}^N l_n, & \text{if reduction} = \text{'sum'.} \end{cases} - + +

                                        Can also be used for higher dimension inputs, such as 2D images, by providing -an input of size (minibatch,C,d1,d2,...,dK)(minibatch, C, d_1, d_2, ..., d_K) - with K1K \geq 1 +an input of size (minibatch,C,d1,d2,...,dK)(minibatch, C, d_1, d_2, ..., d_K) + + with K1K \geq 1 + , -where KK +where KK + is the number of dimensions, and a target of appropriate shape (see below). In the case of images, it computes NLL loss per-pixel.

                                        @@ -417,24 +435,34 @@

                                        NLLLoss
                                        Shape:
                                          -
                                        • Input: (N,C)(N, C) +

                                        • Input: (N,C)(N, C) + where C = number of classes, or -(N,C,d1,d2,...,dK)(N, C, d_1, d_2, ..., d_K) - with K1K \geq 1 +(N,C,d1,d2,...,dK)(N, C, d_1, d_2, ..., d_K) + + with K1K \geq 1 + in the case of K-dimensional loss.

                                        • -
                                        • Target: (N)(N) - where each value is 0targets[i]C10 \leq \text{targets}[i] \leq C-1 +

                                        • Target: (N)(N) + + where each value is 0targets[i]C10 \leq \text{targets}[i] \leq C-1 + , or -(N,d1,d2,...,dK)(N, d_1, d_2, ..., d_K) - with K1K \geq 1 +(N,d1,d2,...,dK)(N, d_1, d_2, ..., d_K) + + with K1K \geq 1 + in the case of K-dimensional loss.

                                        • Output: scalar. -If reduction is 'none', then the same size as the target: (N)(N) +If reduction is 'none', then the same size as the target: (N)(N) + , or -(N,d1,d2,...,dK)(N, d_1, d_2, ..., d_K) - with K1K \geq 1 +(N,d1,d2,...,dK)(N, d_1, d_2, ..., d_K) + + with K1K \geq 1 + in the case of K-dimensional loss.

                                        diff --git a/docs/stable/generated/torch.nn.PReLU.html b/docs/stable/generated/torch.nn.PReLU.html index a4f62cc66861..1f06872d7013 100644 --- a/docs/stable/generated/torch.nn.PReLU.html +++ b/docs/stable/generated/torch.nn.PReLU.html @@ -344,27 +344,33 @@

                                        PReLU class torch.nn.PReLU(num_parameters: int = 1, init: float = 0.25)[source]

                                        Applies the element-wise function:

                                        -PReLU(x)=max(0,x)+amin(0,x)\text{PReLU}(x) = \max(0,x) + a * \min(0,x) +PReLU(x)=max(0,x)+amin(0,x)\text{PReLU}(x) = \max(0,x) + a * \min(0,x) + + -

                                        or

                                        -PReLU(x)={x, if x0ax, otherwise \text{PReLU}(x) = +PReLU(x)={x, if x0ax, otherwise \text{PReLU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ ax, & \text{ otherwise } \end{cases} - -

                                        Here aa + + +

                                        Here aa + is a learnable parameter. When called without arguments, nn.PReLU() uses a single -parameter aa +parameter aa + across all input channels. If called with nn.PReLU(nChannels), -a separate aa +a separate aa + is used for each input channel.

                                        Note

                                        -

                                        weight decay should not be used when learning aa +

                                        weight decay should not be used when learning aa + for good performance.

                                        @@ -375,21 +381,25 @@

                                        PReLU
                                        Parameters
                                          -
                                        • num_parameters (int) – number of aa +

                                        • num_parameters (int) – number of aa + to learn. Although it takes an int as input, there is only two values are legitimate: 1, or the number of channels at input. Default: 1

                                        • -
                                        • init (float) – the initial value of aa +

                                        • init (float) – the initial value of aa + . Default: 0.25

                                        Shape:
                                          -
                                        • Input: (N,)(N, *) +

                                        • Input: (N,)(N, *) + where * means, any number of additional dimensions

                                        • -
                                        • Output: (N,)(N, *) +

                                        • Output: (N,)(N, *) + , same shape as the input

                                        diff --git a/docs/stable/generated/torch.nn.PairwiseDistance.html b/docs/stable/generated/torch.nn.PairwiseDistance.html index a66db92a95a6..9023f03cd48d 100644 --- a/docs/stable/generated/torch.nn.PairwiseDistance.html +++ b/docs/stable/generated/torch.nn.PairwiseDistance.html @@ -342,13 +342,16 @@

                                        PairwiseDistance
                                        class torch.nn.PairwiseDistance(p: float = 2.0, eps: float = 1e-06, keepdim: bool = False)[source]
                                        -

                                        Computes the batchwise pairwise distance between vectors v1v_1 -, v2v_2 +

                                        Computes the batchwise pairwise distance between vectors v1v_1 + +, v2v_2 + using the p-norm:

                                        -xp=(i=1nxip)1/p.\Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}. +xp=(i=1nxip)1/p.\Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}. + + -
                                        Parameters
                                        diff --git a/docs/stable/generated/torch.nn.PixelShuffle.html b/docs/stable/generated/torch.nn.PixelShuffle.html index 06c442c30d1d..028976d937ba 100644 --- a/docs/stable/generated/torch.nn.PixelShuffle.html +++ b/docs/stable/generated/torch.nn.PixelShuffle.html @@ -342,12 +342,15 @@

                                        PixelShuffle
                                        class torch.nn.PixelShuffle(upscale_factor: int)[source]
                                        -

                                        Rearranges elements in a tensor of shape (,C×r2,H,W)(*, C \times r^2, H, W) +

                                        Rearranges elements in a tensor of shape (,C×r2,H,W)(*, C \times r^2, H, W) + -to a tensor of shape (,C,H×r,W×r)(*, C, H \times r, W \times r) +to a tensor of shape (,C,H×r,W×r)(*, C, H \times r, W \times r) + .

                                        This is useful for implementing efficient sub-pixel convolution -with a stride of 1/r1/r +with a stride of 1/r1/r + .

                                        Look at the paper: Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network @@ -359,14 +362,19 @@

                                        PixelShuffle
                                        Shape:
                                          -
                                        • Input: (N,L,Hin,Win)(N, L, H_{in}, W_{in}) - where L=C×upscale_factor2L=C \times \text{upscale\_factor}^2 +

                                        • Input: (N,L,Hin,Win)(N, L, H_{in}, W_{in}) + + where L=C×upscale_factor2L=C \times \text{upscale\_factor}^2 +

                                        • -
                                        • Output: (N,C,Hout,Wout)(N, C, H_{out}, W_{out}) +

                                        • Output: (N,C,Hout,Wout)(N, C, H_{out}, W_{out}) + where -Hout=Hin×upscale_factorH_{out} = H_{in} \times \text{upscale\_factor} +Hout=Hin×upscale_factorH_{out} = H_{in} \times \text{upscale\_factor} + -and Wout=Win×upscale_factorW_{out} = W_{in} \times \text{upscale\_factor} +and Wout=Win×upscale_factorW_{out} = W_{in} \times \text{upscale\_factor} +

                                        diff --git a/docs/stable/generated/torch.nn.PoissonNLLLoss.html b/docs/stable/generated/torch.nn.PoissonNLLLoss.html index bf1940acf361..ce91440c79d0 100644 --- a/docs/stable/generated/torch.nn.PoissonNLLLoss.html +++ b/docs/stable/generated/torch.nn.PoissonNLLLoss.html @@ -345,10 +345,11 @@

                                        PoissonNLLLoss -targetPoisson(input)loss(input,target)=inputtargetlog(input)+log(target!)\text{target} \sim \mathrm{Poisson}(\text{input}) +targetPoisson(input)loss(input,target)=inputtargetlog(input)+log(target!)\text{target} \sim \mathrm{Poisson}(\text{input}) \text{loss}(\text{input}, \text{target}) = \text{input} - \text{target} * \log(\text{input}) - + \log(\text{target!}) + + \log(\text{target!}) +

                                        The last term can be omitted or approximated with Stirling formula. The approximation is used for target values more than 1. For targets less or equal to 1 zeros are added to the loss.

                                        @@ -356,23 +357,27 @@

                                        PoissonNLLLossParameters
                                        @@ -400,23 +406,33 @@

                                        RNNCell

                                        Note

                                        -

                                        All the weights and biases are initialized from U(k,k)\mathcal{U}(-\sqrt{k}, \sqrt{k}) +

                                        All the weights and biases are initialized from U(k,k)\mathcal{U}(-\sqrt{k}, \sqrt{k}) + -where k=1hidden_sizek = \frac{1}{\text{hidden\_size}} +where k=1hidden_sizek = \frac{1}{\text{hidden\_size}} +

                                        Examples:

                                        diff --git a/docs/stable/generated/torch.nn.RReLU.html b/docs/stable/generated/torch.nn.RReLU.html index 708f50228efb..c4befa9f6dd4 100644 --- a/docs/stable/generated/torch.nn.RReLU.html +++ b/docs/stable/generated/torch.nn.RReLU.html @@ -347,16 +347,19 @@

                                        RReLU

                                        Empirical Evaluation of Rectified Activations in Convolutional Network.

                                        The function is defined as:

                                        -RReLU(x)={xif x0ax otherwise \text{RReLU}(x) = +RReLU(x)={xif x0ax otherwise \text{RReLU}(x) = \begin{cases} x & \text{if } x \geq 0 \\ ax & \text{ otherwise } \end{cases} - -

                                        where aa + + +

                                        where aa + is randomly sampled from uniform distribution -U(lower,upper)\mathcal{U}(\text{lower}, \text{upper}) +U(lower,upper)\mathcal{U}(\text{lower}, \text{upper}) + .

                                        See: https://arxiv.org/pdf/1505.00853.pdf

                                        @@ -364,9 +367,11 @@

                                        RReLU
                                        Parameters
                                          -
                                        • lower – lower bound of the uniform distribution. Default: 18\frac{1}{8} +

                                        • lower – lower bound of the uniform distribution. Default: 18\frac{1}{8} +

                                        • -
                                        • upper – upper bound of the uniform distribution. Default: 13\frac{1}{3} +

                                        • upper – upper bound of the uniform distribution. Default: 13\frac{1}{3} +

                                        • inplace – can optionally do the operation in-place. Default: False

                                        @@ -374,10 +379,12 @@

                                        RReLU

                                        Shape:
                                          -
                                        • Input: (N,)(N, *) +

                                        • Input: (N,)(N, *) + where * means, any number of additional dimensions

                                        • -
                                        • Output: (N,)(N, *) +

                                        • Output: (N,)(N, *) + , same shape as the input

                                        diff --git a/docs/stable/generated/torch.nn.ReLU.html b/docs/stable/generated/torch.nn.ReLU.html index 553852c94359..e32935e9b725 100644 --- a/docs/stable/generated/torch.nn.ReLU.html +++ b/docs/stable/generated/torch.nn.ReLU.html @@ -343,7 +343,8 @@

                                        ReLU
                                        class torch.nn.ReLU(inplace: bool = False)[source]

                                        Applies the rectified linear unit function element-wise:

                                        -

                                        ReLU(x)=(x)+=max(0,x)\text{ReLU}(x) = (x)^+ = \max(0, x) +

                                        ReLU(x)=(x)+=max(0,x)\text{ReLU}(x) = (x)^+ = \max(0, x) +

                                        Parameters
                                        @@ -352,10 +353,12 @@

                                        ReLU

                                        Shape:
                                          -
                                        • Input: (N,)(N, *) +

                                        • Input: (N,)(N, *) + where * means, any number of additional dimensions

                                        • -
                                        • Output: (N,)(N, *) +

                                        • Output: (N,)(N, *) + , same shape as the input

                                        diff --git a/docs/stable/generated/torch.nn.ReLU6.html b/docs/stable/generated/torch.nn.ReLU6.html index b52c1b0b9a43..4290cb514582 100644 --- a/docs/stable/generated/torch.nn.ReLU6.html +++ b/docs/stable/generated/torch.nn.ReLU6.html @@ -344,9 +344,10 @@

                                        ReLU6 class torch.nn.ReLU6(inplace: bool = False)[source]

                                        Applies the element-wise function:

                                        -ReLU6(x)=min(max(0,x),6)\text{ReLU6}(x) = \min(\max(0,x), 6) +ReLU6(x)=min(max(0,x),6)\text{ReLU6}(x) = \min(\max(0,x), 6) + + -
                                        Parameters

                                        inplace – can optionally do the operation in-place. Default: False

                                        @@ -354,10 +355,12 @@

                                        ReLU6

                                        Shape:
                                          -
                                        • Input: (N,)(N, *) +

                                        • Input: (N,)(N, *) + where * means, any number of additional dimensions

                                        • -
                                        • Output: (N,)(N, *) +

                                        • Output: (N,)(N, *) + , same shape as the input

                                        diff --git a/docs/stable/generated/torch.nn.ReflectionPad1d.html b/docs/stable/generated/torch.nn.ReflectionPad1d.html index 219fa3107aba..2e37e06ee043 100644 --- a/docs/stable/generated/torch.nn.ReflectionPad1d.html +++ b/docs/stable/generated/torch.nn.ReflectionPad1d.html @@ -341,25 +341,30 @@

                                        ReflectionPad1d

                                        -class torch.nn.ReflectionPad1d(padding: Union[int, Tuple[int, int]])[source]
                                        +class torch.nn.ReflectionPad1d(padding: Union[T, Tuple[T, T]])[source]

                                        Pads the input tensor using the reflection of the input boundary.

                                        For N-dimensional padding, use torch.nn.functional.pad().

                                        Parameters

                                        padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 2-tuple, uses -(padding_left\text{padding\_left} -, padding_right\text{padding\_right} +(padding_left\text{padding\_left} + +, padding_right\text{padding\_right} + )

                                        Shape:
                                          -
                                        • Input: (N,C,Win)(N, C, W_{in}) +

                                        • Input: (N,C,Win)(N, C, W_{in}) +

                                        • -
                                        • Output: (N,C,Wout)(N, C, W_{out}) +

                                        • Output: (N,C,Wout)(N, C, W_{out}) + where

                                          -

                                          Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} +

                                          Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} +

                                        diff --git a/docs/stable/generated/torch.nn.ReflectionPad2d.html b/docs/stable/generated/torch.nn.ReflectionPad2d.html index ec6c2a0ecfd3..bad8b629b0b1 100644 --- a/docs/stable/generated/torch.nn.ReflectionPad2d.html +++ b/docs/stable/generated/torch.nn.ReflectionPad2d.html @@ -341,29 +341,37 @@

                                        ReflectionPad2d

                                        -class torch.nn.ReflectionPad2d(padding: Union[int, Tuple[int, int, int, int]])[source]
                                        +class torch.nn.ReflectionPad2d(padding: Union[T, Tuple[T, T, T, T]])[source]

                                        Pads the input tensor using the reflection of the input boundary.

                                        For N-dimensional padding, use torch.nn.functional.pad().

                                        Parameters

                                        padding (int, tuple) – the size of the padding. If is int, uses the same -padding in all boundaries. If a 4-tuple, uses (padding_left\text{padding\_left} +padding in all boundaries. If a 4-tuple, uses (padding_left\text{padding\_left} + , -padding_right\text{padding\_right} -, padding_top\text{padding\_top} -, padding_bottom\text{padding\_bottom} +padding_right\text{padding\_right} + +, padding_top\text{padding\_top} + +, padding_bottom\text{padding\_bottom} + )

                                        Shape:
                                          -
                                        • Input: (N,C,Hin,Win)(N, C, H_{in}, W_{in}) +

                                        • Input: (N,C,Hin,Win)(N, C, H_{in}, W_{in}) +

                                        • -
                                        • Output: (N,C,Hout,Wout)(N, C, H_{out}, W_{out}) +

                                        • Output: (N,C,Hout,Wout)(N, C, H_{out}, W_{out}) + where

                                          -

                                          Hout=Hin+padding_top+padding_bottomH_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom} +

                                          Hout=Hin+padding_top+padding_bottomH_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom} +

                                          -

                                          Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} +

                                          Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} +

                                        diff --git a/docs/stable/generated/torch.nn.ReplicationPad1d.html b/docs/stable/generated/torch.nn.ReplicationPad1d.html index cd105383c9e9..b8205f05f485 100644 --- a/docs/stable/generated/torch.nn.ReplicationPad1d.html +++ b/docs/stable/generated/torch.nn.ReplicationPad1d.html @@ -341,25 +341,30 @@

                                        ReplicationPad1d

                                        -class torch.nn.ReplicationPad1d(padding: Union[int, Tuple[int, int]])[source]
                                        +class torch.nn.ReplicationPad1d(padding: Union[T, Tuple[T, T]])[source]

                                        Pads the input tensor using replication of the input boundary.

                                        For N-dimensional padding, use torch.nn.functional.pad().

                                        Parameters

                                        padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 2-tuple, uses -(padding_left\text{padding\_left} -, padding_right\text{padding\_right} +(padding_left\text{padding\_left} + +, padding_right\text{padding\_right} + )

                                        Shape:
                                          -
                                        • Input: (N,C,Win)(N, C, W_{in}) +

                                        • Input: (N,C,Win)(N, C, W_{in}) +

                                        • -
                                        • Output: (N,C,Wout)(N, C, W_{out}) +

                                        • Output: (N,C,Wout)(N, C, W_{out}) + where

                                          -

                                          Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} +

                                          Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} +

                                        diff --git a/docs/stable/generated/torch.nn.ReplicationPad2d.html b/docs/stable/generated/torch.nn.ReplicationPad2d.html index 74721774af9b..7bc481550408 100644 --- a/docs/stable/generated/torch.nn.ReplicationPad2d.html +++ b/docs/stable/generated/torch.nn.ReplicationPad2d.html @@ -341,29 +341,37 @@

                                        ReplicationPad2d

                                        -class torch.nn.ReplicationPad2d(padding: Union[int, Tuple[int, int, int, int]])[source]
                                        +class torch.nn.ReplicationPad2d(padding: Union[T, Tuple[T, T, T, T]])[source]

                                        Pads the input tensor using replication of the input boundary.

                                        For N-dimensional padding, use torch.nn.functional.pad().

                                        Parameters

                                        padding (int, tuple) – the size of the padding. If is int, uses the same -padding in all boundaries. If a 4-tuple, uses (padding_left\text{padding\_left} +padding in all boundaries. If a 4-tuple, uses (padding_left\text{padding\_left} + , -padding_right\text{padding\_right} -, padding_top\text{padding\_top} -, padding_bottom\text{padding\_bottom} +padding_right\text{padding\_right} + +, padding_top\text{padding\_top} + +, padding_bottom\text{padding\_bottom} + )

                                        Shape:
                                          -
                                        • Input: (N,C,Hin,Win)(N, C, H_{in}, W_{in}) +

                                        • Input: (N,C,Hin,Win)(N, C, H_{in}, W_{in}) +

                                        • -
                                        • Output: (N,C,Hout,Wout)(N, C, H_{out}, W_{out}) +

                                        • Output: (N,C,Hout,Wout)(N, C, H_{out}, W_{out}) + where

                                          -

                                          Hout=Hin+padding_top+padding_bottomH_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom} +

                                          Hout=Hin+padding_top+padding_bottomH_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom} +

                                          -

                                          Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} +

                                          Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} +

                                        diff --git a/docs/stable/generated/torch.nn.ReplicationPad3d.html b/docs/stable/generated/torch.nn.ReplicationPad3d.html index 13ab1c5c3ce3..b5ecf78afbcd 100644 --- a/docs/stable/generated/torch.nn.ReplicationPad3d.html +++ b/docs/stable/generated/torch.nn.ReplicationPad3d.html @@ -341,35 +341,46 @@

                                        ReplicationPad3d

                                        -class torch.nn.ReplicationPad3d(padding: Union[int, Tuple[int, int, int, int, int, int]])[source]
                                        +class torch.nn.ReplicationPad3d(padding: Union[T, Tuple[T, T, T, T, T, T]])[source]

                                        Pads the input tensor using replication of the input boundary.

                                        For N-dimensional padding, use torch.nn.functional.pad().

                                        Parameters

                                        padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 6-tuple, uses -(padding_left\text{padding\_left} -, padding_right\text{padding\_right} +(padding_left\text{padding\_left} + +, padding_right\text{padding\_right} + , -padding_top\text{padding\_top} -, padding_bottom\text{padding\_bottom} +padding_top\text{padding\_top} + +, padding_bottom\text{padding\_bottom} + , -padding_front\text{padding\_front} -, padding_back\text{padding\_back} +padding_front\text{padding\_front} + +, padding_back\text{padding\_back} + )

                                        Shape:
                                          -
                                        • Input: (N,C,Din,Hin,Win)(N, C, D_{in}, H_{in}, W_{in}) +

                                        • Input: (N,C,Din,Hin,Win)(N, C, D_{in}, H_{in}, W_{in}) +

                                        • -
                                        • Output: (N,C,Dout,Hout,Wout)(N, C, D_{out}, H_{out}, W_{out}) +

                                        • Output: (N,C,Dout,Hout,Wout)(N, C, D_{out}, H_{out}, W_{out}) + where

                                          -

                                          Dout=Din+padding_front+padding_backD_{out} = D_{in} + \text{padding\_front} + \text{padding\_back} +

                                          Dout=Din+padding_front+padding_backD_{out} = D_{in} + \text{padding\_front} + \text{padding\_back} +

                                          -

                                          Hout=Hin+padding_top+padding_bottomH_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom} +

                                          Hout=Hin+padding_top+padding_bottomH_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom} +

                                          -

                                          Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} +

                                          Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} +

                                        diff --git a/docs/stable/generated/torch.nn.SELU.html b/docs/stable/generated/torch.nn.SELU.html index 661c58830061..632bf0ad2880 100644 --- a/docs/stable/generated/torch.nn.SELU.html +++ b/docs/stable/generated/torch.nn.SELU.html @@ -344,12 +344,15 @@

                                        SELUclass torch.nn.SELU(inplace: bool = False)[source]

                                        Applied element-wise, as:

                                        -SELU(x)=scale(max(0,x)+min(0,α(exp(x)1)))\text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) +SELU(x)=scale(max(0,x)+min(0,α(exp(x)1)))\text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) + + + +

                                        with α=1.6732632423543772848170429916717\alpha = 1.6732632423543772848170429916717 - -

                                        with α=1.6732632423543772848170429916717\alpha = 1.6732632423543772848170429916717 and -scale=1.0507009873554804934193349852946\text{scale} = 1.0507009873554804934193349852946 +scale=1.0507009873554804934193349852946\text{scale} = 1.0507009873554804934193349852946 + .

                                        More details can be found in the paper Self-Normalizing Neural Networks .

                                        @@ -359,10 +362,12 @@

                                        SELU

                                        Shape:
                                          -
                                        • Input: (N,)(N, *) +

                                        • Input: (N,)(N, *) + where * means, any number of additional dimensions

                                        • -
                                        • Output: (N,)(N, *) +

                                        • Output: (N,)(N, *) + , same shape as the input

                                        diff --git a/docs/stable/generated/torch.nn.Sigmoid.html b/docs/stable/generated/torch.nn.Sigmoid.html index f765a7e8754e..1a7c09331a6a 100644 --- a/docs/stable/generated/torch.nn.Sigmoid.html +++ b/docs/stable/generated/torch.nn.Sigmoid.html @@ -344,15 +344,18 @@

                                        Sigmoidclass torch.nn.Sigmoid[source]

                                        Applies the element-wise function:

                                        -Sigmoid(x)=σ(x)=11+exp(x)\text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)} +Sigmoid(x)=σ(x)=11+exp(x)\text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)} + + -
                                        Shape:
                                          -
                                        • Input: (N,)(N, *) +

                                        • Input: (N,)(N, *) + where * means, any number of additional dimensions

                                        • -
                                        • Output: (N,)(N, *) +

                                        • Output: (N,)(N, *) + , same shape as the input

                                        diff --git a/docs/stable/generated/torch.nn.SmoothL1Loss.html b/docs/stable/generated/torch.nn.SmoothL1Loss.html index 8cb1e1e28c3c..28f2798d5bdf 100644 --- a/docs/stable/generated/torch.nn.SmoothL1Loss.html +++ b/docs/stable/generated/torch.nn.SmoothL1Loss.html @@ -348,26 +348,34 @@

                                        SmoothL1Loss -loss(x,y)=1nizi\text{loss}(x, y) = \frac{1}{n} \sum_{i} z_{i} +loss(x,y)=1nizi\text{loss}(x, y) = \frac{1}{n} \sum_{i} z_{i} + + + +

                                        where ziz_{i} - -

                                        where ziz_{i} is given by:

                                        -zi={0.5(xiyi)2,if xiyi<1xiyi0.5,otherwise z_{i} = +zi={0.5(xiyi)2,if xiyi<1xiyi0.5,otherwise z_{i} = \begin{cases} 0.5 (x_i - y_i)^2, & \text{if } |x_i - y_i| < 1 \\ |x_i - y_i| - 0.5, & \text{otherwise } \end{cases} - -

                                        xx - and yy - arbitrary shapes with a total of nn + + +

                                        xx + + and yy + + arbitrary shapes with a total of nn + elements each -the sum operation still operates over all the elements, and divides by nn +the sum operation still operates over all the elements, and divides by nn + .

                                        -

                                        The division by nn +

                                        The division by nn + can be avoided if sets reduction = 'sum'.

                                        Parameters
                                        @@ -392,14 +400,18 @@

                                        SmoothL1Loss
                                        Shape:
                                          -
                                        • Input: (N,)(N, *) - where * +

                                        • Input: (N,)(N, *) + + where * + means, any number of additional dimensions

                                        • -
                                        • Target: (N,)(N, *) +

                                        • Target: (N,)(N, *) + , same shape as the input

                                        • Output: scalar. If reduction is 'none', then -(N,)(N, *) +(N,)(N, *) + , same shape as the input

                                        diff --git a/docs/stable/generated/torch.nn.SoftMarginLoss.html b/docs/stable/generated/torch.nn.SoftMarginLoss.html index c8ecb3409e81..e638acfe4f5f 100644 --- a/docs/stable/generated/torch.nn.SoftMarginLoss.html +++ b/docs/stable/generated/torch.nn.SoftMarginLoss.html @@ -343,14 +343,17 @@

                                        SoftMarginLoss class torch.nn.SoftMarginLoss(size_average=None, reduce=None, reduction: str = 'mean')[source]

                                        Creates a criterion that optimizes a two-class classification -logistic loss between input tensor xx - and target tensor yy +logistic loss between input tensor xx + + and target tensor yy + (containing 1 or -1).

                                        -loss(x,y)=ilog(1+exp(y[i]x[i]))x.nelement()\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()} +loss(x,y)=ilog(1+exp(y[i]x[i]))x.nelement()\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()} + + -
                                        Parameters

                                        @@ -391,10 +400,12 @@

                                        torch.pca_lowrank
                                        Parameters
                                          -
                                        • A (Tensor) – the input tensor of size (,m,n)(*, m, n) +

                                        • A (Tensor) – the input tensor of size (,m,n)(*, m, n) +

                                        • q (int, optional) – a slightly overestimated rank of -AA +AA + . By default, q = min(6, m, n).

                                        • center (bool, optional) – if True, center the input tensor, diff --git a/docs/stable/generated/torch.pinverse.html b/docs/stable/generated/torch.pinverse.html index 93e99364723c..51da4a5251f7 100644 --- a/docs/stable/generated/torch.pinverse.html +++ b/docs/stable/generated/torch.pinverse.html @@ -359,15 +359,18 @@

                                          torch.pinverse
                                          Parameters
                                            -
                                          • input (Tensor) – The input tensor of size (,m,n)(*, m, n) - where * +

                                          • input (Tensor) – The input tensor of size (,m,n)(*, m, n) + + where * + is zero or more batch dimensions

                                          • rcond (float) – A floating point value to determine the cutoff for small singular values. Default: 1e-15

                                          Returns
                                          -

                                          The pseudo-inverse of input of dimensions (,n,m)(*, n, m) +

                                          The pseudo-inverse of input of dimensions (,n,m)(*, n, m) +

                                        diff --git a/docs/stable/generated/torch.poisson.html b/docs/stable/generated/torch.poisson.html index 62ac0f7949bf..242abe4ba9eb 100644 --- a/docs/stable/generated/torch.poisson.html +++ b/docs/stable/generated/torch.poisson.html @@ -346,9 +346,10 @@

                                        torch.poissoninput i.e.,

                                        -outiPoisson(inputi)\text{out}_i \sim \text{Poisson}(\text{input}_i) +outiPoisson(inputi)\text{out}_i \sim \text{Poisson}(\text{input}_i) + + -
                                        Parameters
                                          diff --git a/docs/stable/generated/torch.polygamma.html b/docs/stable/generated/torch.polygamma.html index 34ba8beeb9a5..d9248456537a 100644 --- a/docs/stable/generated/torch.polygamma.html +++ b/docs/stable/generated/torch.polygamma.html @@ -342,17 +342,21 @@

                                          torch.polygamma
                                          torch.polygamma(n, input, out=None) → Tensor
                                          -

                                          Computes the nthn^{th} +

                                          Computes the nthn^{th} + derivative of the digamma function on input. -n0n \geq 0 +n0n \geq 0 + is called the order of the polygamma function.

                                          -ψ(n)(x)=d(n)dx(n)ψ(x)\psi^{(n)}(x) = \frac{d^{(n)}}{dx^{(n)}} \psi(x) +ψ(n)(x)=d(n)dx(n)ψ(x)\psi^{(n)}(x) = \frac{d^{(n)}}{dx^{(n)}} \psi(x) + + -

                                          Note

                                          -

                                          This function is not implemented for n2n \geq 2 +

                                          This function is not implemented for n2n \geq 2 + .

                                          diff --git a/docs/stable/generated/torch.pow.html b/docs/stable/generated/torch.pow.html index 5e1021f18c22..909b5a941647 100644 --- a/docs/stable/generated/torch.pow.html +++ b/docs/stable/generated/torch.pow.html @@ -348,14 +348,16 @@

                                          torch.powinput.

                                          When exponent is a scalar value, the operation applied is:

                                          -outi=xiexponent\text{out}_i = x_i ^ \text{exponent} +outi=xiexponent\text{out}_i = x_i ^ \text{exponent} + + -

                                          When exponent is a tensor, the operation applied is:

                                          -outi=xiexponenti\text{out}_i = x_i ^ {\text{exponent}_i} +outi=xiexponenti\text{out}_i = x_i ^ {\text{exponent}_i} + + -

                                          When exponent is a tensor, the shapes of input and exponent must be broadcastable.

                                          @@ -393,9 +395,10 @@

                                          torch.powout is of the same shape as exponent

                                          The operation applied is:

                                          -outi=selfexponenti\text{out}_i = \text{self} ^ {\text{exponent}_i} +outi=selfexponenti\text{out}_i = \text{self} ^ {\text{exponent}_i} + + -
                                          Parameters
                                            diff --git a/docs/stable/generated/torch.qr.html b/docs/stable/generated/torch.qr.html index 0f6fa090dada..704a32ff194d 100644 --- a/docs/stable/generated/torch.qr.html +++ b/docs/stable/generated/torch.qr.html @@ -343,11 +343,14 @@

                                            torch.qr torch.qr(input, some=True, out=None) -> (Tensor, Tensor)

                                            Computes the QR decomposition of a matrix or a batch of matrices input, -and returns a namedtuple (Q, R) of tensors such that input=QR\text{input} = Q R +and returns a namedtuple (Q, R) of tensors such that input=QR\text{input} = Q R + -with QQ +with QQ + being an orthogonal matrix or batch of orthogonal matrices and -RR +RR + being an upper triangular matrix or batch of upper triangular matrices.

                                            If some is True, then this function returns the thin (reduced) QR factorization. Otherwise, if some is False, this function returns the complete QR factorization.

                                            @@ -365,20 +368,26 @@

                                            torch.qr
                                            Parameters
                                              -
                                            • input (Tensor) – the input tensor of size (,m,n)(*, m, n) +

                                            • input (Tensor) – the input tensor of size (,m,n)(*, m, n) + where * is zero or more -batch dimensions consisting of matrices of dimension m×nm \times n +batch dimensions consisting of matrices of dimension m×nm \times n + .

                                            • some (bool, optional) – Set to True for reduced QR decomposition and False for complete QR decomposition.

                                            • out (tuple, optional) – tuple of Q and R tensors satisfying input = torch.matmul(Q, R). -The dimensions of Q and R are (,m,k)(*, m, k) - and (,k,n)(*, k, n) +The dimensions of Q and R are (,m,k)(*, m, k) + + and (,k,n)(*, k, n) + -respectively, where k=min(m,n)k = \min(m, n) +respectively, where k=min(m,n)k = \min(m, n) + if some: is True and -k=mk = m +k=mk = m + otherwise.

                                            diff --git a/docs/stable/generated/torch.quasirandom.SobolEngine.html b/docs/stable/generated/torch.quasirandom.SobolEngine.html index d19daa6e646b..a99bdcf3aea8 100644 --- a/docs/stable/generated/torch.quasirandom.SobolEngine.html +++ b/docs/stable/generated/torch.quasirandom.SobolEngine.html @@ -385,7 +385,8 @@

                                            SobolEnginedraw(n=1, out=None, dtype=torch.float32)[source]

                                            Function to draw a sequence of n points from a Sobol sequence. Note that the samples are dependent on the previous samples. The size -of the result is (n,dimension)(n, dimension) +of the result is (n,dimension)(n, dimension) + .

                                            Parameters
                                            diff --git a/docs/stable/generated/torch.rand.html b/docs/stable/generated/torch.rand.html index 32de2a293115..d8fe7b5c6b8b 100644 --- a/docs/stable/generated/torch.rand.html +++ b/docs/stable/generated/torch.rand.html @@ -343,7 +343,8 @@

                                            torch.rand torch.rand(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

                                            Returns a tensor filled with random numbers from a uniform distribution -on the interval [0,1)[0, 1) +on the interval [0,1)[0, 1) +

                                            The shape of the tensor is defined by the variable argument size.

                                            diff --git a/docs/stable/generated/torch.rand_like.html b/docs/stable/generated/torch.rand_like.html index 56af8f9b6ed4..5a00f1b6ae39 100644 --- a/docs/stable/generated/torch.rand_like.html +++ b/docs/stable/generated/torch.rand_like.html @@ -343,7 +343,8 @@

                                            torch.rand_like torch.rand_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor

                                            Returns a tensor with the same size as input that is filled with -random numbers from a uniform distribution on the interval [0,1)[0, 1) +random numbers from a uniform distribution on the interval [0,1)[0, 1) + . torch.rand_like(input) is equivalent to torch.rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device).

                                            diff --git a/docs/stable/generated/torch.randn.html b/docs/stable/generated/torch.randn.html index e093437474d6..451edfffd54e 100644 --- a/docs/stable/generated/torch.randn.html +++ b/docs/stable/generated/torch.randn.html @@ -346,9 +346,10 @@

                                            torch.randn -outiN(0,1)\text{out}_{i} \sim \mathcal{N}(0, 1) +outiN(0,1)\text{out}_{i} \sim \mathcal{N}(0, 1) + + -

                                            The shape of the tensor is defined by the variable argument size.

                                            Parameters
                                            diff --git a/docs/stable/generated/torch.range.html b/docs/stable/generated/torch.range.html index 872f25d679aa..6be8ea942f28 100644 --- a/docs/stable/generated/torch.range.html +++ b/docs/stable/generated/torch.range.html @@ -342,14 +342,16 @@

                                            torch.range
                                            torch.range(start=0, end, step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
                                            -

                                            Returns a 1-D tensor of size endstartstep+1\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1 +

                                            Returns a 1-D tensor of size endstartstep+1\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1 + with values from start to end with step step. Step is the gap between two values in the tensor.

                                            -outi+1=outi+step.\text{out}_{i+1} = \text{out}_i + \text{step}. +outi+1=outi+step.\text{out}_{i+1} = \text{out}_i + \text{step}. + + -

                                            Warning

                                            This function is deprecated in favor of torch.arange().

                                            diff --git a/docs/stable/generated/torch.reciprocal.html b/docs/stable/generated/torch.reciprocal.html index 5179e2107300..40a82effeff3 100644 --- a/docs/stable/generated/torch.reciprocal.html +++ b/docs/stable/generated/torch.reciprocal.html @@ -344,9 +344,10 @@

                                            torch.reciprocaltorch.reciprocal(input, out=None) → Tensor

                                            Returns a new tensor with the reciprocal of the elements of input

                                            -outi=1inputi\text{out}_{i} = \frac{1}{\text{input}_{i}} +outi=1inputi\text{out}_{i} = \frac{1}{\text{input}_{i}} + + -
                                            Parameters
                                              diff --git a/docs/stable/generated/torch.rfft.html b/docs/stable/generated/torch.rfft.html index 73a5e84f5604..efd536c24ad6 100644 --- a/docs/stable/generated/torch.rfft.html +++ b/docs/stable/generated/torch.rfft.html @@ -350,31 +350,45 @@

                                              torch.rfftsignal_ndim. input must be a tensor with at least signal_ndim dimensions with optionally arbitrary number of leading batch dimensions. If normalized is set to True, this normalizes the result -by dividing it with i=1KNi\sqrt{\prod_{i=1}^K N_i} +by dividing it with i=1KNi\sqrt{\prod_{i=1}^K N_i} + so that the operator is -unitary, where NiN_i - is the size of signal dimension ii +unitary, where NiN_i + + is the size of signal dimension ii + .

                                              The real-to-complex Fourier transform results follow conjugate symmetry:

                                              +X[ω1,,ωd]=X[N1ω1,,Ndωd],X[\omega_1, \dots, \omega_d] = X^*[N_1 - \omega_1, \dots, N_d - \omega_d], + + +

                                              where the index arithmetic is computed modulus the size of the corresponding -dimension,  \ ^* +dimension,  \ ^* + is the conjugate operator, and -dd +dd + = signal_ndim. onesided flag controls whether to avoid redundancy in the output results. If set to True (default), the output will -not be full complex result of shape (,2)(*, 2) -, where * +not be full complex result of shape (,2)(*, 2) + +, where * + is the shape of input, but instead the last dimension will be halfed as of size -Nd2+1\lfloor \frac{N_d}{2} \rfloor + 1 +Nd2+1\lfloor \frac{N_d}{2} \rfloor + 1 + .

                                              The inverse of this function is irfft().

                                              diff --git a/docs/stable/generated/torch.rsqrt.html b/docs/stable/generated/torch.rsqrt.html index 6148981f5353..02a1fb9a8c6d 100644 --- a/docs/stable/generated/torch.rsqrt.html +++ b/docs/stable/generated/torch.rsqrt.html @@ -345,16 +345,20 @@

                                              torch.rsqrtinput.

                                              -outi=1inputi\text{out}_{i} = \frac{1}{\sqrt{\text{input}_{i}}} - - +outi=1inputi\text{out}_{i} = \frac{1}{\sqrt{\text{input}_{i}}} + + +
                                              Parameters
                                                diff --git a/docs/stable/generated/torch.save.html b/docs/stable/generated/torch.save.html index 406b36c39f2a..7e2376f710ab 100644 --- a/docs/stable/generated/torch.save.html +++ b/docs/stable/generated/torch.save.html @@ -341,7 +341,7 @@

                                                torch.save

                                                -torch.save(obj, f, pickle_module=<module 'pickle' from '/scratch/rzou/pt/v1.6-env/lib/python3.8/pickle.py'>, pickle_protocol=2, _use_new_zipfile_serialization=True)[source]
                                                +torch.save(obj, f, pickle_module=<module 'pickle' from '/opt/conda/lib/python3.6/pickle.py'>, pickle_protocol=2, _use_new_zipfile_serialization=True)[source]

                                                Saves an object to a disk file.

                                                See also: Recommended approach for saving a model

                                                diff --git a/docs/stable/generated/torch.sigmoid.html b/docs/stable/generated/torch.sigmoid.html index 70f4821a6d60..1e9998cce8d6 100644 --- a/docs/stable/generated/torch.sigmoid.html +++ b/docs/stable/generated/torch.sigmoid.html @@ -344,9 +344,10 @@

                                                torch.sigmoidtorch.sigmoid(input, out=None) → Tensor

                                                Returns a new tensor with the sigmoid of the elements of input.

                                                -outi=11+einputi\text{out}_{i} = \frac{1}{1 + e^{-\text{input}_{i}}} +outi=11+einputi\text{out}_{i} = \frac{1}{1 + e^{-\text{input}_{i}}} + + -
                                                Parameters
                                                  diff --git a/docs/stable/generated/torch.sign.html b/docs/stable/generated/torch.sign.html index b2ffb68d414d..b17cd1a39871 100644 --- a/docs/stable/generated/torch.sign.html +++ b/docs/stable/generated/torch.sign.html @@ -344,6 +344,10 @@

                                                  torch.signtorch.sign(input, out=None) → Tensor

                                                  Returns a new tensor with the signs of the elements of input.

                                                  +outi=sgn(inputi)\text{out}_{i} = \operatorname{sgn}(\text{input}_{i}) + + +
                                                  Parameters
                                                    diff --git a/docs/stable/generated/torch.sin.html b/docs/stable/generated/torch.sin.html index d4172744f0c3..c39423fbc3d2 100644 --- a/docs/stable/generated/torch.sin.html +++ b/docs/stable/generated/torch.sin.html @@ -344,9 +344,10 @@

                                                    torch.sintorch.sin(input, out=None) → Tensor

                                                    Returns a new tensor with the sine of the elements of input.

                                                    -outi=sin(inputi)\text{out}_{i} = \sin(\text{input}_{i}) +outi=sin(inputi)\text{out}_{i} = \sin(\text{input}_{i}) + + -
                                                    Parameters
                                                      diff --git a/docs/stable/generated/torch.sinh.html b/docs/stable/generated/torch.sinh.html index 47e5e0fae90c..e9073d6d8e76 100644 --- a/docs/stable/generated/torch.sinh.html +++ b/docs/stable/generated/torch.sinh.html @@ -345,9 +345,10 @@

                                                      torch.sinhinput.

                                                      -outi=sinh(inputi)\text{out}_{i} = \sinh(\text{input}_{i}) +outi=sinh(inputi)\text{out}_{i} = \sinh(\text{input}_{i}) + + -
                                                      Parameters
                                                        diff --git a/docs/stable/generated/torch.solve.html b/docs/stable/generated/torch.solve.html index fbca1c96d97a..ece7980cfcbc 100644 --- a/docs/stable/generated/torch.solve.html +++ b/docs/stable/generated/torch.solve.html @@ -343,7 +343,8 @@

                                                        torch.solve torch.solve(input, A, out=None) -> (Tensor, Tensor)

                                                        This function returns the solution to the system of linear -equations represented by AX=BAX = B +equations represented by AX=BAX = B + and the LU factorization of A, in order as a namedtuple solution, LU.

                                                        LU contains L and U factors for LU factorization of A.

                                                        @@ -360,14 +361,19 @@

                                                        torch.solve
                                                        Parameters
                                                          -
                                                        • input (Tensor) – input matrix BB - of size (,m,k)(*, m, k) - , where * +

                                                        • input (Tensor) – input matrix BB + + of size (,m,k)(*, m, k) + + , where * + is zero or more batch dimensions.

                                                        • -
                                                        • A (Tensor) – input square matrix of size (,m,m)(*, m, m) +

                                                        • A (Tensor) – input square matrix of size (,m,m)(*, m, m) + , where -* +* + is zero or more batch dimensions.

                                                        • out ((Tensor, Tensor), optional) – optional output tuple.

                                                        diff --git a/docs/stable/generated/torch.sqrt.html b/docs/stable/generated/torch.sqrt.html index 04aaa42523ac..2266b9f94abb 100644 --- a/docs/stable/generated/torch.sqrt.html +++ b/docs/stable/generated/torch.sqrt.html @@ -344,16 +344,20 @@

                                                        torch.sqrttorch.sqrt(input, out=None) → Tensor

                                                        Returns a new tensor with the square-root of the elements of input.

                                                        -outi=inputi\text{out}_{i} = \sqrt{\text{input}_{i}} - - +outi=inputi\text{out}_{i} = \sqrt{\text{input}_{i}} + + +
                                                        Parameters
                                                          diff --git a/docs/stable/generated/torch.squeeze.html b/docs/stable/generated/torch.squeeze.html index c5471cb2081c..983970d12f23 100644 --- a/docs/stable/generated/torch.squeeze.html +++ b/docs/stable/generated/torch.squeeze.html @@ -344,15 +344,19 @@

                                                          torch.squeezetorch.squeeze(input, dim=None, out=None) → Tensor

                                                          Returns a tensor with all the dimensions of input of size 1 removed.

                                                          For example, if input is of shape: -(A×1×B×C×1×D)(A \times 1 \times B \times C \times 1 \times D) +(A×1×B×C×1×D)(A \times 1 \times B \times C \times 1 \times D) + then the out tensor -will be of shape: (A×B×C×D)(A \times B \times C \times D) +will be of shape: (A×B×C×D)(A \times B \times C \times D) + .

                                                          When dim is given, a squeeze operation is done only in the given -dimension. If input is of shape: (A×1×B)(A \times 1 \times B) +dimension. If input is of shape: (A×1×B)(A \times 1 \times B) + , squeeze(input, 0) leaves the tensor unchanged, but squeeze(input, 1) -will squeeze the tensor to the shape (A×B)(A \times B) +will squeeze the tensor to the shape (A×B)(A \times B) + .

                                                          Note

                                                          diff --git a/docs/stable/generated/torch.stft.html b/docs/stable/generated/torch.stft.html index e272b0337964..8982a854bade 100644 --- a/docs/stable/generated/torch.stft.html +++ b/docs/stable/generated/torch.stft.html @@ -341,15 +341,24 @@

                                                          torch.stft

                                                          -torch.stft(input: torch.Tensor, n_fft: int, hop_length: Optional[int] = None, win_length: Optional[int] = None, window: Optional[torch.Tensor] = None, center: bool = True, pad_mode: str = 'reflect', normalized: bool = False, onesided: bool = True) → torch.Tensor[source]
                                                          +torch.stft(input, n_fft, hop_length=None, win_length=None, window=None, center=True, pad_mode='reflect', normalized=False, onesided=True)[source]

                                                          Short-time Fourier transform (STFT).

                                                          Ignoring the optional batch dimension, this method computes the following expression:

                                                          -

                                                          where mm - is the index of the sliding window, and ω\omega +X[m,ω]=k=0win_length-1window[k] input[m×hop_length+k] exp(j2πωkwin_length),X[m, \omega] = \sum_{k = 0}^{\text{win\_length-1}}% + \text{window}[k]\ \text{input}[m \times \text{hop\_length} + k]\ % + \exp\left(- j \frac{2 \pi \cdot \omega k}{\text{win\_length}}\right), + + + +

                                                          where mm + + is the index of the sliding window, and ω\omega + is -the frequency that 0ω<n_fft0 \leq \omega < \text{n\_fft} +the frequency that 0ω<n_fft0 \leq \omega < \text{n\_fft} + . When onesided is the default value True,

                                                            @@ -361,39 +370,54 @@

                                                            torch.stftn_fft.

                                                          • window can be a 1-D tensor of size win_length, e.g., from torch.hann_window(). If window is None (default), it is -treated as if having 11 +treated as if having 11 + everywhere in the window. If -win_length<n_fft\text{win\_length} < \text{n\_fft} +win_length<n_fft\text{win\_length} < \text{n\_fft} + , window will be padded on both sides to length n_fft before being applied.

                                                          • If center is True (default), input will be padded on -both sides so that the tt +both sides so that the tt + -th frame is centered at time -t×hop_lengtht \times \text{hop\_length} -. Otherwise, the tt +t×hop_lengtht \times \text{hop\_length} + +. Otherwise, the tt + -th frame -begins at time t×hop_lengtht \times \text{hop\_length} +begins at time t×hop_lengtht \times \text{hop\_length} + .

                                                          • pad_mode determines the padding method used on input when center is True. See torch.nn.functional.pad() for all available options. Default is "reflect".

                                                          • -
                                                          • If onesided is True (default), only values for ω\omega +

                                                          • If onesided is True (default), only values for ω\omega + + +in [0,1,2,,n_fft2+1]\left[0, 1, 2, \dots, \left\lfloor \frac{\text{n\_fft}}{2} \right\rfloor + 1\right] + -in are returned because the real-to-complex Fourier transform satisfies the -conjugate symmetry, i.e., X[m,ω]=X[m,n_fftω]X[m, \omega] = X[m, \text{n\_fft} - \omega]^* +conjugate symmetry, i.e., X[m,ω]=X[m,n_fftω]X[m, \omega] = X[m, \text{n\_fft} - \omega]^* + .

                                                          • If normalized is True (default is False), the function -returns the normalized STFT results, i.e., multiplied by (frame_length)0.5(\text{frame\_length})^{-0.5} +returns the normalized STFT results, i.e., multiplied by (frame_length)0.5(\text{frame\_length})^{-0.5} + .

                                                          Returns the real and the imaginary parts together as one tensor of size -(×N×T×2)(* \times N \times T \times 2) -, where * +(×N×T×2)(* \times N \times T \times 2) + +, where * + is the optional -batch size of input, NN +batch size of input, NN + is the number of frequencies where -STFT is applied, TT +STFT is applied, TT + is the total number of frames used, and each pair in the last dimension represents a complex number as the real part and the imaginary part.

                                                          @@ -412,11 +436,14 @@

                                                          torch.stftint, optional) – the size of window frame and STFT filter. Default: None (treated as equal to n_fft)

                                                        • window (Tensor, optional) – the optional window function. -Default: None (treated as window of all 11 +Default: None (treated as window of all 11 + s)

                                                        • center (bool, optional) – whether to pad input on both sides so -that the tt --th frame is centered at time t×hop_lengtht \times \text{hop\_length} +that the tt + +-th frame is centered at time t×hop_lengtht \times \text{hop\_length} + . Default: True

                                                        • pad_mode (string, optional) – controls the padding method used when diff --git a/docs/stable/generated/torch.svd.html b/docs/stable/generated/torch.svd.html index 737fad6b6b83..20ab6db1bbb5 100644 --- a/docs/stable/generated/torch.svd.html +++ b/docs/stable/generated/torch.svd.html @@ -344,15 +344,19 @@

                                                          torch.svdtorch.svd(input, some=True, compute_uv=True, out=None) -> (Tensor, Tensor, Tensor)

                                                          This function returns a namedtuple (U, S, V) which is the singular value decomposition of a input real matrix or batches of real matrices input such that -input=U×diag(S)×VTinput = U \times diag(S) \times V^T +input=U×diag(S)×VTinput = U \times diag(S) \times V^T + .

                                                          If some is True (default), the method returns the reduced singular value decomposition i.e., if the last two dimensions of input are m and n, then the returned -U and V matrices will contain only min(n,m)min(n, m) +U and V matrices will contain only min(n,m)min(n, m) + orthonormal columns.

                                                          If compute_uv is False, the returned U and V matrices will be zero matrices -of shape (m×m)(m \times m) - and (n×n)(n \times n) +of shape (m×m)(m \times m) + + and (n×n)(n \times n) + respectively. some will be ignored here.

                                                          Note

                                                          @@ -393,9 +397,11 @@

                                                          torch.svd
                                                          Parameters
                                                            -
                                                          • input (Tensor) – the input tensor of size (,m,n)(*, m, n) +

                                                          • input (Tensor) – the input tensor of size (,m,n)(*, m, n) + where * is zero or more -batch dimensions consisting of m×nm \times n +batch dimensions consisting of m×nm \times n + matrices.

                                                          • some (bool, optional) – controls the shape of returned U and V

                                                          • compute_uv (bool, optional) – option whether to compute U and V or not

                                                          • diff --git a/docs/stable/generated/torch.svd_lowrank.html b/docs/stable/generated/torch.svd_lowrank.html index be0765a3b327..3d4687d9a836 100644 --- a/docs/stable/generated/torch.svd_lowrank.html +++ b/docs/stable/generated/torch.svd_lowrank.html @@ -341,14 +341,18 @@

                                                            torch.svd_lowrank

                                                            -torch.svd_lowrank(A: torch.Tensor, q: Optional[int] = 6, niter: Optional[int] = 2, M: Optional[torch.Tensor] = None) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor][source]
                                                            +torch.svd_lowrank(A, q=6, niter=2, M=None)[source]

                                                            Return the singular value decomposition (U, S, V) of a matrix, -batches of matrices, or a sparse matrix AA +batches of matrices, or a sparse matrix AA + such that -AUdiag(S)VTA \approx U diag(S) V^T -. In case MM +AUdiag(S)VTA \approx U diag(S) V^T + +. In case MM + is given, then -SVD is computed for the matrix AMA - M +SVD is computed for the matrix AMA - M + .

                                                            Note

                                                            @@ -373,14 +377,16 @@

                                                            torch.svd_lowranktorch.svd cannot handle.

                                                            -
                                                            Arguments::

                                                            A (Tensor): the input tensor of size (,m,n)(*, m, n) +

                                                            Arguments::

                                                            A (Tensor): the input tensor of size (,m,n)(*, m, n) +

                                                            q (int, optional): a slightly overestimated rank of A.

                                                            niter (int, optional): the number of subspace iterations to

                                                            conduct; niter must be a nonnegative integer, and defaults to 2

                                                            -
                                                            M (Tensor, optional): the input tensor’s mean of size

                                                            (,1,n)(*, 1, n) +

                                                            M (Tensor, optional): the input tensor’s mean of size

                                                            (,1,n)(*, 1, n) + .

                                                            diff --git a/docs/stable/generated/torch.symeig.html b/docs/stable/generated/torch.symeig.html index f14b8361c2c9..ce4644cf302c 100644 --- a/docs/stable/generated/torch.symeig.html +++ b/docs/stable/generated/torch.symeig.html @@ -346,7 +346,8 @@

                                                            torch.symeiginput or a batch of real symmetric matrices, represented by a namedtuple (eigenvalues, eigenvectors).

                                                            This function calculates all eigenvalues (and vectors) of input -such that input=Vdiag(e)VT\text{input} = V \text{diag}(e) V^T +such that input=Vdiag(e)VT\text{input} = V \text{diag}(e) V^T + .

                                                            The boolean argument eigenvectors defines computation of both eigenvectors and eigenvalues or eigenvalues only.

                                                            @@ -374,7 +375,8 @@

                                                            torch.symeig
                                                            Parameters
                                                            + -
                                                          • close() (torch.utils.tensorboard.writer.SummaryWriter method) -
                                                          • coalesce() (torch.sparse.FloatTensor method)
                                                          • CocoCaptions (class in torchvision.datasets) @@ -1513,7 +1479,7 @@

                                                            C

                                                            D

                                                            - + @@ -8094,21 +8094,6 @@ b:int)->intmath.isfinite(a:float)->bool - -math.remainder(a:int, - b:int)->float - -math.remainder(a:float, - b:float)->float - -math.remainder(a:int, - b:float)->float - -math.remainder(a:float, - b:int)->float - -math.remainder(a:number, - b:number)->float diff --git a/docs/stable/nn.functional.html b/docs/stable/nn.functional.html index 74fbbdd21dd3..25167c54f742 100644 --- a/docs/stable/nn.functional.html +++ b/docs/stable/nn.functional.html @@ -359,11 +359,14 @@

                                                            conv1d
                                                            Parameters
                                                            @@ -406,11 +410,14 @@

                                                            conv2d
                                                            Parameters
                                                            @@ -454,11 +462,14 @@

                                                            conv3d
                                                            Parameters
                                                            @@ -501,11 +513,14 @@

                                                            conv_transpose1d
                                                            Parameters

                                                            - @@ -660,8 +661,10 @@

                                                            Recurrent Layers

                                                            - @@ -712,11 +715,13 @@

                                                            Linear Layers

                                                            A placeholder identity operator that is argument-insensitive.

                                                            - - @@ -730,15 +735,21 @@

                                                            Dropout Layers

                                                            During training, randomly zeroes some of the elements of the input tensor with probability p using samples from a Bernoulli distribution.

                                                            - - @@ -765,13 +776,17 @@

                                                            Distance Functions

                                                            - - @@ -782,13 +797,17 @@

                                                            Loss Functions

                                                            - - @@ -813,52 +832,74 @@

                                                            Loss Functions

                                                            This loss combines a Sigmoid layer and the BCELoss in one single class.

                                                            - - - - - - - - @@ -869,8 +910,10 @@

                                                            Vision Layers

                                                            - diff --git a/docs/stable/nn.init.html b/docs/stable/nn.init.html index 54f53d2fc9f3..a194a15d1a26 100644 --- a/docs/stable/nn.init.html +++ b/docs/stable/nn.init.html @@ -350,41 +350,53 @@ - - - - - - @@ -405,9 +417,10 @@
                                                            -torch.nn.init.uniform_(tensor: torch.Tensor, a: float = 0.0, b: float = 1.0) → torch.Tensor[source]
                                                            +torch.nn.init.uniform_(tensor, a=0.0, b=1.0)[source]

                                                            Fills the input Tensor with values drawn from the uniform -distribution U(a,b)\mathcal{U}(a, b) +distribution U(a,b)\mathcal{U}(a, b) + .

                                                            Parameters
                                                            @@ -427,9 +440,10 @@
                                                            -torch.nn.init.normal_(tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0) → torch.Tensor[source]
                                                            +torch.nn.init.normal_(tensor, mean=0.0, std=1.0)[source]

                                                            Fills the input Tensor with values drawn from the normal -distribution N(mean,std2)\mathcal{N}(\text{mean}, \text{std}^2) +distribution N(mean,std2)\mathcal{N}(\text{mean}, \text{std}^2) + .

                                                            Parameters
                                                            @@ -449,8 +463,9 @@
                                                            -torch.nn.init.constant_(tensor: torch.Tensor, val: float) → torch.Tensor[source]
                                                            -

                                                            Fills the input Tensor with the value val\text{val} +torch.nn.init.constant_(tensor, val)[source] +

                                                            Fills the input Tensor with the value val\text{val} + .

                                                            Parameters
                                                            @@ -469,7 +484,7 @@
                                                            -torch.nn.init.ones_(tensor: torch.Tensor) → torch.Tensor[source]
                                                            +torch.nn.init.ones_(tensor)[source]

                                                            Fills the input Tensor with the scalar value 1.

                                                            Parameters
                                                            @@ -485,7 +500,7 @@
                                                            -torch.nn.init.zeros_(tensor: torch.Tensor) → torch.Tensor[source]
                                                            +torch.nn.init.zeros_(tensor)[source]

                                                            Fills the input Tensor with the scalar value 0.

                                                            Parameters
                                                            @@ -543,24 +558,26 @@
                                                            -torch.nn.init.xavier_uniform_(tensor: torch.Tensor, gain: float = 1.0) → torch.Tensor[source]
                                                            +torch.nn.init.xavier_uniform_(tensor, gain=1.0)[source]

                                                            Fills the input Tensor with values according to the method described in Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010), using a uniform distribution. The resulting tensor will have values sampled from -U(a,a)\mathcal{U}(-a, a) +U(a,a)\mathcal{U}(-a, a) + where

                                                            -a=gain×6fan_in+fan_outa = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}} - - +a=gain×6fan_in+fan_outa = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}} + + +

                                                            Also known as Glorot initialization.

                                                            Parameters
                                                            @@ -579,24 +596,26 @@
                                                            -torch.nn.init.xavier_normal_(tensor: torch.Tensor, gain: float = 1.0) → torch.Tensor[source]
                                                            +torch.nn.init.xavier_normal_(tensor, gain=1.0)[source]

                                                            Fills the input Tensor with values according to the method described in Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010), using a normal distribution. The resulting tensor will have values sampled from -N(0,std2)\mathcal{N}(0, \text{std}^2) +N(0,std2)\mathcal{N}(0, \text{std}^2) + where

                                                            -std=gain×2fan_in+fan_out\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}} - - +std=gain×2fan_in+fan_out\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}} + + +

                                                            Also known as Glorot initialization.

                                                            Parameters
                                                            @@ -620,19 +639,21 @@ described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015), using a uniform distribution. The resulting tensor will have values sampled from -U(bound,bound)\mathcal{U}(-\text{bound}, \text{bound}) +U(bound,bound)\mathcal{U}(-\text{bound}, \text{bound}) + where

                                                            -bound=gain×3fan_mode\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}} - - +bound=gain×3fan_mode\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}} + + +

                                                            Also known as He initialization.

                                                            Parameters
                                                            @@ -663,19 +684,24 @@ described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015), using a normal distribution. The resulting tensor will have values sampled from -N(0,std2)\mathcal{N}(0, \text{std}^2) +N(0,std2)\mathcal{N}(0, \text{std}^2) + where

                                                            -std=gainfan_mode\text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}} - - +std=gainfan_mode\text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}} + + +

                                                            Also known as He initialization.

                                                            Parameters
                                                            @@ -710,7 +736,8 @@
                                                            Parameters
                                                              -
                                                            • tensor – an n-dimensional torch.Tensor, where n2n \geq 2 +

                                                            • tensor – an n-dimensional torch.Tensor, where n2n \geq 2 +

                                                            • gain – optional scaling factor

                                                            @@ -728,7 +755,8 @@ torch.nn.init.sparse_(tensor, sparsity, std=0.01)[source]

                                                            Fills the 2D input Tensor as a sparse matrix, where the non-zero elements will be drawn from the normal distribution -N(0,0.01)\mathcal{N}(0, 0.01) +N(0,0.01)\mathcal{N}(0, 0.01) + , as described in Deep learning via Hessian-free optimization - Martens, J. (2010).

                                                            diff --git a/docs/stable/notes/amp_examples.html b/docs/stable/notes/amp_examples.html index ccbab90a7b65..4c006d2bdee1 100644 --- a/docs/stable/notes/amp_examples.html +++ b/docs/stable/notes/amp_examples.html @@ -416,7 +416,8 @@

                                                            Typical Mixed Precision Training.grad attributes between backward() and scaler.step(optimizer), you should unscale them first. For example, gradient clipping manipulates a set of gradients such that their global norm (see torch.nn.utils.clip_grad_norm_()) or maximum magnitude (see torch.nn.utils.clip_grad_value_()) -is <=<= +is <=<= + some user-imposed threshold. If you attempted to clip without unscaling, the gradients’ norm/maximum magnitude would also be scaled, so your requested threshold (which was meant to be the threshold for unscaled gradients) would be invalid.

                                                            diff --git a/docs/stable/notes/autograd.html b/docs/stable/notes/autograd.html index 92b302cca425..389f19ec8c73 100644 --- a/docs/stable/notes/autograd.html +++ b/docs/stable/notes/autograd.html @@ -520,7 +520,9 @@

                                                            No thread safety on C++ hooks

                                                            PyTorch follows JAX’s convention for autograd for Complex Numbers.

                                                            -

                                                            Suppose we have a function which we can decompose into functions u and v +

                                                            Suppose we have a function F:CCF: ℂ → ℂ + + which we can decompose into functions u and v which compute the real and imaginary parts of the function:

                                                            def F(z):
                                                            @@ -529,40 +531,61 @@ 

                                                            What notion of complex derivative does PyTorch use?

                                                            -

                                                            where 1j1j +

                                                            where 1j1j + is a unit imaginary number.

                                                            -

                                                            We define the JVPJVP - for function FF - at (x,y)(x, y) +

                                                            We define the JVPJVP + + for function FF + + at (x,y)(x, y) + applied to a tangent -vector c+djCc+dj \in C +vector c+djCc+dj \in C + as:

                                                            -[11j]J[cd]\begin{bmatrix} 1 & 1j \end{bmatrix} * J * \begin{bmatrix} c \\ d \end{bmatrix} +[11j]J[cd]\begin{bmatrix} 1 & 1j \end{bmatrix} * J * \begin{bmatrix} c \\ d \end{bmatrix} + + -

                                                            where

                                                            +J=[u(x,y)xu(x,y)yv(x,y)xv(x,y)y]J = \begin{bmatrix} + \frac{\partial u(x, y)}{\partial x} & \frac{\partial u(x, y)}{\partial y}\\ + \frac{\partial v(x, y)}{\partial x} & \frac{\partial v(x, y)}{\partial y} \end{bmatrix} \\ + + +
                                                            -

                                                            This is similar to the definition of the JVP for a function defined from , and the multiplication -with [1,1j]T[1, 1j]^T +

                                                            This is similar to the definition of the JVP for a function defined from R2R2R^2 → R^2 + +, and the multiplication +with [1,1j]T[1, 1j]^T + is used to identify the result as a complex number.

                                                            -

                                                            We define the VJPVJP - of FF - at (x,y)(x, y) - for a cotangent vector c+djCc+dj \in C +

                                                            We define the VJPVJP + + of FF + + at (x,y)(x, y) + + for a cotangent vector c+djCc+dj \in C + as:

                                                            -[cd]J[11j]\begin{bmatrix} c & -d \end{bmatrix} * J * \begin{bmatrix} 1 \\ -1j \end{bmatrix} +[cd]J[11j]\begin{bmatrix} c & -d \end{bmatrix} * J * \begin{bmatrix} 1 \\ -1j \end{bmatrix} + + -

                                                            In PyTorch, the VJP is mostly what we care about, as it is the computation performed when we do backward -mode automatic differentiation. Notice that d and 1j1j +mode automatic differentiation. Notice that d and 1j1j + are negated in the formula above. Please look at the JAX docs to get explanation for the negative signs in the formula.

                                                            @@ -570,44 +593,64 @@

                                                            What notion of complex derivative does PyTorch use?

                                                            What happens if I call backward() on a complex scalar?

                                                            The gradient for a complex function is computed assuming the input function is a holomorphic function. -This is because for general functions, the Jacobian has 4 real-valued degrees of freedom +This is because for general CCℂ → ℂ + + functions, the Jacobian has 4 real-valued degrees of freedom (as in the 2x2 Jacobian matrix above), so we can’t hope to represent all of them with in a complex number. However, for holomorphic functions, the gradient can be fully represented with complex numbers due to the Cauchy-Riemann equations that ensure that 2x2 Jacobians have the special form of a scale-and-rotate matrix in the complex plane, i.e. the action of a single complex number under multiplication. And so, we can obtain that gradient using backward which is just a call to vjp with covector 1.0.

                                                            The net effect of this assumption is that the partial derivatives of the imaginary part of the function -(v(x,y)v(x, y) +(v(x,y)v(x, y) + above) are discarded for torch.autograd.backward() on a complex scalar (e.g., this is equivalent to dropping the imaginary part of the loss before performing a backwards).

                                                            For any other desired behavior, you can specify the covector grad_output in torch.autograd.backward() call accordingly.

                                                            How are the JVP and VJP defined for cross-domain functions?

                                                            -

                                                            Based on formulas above and the behavior we expect to see (going from should be an identity), +

                                                            Based on formulas above and the behavior we expect to see (going from CR2Cℂ → ℝ^2 → ℂ + + should be an identity), we use the formula given below for cross-domain functions.

                                                            -

                                                            The JVPJVP - and VJPVJP - for a are defined as:

                                                            +

                                                            The JVPJVP + + and VJPVJP + + for a f1:CR2f1: ℂ → ℝ^2 + + are defined as:

                                                            -JVP=J[cd]JVP = J * \begin{bmatrix} c \\ d \end{bmatrix} +JVP=J[cd]JVP = J * \begin{bmatrix} c \\ d \end{bmatrix} + + -
                                                            -VJP=[cd]J[11j]VJP = \begin{bmatrix} c & d \end{bmatrix} * J * \begin{bmatrix} 1 \\ -1j \end{bmatrix} +VJP=[cd]J[11j]VJP = \begin{bmatrix} c & d \end{bmatrix} * J * \begin{bmatrix} 1 \\ -1j \end{bmatrix} + + -
                                                            -

                                                            The JVPJVP - and VJPVJP - for a are defined as:

                                                            +

                                                            The JVPJVP + + and VJPVJP + + for a f1:R2Cf1: ℝ^2 → ℂ + + are defined as:

                                                            +JVP=[11j]J[cd]JVP = \begin{bmatrix} 1 & 1j \end{bmatrix} * J * \begin{bmatrix} c \\ d \end{bmatrix} \\ \\ + + +
                                                            -VJP=[cd]JVJP = \begin{bmatrix} c & -d \end{bmatrix} * J +VJP=[cd]JVJP = \begin{bmatrix} c & -d \end{bmatrix} * J + + -
                                                            diff --git a/docs/stable/notes/faq.html b/docs/stable/notes/faq.html index 4595f6068540..dc58263a1309 100644 --- a/docs/stable/notes/faq.html +++ b/docs/stable/notes/faq.html @@ -396,7 +396,8 @@

                                                            My model reports “cuda runtime error(2): out of memory”repackage function as described in this forum post.

                                                            Don’t use linear layers that are too large. -A linear layer nn.Linear(m, n) uses O(nm)O(nm) +A linear layer nn.Linear(m, n) uses O(nm)O(nm) + memory: that is to say, the memory requirements of the weights scales quadratically with the number of features. It is very easy diff --git a/docs/stable/objects.inv b/docs/stable/objects.inv index eff8372f9df8..06689dafc92c 100644 Binary files a/docs/stable/objects.inv and b/docs/stable/objects.inv differ diff --git a/docs/stable/optim.html b/docs/stable/optim.html index 2faee72a0330..f8bfd6caf69b 100644 --- a/docs/stable/optim.html +++ b/docs/stable/optim.html @@ -182,7 +182,12 @@ - + + + + + +

                                                            Notes

                                                              @@ -247,7 +252,7 @@
                                                              • torchaudio
                                                              • torchtext
                                                              • -
                                                              • torchvision
                                                              • +
                                                              • torchvision
                                                              • TorchElastic
                                                              • TorchServe
                                                              • PyTorch on XLA Devices
                                                              • @@ -585,9 +590,7 @@

                                                                optimizer.step(
                                                                class torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)[source]

                                                                Implements Adam algorithm.

                                                                -

                                                                It has been proposed in Adam: A Method for Stochastic Optimization. -The implementation of the L2 penalty follows changes proposed in -Decoupled Weight Decay Regularization.

                                                                +

                                                                It has been proposed in Adam: A Method for Stochastic Optimization.

                                                                Parameters
                                                                  @@ -726,7 +729,7 @@

                                                                  optimizer.step(
                                                                  class torch.optim.ASGD(params, lr=0.01, lambd=0.0001, alpha=0.75, t0=1000000.0, weight_decay=0)[source]

                                                                  Implements Averaged Stochastic Gradient Descent.

                                                                  -

                                                                  It has been proposed in Acceleration of stochastic approximation by +

                                                                  It has been proposed in Acceleration of stochastic approximation by averaging.

                                                                  Parameters
                                                                  @@ -812,12 +815,12 @@

                                                                  optimizer.step( class torch.optim.RMSprop(params, lr=0.01, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0, centered=False)[source]

                                                                  Implements RMSprop algorithm.

                                                                  Proposed by G. Hinton in his -course.

                                                                  +course.

                                                                  The centered version first appears in Generating Sequences With Recurrent Neural Networks.

                                                                  The implementation here takes the square root of the gradient average before adding epsilon (note that TensorFlow interchanges these two operations). The effective -learning rate is thus α/(v+ϵ)\alpha/(\sqrt{v} + \epsilon) +M834 80h400000v40h-400000z'/>+ϵ) - where α\alpha + where α\alpha -is the scheduled learning rate and vv +is the scheduled learning rate and vv is the weighted moving average of the squared gradient.

                                                                  @@ -931,32 +934,32 @@

                                                                  optimizer.step( Sutskever et. al. and implementations in some other frameworks.

                                                                  Considering the specific case of Momentum, the update can be written as

                                                                  -vt+1=μvt+gt+1,pt+1=ptlrvt+1,\begin{aligned} +vt+1=μvt+gt+1,pt+1=ptlrvt+1,\begin{aligned} v_{t+1} & = \mu * v_{t} + g_{t+1}, \\ p_{t+1} & = p_{t} - \text{lr} * v_{t+1}, \end{aligned} - + -

                                                                  where pp +

                                                                  where pp -, gg +, gg -, vv +, vv - and μ\mu + and μ\mu denote the parameters, gradient, velocity, and momentum respectively.

                                                                  This is in contrast to Sutskever et. al. and other frameworks which employ an update of the form

                                                                  -vt+1=μvt+lrgt+1,pt+1=ptvt+1.\begin{aligned} +vt+1=μvt+lrgt+1,pt+1=ptvt+1.\begin{aligned} v_{t+1} & = \mu * v_{t} + \text{lr} * g_{t+1}, \\ p_{t+1} & = p_{t} - v_{t+1}. \end{aligned} - +

                                                                  The Nesterov version is analogously modified.

                                                                  @@ -1000,7 +1003,7 @@

                                                                  How to adjust learning rate
                                                                  -class torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)[source]
                                                                  +class torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)[source]

                                                                  Sets the learning rate of each parameter group to the initial lr times a given function. When last_epoch=-1, sets initial lr as lr.

                                                                  @@ -1011,8 +1014,6 @@

                                                                  How to adjust learning rateint) – The index of last epoch. Default: -1.

                                                                  -
                                                                • verbose (bool) – If True, prints a message to stdout for -each update. Default: False.

                                                                @@ -1053,7 +1054,7 @@

                                                                How to adjust learning rate
                                                                -class torch.optim.lr_scheduler.MultiplicativeLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)[source]
                                                                +class torch.optim.lr_scheduler.MultiplicativeLR(optimizer, lr_lambda, last_epoch=-1)[source]

                                                                Multiply the learning rate of each parameter group by the factor given in the specified function. When last_epoch=-1, sets initial lr as lr.

                                                                @@ -1064,8 +1065,6 @@

                                                                How to adjust learning rateint) – The index of last epoch. Default: -1.

                                                                -
                                                              • verbose (bool) – If True, prints a message to stdout for -each update. Default: False.

                                                            @@ -1104,7 +1103,7 @@

                                                            How to adjust learning rate
                                                            -class torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1, verbose=False)[source]
                                                            +class torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)[source]

                                                            Decays the learning rate of each parameter group by gamma every step_size epochs. Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When @@ -1117,8 +1116,6 @@

                                                            How to adjust learning ratefloat) – Multiplicative factor of learning rate decay. Default: 0.1.

                                                          • last_epoch (int) – The index of last epoch. Default: -1.

                                                          • -
                                                          • verbose (bool) – If True, prints a message to stdout for -each update. Default: False.

                                                          • @@ -1139,7 +1136,7 @@

                                                            How to adjust learning rate
                                                            -class torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1, verbose=False)[source]
                                                            +class torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)[source]

                                                            Decays the learning rate of each parameter group by gamma once the number of epoch reaches one of the milestones. Notice that such decay can happen simultaneously with other changes to the learning rate from outside @@ -1152,8 +1149,6 @@

                                                            How to adjust learning ratefloat) – Multiplicative factor of learning rate decay. Default: 0.1.

                                                          • last_epoch (int) – The index of last epoch. Default: -1.

                                                          • -
                                                          • verbose (bool) – If True, prints a message to stdout for -each update. Default: False.

                                                          • @@ -1173,7 +1168,7 @@

                                                            How to adjust learning rate
                                                            -class torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1, verbose=False)[source]
                                                            +class torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)[source]

                                                            Decays the learning rate of each parameter group by gamma every epoch. When last_epoch=-1, sets initial lr as lr.

                                                            @@ -1182,8 +1177,6 @@

                                                            How to adjust learning rateOptimizer) – Wrapped optimizer.

                                                          • gamma (float) – Multiplicative factor of learning rate decay.

                                                          • last_epoch (int) – The index of last epoch. Default: -1.

                                                          • -
                                                          • verbose (bool) – If True, prints a message to stdout for -each update. Default: False.

                                                          • @@ -1191,16 +1184,16 @@

                                                            How to adjust learning rate
                                                            -class torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1, verbose=False)[source]
                                                            +class torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)[source]

                                                            Set the learning rate of each parameter group using a cosine annealing -schedule, where ηmax\eta_{max} +schedule, where ηmax\eta_{max} is set to the initial lr and -TcurT_{cur} +TcurT_{cur} is the number of epochs since the last restart in SGDR:

                                                            -ηt=ηmin+12(ηmaxηmin)(1+cos(TcurTmaxπ)),Tcur(2k+1)Tmax;ηt+1=ηt+12(ηmaxηmin)(1cos(1Tmaxπ)),Tcur=(2k+1)Tmax.\begin{aligned} +ηt=ηmin+12(ηmaxηmin)(1+cos(TcurTmaxπ)),Tcur(2k+1)Tmax;ηt+1=ηt+12(ηmaxηmin)(1cos(1Tmaxπ)),Tcur=(2k+1)Tmax.\begin{aligned} \eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right), & T_{cur} \neq (2k+1)T_{max}; \\ @@ -1209,17 +1202,17 @@

                                                            How to adjust learning rate

                                                            SGDR: Stochastic Gradient Descent with Warm Restarts. Note that this only @@ -1231,8 +1224,6 @@

                                                            How to adjust learning rateint) – Maximum number of iterations.

                                                          • eta_min (float) – Minimum learning rate. Default: 0.

                                                          • last_epoch (int) – The index of last epoch. Default: -1.

                                                          • -
                                                          • verbose (bool) – If True, prints a message to stdout for -each update. Default: False.

                                                          • @@ -1240,7 +1231,7 @@

                                                            How to adjust learning rate
                                                            -class torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08, verbose=False)[source]
                                                            +class torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)[source]

                                                            Reduce learning rate when a metric has stopped improving. Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates. This scheduler reads a metrics @@ -1262,6 +1253,8 @@

                                                            How to adjust learning ratebool) – If True, prints a message to stdout for +each update. Default: False.

                                                          • threshold (float) – Threshold for measuring the new optimum, to only focus on significant changes. Default: 1e-4.

                                                          • threshold_mode (str) – One of rel, abs. In rel mode, @@ -1277,8 +1270,6 @@

                                                            How to adjust learning ratefloat) – Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is ignored. Default: 1e-8.

                                                          • -
                                                          • verbose (bool) – If True, prints a message to stdout for -each update. Default: False.

                                                          • @@ -1296,7 +1287,7 @@

                                                            How to adjust learning rate
                                                            -class torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr, max_lr, step_size_up=2000, step_size_down=None, mode='triangular', gamma=1.0, scale_fn=None, scale_mode='cycle', cycle_momentum=True, base_momentum=0.8, max_momentum=0.9, last_epoch=-1, verbose=False)[source]
                                                            +class torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr, max_lr, step_size_up=2000, step_size_down=None, mode='triangular', gamma=1.0, scale_fn=None, scale_mode='cycle', cycle_momentum=True, base_momentum=0.8, max_momentum=0.9, last_epoch=-1)[source]

                                                            Sets the learning rate of each parameter group according to cyclical learning rate policy (CLR). The policy cycles the learning rate between two boundaries with a constant frequency, as detailed in @@ -1374,8 +1365,6 @@

                                                            How to adjust learning ratebool) – If True, prints a message to stdout for -each update. Default: False.

                                                            @@ -1402,7 +1391,7 @@

                                                            How to adjust learning rate
                                                            -class torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr, total_steps=None, epochs=None, steps_per_epoch=None, pct_start=0.3, anneal_strategy='cos', cycle_momentum=True, base_momentum=0.85, max_momentum=0.95, div_factor=25.0, final_div_factor=10000.0, last_epoch=-1, verbose=False)[source]
                                                            +class torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr, total_steps=None, epochs=None, steps_per_epoch=None, pct_start=0.3, anneal_strategy='cos', cycle_momentum=True, base_momentum=0.85, max_momentum=0.95, div_factor=25.0, final_div_factor=10000.0, last_epoch=-1)[source]

                                                            Sets the learning rate of each parameter group according to the 1cycle learning rate policy. The 1cycle policy anneals the learning rate from an initial learning rate to some maximum learning rate and then @@ -1476,8 +1465,6 @@

                                                            How to adjust learning ratebool) – If True, prints a message to stdout for -each update. Default: False.

                                                            @@ -1495,31 +1482,31 @@

                                                            How to adjust learning rate
                                                            -class torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0, T_mult=1, eta_min=0, last_epoch=-1, verbose=False)[source]
                                                            +class torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0, T_mult=1, eta_min=0, last_epoch=-1)[source]

                                                            Set the learning rate of each parameter group using a cosine annealing -schedule, where ηmax\eta_{max} +schedule, where ηmax\eta_{max} - is set to the initial lr, TcurT_{cur} + is set to the initial lr, TcurT_{cur} -is the number of epochs since the last restart and TiT_{i} +is the number of epochs since the last restart and TiT_{i} is the number of epochs between two warm restarts in SGDR:

                                                            -ηt=ηmin+12(ηmaxηmin)(1+cos(TcurTiπ))\eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + +ηt=ηmin+12(ηmaxηmin)(1+cos(TcurTiπ))\eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + \cos\left(\frac{T_{cur}}{T_{i}}\pi\right)\right) - + -

                                                            When Tcur=TiT_{cur}=T_{i} +

                                                            When Tcur=TiT_{cur}=T_{i} -, set ηt=ηmin\eta_t = \eta_{min} +, set ηt=ηmin\eta_t = \eta_{min} . -When Tcur=0T_{cur}=0 +When Tcur=0T_{cur}=0 - after restart, set ηt=ηmax\eta_t=\eta_{max} + after restart, set ηt=ηmax\eta_t=\eta_{max} .

                                                            It has been proposed in @@ -1529,13 +1516,11 @@

                                                            How to adjust learning rate
                                                            • optimizer (Optimizer) – Wrapped optimizer.

                                                            • T_0 (int) – Number of iterations for the first restart.

                                                            • -
                                                            • T_mult (int, optional) – A factor increases TiT_{i} +

                                                            • T_mult (int, optional) – A factor increases TiT_{i} after a restart. Default: 1.

                                                            • eta_min (float, optional) – Minimum learning rate. Default: 0.

                                                            • last_epoch (int, optional) – The index of last epoch. Default: -1.

                                                            • -
                                                            • verbose (bool) – If True, prints a message to stdout for -each update. Default: False.

                                                            @@ -1570,100 +1555,6 @@

                                                            How to adjust learning rate -

                                                            Stochastic Weight Averaging

                                                            -

                                                            torch.optim.swa_utils implements Stochastic Weight Averaging (SWA). In particular, -torch.optim.swa_utils.AveragedModel class implements SWA models, -torch.optim.swa_utils.SWALR implements the SWA learning rate scheduler and -torch.optim.swa_utils.update_bn() is a utility function used to update SWA batch -normalization statistics at the end of training.

                                                            -

                                                            SWA has been proposed in Averaging Weights Leads to Wider Optima and Better Generalization.

                                                            -
                                                            -

                                                            Constructing averaged models

                                                            -

                                                            AveragedModel class serves to compute the weights of the SWA model. You can create an -averaged model by running:

                                                            -
                                                            >>> swa_model = AveragedModel(model)
                                                            -
                                                            -
                                                            -

                                                            Here the model model can be an arbitrary torch.nn.Module object. swa_model -will keep track of the running averages of the parameters of the model. To update these -averages, you can use the update_parameters() function:

                                                            -
                                                            >>> swa_model.update_parameters(model)
                                                            -
                                                            -
                                                            -
                                                            -
                                                            -

                                                            SWA learning rate schedules

                                                            -

                                                            Typically, in SWA the learning rate is set to a high constant value. SWALR is a -learning rate scheduler that anneals the learning rate to a fixed value, and then keeps it -constant. For example, the following code creates a scheduler that linearly anneals the -learning rate from its initial value to 0.05 in 5 epochs within each parameter group:

                                                            -
                                                            >>> swa_scheduler = torch.optim.swa_utils.SWALR(optimizer, \
                                                            ->>>         anneal_strategy="linear", anneal_epochs=5, swa_lr=0.05)
                                                            -
                                                            -
                                                            -

                                                            You can also use cosine annealing to a fixed value instead of linear annealing by setting -anneal_strategy="cos".

                                                            -
                                                            -
                                                            -

                                                            Taking care of batch normalization

                                                            -

                                                            update_bn() is a utility function that allows to compute the batchnorm statistics for the SWA model -on a given dataloader loader at the end of training:

                                                            -
                                                            >>> torch.optim.swa_utils.update_bn(loader, swa_model)
                                                            -
                                                            -
                                                            -

                                                            update_bn() applies the swa_model to every element in the dataloader and computes the activation -statistics for each batch normalization layer in the model.

                                                            -
                                                            -

                                                            Warning

                                                            -

                                                            update_bn() assumes that each batch in the dataloader loader is either a tensors or a list of -tensors where the first element is the tensor that the network swa_model should be applied to. -If your dataloader has a different structure, you can update the batch normalization statistics of the -swa_model by doing a forward pass with the swa_model on each element of the dataset.

                                                            -
                                                            -
                                                            -
                                                            -

                                                            Custom averaging strategies

                                                            -

                                                            By default, torch.optim.swa_utils.AveragedModel computes a running equal average of -the parameters that you provide, but you can also use custom averaging functions with the -avg_fn parameter. In the following example ema_model computes an exponential moving average.

                                                            -

                                                            Example:

                                                            -
                                                            >>> ema_avg = lambda averaged_model_parameter, model_parameter, num_averaged:\
                                                            ->>>         0.1 * averaged_model_parameter + 0.9 * model_parameter
                                                            ->>> ema_model = torch.optim.swa_utils.AveragedModel(model, avg_fn=ema_avg)
                                                            -
                                                            -
                                                            -
                                                            -
                                                            -

                                                            Putting it all together

                                                            -

                                                            In the example below, swa_model is the SWA model that accumulates the averages of the weights. -We train the model for a total of 300 epochs and we switch to the SWA learning rate schedule -and start to collect SWA averages of the parameters at epoch 160:

                                                            -
                                                            >>> loader, optimizer, model, loss_fn = ...
                                                            ->>> swa_model = torch.optim.swa_utils.AveragedModel(model)
                                                            ->>> scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=300)
                                                            ->>> swa_start = 160
                                                            ->>> swa_scheduler = SWALR(optimizer, swa_lr=0.05)
                                                            ->>>
                                                            ->>> for epoch in range(300):
                                                            ->>>       for input, target in loader:
                                                            ->>>           optimizer.zero_grad()
                                                            ->>>           loss_fn(model(input), target).backward()
                                                            ->>>           optimizer.step()
                                                            ->>>       if i > swa_start:
                                                            ->>>           swa_model.update_parameters(model)
                                                            ->>>           swa_scheduler.step()
                                                            ->>>       else:
                                                            ->>>           scheduler.step()
                                                            ->>>
                                                            ->>> # Update bn statistics for the swa_model at the end
                                                            ->>> torch.optim.swa_utils.update_bn(loader, swa_model)
                                                            ->>> # Use swa_model to make predictions on test data
                                                            ->>> preds = swa_model(test_input)
                                                            -
                                                            -
                                                            -
                                                            @@ -1723,14 +1614,6 @@

                                                            Putting it all together
                                                          • Algorithms
                                                          • How to adjust learning rate
                                                          • -
                                                          • Stochastic Weight Averaging -
                                                          • @@ -1983,4 +1866,4 @@

                                                            Resources

                                                            }) - + \ No newline at end of file diff --git a/docs/stable/quantization.html b/docs/stable/quantization.html index ff717cc61a94..038edb0de7c6 100644 --- a/docs/stable/quantization.html +++ b/docs/stable/quantization.html @@ -957,7 +957,7 @@

                                                            Top-level quantization APIs
                                                            -torch.quantization.prepare(model, inplace=False, white_list={<class 'torch.nn.modules.activation.ReLU6'>, <class 'torch.nn.intrinsic.qat.modules.conv_fused.ConvBn2d'>, <class 'torch.nn.modules.instancenorm.InstanceNorm2d'>, <class 'torch.nn.intrinsic.modules.fused.ConvReLU3d'>, <class 'torch.nn.modules.instancenorm.InstanceNorm3d'>, <class 'torch.nn.modules.conv.Conv3d'>, <class 'torch.nn.intrinsic.qat.modules.conv_fused.ConvReLU2d'>, <class 'torch.nn.modules.normalization.GroupNorm'>, <class 'torch.nn.qat.modules.linear.Linear'>, <class 'torch.nn.modules.batchnorm.BatchNorm3d'>, <class 'torch.nn.intrinsic.modules.fused.BNReLU3d'>, <class 'torch.nn.modules.rnn.RNNCell'>, <class 'torch.nn.modules.activation.ELU'>, <class 'torch.nn.intrinsic.qat.modules.conv_fused.ConvBnReLU2d'>, <class 'torch.nn.intrinsic.modules.fused.ConvBnReLU2d'>, <class 'torch.nn.modules.rnn.LSTM'>, <class 'torch.nn.intrinsic.modules.fused.ConvBn2d'>, <class 'torch.nn.modules.normalization.LayerNorm'>, <class 'torch.nn.modules.conv.Conv1d'>, <class 'torch.nn.modules.rnn.GRUCell'>, <class 'torch.nn.modules.linear.Linear'>, <class 'torch.nn.intrinsic.modules.fused.LinearReLU'>, <class 'torch.nn.modules.activation.ReLU'>, <class 'torch.nn.modules.conv.Conv2d'>, <class 'torch.nn.intrinsic.modules.fused.ConvReLU1d'>, <class 'torch.nn.intrinsic.modules.fused.ConvReLU2d'>, <class 'torch.nn.intrinsic.qat.modules.linear_relu.LinearReLU'>, <class 'torch.quantization.stubs.QuantStub'>, <class 'torch.nn.modules.batchnorm.BatchNorm2d'>, <class 'torch.nn.intrinsic.modules.fused.BNReLU2d'>, <class 'torch.nn.quantized.modules.functional_modules.FloatFunctional'>, <class 'torch.nn.modules.activation.Hardswish'>, <class 'torch.nn.modules.rnn.LSTMCell'>, <class 'torch.nn.modules.container.Sequential'>, <class 'torch.nn.qat.modules.conv.Conv2d'>, <class 'torch.nn.modules.instancenorm.InstanceNorm1d'>}, observer_non_leaf_module_list=None)[source]
                                                            +torch.quantization.prepare(model, inplace=False, white_list={<class 'torch.nn.intrinsic.qat.modules.conv_fused.ConvReLU2d'>, <class 'torch.nn.intrinsic.modules.fused.BNReLU2d'>, <class 'torch.nn.intrinsic.qat.modules.conv_fused.ConvBnReLU2d'>, <class 'torch.nn.modules.rnn.LSTM'>, <class 'torch.nn.modules.activation.ReLU'>, <class 'torch.nn.modules.conv.Conv2d'>, <class 'torch.nn.modules.instancenorm.InstanceNorm2d'>, <class 'torch.nn.intrinsic.qat.modules.linear_relu.LinearReLU'>, <class 'torch.nn.modules.rnn.LSTMCell'>, <class 'torch.nn.qat.modules.linear.Linear'>, <class 'torch.nn.quantized.modules.functional_modules.FloatFunctional'>, <class 'torch.nn.intrinsic.modules.fused.ConvReLU3d'>, <class 'torch.nn.modules.activation.ELU'>, <class 'torch.nn.modules.batchnorm.BatchNorm3d'>, <class 'torch.nn.modules.container.Sequential'>, <class 'torch.nn.modules.activation.ReLU6'>, <class 'torch.quantization.stubs.QuantStub'>, <class 'torch.nn.modules.linear.Linear'>, <class 'torch.nn.modules.conv.Conv1d'>, <class 'torch.nn.modules.normalization.GroupNorm'>, <class 'torch.nn.modules.activation.Hardswish'>, <class 'torch.nn.modules.instancenorm.InstanceNorm3d'>, <class 'torch.nn.modules.rnn.RNNCell'>, <class 'torch.nn.intrinsic.modules.fused.ConvBnReLU2d'>, <class 'torch.nn.intrinsic.qat.modules.conv_fused.ConvBn2d'>, <class 'torch.nn.intrinsic.modules.fused.ConvBn2d'>, <class 'torch.nn.modules.instancenorm.InstanceNorm1d'>, <class 'torch.nn.intrinsic.modules.fused.BNReLU3d'>, <class 'torch.nn.intrinsic.modules.fused.LinearReLU'>, <class 'torch.nn.modules.conv.Conv3d'>, <class 'torch.nn.qat.modules.conv.Conv2d'>, <class 'torch.nn.modules.normalization.LayerNorm'>, <class 'torch.nn.modules.rnn.GRUCell'>, <class 'torch.nn.intrinsic.modules.fused.ConvReLU1d'>, <class 'torch.nn.intrinsic.modules.fused.ConvReLU2d'>, <class 'torch.nn.modules.batchnorm.BatchNorm2d'>}, observer_non_leaf_module_list=None)[source]

                                                            Prepares a copy of the model for quantization calibration or quantization-aware training.

                                                            Quantization configuration should be assigned preemptively to individual submodules in .qconfig attribute.

                                                            @@ -1274,16 +1274,21 @@

                                                            Observersxminx_\text{min} - and xmaxx_\text{max} +

                                                            Given running min/max as xminx_\text{min} + + and xmaxx_\text{max} + , -scale ss - and zero point zz +scale ss + + and zero point zz + are computed as:

                                                            -

                                                            The running minimum/maximum xmin/maxx_\text{min/max} +

                                                            The running minimum/maximum xmin/maxx_\text{min/max} + is computed as:

                                                            -torch.nn.quantized.functional.linear(input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, scale: Optional[float] = None, zero_point: Optional[int] = None) → torch.Tensor[source]
                                                            +torch.nn.quantized.functional.linear(input, weight, bias=None, scale=None, zero_point=None)[source]

                                                            Applies a linear transformation to the incoming quantized data: -y=xAT+by = xA^T + b +y=xAT+by = xA^T + b + . See Linear

                                                            @@ -1921,14 +1938,18 @@

                                                            torch.nn.quantized
                                                            Shape:
                                                              -
                                                            • Input: (N,,in_features)(N, *, in\_features) +

                                                            • Input: (N,,in_features)(N, *, in\_features) + where * means any number of additional dimensions

                                                            • -
                                                            • Weight: (out_features,in_features)(out\_features, in\_features) +

                                                            • Weight: (out_features,in_features)(out\_features, in\_features) +

                                                            • -
                                                            • Bias: (out_features)(out\_features) +

                                                            • Bias: (out_features)(out\_features) +

                                                            • -
                                                            • Output: (N,,out_features)(N, *, out\_features) +

                                                            • Output: (N,,out_features)(N, *, out\_features) +

                                                            @@ -1944,11 +1965,14 @@

                                                            torch.nn.quantized
                                                            Parameters
                                                              -
                                                            • input – quantized input tensor of shape (minibatch,in_channels,iW)(\text{minibatch} , \text{in\_channels} , iW) +

                                                            • input – quantized input tensor of shape (minibatch,in_channels,iW)(\text{minibatch} , \text{in\_channels} , iW) +

                                                            • -
                                                            • weight – quantized filters of shape (out_channels,in_channelsgroups,iW)(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , iW) +

                                                            • weight – quantized filters of shape (out_channels,in_channelsgroups,iW)(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , iW) +

                                                            • -
                                                            • biasnon-quantized bias tensor of shape (out_channels)(\text{out\_channels}) +

                                                            • biasnon-quantized bias tensor of shape (out_channels)(\text{out\_channels}) + . The tensor type must be torch.float.

                                                            • stride – the stride of the convolving kernel. Can be a single number or a tuple (sW,). Default: 1

                                                            • @@ -1956,7 +1980,8 @@

                                                              torch.nn.quantizedin_channels\text{in\_channels} +
                                                            • groups – split input into groups, in_channels\text{in\_channels} + should be divisible by the number of groups. Default: 1

                                                            • padding_mode – the padding mode to use. Only “zeros” is supported for quantized convolution at the moment. Default: “zeros”

                                                            • @@ -1992,11 +2017,14 @@

                                                              torch.nn.quantized
                                                              Parameters
                                                                -
                                                              • input – quantized input tensor of shape (minibatch,in_channels,iH,iW)(\text{minibatch} , \text{in\_channels} , iH , iW) +

                                                              • input – quantized input tensor of shape (minibatch,in_channels,iH,iW)(\text{minibatch} , \text{in\_channels} , iH , iW) +

                                                              • -
                                                              • weight – quantized filters of shape (out_channels,in_channelsgroups,kH,kW)(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kH , kW) +

                                                              • weight – quantized filters of shape (out_channels,in_channelsgroups,kH,kW)(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kH , kW) +

                                                              • -
                                                              • biasnon-quantized bias tensor of shape (out_channels)(\text{out\_channels}) +

                                                              • biasnon-quantized bias tensor of shape (out_channels)(\text{out\_channels}) + . The tensor type must be torch.float.

                                                              • stride – the stride of the convolving kernel. Can be a single number or a tuple (sH, sW). Default: 1

                                                              • @@ -2004,7 +2032,8 @@

                                                                torch.nn.quantizedin_channels\text{in\_channels} +
                                                              • groups – split input into groups, in_channels\text{in\_channels} + should be divisible by the number of groups. Default: 1

                                                              • padding_mode – the padding mode to use. Only “zeros” is supported for quantized convolution at the moment. Default: “zeros”

                                                              • @@ -2041,13 +2070,16 @@

                                                                torch.nn.quantizedParameters
                                                                • input – quantized input tensor of shape -(minibatch,in_channels,iD,iH,iW)(\text{minibatch} , \text{in\_channels} , iD , iH , iW) +(minibatch,in_channels,iD,iH,iW)(\text{minibatch} , \text{in\_channels} , iD , iH , iW) +

                                                                • weight – quantized filters of shape -(out_channels,in_channelsgroups,kD,kH,kW)(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kD , kH , kW) +(out_channels,in_channelsgroups,kD,kH,kW)(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kD , kH , kW) +

                                                                • biasnon-quantized bias tensor of shape -(out_channels)(\text{out\_channels}) +(out_channels)(\text{out\_channels}) + . The tensor type must be torch.float.

                                                                • stride – the stride of the convolving kernel. Can be a single number or a tuple (sD, sH, sW). Default: 1

                                                                • @@ -2055,7 +2087,8 @@

                                                                  torch.nn.quantizedin_channels\text{in\_channels} +
                                                                • groups – split input into groups, in_channels\text{in\_channels} + should be divisible by the number of groups. Default: 1

                                                                • padding_mode – the padding mode to use. Only “zeros” is supported for @@ -2097,7 +2130,7 @@

                                                                  torch.nn.quantized
                                                                  -torch.nn.quantized.functional.adaptive_avg_pool2d(input: Tensor, output_size: BroadcastingList2[int]) → Tensor[source]
                                                                  +torch.nn.quantized.functional.adaptive_avg_pool2d(input, output_size)[source]

                                                                  Applies a 2D adaptive average pooling over a quantized input signal composed of several quantized input planes.

                                                                  @@ -2116,9 +2149,11 @@

                                                                  torch.nn.quantized
                                                                  torch.nn.quantized.functional.avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)[source]
                                                                  -

                                                                  Applies 2D average-pooling operation in kH×kWkH \times kW +

                                                                  Applies 2D average-pooling operation in kH×kWkH \times kW + regions by step size -sH×sWsH \times sW +sH×sWsH \times sW + steps. The number of output features is equal to the number of input planes.

                                                                  @@ -2129,7 +2164,8 @@

                                                                  torch.nn.quantized
                                                                  Parameters
                                                                    -
                                                                  • input – quantized input tensor (minibatch,in_channels,iH,iW)(\text{minibatch} , \text{in\_channels} , iH , iW) +

                                                                  • input – quantized input tensor (minibatch,in_channels,iH,iW)(\text{minibatch} , \text{in\_channels} , iH , iW) +

                                                                  • kernel_size – size of the pooling region. Can be a single number or a tuple (kH, kW)

                                                                  • @@ -2197,7 +2233,7 @@

                                                                    torch.nn.quantized
                                                                    -torch.nn.quantized.functional.hardswish(input: torch.Tensor, scale: float, zero_point: int) → torch.Tensor[source]
                                                                    +torch.nn.quantized.functional.hardswish(input, scale, zero_point)[source]

                                                                    This is the quantized version of hardswish().

                                                                    Parameters
                                                                    @@ -2340,8 +2376,10 @@

                                                                    ReLU
                                                                    class torch.nn.quantized.ReLU(inplace=False)[source]

                                                                    Applies quantized rectified linear unit function element-wise:

                                                                    -

                                                                    ReLU(x)=max(x0,x)\text{ReLU}(x)= \max(x_0, x) -, where x0x_0 +

                                                                    ReLU(x)=max(x0,x)\text{ReLU}(x)= \max(x_0, x) + +, where x0x_0 + is the zero point.

                                                                    Please see https://pytorch.org/docs/stable/nn.html#torch.nn.ReLU for more documentation on ReLU.

                                                                    @@ -2352,10 +2390,12 @@

                                                                    ReLU

                                                                    Shape:
                                                                      -
                                                                    • Input: (N,)(N, *) +

                                                                    • Input: (N,)(N, *) + where * means, any number of additional dimensions

                                                                    • -
                                                                    • Output: (N,)(N, *) +

                                                                    • Output: (N,)(N, *) + , same shape as the input

                                                                    @@ -2376,10 +2416,13 @@

                                                                    ReLU6
                                                                    class torch.nn.quantized.ReLU6(inplace=False)[source]

                                                                    Applies the element-wise function:

                                                                    -

                                                                    ReLU6(x)=min(max(x0,x),q(6))\text{ReLU6}(x) = \min(\max(x_0, x), q(6)) -, where x0x_0 +

                                                                    ReLU6(x)=min(max(x0,x),q(6))\text{ReLU6}(x) = \min(\max(x_0, x), q(6)) + +, where x0x_0 + is the -zero_point, and q(6)q(6) +zero_point, and q(6)q(6) + is the quantized representation of number 6.

                                                                    Parameters
                                                                    @@ -2388,10 +2431,12 @@

                                                                    ReLU6

                                                                    Shape:
                                                                      -
                                                                    • Input: (N,)(N, *) +

                                                                    • Input: (N,)(N, *) + where * means, any number of additional dimensions

                                                                    • -
                                                                    • Output: (N,)(N, *) +

                                                                    • Output: (N,)(N, *) + , same shape as the input

                                                                    @@ -2744,9 +2789,11 @@

                                                                    Linear
                                                                    Variables
                                                                    • ~Linear.weight (Tensor) – the non-learnable quantized weights of the module of -shape (out_features,in_features)(\text{out\_features}, \text{in\_features}) +shape (out_features,in_features)(\text{out\_features}, \text{in\_features}) + .

                                                                    • -
                                                                    • ~Linear.bias (Tensor) – the non-learnable bias of the module of shape (out_features)(\text{out\_features}) +

                                                                    • ~Linear.bias (Tensor) – the non-learnable bias of the module of shape (out_features)(\text{out\_features}) + . If bias is True, the values are initialized to zero.

                                                                    • ~Linear.scalescale parameter of output Quantized Tensor, type: double

                                                                    • @@ -2893,10 +2940,12 @@

                                                                      Linear
                                                                      Variables
                                                                      • ~Linear.weight (Tensor) – the non-learnable quantized weights of the module which are of -shape (out_features,in_features)(\text{out\_features}, \text{in\_features}) +shape (out_features,in_features)(\text{out\_features}, \text{in\_features}) + .

                                                                      • ~Linear.bias (Tensor) – the non-learnable floating point bias of the module of shape -(out_features)(\text{out\_features}) +(out_features)(\text{out\_features}) + . If bias is True, the values are initialized to zero.

                                                                      diff --git a/docs/stable/searchindex.js b/docs/stable/searchindex.js index 061f3364c8b6..bae7f18819fd 100644 --- a/docs/stable/searchindex.js +++ b/docs/stable/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["__config__","amp","autograd","bottleneck","checkpoint","community/contribution_guide","community/governance","community/persons_of_interest","complex_numbers","cpp_extension","cpp_index","cuda","cudnn_persistent_rnn","data","distributed","distributions","dlpack","futures","generated/torch.Generator","generated/torch.abs","generated/torch.absolute","generated/torch.acos","generated/torch.acosh","generated/torch.add","generated/torch.addbmm","generated/torch.addcdiv","generated/torch.addcmul","generated/torch.addmm","generated/torch.addmv","generated/torch.addr","generated/torch.allclose","generated/torch.angle","generated/torch.arange","generated/torch.argmax","generated/torch.argmin","generated/torch.argsort","generated/torch.as_strided","generated/torch.as_tensor","generated/torch.asin","generated/torch.asinh","generated/torch.atan","generated/torch.atan2","generated/torch.atanh","generated/torch.baddbmm","generated/torch.bartlett_window","generated/torch.bernoulli","generated/torch.bincount","generated/torch.bitwise_and","generated/torch.bitwise_not","generated/torch.bitwise_or","generated/torch.bitwise_xor","generated/torch.blackman_window","generated/torch.block_diag","generated/torch.bmm","generated/torch.broadcast_tensors","generated/torch.bucketize","generated/torch.can_cast","generated/torch.cartesian_prod","generated/torch.cat","generated/torch.cdist","generated/torch.ceil","generated/torch.chain_matmul","generated/torch.cholesky","generated/torch.cholesky_inverse","generated/torch.cholesky_solve","generated/torch.chunk","generated/torch.clamp","generated/torch.combinations","generated/torch.compiled_with_cxx11_abi","generated/torch.conj","generated/torch.cos","generated/torch.cosh","generated/torch.cross","generated/torch.cummax","generated/torch.cummin","generated/torch.cumprod","generated/torch.cumsum","generated/torch.deg2rad","generated/torch.dequantize","generated/torch.det","generated/torch.diag","generated/torch.diag_embed","generated/torch.diagflat","generated/torch.diagonal","generated/torch.digamma","generated/torch.dist","generated/torch.div","generated/torch.dot","generated/torch.eig","generated/torch.einsum","generated/torch.empty","generated/torch.empty_like","generated/torch.empty_strided","generated/torch.enable_grad","generated/torch.eq","generated/torch.equal","generated/torch.erf","generated/torch.erfc","generated/torch.erfinv","generated/torch.exp","generated/torch.expm1","generated/torch.eye","generated/torch.fft","generated/torch.flatten","generated/torch.flip","generated/torch.fliplr","generated/torch.flipud","generated/torch.floor","generated/torch.floor_divide","generated/torch.fmod","generated/torch.frac","generated/torch.from_numpy","generated/torch.full","generated/torch.full_like","generated/torch.gather","generated/torch.ge","generated/torch.geqrf","generated/torch.ger","generated/torch.get_default_dtype","generated/torch.get_num_interop_threads","generated/torch.get_num_threads","generated/torch.get_rng_state","generated/torch.gt","generated/torch.hamming_window","generated/torch.hann_window","generated/torch.histc","generated/torch.ifft","generated/torch.imag","generated/torch.index_select","generated/torch.initial_seed","generated/torch.inverse","generated/torch.irfft","generated/torch.is_complex","generated/torch.is_floating_point","generated/torch.is_nonzero","generated/torch.is_storage","generated/torch.is_tensor","generated/torch.isclose","generated/torch.isfinite","generated/torch.isinf","generated/torch.isnan","generated/torch.istft","generated/torch.jit.ScriptFunction","generated/torch.jit.ScriptModule","generated/torch.jit.fork","generated/torch.jit.freeze","generated/torch.jit.ignore","generated/torch.jit.load","generated/torch.jit.save","generated/torch.jit.script","generated/torch.jit.trace","generated/torch.jit.trace_module","generated/torch.jit.unused","generated/torch.jit.wait","generated/torch.kthvalue","generated/torch.le","generated/torch.lerp","generated/torch.lgamma","generated/torch.linspace","generated/torch.load","generated/torch.lobpcg","generated/torch.log","generated/torch.log10","generated/torch.log1p","generated/torch.log2","generated/torch.logaddexp","generated/torch.logaddexp2","generated/torch.logcumsumexp","generated/torch.logdet","generated/torch.logical_and","generated/torch.logical_not","generated/torch.logical_or","generated/torch.logical_xor","generated/torch.logspace","generated/torch.logsumexp","generated/torch.lstsq","generated/torch.lt","generated/torch.lu","generated/torch.lu_solve","generated/torch.lu_unpack","generated/torch.manual_seed","generated/torch.masked_select","generated/torch.matmul","generated/torch.matrix_power","generated/torch.matrix_rank","generated/torch.max","generated/torch.mean","generated/torch.median","generated/torch.meshgrid","generated/torch.min","generated/torch.mm","generated/torch.mode","generated/torch.mul","generated/torch.multinomial","generated/torch.mv","generated/torch.mvlgamma","generated/torch.narrow","generated/torch.ne","generated/torch.neg","generated/torch.nn.AdaptiveAvgPool1d","generated/torch.nn.AdaptiveAvgPool2d","generated/torch.nn.AdaptiveAvgPool3d","generated/torch.nn.AdaptiveLogSoftmaxWithLoss","generated/torch.nn.AdaptiveMaxPool1d","generated/torch.nn.AdaptiveMaxPool2d","generated/torch.nn.AdaptiveMaxPool3d","generated/torch.nn.AlphaDropout","generated/torch.nn.AvgPool1d","generated/torch.nn.AvgPool2d","generated/torch.nn.AvgPool3d","generated/torch.nn.BCELoss","generated/torch.nn.BCEWithLogitsLoss","generated/torch.nn.BatchNorm1d","generated/torch.nn.BatchNorm2d","generated/torch.nn.BatchNorm3d","generated/torch.nn.Bilinear","generated/torch.nn.CELU","generated/torch.nn.CTCLoss","generated/torch.nn.ConstantPad1d","generated/torch.nn.ConstantPad2d","generated/torch.nn.ConstantPad3d","generated/torch.nn.Conv1d","generated/torch.nn.Conv2d","generated/torch.nn.Conv3d","generated/torch.nn.ConvTranspose1d","generated/torch.nn.ConvTranspose2d","generated/torch.nn.ConvTranspose3d","generated/torch.nn.CosineEmbeddingLoss","generated/torch.nn.CosineSimilarity","generated/torch.nn.CrossEntropyLoss","generated/torch.nn.DataParallel","generated/torch.nn.Dropout","generated/torch.nn.Dropout2d","generated/torch.nn.Dropout3d","generated/torch.nn.ELU","generated/torch.nn.Embedding","generated/torch.nn.EmbeddingBag","generated/torch.nn.Flatten","generated/torch.nn.Fold","generated/torch.nn.FractionalMaxPool2d","generated/torch.nn.GELU","generated/torch.nn.GRU","generated/torch.nn.GRUCell","generated/torch.nn.GroupNorm","generated/torch.nn.Hardshrink","generated/torch.nn.Hardsigmoid","generated/torch.nn.Hardswish","generated/torch.nn.Hardtanh","generated/torch.nn.HingeEmbeddingLoss","generated/torch.nn.Identity","generated/torch.nn.InstanceNorm1d","generated/torch.nn.InstanceNorm2d","generated/torch.nn.InstanceNorm3d","generated/torch.nn.KLDivLoss","generated/torch.nn.L1Loss","generated/torch.nn.LPPool1d","generated/torch.nn.LPPool2d","generated/torch.nn.LSTM","generated/torch.nn.LSTMCell","generated/torch.nn.LayerNorm","generated/torch.nn.LeakyReLU","generated/torch.nn.Linear","generated/torch.nn.LocalResponseNorm","generated/torch.nn.LogSigmoid","generated/torch.nn.LogSoftmax","generated/torch.nn.MSELoss","generated/torch.nn.MarginRankingLoss","generated/torch.nn.MaxPool1d","generated/torch.nn.MaxPool2d","generated/torch.nn.MaxPool3d","generated/torch.nn.MaxUnpool1d","generated/torch.nn.MaxUnpool2d","generated/torch.nn.MaxUnpool3d","generated/torch.nn.Module","generated/torch.nn.ModuleDict","generated/torch.nn.ModuleList","generated/torch.nn.MultiLabelMarginLoss","generated/torch.nn.MultiLabelSoftMarginLoss","generated/torch.nn.MultiMarginLoss","generated/torch.nn.MultiheadAttention","generated/torch.nn.NLLLoss","generated/torch.nn.PReLU","generated/torch.nn.PairwiseDistance","generated/torch.nn.ParameterDict","generated/torch.nn.ParameterList","generated/torch.nn.PixelShuffle","generated/torch.nn.PoissonNLLLoss","generated/torch.nn.RNN","generated/torch.nn.RNNBase","generated/torch.nn.RNNCell","generated/torch.nn.RReLU","generated/torch.nn.ReLU","generated/torch.nn.ReLU6","generated/torch.nn.ReflectionPad1d","generated/torch.nn.ReflectionPad2d","generated/torch.nn.ReplicationPad1d","generated/torch.nn.ReplicationPad2d","generated/torch.nn.ReplicationPad3d","generated/torch.nn.SELU","generated/torch.nn.Sequential","generated/torch.nn.Sigmoid","generated/torch.nn.SmoothL1Loss","generated/torch.nn.SoftMarginLoss","generated/torch.nn.Softmax","generated/torch.nn.Softmax2d","generated/torch.nn.Softmin","generated/torch.nn.Softplus","generated/torch.nn.Softshrink","generated/torch.nn.Softsign","generated/torch.nn.SyncBatchNorm","generated/torch.nn.Tanh","generated/torch.nn.Tanhshrink","generated/torch.nn.Threshold","generated/torch.nn.Transformer","generated/torch.nn.TransformerDecoder","generated/torch.nn.TransformerDecoderLayer","generated/torch.nn.TransformerEncoder","generated/torch.nn.TransformerEncoderLayer","generated/torch.nn.TripletMarginLoss","generated/torch.nn.Unfold","generated/torch.nn.Upsample","generated/torch.nn.UpsamplingBilinear2d","generated/torch.nn.UpsamplingNearest2d","generated/torch.nn.ZeroPad2d","generated/torch.nn.parallel.DistributedDataParallel","generated/torch.nn.parameter.Parameter","generated/torch.nn.utils.clip_grad_norm_","generated/torch.nn.utils.clip_grad_value_","generated/torch.nn.utils.parameters_to_vector","generated/torch.nn.utils.prune.BasePruningMethod","generated/torch.nn.utils.prune.CustomFromMask","generated/torch.nn.utils.prune.Identity","generated/torch.nn.utils.prune.L1Unstructured","generated/torch.nn.utils.prune.LnStructured","generated/torch.nn.utils.prune.PruningContainer","generated/torch.nn.utils.prune.RandomStructured","generated/torch.nn.utils.prune.RandomUnstructured","generated/torch.nn.utils.prune.custom_from_mask","generated/torch.nn.utils.prune.global_unstructured","generated/torch.nn.utils.prune.identity","generated/torch.nn.utils.prune.is_pruned","generated/torch.nn.utils.prune.l1_unstructured","generated/torch.nn.utils.prune.ln_structured","generated/torch.nn.utils.prune.random_structured","generated/torch.nn.utils.prune.random_unstructured","generated/torch.nn.utils.prune.remove","generated/torch.nn.utils.remove_spectral_norm","generated/torch.nn.utils.remove_weight_norm","generated/torch.nn.utils.rnn.PackedSequence","generated/torch.nn.utils.rnn.pack_padded_sequence","generated/torch.nn.utils.rnn.pack_sequence","generated/torch.nn.utils.rnn.pad_packed_sequence","generated/torch.nn.utils.rnn.pad_sequence","generated/torch.nn.utils.spectral_norm","generated/torch.nn.utils.vector_to_parameters","generated/torch.nn.utils.weight_norm","generated/torch.no_grad","generated/torch.nonzero","generated/torch.norm","generated/torch.normal","generated/torch.numel","generated/torch.ones","generated/torch.ones_like","generated/torch.orgqr","generated/torch.ormqr","generated/torch.pca_lowrank","generated/torch.pinverse","generated/torch.poisson","generated/torch.polygamma","generated/torch.pow","generated/torch.prod","generated/torch.promote_types","generated/torch.qr","generated/torch.quantize_per_channel","generated/torch.quantize_per_tensor","generated/torch.quasirandom.SobolEngine","generated/torch.rad2deg","generated/torch.rand","generated/torch.rand_like","generated/torch.randint","generated/torch.randint_like","generated/torch.randn","generated/torch.randn_like","generated/torch.randperm","generated/torch.range","generated/torch.real","generated/torch.reciprocal","generated/torch.remainder","generated/torch.renorm","generated/torch.repeat_interleave","generated/torch.reshape","generated/torch.result_type","generated/torch.rfft","generated/torch.roll","generated/torch.rot90","generated/torch.round","generated/torch.rsqrt","generated/torch.save","generated/torch.searchsorted","generated/torch.seed","generated/torch.set_default_dtype","generated/torch.set_default_tensor_type","generated/torch.set_flush_denormal","generated/torch.set_grad_enabled","generated/torch.set_num_interop_threads","generated/torch.set_num_threads","generated/torch.set_printoptions","generated/torch.set_rng_state","generated/torch.sigmoid","generated/torch.sign","generated/torch.sin","generated/torch.sinh","generated/torch.slogdet","generated/torch.solve","generated/torch.sort","generated/torch.sparse_coo_tensor","generated/torch.split","generated/torch.sqrt","generated/torch.square","generated/torch.squeeze","generated/torch.stack","generated/torch.std","generated/torch.std_mean","generated/torch.stft","generated/torch.sum","generated/torch.svd","generated/torch.svd_lowrank","generated/torch.symeig","generated/torch.t","generated/torch.take","generated/torch.tan","generated/torch.tanh","generated/torch.tensor","generated/torch.tensordot","generated/torch.topk","generated/torch.trace","generated/torch.transpose","generated/torch.trapz","generated/torch.triangular_solve","generated/torch.tril","generated/torch.tril_indices","generated/torch.triu","generated/torch.triu_indices","generated/torch.true_divide","generated/torch.trunc","generated/torch.unbind","generated/torch.unique","generated/torch.unique_consecutive","generated/torch.unsqueeze","generated/torch.vander","generated/torch.var","generated/torch.var_mean","generated/torch.view_as_complex","generated/torch.view_as_real","generated/torch.where","generated/torch.zeros","generated/torch.zeros_like","hub","index","jit","jit_builtin_functions","jit_language_reference","jit_python_reference","jit_unsupported","mobile_optimizer","model_zoo","multiprocessing","name_inference","named_tensor","nn","nn.functional","nn.init","notes/amp_examples","notes/autograd","notes/broadcasting","notes/cpu_threading_torchscript_inference","notes/cuda","notes/ddp","notes/extending","notes/faq","notes/large_scale_deployments","notes/multiprocessing","notes/randomness","notes/serialization","notes/windows","onnx","optim","packages","quantization","random","rpc","rpc/distributed_autograd","rpc/rref","sparse","storage","tensor_attributes","tensor_view","tensorboard","tensors","torch","torchvision/datasets","torchvision/index","torchvision/io","torchvision/models","torchvision/ops","torchvision/transforms","torchvision/utils","type_info"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.index":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.intersphinx":1,"sphinx.ext.todo":2,"sphinx.ext.viewcode":1,sphinx:56},filenames:["__config__.rst","amp.rst","autograd.rst","bottleneck.rst","checkpoint.rst","community/contribution_guide.rst","community/governance.rst","community/persons_of_interest.rst","complex_numbers.rst","cpp_extension.rst","cpp_index.rst","cuda.rst","cudnn_persistent_rnn.rst","data.rst","distributed.rst","distributions.rst","dlpack.rst","futures.rst","generated/torch.Generator.rst","generated/torch.abs.rst","generated/torch.absolute.rst","generated/torch.acos.rst","generated/torch.acosh.rst","generated/torch.add.rst","generated/torch.addbmm.rst","generated/torch.addcdiv.rst","generated/torch.addcmul.rst","generated/torch.addmm.rst","generated/torch.addmv.rst","generated/torch.addr.rst","generated/torch.allclose.rst","generated/torch.angle.rst","generated/torch.arange.rst","generated/torch.argmax.rst","generated/torch.argmin.rst","generated/torch.argsort.rst","generated/torch.as_strided.rst","generated/torch.as_tensor.rst","generated/torch.asin.rst","generated/torch.asinh.rst","generated/torch.atan.rst","generated/torch.atan2.rst","generated/torch.atanh.rst","generated/torch.baddbmm.rst","generated/torch.bartlett_window.rst","generated/torch.bernoulli.rst","generated/torch.bincount.rst","generated/torch.bitwise_and.rst","generated/torch.bitwise_not.rst","generated/torch.bitwise_or.rst","generated/torch.bitwise_xor.rst","generated/torch.blackman_window.rst","generated/torch.block_diag.rst","generated/torch.bmm.rst","generated/torch.broadcast_tensors.rst","generated/torch.bucketize.rst","generated/torch.can_cast.rst","generated/torch.cartesian_prod.rst","generated/torch.cat.rst","generated/torch.cdist.rst","generated/torch.ceil.rst","generated/torch.chain_matmul.rst","generated/torch.cholesky.rst","generated/torch.cholesky_inverse.rst","generated/torch.cholesky_solve.rst","generated/torch.chunk.rst","generated/torch.clamp.rst","generated/torch.combinations.rst","generated/torch.compiled_with_cxx11_abi.rst","generated/torch.conj.rst","generated/torch.cos.rst","generated/torch.cosh.rst","generated/torch.cross.rst","generated/torch.cummax.rst","generated/torch.cummin.rst","generated/torch.cumprod.rst","generated/torch.cumsum.rst","generated/torch.deg2rad.rst","generated/torch.dequantize.rst","generated/torch.det.rst","generated/torch.diag.rst","generated/torch.diag_embed.rst","generated/torch.diagflat.rst","generated/torch.diagonal.rst","generated/torch.digamma.rst","generated/torch.dist.rst","generated/torch.div.rst","generated/torch.dot.rst","generated/torch.eig.rst","generated/torch.einsum.rst","generated/torch.empty.rst","generated/torch.empty_like.rst","generated/torch.empty_strided.rst","generated/torch.enable_grad.rst","generated/torch.eq.rst","generated/torch.equal.rst","generated/torch.erf.rst","generated/torch.erfc.rst","generated/torch.erfinv.rst","generated/torch.exp.rst","generated/torch.expm1.rst","generated/torch.eye.rst","generated/torch.fft.rst","generated/torch.flatten.rst","generated/torch.flip.rst","generated/torch.fliplr.rst","generated/torch.flipud.rst","generated/torch.floor.rst","generated/torch.floor_divide.rst","generated/torch.fmod.rst","generated/torch.frac.rst","generated/torch.from_numpy.rst","generated/torch.full.rst","generated/torch.full_like.rst","generated/torch.gather.rst","generated/torch.ge.rst","generated/torch.geqrf.rst","generated/torch.ger.rst","generated/torch.get_default_dtype.rst","generated/torch.get_num_interop_threads.rst","generated/torch.get_num_threads.rst","generated/torch.get_rng_state.rst","generated/torch.gt.rst","generated/torch.hamming_window.rst","generated/torch.hann_window.rst","generated/torch.histc.rst","generated/torch.ifft.rst","generated/torch.imag.rst","generated/torch.index_select.rst","generated/torch.initial_seed.rst","generated/torch.inverse.rst","generated/torch.irfft.rst","generated/torch.is_complex.rst","generated/torch.is_floating_point.rst","generated/torch.is_nonzero.rst","generated/torch.is_storage.rst","generated/torch.is_tensor.rst","generated/torch.isclose.rst","generated/torch.isfinite.rst","generated/torch.isinf.rst","generated/torch.isnan.rst","generated/torch.istft.rst","generated/torch.jit.ScriptFunction.rst","generated/torch.jit.ScriptModule.rst","generated/torch.jit.fork.rst","generated/torch.jit.freeze.rst","generated/torch.jit.ignore.rst","generated/torch.jit.load.rst","generated/torch.jit.save.rst","generated/torch.jit.script.rst","generated/torch.jit.trace.rst","generated/torch.jit.trace_module.rst","generated/torch.jit.unused.rst","generated/torch.jit.wait.rst","generated/torch.kthvalue.rst","generated/torch.le.rst","generated/torch.lerp.rst","generated/torch.lgamma.rst","generated/torch.linspace.rst","generated/torch.load.rst","generated/torch.lobpcg.rst","generated/torch.log.rst","generated/torch.log10.rst","generated/torch.log1p.rst","generated/torch.log2.rst","generated/torch.logaddexp.rst","generated/torch.logaddexp2.rst","generated/torch.logcumsumexp.rst","generated/torch.logdet.rst","generated/torch.logical_and.rst","generated/torch.logical_not.rst","generated/torch.logical_or.rst","generated/torch.logical_xor.rst","generated/torch.logspace.rst","generated/torch.logsumexp.rst","generated/torch.lstsq.rst","generated/torch.lt.rst","generated/torch.lu.rst","generated/torch.lu_solve.rst","generated/torch.lu_unpack.rst","generated/torch.manual_seed.rst","generated/torch.masked_select.rst","generated/torch.matmul.rst","generated/torch.matrix_power.rst","generated/torch.matrix_rank.rst","generated/torch.max.rst","generated/torch.mean.rst","generated/torch.median.rst","generated/torch.meshgrid.rst","generated/torch.min.rst","generated/torch.mm.rst","generated/torch.mode.rst","generated/torch.mul.rst","generated/torch.multinomial.rst","generated/torch.mv.rst","generated/torch.mvlgamma.rst","generated/torch.narrow.rst","generated/torch.ne.rst","generated/torch.neg.rst","generated/torch.nn.AdaptiveAvgPool1d.rst","generated/torch.nn.AdaptiveAvgPool2d.rst","generated/torch.nn.AdaptiveAvgPool3d.rst","generated/torch.nn.AdaptiveLogSoftmaxWithLoss.rst","generated/torch.nn.AdaptiveMaxPool1d.rst","generated/torch.nn.AdaptiveMaxPool2d.rst","generated/torch.nn.AdaptiveMaxPool3d.rst","generated/torch.nn.AlphaDropout.rst","generated/torch.nn.AvgPool1d.rst","generated/torch.nn.AvgPool2d.rst","generated/torch.nn.AvgPool3d.rst","generated/torch.nn.BCELoss.rst","generated/torch.nn.BCEWithLogitsLoss.rst","generated/torch.nn.BatchNorm1d.rst","generated/torch.nn.BatchNorm2d.rst","generated/torch.nn.BatchNorm3d.rst","generated/torch.nn.Bilinear.rst","generated/torch.nn.CELU.rst","generated/torch.nn.CTCLoss.rst","generated/torch.nn.ConstantPad1d.rst","generated/torch.nn.ConstantPad2d.rst","generated/torch.nn.ConstantPad3d.rst","generated/torch.nn.Conv1d.rst","generated/torch.nn.Conv2d.rst","generated/torch.nn.Conv3d.rst","generated/torch.nn.ConvTranspose1d.rst","generated/torch.nn.ConvTranspose2d.rst","generated/torch.nn.ConvTranspose3d.rst","generated/torch.nn.CosineEmbeddingLoss.rst","generated/torch.nn.CosineSimilarity.rst","generated/torch.nn.CrossEntropyLoss.rst","generated/torch.nn.DataParallel.rst","generated/torch.nn.Dropout.rst","generated/torch.nn.Dropout2d.rst","generated/torch.nn.Dropout3d.rst","generated/torch.nn.ELU.rst","generated/torch.nn.Embedding.rst","generated/torch.nn.EmbeddingBag.rst","generated/torch.nn.Flatten.rst","generated/torch.nn.Fold.rst","generated/torch.nn.FractionalMaxPool2d.rst","generated/torch.nn.GELU.rst","generated/torch.nn.GRU.rst","generated/torch.nn.GRUCell.rst","generated/torch.nn.GroupNorm.rst","generated/torch.nn.Hardshrink.rst","generated/torch.nn.Hardsigmoid.rst","generated/torch.nn.Hardswish.rst","generated/torch.nn.Hardtanh.rst","generated/torch.nn.HingeEmbeddingLoss.rst","generated/torch.nn.Identity.rst","generated/torch.nn.InstanceNorm1d.rst","generated/torch.nn.InstanceNorm2d.rst","generated/torch.nn.InstanceNorm3d.rst","generated/torch.nn.KLDivLoss.rst","generated/torch.nn.L1Loss.rst","generated/torch.nn.LPPool1d.rst","generated/torch.nn.LPPool2d.rst","generated/torch.nn.LSTM.rst","generated/torch.nn.LSTMCell.rst","generated/torch.nn.LayerNorm.rst","generated/torch.nn.LeakyReLU.rst","generated/torch.nn.Linear.rst","generated/torch.nn.LocalResponseNorm.rst","generated/torch.nn.LogSigmoid.rst","generated/torch.nn.LogSoftmax.rst","generated/torch.nn.MSELoss.rst","generated/torch.nn.MarginRankingLoss.rst","generated/torch.nn.MaxPool1d.rst","generated/torch.nn.MaxPool2d.rst","generated/torch.nn.MaxPool3d.rst","generated/torch.nn.MaxUnpool1d.rst","generated/torch.nn.MaxUnpool2d.rst","generated/torch.nn.MaxUnpool3d.rst","generated/torch.nn.Module.rst","generated/torch.nn.ModuleDict.rst","generated/torch.nn.ModuleList.rst","generated/torch.nn.MultiLabelMarginLoss.rst","generated/torch.nn.MultiLabelSoftMarginLoss.rst","generated/torch.nn.MultiMarginLoss.rst","generated/torch.nn.MultiheadAttention.rst","generated/torch.nn.NLLLoss.rst","generated/torch.nn.PReLU.rst","generated/torch.nn.PairwiseDistance.rst","generated/torch.nn.ParameterDict.rst","generated/torch.nn.ParameterList.rst","generated/torch.nn.PixelShuffle.rst","generated/torch.nn.PoissonNLLLoss.rst","generated/torch.nn.RNN.rst","generated/torch.nn.RNNBase.rst","generated/torch.nn.RNNCell.rst","generated/torch.nn.RReLU.rst","generated/torch.nn.ReLU.rst","generated/torch.nn.ReLU6.rst","generated/torch.nn.ReflectionPad1d.rst","generated/torch.nn.ReflectionPad2d.rst","generated/torch.nn.ReplicationPad1d.rst","generated/torch.nn.ReplicationPad2d.rst","generated/torch.nn.ReplicationPad3d.rst","generated/torch.nn.SELU.rst","generated/torch.nn.Sequential.rst","generated/torch.nn.Sigmoid.rst","generated/torch.nn.SmoothL1Loss.rst","generated/torch.nn.SoftMarginLoss.rst","generated/torch.nn.Softmax.rst","generated/torch.nn.Softmax2d.rst","generated/torch.nn.Softmin.rst","generated/torch.nn.Softplus.rst","generated/torch.nn.Softshrink.rst","generated/torch.nn.Softsign.rst","generated/torch.nn.SyncBatchNorm.rst","generated/torch.nn.Tanh.rst","generated/torch.nn.Tanhshrink.rst","generated/torch.nn.Threshold.rst","generated/torch.nn.Transformer.rst","generated/torch.nn.TransformerDecoder.rst","generated/torch.nn.TransformerDecoderLayer.rst","generated/torch.nn.TransformerEncoder.rst","generated/torch.nn.TransformerEncoderLayer.rst","generated/torch.nn.TripletMarginLoss.rst","generated/torch.nn.Unfold.rst","generated/torch.nn.Upsample.rst","generated/torch.nn.UpsamplingBilinear2d.rst","generated/torch.nn.UpsamplingNearest2d.rst","generated/torch.nn.ZeroPad2d.rst","generated/torch.nn.parallel.DistributedDataParallel.rst","generated/torch.nn.parameter.Parameter.rst","generated/torch.nn.utils.clip_grad_norm_.rst","generated/torch.nn.utils.clip_grad_value_.rst","generated/torch.nn.utils.parameters_to_vector.rst","generated/torch.nn.utils.prune.BasePruningMethod.rst","generated/torch.nn.utils.prune.CustomFromMask.rst","generated/torch.nn.utils.prune.Identity.rst","generated/torch.nn.utils.prune.L1Unstructured.rst","generated/torch.nn.utils.prune.LnStructured.rst","generated/torch.nn.utils.prune.PruningContainer.rst","generated/torch.nn.utils.prune.RandomStructured.rst","generated/torch.nn.utils.prune.RandomUnstructured.rst","generated/torch.nn.utils.prune.custom_from_mask.rst","generated/torch.nn.utils.prune.global_unstructured.rst","generated/torch.nn.utils.prune.identity.rst","generated/torch.nn.utils.prune.is_pruned.rst","generated/torch.nn.utils.prune.l1_unstructured.rst","generated/torch.nn.utils.prune.ln_structured.rst","generated/torch.nn.utils.prune.random_structured.rst","generated/torch.nn.utils.prune.random_unstructured.rst","generated/torch.nn.utils.prune.remove.rst","generated/torch.nn.utils.remove_spectral_norm.rst","generated/torch.nn.utils.remove_weight_norm.rst","generated/torch.nn.utils.rnn.PackedSequence.rst","generated/torch.nn.utils.rnn.pack_padded_sequence.rst","generated/torch.nn.utils.rnn.pack_sequence.rst","generated/torch.nn.utils.rnn.pad_packed_sequence.rst","generated/torch.nn.utils.rnn.pad_sequence.rst","generated/torch.nn.utils.spectral_norm.rst","generated/torch.nn.utils.vector_to_parameters.rst","generated/torch.nn.utils.weight_norm.rst","generated/torch.no_grad.rst","generated/torch.nonzero.rst","generated/torch.norm.rst","generated/torch.normal.rst","generated/torch.numel.rst","generated/torch.ones.rst","generated/torch.ones_like.rst","generated/torch.orgqr.rst","generated/torch.ormqr.rst","generated/torch.pca_lowrank.rst","generated/torch.pinverse.rst","generated/torch.poisson.rst","generated/torch.polygamma.rst","generated/torch.pow.rst","generated/torch.prod.rst","generated/torch.promote_types.rst","generated/torch.qr.rst","generated/torch.quantize_per_channel.rst","generated/torch.quantize_per_tensor.rst","generated/torch.quasirandom.SobolEngine.rst","generated/torch.rad2deg.rst","generated/torch.rand.rst","generated/torch.rand_like.rst","generated/torch.randint.rst","generated/torch.randint_like.rst","generated/torch.randn.rst","generated/torch.randn_like.rst","generated/torch.randperm.rst","generated/torch.range.rst","generated/torch.real.rst","generated/torch.reciprocal.rst","generated/torch.remainder.rst","generated/torch.renorm.rst","generated/torch.repeat_interleave.rst","generated/torch.reshape.rst","generated/torch.result_type.rst","generated/torch.rfft.rst","generated/torch.roll.rst","generated/torch.rot90.rst","generated/torch.round.rst","generated/torch.rsqrt.rst","generated/torch.save.rst","generated/torch.searchsorted.rst","generated/torch.seed.rst","generated/torch.set_default_dtype.rst","generated/torch.set_default_tensor_type.rst","generated/torch.set_flush_denormal.rst","generated/torch.set_grad_enabled.rst","generated/torch.set_num_interop_threads.rst","generated/torch.set_num_threads.rst","generated/torch.set_printoptions.rst","generated/torch.set_rng_state.rst","generated/torch.sigmoid.rst","generated/torch.sign.rst","generated/torch.sin.rst","generated/torch.sinh.rst","generated/torch.slogdet.rst","generated/torch.solve.rst","generated/torch.sort.rst","generated/torch.sparse_coo_tensor.rst","generated/torch.split.rst","generated/torch.sqrt.rst","generated/torch.square.rst","generated/torch.squeeze.rst","generated/torch.stack.rst","generated/torch.std.rst","generated/torch.std_mean.rst","generated/torch.stft.rst","generated/torch.sum.rst","generated/torch.svd.rst","generated/torch.svd_lowrank.rst","generated/torch.symeig.rst","generated/torch.t.rst","generated/torch.take.rst","generated/torch.tan.rst","generated/torch.tanh.rst","generated/torch.tensor.rst","generated/torch.tensordot.rst","generated/torch.topk.rst","generated/torch.trace.rst","generated/torch.transpose.rst","generated/torch.trapz.rst","generated/torch.triangular_solve.rst","generated/torch.tril.rst","generated/torch.tril_indices.rst","generated/torch.triu.rst","generated/torch.triu_indices.rst","generated/torch.true_divide.rst","generated/torch.trunc.rst","generated/torch.unbind.rst","generated/torch.unique.rst","generated/torch.unique_consecutive.rst","generated/torch.unsqueeze.rst","generated/torch.vander.rst","generated/torch.var.rst","generated/torch.var_mean.rst","generated/torch.view_as_complex.rst","generated/torch.view_as_real.rst","generated/torch.where.rst","generated/torch.zeros.rst","generated/torch.zeros_like.rst","hub.rst","index.rst","jit.rst","jit_builtin_functions.rst","jit_language_reference.rst","jit_python_reference.rst","jit_unsupported.rst","mobile_optimizer.rst","model_zoo.rst","multiprocessing.rst","name_inference.rst","named_tensor.rst","nn.rst","nn.functional.rst","nn.init.rst","notes/amp_examples.rst","notes/autograd.rst","notes/broadcasting.rst","notes/cpu_threading_torchscript_inference.rst","notes/cuda.rst","notes/ddp.rst","notes/extending.rst","notes/faq.rst","notes/large_scale_deployments.rst","notes/multiprocessing.rst","notes/randomness.rst","notes/serialization.rst","notes/windows.rst","onnx.rst","optim.rst","packages.rst","quantization.rst","random.rst","rpc.rst","rpc/distributed_autograd.rst","rpc/rref.rst","sparse.rst","storage.rst","tensor_attributes.rst","tensor_view.rst","tensorboard.rst","tensors.rst","torch.rst","torchvision/datasets.rst","torchvision/index.rst","torchvision/io.rst","torchvision/models.rst","torchvision/ops.rst","torchvision/transforms.rst","torchvision/utils.rst","type_info.rst"],objects:{"":{PYTORCH_JIT:[459,5,1,"-"],torchvision:[501,3,0,"-"]},"torch.BoolTensor":{all:[498,1,1,""],any:[498,1,1,""]},"torch.FloatStorage":{"byte":[494,1,1,""],"char":[494,1,1,""],"double":[494,1,1,""],"float":[494,1,1,""],"int":[494,1,1,""],"long":[494,1,1,""],"new":[494,1,1,""],"short":[494,1,1,""],bfloat16:[494,1,1,""],bool:[494,1,1,""],clone:[494,1,1,""],complex_double:[494,1,1,""],complex_float:[494,1,1,""],copy_:[494,1,1,""],cpu:[494,1,1,""],cuda:[494,1,1,""],data_ptr:[494,1,1,""],device:[494,2,1,""],dtype:[494,2,1,""],element_size:[494,1,1,""],fill_:[494,1,1,""],from_buffer:[494,1,1,""],from_file:[494,1,1,""],half:[494,1,1,""],is_cuda:[494,2,1,""],is_pinned:[494,1,1,""],is_shared:[494,1,1,""],is_sparse:[494,2,1,""],pin_memory:[494,1,1,""],resize_:[494,1,1,""],share_memory_:[494,1,1,""],size:[494,1,1,""],tolist:[494,1,1,""],type:[494,1,1,""]},"torch.Generator":{device:[18,2,1,""],get_state:[18,1,1,""],initial_seed:[18,1,1,""],manual_seed:[18,1,1,""],seed:[18,1,1,""],set_state:[18,1,1,""]},"torch.Tensor":{"byte":[498,1,1,""],"char":[498,1,1,""],"double":[498,1,1,""],"float":[498,1,1,""],"int":[498,1,1,""],"long":[498,1,1,""],"short":[498,1,1,""],"var":[498,1,1,""],T:[498,2,1,""],abs:[498,1,1,""],abs_:[498,1,1,""],absolute:[498,1,1,""],absolute_:[498,1,1,""],acos:[498,1,1,""],acos_:[498,1,1,""],acosh:[498,1,1,""],acosh_:[498,1,1,""],add:[498,1,1,""],add_:[498,1,1,""],addbmm:[498,1,1,""],addbmm_:[498,1,1,""],addcdiv:[498,1,1,""],addcdiv_:[498,1,1,""],addcmul:[498,1,1,""],addcmul_:[498,1,1,""],addmm:[498,1,1,""],addmm_:[498,1,1,""],addmv:[498,1,1,""],addmv_:[498,1,1,""],addr:[498,1,1,""],addr_:[498,1,1,""],align_as:[468,1,1,""],align_to:[468,1,1,""],allclose:[498,1,1,""],angle:[498,1,1,""],apply_:[498,1,1,""],argmax:[498,1,1,""],argmin:[498,1,1,""],argsort:[498,1,1,""],as_strided:[498,1,1,""],as_subclass:[498,1,1,""],asin:[498,1,1,""],asin_:[498,1,1,""],asinh:[498,1,1,""],asinh_:[498,1,1,""],atan2:[498,1,1,""],atan2_:[498,1,1,""],atan:[498,1,1,""],atan_:[498,1,1,""],atanh:[498,1,1,""],atanh_:[498,1,1,""],backward:[2,1,1,""],baddbmm:[498,1,1,""],baddbmm_:[498,1,1,""],bernoulli:[498,1,1,""],bernoulli_:[498,1,1,""],bfloat16:[498,1,1,""],bincount:[498,1,1,""],bitwise_and:[498,1,1,""],bitwise_and_:[498,1,1,""],bitwise_not:[498,1,1,""],bitwise_not_:[498,1,1,""],bitwise_or:[498,1,1,""],bitwise_or_:[498,1,1,""],bitwise_xor:[498,1,1,""],bitwise_xor_:[498,1,1,""],bmm:[498,1,1,""],bool:[498,1,1,""],cauchy_:[498,1,1,""],ceil:[498,1,1,""],ceil_:[498,1,1,""],cholesky:[498,1,1,""],cholesky_inverse:[498,1,1,""],cholesky_solve:[498,1,1,""],chunk:[498,1,1,""],clamp:[498,1,1,""],clamp_:[498,1,1,""],clone:[498,1,1,""],conj:[498,1,1,""],contiguous:[498,1,1,""],copy_:[498,1,1,""],cos:[498,1,1,""],cos_:[498,1,1,""],cosh:[498,1,1,""],cosh_:[498,1,1,""],cpu:[498,1,1,""],cross:[498,1,1,""],cuda:[498,1,1,""],cummax:[498,1,1,""],cummin:[498,1,1,""],cumprod:[498,1,1,""],cumsum:[498,1,1,""],data_ptr:[498,1,1,""],deg2rad:[498,1,1,""],dense_dim:[498,1,1,""],dequantize:[498,1,1,""],det:[498,1,1,""],detach:[2,1,1,""],detach_:[2,1,1,""],device:[498,2,1,""],diag:[498,1,1,""],diag_embed:[498,1,1,""],diagflat:[498,1,1,""],diagonal:[498,1,1,""],digamma:[498,1,1,""],digamma_:[498,1,1,""],dim:[498,1,1,""],dist:[498,1,1,""],div:[498,1,1,""],div_:[498,1,1,""],dot:[498,1,1,""],eig:[498,1,1,""],element_size:[498,1,1,""],eq:[498,1,1,""],eq_:[498,1,1,""],equal:[498,1,1,""],erf:[498,1,1,""],erf_:[498,1,1,""],erfc:[498,1,1,""],erfc_:[498,1,1,""],erfinv:[498,1,1,""],erfinv_:[498,1,1,""],exp:[498,1,1,""],exp_:[498,1,1,""],expand:[498,1,1,""],expand_as:[498,1,1,""],expm1:[498,1,1,""],expm1_:[498,1,1,""],exponential_:[498,1,1,""],fft:[498,1,1,""],fill_:[498,1,1,""],fill_diagonal_:[498,1,1,""],flatten:[498,1,1,""],flip:[498,1,1,""],fliplr:[498,1,1,""],flipud:[498,1,1,""],floor:[498,1,1,""],floor_:[498,1,1,""],floor_divide:[498,1,1,""],floor_divide_:[498,1,1,""],fmod:[498,1,1,""],fmod_:[498,1,1,""],frac:[498,1,1,""],frac_:[498,1,1,""],gather:[498,1,1,""],ge:[498,1,1,""],ge_:[498,1,1,""],geometric_:[498,1,1,""],geqrf:[498,1,1,""],ger:[498,1,1,""],get_device:[498,1,1,""],grad:[2,2,1,""],gt:[498,1,1,""],gt_:[498,1,1,""],half:[498,1,1,""],hardshrink:[498,1,1,""],histc:[498,1,1,""],ifft:[498,1,1,""],imag:[498,2,1,""],index_add:[498,1,1,""],index_add_:[498,1,1,""],index_copy:[498,1,1,""],index_copy_:[498,1,1,""],index_fill:[498,1,1,""],index_fill_:[498,1,1,""],index_put:[498,1,1,""],index_put_:[498,1,1,""],index_select:[498,1,1,""],indices:[498,1,1,""],int_repr:[498,1,1,""],inverse:[498,1,1,""],irfft:[498,1,1,""],is_complex:[498,1,1,""],is_contiguous:[498,1,1,""],is_cuda:[498,2,1,""],is_floating_point:[498,1,1,""],is_leaf:[2,2,1,""],is_meta:[498,2,1,""],is_pinned:[498,1,1,""],is_quantized:[498,2,1,""],is_set_to:[498,1,1,""],is_shared:[498,1,1,""],is_signed:[498,1,1,""],is_sparse:[498,2,1,""],isclose:[498,1,1,""],isfinite:[498,1,1,""],isinf:[498,1,1,""],isnan:[498,1,1,""],istft:[498,1,1,""],item:[498,1,1,""],kthvalue:[498,1,1,""],le:[498,1,1,""],le_:[498,1,1,""],lerp:[498,1,1,""],lerp_:[498,1,1,""],lgamma:[498,1,1,""],lgamma_:[498,1,1,""],log10:[498,1,1,""],log10_:[498,1,1,""],log1p:[498,1,1,""],log1p_:[498,1,1,""],log2:[498,1,1,""],log2_:[498,1,1,""],log:[498,1,1,""],log_:[498,1,1,""],log_normal_:[498,1,1,""],logaddexp2:[498,1,1,""],logaddexp:[498,1,1,""],logcumsumexp:[498,1,1,""],logdet:[498,1,1,""],logical_and:[498,1,1,""],logical_and_:[498,1,1,""],logical_not:[498,1,1,""],logical_not_:[498,1,1,""],logical_or:[498,1,1,""],logical_or_:[498,1,1,""],logical_xor:[498,1,1,""],logical_xor_:[498,1,1,""],logsumexp:[498,1,1,""],lstsq:[498,1,1,""],lt:[498,1,1,""],lt_:[498,1,1,""],lu:[498,1,1,""],lu_solve:[498,1,1,""],map_:[498,1,1,""],masked_fill:[498,1,1,""],masked_fill_:[498,1,1,""],masked_scatter:[498,1,1,""],masked_scatter_:[498,1,1,""],masked_select:[498,1,1,""],matmul:[498,1,1,""],matrix_power:[498,1,1,""],max:[498,1,1,""],mean:[498,1,1,""],median:[498,1,1,""],min:[498,1,1,""],mm:[498,1,1,""],mode:[498,1,1,""],mul:[498,1,1,""],mul_:[498,1,1,""],multinomial:[498,1,1,""],mv:[498,1,1,""],mvlgamma:[498,1,1,""],mvlgamma_:[498,1,1,""],names:[468,2,1,""],narrow:[498,1,1,""],narrow_copy:[498,1,1,""],ndim:[498,2,1,""],ndimension:[498,1,1,""],ne:[498,1,1,""],ne_:[498,1,1,""],neg:[498,1,1,""],neg_:[498,1,1,""],nelement:[498,1,1,""],new_empty:[498,1,1,""],new_full:[498,1,1,""],new_ones:[498,1,1,""],new_tensor:[498,1,1,""],new_zeros:[498,1,1,""],nonzero:[498,1,1,""],norm:[498,1,1,""],normal_:[498,1,1,""],numel:[498,1,1,""],numpy:[498,1,1,""],orgqr:[498,1,1,""],ormqr:[498,1,1,""],permute:[498,1,1,""],pin_memory:[498,1,1,""],pinverse:[498,1,1,""],polygamma:[498,1,1,""],polygamma_:[498,1,1,""],pow:[498,1,1,""],pow_:[498,1,1,""],prod:[498,1,1,""],put_:[498,1,1,""],q_per_channel_axis:[498,1,1,""],q_per_channel_scales:[498,1,1,""],q_per_channel_zero_points:[498,1,1,""],q_scale:[498,1,1,""],q_zero_point:[498,1,1,""],qr:[498,1,1,""],qscheme:[498,1,1,""],rad2deg:[498,1,1,""],random_:[498,1,1,""],real:[498,2,1,""],reciprocal:[498,1,1,""],reciprocal_:[498,1,1,""],record_stream:[498,1,1,""],refine_names:[468,1,1,""],register_hook:[2,1,1,""],remainder:[498,1,1,""],remainder_:[498,1,1,""],rename:[468,1,1,""],rename_:[468,1,1,""],renorm:[498,1,1,""],renorm_:[498,1,1,""],repeat:[498,1,1,""],repeat_interleave:[498,1,1,""],requires_grad:[2,2,1,""],requires_grad_:[498,1,1,""],reshape:[498,1,1,""],reshape_as:[498,1,1,""],resize_:[498,1,1,""],resize_as_:[498,1,1,""],retain_grad:[2,1,1,""],rfft:[498,1,1,""],roll:[498,1,1,""],rot90:[498,1,1,""],round:[498,1,1,""],round_:[498,1,1,""],rsqrt:[498,1,1,""],rsqrt_:[498,1,1,""],scatter:[498,1,1,""],scatter_:[498,1,1,""],scatter_add:[498,1,1,""],scatter_add_:[498,1,1,""],select:[498,1,1,""],set_:[498,1,1,""],share_memory_:[498,1,1,""],sigmoid:[498,1,1,""],sigmoid_:[498,1,1,""],sign:[498,1,1,""],sign_:[498,1,1,""],sin:[498,1,1,""],sin_:[498,1,1,""],sinh:[498,1,1,""],sinh_:[498,1,1,""],size:[498,1,1,""],slogdet:[498,1,1,""],solve:[498,1,1,""],sort:[498,1,1,""],sparse_dim:[498,1,1,""],sparse_mask:[498,1,1,""],split:[498,1,1,""],sqrt:[498,1,1,""],sqrt_:[498,1,1,""],square:[498,1,1,""],square_:[498,1,1,""],squeeze:[498,1,1,""],squeeze_:[498,1,1,""],std:[498,1,1,""],stft:[498,1,1,""],storage:[498,1,1,""],storage_offset:[498,1,1,""],storage_type:[498,1,1,""],stride:[498,1,1,""],sub:[498,1,1,""],sub_:[498,1,1,""],sum:[498,1,1,""],sum_to_size:[498,1,1,""],svd:[498,1,1,""],symeig:[498,1,1,""],t:[498,1,1,""],t_:[498,1,1,""],take:[498,1,1,""],tan:[498,1,1,""],tan_:[498,1,1,""],tanh:[498,1,1,""],tanh_:[498,1,1,""],to:[498,1,1,""],to_mkldnn:[498,1,1,""],to_sparse:[498,1,1,""],tolist:[498,1,1,""],topk:[498,1,1,""],trace:[498,1,1,""],transpose:[498,1,1,""],transpose_:[498,1,1,""],triangular_solve:[498,1,1,""],tril:[498,1,1,""],tril_:[498,1,1,""],triu:[498,1,1,""],triu_:[498,1,1,""],true_divide:[498,1,1,""],true_divide_:[498,1,1,""],trunc:[498,1,1,""],trunc_:[498,1,1,""],type:[498,1,1,""],type_as:[498,1,1,""],unbind:[498,1,1,""],unflatten:[468,1,1,""],unfold:[498,1,1,""],uniform_:[498,1,1,""],unique:[498,1,1,""],unique_consecutive:[498,1,1,""],unsqueeze:[498,1,1,""],unsqueeze_:[498,1,1,""],values:[498,1,1,""],view:[498,1,1,""],view_as:[498,1,1,""],where:[498,1,1,""],zero_:[498,1,1,""]},"torch.__config__":{parallel_info:[0,4,1,""],show:[0,4,1,""]},"torch.autograd":{Function:[2,0,1,""],backward:[2,4,1,""],detect_anomaly:[2,0,1,""],enable_grad:[2,0,1,""],grad:[2,4,1,""],gradcheck:[2,4,1,""],gradgradcheck:[2,4,1,""],no_grad:[2,0,1,""],set_detect_anomaly:[2,0,1,""],set_grad_enabled:[2,0,1,""]},"torch.autograd.Function":{backward:[2,1,1,""],forward:[2,1,1,""]},"torch.autograd.function":{_ContextMethodMixin:[2,0,1,""]},"torch.autograd.function._ContextMethodMixin":{mark_dirty:[2,1,1,""],mark_non_differentiable:[2,1,1,""],save_for_backward:[2,1,1,""]},"torch.autograd.functional":{hessian:[2,4,1,""],hvp:[2,4,1,""],jacobian:[2,4,1,""],jvp:[2,4,1,""],vhp:[2,4,1,""],vjp:[2,4,1,""]},"torch.autograd.profiler":{emit_nvtx:[2,0,1,""],load_nvprof:[2,4,1,""],profile:[2,0,1,""]},"torch.autograd.profiler.profile":{export_chrome_trace:[2,1,1,""],key_averages:[2,1,1,""],self_cpu_time_total:[2,1,1,""],table:[2,1,1,""],total_average:[2,1,1,""]},"torch.cuda":{Event:[11,0,1,""],Stream:[11,0,1,""],amp:[1,3,0,"-"],current_blas_handle:[11,4,1,""],current_device:[11,4,1,""],current_stream:[11,4,1,""],default_stream:[11,4,1,""],device:[11,0,1,""],device_count:[11,4,1,""],device_of:[11,0,1,""],empty_cache:[11,4,1,""],get_arch_list:[11,4,1,""],get_device_capability:[11,4,1,""],get_device_name:[11,4,1,""],get_gencode_flags:[11,4,1,""],get_rng_state:[11,4,1,""],get_rng_state_all:[11,4,1,""],init:[11,4,1,""],initial_seed:[11,4,1,""],ipc_collect:[11,4,1,""],is_available:[11,4,1,""],is_initialized:[11,4,1,""],manual_seed:[11,4,1,""],manual_seed_all:[11,4,1,""],max_memory_allocated:[11,4,1,""],max_memory_cached:[11,4,1,""],max_memory_reserved:[11,4,1,""],memory_allocated:[11,4,1,""],memory_cached:[11,4,1,""],memory_reserved:[11,4,1,""],memory_snapshot:[11,4,1,""],memory_stats:[11,4,1,""],memory_summary:[11,4,1,""],reset_max_memory_allocated:[11,4,1,""],reset_max_memory_cached:[11,4,1,""],seed:[11,4,1,""],seed_all:[11,4,1,""],set_device:[11,4,1,""],set_rng_state:[11,4,1,""],set_rng_state_all:[11,4,1,""],stream:[11,4,1,""],synchronize:[11,4,1,""]},"torch.cuda.Event":{elapsed_time:[11,1,1,""],from_ipc_handle:[11,1,1,""],ipc_handle:[11,1,1,""],query:[11,1,1,""],record:[11,1,1,""],synchronize:[11,1,1,""],wait:[11,1,1,""]},"torch.cuda.Stream":{query:[11,1,1,""],record_event:[11,1,1,""],synchronize:[11,1,1,""],wait_event:[11,1,1,""],wait_stream:[11,1,1,""]},"torch.cuda.amp":{GradScaler:[1,0,1,""],autocast:[1,0,1,""],custom_bwd:[1,4,1,""],custom_fwd:[1,4,1,""]},"torch.cuda.amp.GradScaler":{get_backoff_factor:[1,1,1,""],get_growth_factor:[1,1,1,""],get_growth_interval:[1,1,1,""],get_scale:[1,1,1,""],is_enabled:[1,1,1,""],load_state_dict:[1,1,1,""],scale:[1,1,1,""],set_backoff_factor:[1,1,1,""],set_growth_factor:[1,1,1,""],set_growth_interval:[1,1,1,""],state_dict:[1,1,1,""],step:[1,1,1,""],unscale_:[1,1,1,""],update:[1,1,1,""]},"torch.cuda.comm":{broadcast:[11,4,1,""],broadcast_coalesced:[11,4,1,""],gather:[11,4,1,""],reduce_add:[11,4,1,""],scatter:[11,4,1,""]},"torch.cuda.nvtx":{mark:[11,4,1,""],range_pop:[11,4,1,""],range_push:[11,4,1,""]},"torch.distributed":{Backend:[14,0,1,""],ReduceOp:[14,0,1,""],all_gather:[14,4,1,""],all_gather_multigpu:[14,4,1,""],all_reduce:[14,4,1,""],all_reduce_multigpu:[14,4,1,""],all_to_all:[14,4,1,""],autograd:[490,3,0,"-"],barrier:[14,4,1,""],broadcast:[14,4,1,""],broadcast_multigpu:[14,4,1,""],gather:[14,4,1,""],get_backend:[14,4,1,""],get_rank:[14,4,1,""],get_world_size:[14,4,1,""],init_process_group:[14,4,1,""],irecv:[14,4,1,""],is_available:[14,4,1,""],is_initialized:[14,4,1,""],is_mpi_available:[14,4,1,""],is_nccl_available:[14,4,1,""],isend:[14,4,1,""],launch:[14,3,0,"-"],new_group:[14,4,1,""],optim:[490,3,0,"-"],recv:[14,4,1,""],reduce:[14,4,1,""],reduce_multigpu:[14,4,1,""],reduce_op:[14,0,1,""],reduce_scatter:[14,4,1,""],reduce_scatter_multigpu:[14,4,1,""],rpc:[490,3,0,"-"],scatter:[14,4,1,""],send:[14,4,1,""]},"torch.distributed.autograd":{backward:[490,4,1,""],context:[490,0,1,""],get_gradients:[490,4,1,""]},"torch.distributed.optim":{DistributedOptimizer:[490,0,1,""]},"torch.distributed.optim.DistributedOptimizer":{step:[490,1,1,""]},"torch.distributed.rpc":{BackendType:[490,0,1,""],ProcessGroupRpcBackendOptions:[490,0,1,""],RRef:[490,0,1,""],RpcBackendOptions:[490,0,1,""],TensorPipeRpcBackendOptions:[490,0,1,""],WorkerInfo:[490,0,1,""],get_worker_info:[490,4,1,""],init_rpc:[490,4,1,""],remote:[490,4,1,""],rpc_async:[490,4,1,""],rpc_sync:[490,4,1,""],shutdown:[490,4,1,""]},"torch.distributed.rpc.ProcessGroupRpcBackendOptions":{init_method:[490,1,1,""],num_send_recv_threads:[490,1,1,""],rpc_timeout:[490,1,1,""]},"torch.distributed.rpc.RRef":{confirmed_by_owner:[490,1,1,""],is_owner:[490,1,1,""],local_value:[490,1,1,""],owner:[490,1,1,""],owner_name:[490,1,1,""],remote:[490,1,1,""],rpc_async:[490,1,1,""],rpc_sync:[490,1,1,""],to_here:[490,1,1,""]},"torch.distributed.rpc.RpcBackendOptions":{init_method:[490,1,1,""],rpc_timeout:[490,1,1,""]},"torch.distributed.rpc.TensorPipeRpcBackendOptions":{init_method:[490,1,1,""],num_worker_threads:[490,1,1,""],rpc_timeout:[490,1,1,""]},"torch.distributed.rpc.WorkerInfo":{id:[490,1,1,""],name:[490,1,1,""]},"torch.distributed.rpc.functions":{async_execution:[490,4,1,""]},"torch.distributions":{constraint_registry:[15,3,0,"-"],constraints:[15,3,0,"-"],kl:[15,3,0,"-"],transforms:[15,3,0,"-"]},"torch.distributions.bernoulli":{Bernoulli:[15,0,1,""]},"torch.distributions.bernoulli.Bernoulli":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],enumerate_support:[15,1,1,""],expand:[15,1,1,""],has_enumerate_support:[15,2,1,""],log_prob:[15,1,1,""],logits:[15,2,1,""],mean:[15,1,1,""],param_shape:[15,1,1,""],probs:[15,2,1,""],sample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.beta":{Beta:[15,0,1,""]},"torch.distributions.beta.Beta":{arg_constraints:[15,2,1,""],concentration0:[15,1,1,""],concentration1:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.binomial":{Binomial:[15,0,1,""]},"torch.distributions.binomial.Binomial":{arg_constraints:[15,2,1,""],enumerate_support:[15,1,1,""],expand:[15,1,1,""],has_enumerate_support:[15,2,1,""],log_prob:[15,1,1,""],logits:[15,2,1,""],mean:[15,1,1,""],param_shape:[15,1,1,""],probs:[15,2,1,""],sample:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.categorical":{Categorical:[15,0,1,""]},"torch.distributions.categorical.Categorical":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],enumerate_support:[15,1,1,""],expand:[15,1,1,""],has_enumerate_support:[15,2,1,""],log_prob:[15,1,1,""],logits:[15,2,1,""],mean:[15,1,1,""],param_shape:[15,1,1,""],probs:[15,2,1,""],sample:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.cauchy":{Cauchy:[15,0,1,""]},"torch.distributions.cauchy.Cauchy":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.chi2":{Chi2:[15,0,1,""]},"torch.distributions.chi2.Chi2":{arg_constraints:[15,2,1,""],df:[15,1,1,""],expand:[15,1,1,""]},"torch.distributions.constraint_registry":{ConstraintRegistry:[15,0,1,""]},"torch.distributions.constraint_registry.ConstraintRegistry":{register:[15,1,1,""]},"torch.distributions.constraints":{Constraint:[15,0,1,""],cat:[15,2,1,""],dependent_property:[15,2,1,""],greater_than:[15,2,1,""],greater_than_eq:[15,2,1,""],half_open_interval:[15,2,1,""],integer_interval:[15,2,1,""],interval:[15,2,1,""],less_than:[15,2,1,""],stack:[15,2,1,""]},"torch.distributions.constraints.Constraint":{check:[15,1,1,""]},"torch.distributions.continuous_bernoulli":{ContinuousBernoulli:[15,0,1,""]},"torch.distributions.continuous_bernoulli.ContinuousBernoulli":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],logits:[15,2,1,""],mean:[15,1,1,""],param_shape:[15,1,1,""],probs:[15,2,1,""],rsample:[15,1,1,""],sample:[15,1,1,""],stddev:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.dirichlet":{Dirichlet:[15,0,1,""]},"torch.distributions.dirichlet.Dirichlet":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.distribution":{Distribution:[15,0,1,""]},"torch.distributions.distribution.Distribution":{arg_constraints:[15,1,1,""],batch_shape:[15,1,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],enumerate_support:[15,1,1,""],event_shape:[15,1,1,""],expand:[15,1,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],perplexity:[15,1,1,""],rsample:[15,1,1,""],sample:[15,1,1,""],sample_n:[15,1,1,""],stddev:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.exp_family":{ExponentialFamily:[15,0,1,""]},"torch.distributions.exp_family.ExponentialFamily":{entropy:[15,1,1,""]},"torch.distributions.exponential":{Exponential:[15,0,1,""]},"torch.distributions.exponential.Exponential":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],stddev:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.fishersnedecor":{FisherSnedecor:[15,0,1,""]},"torch.distributions.fishersnedecor.FisherSnedecor":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.gamma":{Gamma:[15,0,1,""]},"torch.distributions.gamma.Gamma":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.geometric":{Geometric:[15,0,1,""]},"torch.distributions.geometric.Geometric":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],log_prob:[15,1,1,""],logits:[15,2,1,""],mean:[15,1,1,""],probs:[15,2,1,""],sample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.gumbel":{Gumbel:[15,0,1,""]},"torch.distributions.gumbel.Gumbel":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],stddev:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.half_cauchy":{HalfCauchy:[15,0,1,""]},"torch.distributions.half_cauchy.HalfCauchy":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],scale:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.half_normal":{HalfNormal:[15,0,1,""]},"torch.distributions.half_normal.HalfNormal":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],scale:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.independent":{Independent:[15,0,1,""]},"torch.distributions.independent.Independent":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],enumerate_support:[15,1,1,""],expand:[15,1,1,""],has_enumerate_support:[15,1,1,""],has_rsample:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],sample:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.kl":{kl_divergence:[15,4,1,""],register_kl:[15,4,1,""]},"torch.distributions.laplace":{Laplace:[15,0,1,""]},"torch.distributions.laplace.Laplace":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],stddev:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.log_normal":{LogNormal:[15,0,1,""]},"torch.distributions.log_normal.LogNormal":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],loc:[15,1,1,""],mean:[15,1,1,""],scale:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.lowrank_multivariate_normal":{LowRankMultivariateNormal:[15,0,1,""]},"torch.distributions.lowrank_multivariate_normal.LowRankMultivariateNormal":{arg_constraints:[15,2,1,""],covariance_matrix:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],precision_matrix:[15,2,1,""],rsample:[15,1,1,""],scale_tril:[15,2,1,""],support:[15,2,1,""],variance:[15,2,1,""]},"torch.distributions.mixture_same_family":{MixtureSameFamily:[15,0,1,""]},"torch.distributions.mixture_same_family.MixtureSameFamily":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],component_distribution:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],mixture_distribution:[15,1,1,""],sample:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.multinomial":{Multinomial:[15,0,1,""]},"torch.distributions.multinomial.Multinomial":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],log_prob:[15,1,1,""],logits:[15,1,1,""],mean:[15,1,1,""],param_shape:[15,1,1,""],probs:[15,1,1,""],sample:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.multivariate_normal":{MultivariateNormal:[15,0,1,""]},"torch.distributions.multivariate_normal.MultivariateNormal":{arg_constraints:[15,2,1,""],covariance_matrix:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],precision_matrix:[15,2,1,""],rsample:[15,1,1,""],scale_tril:[15,2,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.negative_binomial":{NegativeBinomial:[15,0,1,""]},"torch.distributions.negative_binomial.NegativeBinomial":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],log_prob:[15,1,1,""],logits:[15,2,1,""],mean:[15,1,1,""],param_shape:[15,1,1,""],probs:[15,2,1,""],sample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.normal":{Normal:[15,0,1,""]},"torch.distributions.normal.Normal":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],sample:[15,1,1,""],stddev:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.one_hot_categorical":{OneHotCategorical:[15,0,1,""]},"torch.distributions.one_hot_categorical.OneHotCategorical":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],enumerate_support:[15,1,1,""],expand:[15,1,1,""],has_enumerate_support:[15,2,1,""],log_prob:[15,1,1,""],logits:[15,1,1,""],mean:[15,1,1,""],param_shape:[15,1,1,""],probs:[15,1,1,""],sample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.pareto":{Pareto:[15,0,1,""]},"torch.distributions.pareto.Pareto":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],mean:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.poisson":{Poisson:[15,0,1,""]},"torch.distributions.poisson.Poisson":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],sample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.relaxed_bernoulli":{LogitRelaxedBernoulli:[15,0,1,""],RelaxedBernoulli:[15,0,1,""]},"torch.distributions.relaxed_bernoulli.LogitRelaxedBernoulli":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],log_prob:[15,1,1,""],logits:[15,2,1,""],param_shape:[15,1,1,""],probs:[15,2,1,""],rsample:[15,1,1,""],support:[15,2,1,""]},"torch.distributions.relaxed_bernoulli.RelaxedBernoulli":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],logits:[15,1,1,""],probs:[15,1,1,""],support:[15,2,1,""],temperature:[15,1,1,""]},"torch.distributions.relaxed_categorical":{RelaxedOneHotCategorical:[15,0,1,""]},"torch.distributions.relaxed_categorical.RelaxedOneHotCategorical":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],logits:[15,1,1,""],probs:[15,1,1,""],support:[15,2,1,""],temperature:[15,1,1,""]},"torch.distributions.studentT":{StudentT:[15,0,1,""]},"torch.distributions.studentT.StudentT":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.transformed_distribution":{TransformedDistribution:[15,0,1,""]},"torch.distributions.transformed_distribution.TransformedDistribution":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,1,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],rsample:[15,1,1,""],sample:[15,1,1,""],support:[15,1,1,""]},"torch.distributions.transforms":{AbsTransform:[15,0,1,""],AffineTransform:[15,0,1,""],CatTransform:[15,0,1,""],ComposeTransform:[15,0,1,""],ExpTransform:[15,0,1,""],LowerCholeskyTransform:[15,0,1,""],PowerTransform:[15,0,1,""],SigmoidTransform:[15,0,1,""],SoftmaxTransform:[15,0,1,""],StackTransform:[15,0,1,""],StickBreakingTransform:[15,0,1,""],TanhTransform:[15,0,1,""],Transform:[15,0,1,""]},"torch.distributions.transforms.Transform":{inv:[15,1,1,""],log_abs_det_jacobian:[15,1,1,""],sign:[15,1,1,""]},"torch.distributions.uniform":{Uniform:[15,0,1,""]},"torch.distributions.uniform.Uniform":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],stddev:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.von_mises":{VonMises:[15,0,1,""]},"torch.distributions.von_mises.VonMises":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],sample:[15,1,1,""],support:[15,2,1,""],variance:[15,2,1,""]},"torch.distributions.weibull":{Weibull:[15,0,1,""]},"torch.distributions.weibull.Weibull":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],mean:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.futures":{Future:[17,0,1,""],collect_all:[17,4,1,""],wait_all:[17,4,1,""]},"torch.futures.Future":{set_result:[17,1,1,""],then:[17,1,1,""],wait:[17,1,1,""]},"torch.hub":{download_url_to_file:[457,4,1,""],get_dir:[457,4,1,""],help:[457,4,1,""],list:[457,4,1,""],load:[457,4,1,""],load_state_dict_from_url:[457,4,1,""],set_dir:[457,4,1,""]},"torch.jit":{"export":[459,4,1,""],ScriptFunction:[142,0,1,""],ScriptModule:[143,0,1,""],fork:[144,4,1,""],freeze:[145,4,1,""],ignore:[146,4,1,""],is_scripting:[461,4,1,""],load:[147,4,1,""],save:[148,4,1,""],script:[149,4,1,""],supported_ops:[460,3,0,"-"],trace:[150,4,1,""],trace_module:[151,4,1,""],unsupported_tensor_ops:[463,3,0,"-"],unused:[152,4,1,""],wait:[153,4,1,""]},"torch.jit.ScriptFunction":{get_debug_state:[142,1,1,""],save:[142,1,1,""],save_to_buffer:[142,1,1,""]},"torch.jit.ScriptModule":{"double":[143,1,1,""],"float":[143,1,1,""],add_module:[143,1,1,""],apply:[143,1,1,""],bfloat16:[143,1,1,""],buffers:[143,1,1,""],children:[143,1,1,""],code:[143,1,1,""],code_with_constants:[143,1,1,""],cpu:[143,1,1,""],cuda:[143,1,1,""],eval:[143,1,1,""],extra_repr:[143,1,1,""],graph:[143,1,1,""],half:[143,1,1,""],inlined_graph:[143,1,1,""],load_state_dict:[143,1,1,""],modules:[143,1,1,""],named_buffers:[143,1,1,""],named_children:[143,1,1,""],named_modules:[143,1,1,""],named_parameters:[143,1,1,""],parameters:[143,1,1,""],register_backward_hook:[143,1,1,""],register_buffer:[143,1,1,""],register_forward_hook:[143,1,1,""],register_forward_pre_hook:[143,1,1,""],register_parameter:[143,1,1,""],requires_grad_:[143,1,1,""],save:[143,1,1,""],state_dict:[143,1,1,""],to:[143,1,1,""],train:[143,1,1,""],type:[143,1,1,""],zero_grad:[143,1,1,""]},"torch.multiprocessing":{SpawnContext:[466,0,1,""],get_all_sharing_strategies:[466,4,1,""],get_sharing_strategy:[466,4,1,""],set_sharing_strategy:[466,4,1,""],spawn:[466,4,1,""]},"torch.multiprocessing.SpawnContext":{join:[466,1,1,""]},"torch.nn":{AdaptiveAvgPool1d:[199,0,1,""],AdaptiveAvgPool2d:[200,0,1,""],AdaptiveAvgPool3d:[201,0,1,""],AdaptiveLogSoftmaxWithLoss:[202,0,1,""],AdaptiveMaxPool1d:[203,0,1,""],AdaptiveMaxPool2d:[204,0,1,""],AdaptiveMaxPool3d:[205,0,1,""],AlphaDropout:[206,0,1,""],AvgPool1d:[207,0,1,""],AvgPool2d:[208,0,1,""],AvgPool3d:[209,0,1,""],BCELoss:[210,0,1,""],BCEWithLogitsLoss:[211,0,1,""],BatchNorm1d:[212,0,1,""],BatchNorm2d:[213,0,1,""],BatchNorm3d:[214,0,1,""],Bilinear:[215,0,1,""],CELU:[216,0,1,""],CTCLoss:[217,0,1,""],ConstantPad1d:[218,0,1,""],ConstantPad2d:[219,0,1,""],ConstantPad3d:[220,0,1,""],Conv1d:[221,0,1,""],Conv2d:[222,0,1,""],Conv3d:[223,0,1,""],ConvTranspose1d:[224,0,1,""],ConvTranspose2d:[225,0,1,""],ConvTranspose3d:[226,0,1,""],CosineEmbeddingLoss:[227,0,1,""],CosineSimilarity:[228,0,1,""],CrossEntropyLoss:[229,0,1,""],DataParallel:[230,0,1,""],Dropout2d:[232,0,1,""],Dropout3d:[233,0,1,""],Dropout:[231,0,1,""],ELU:[234,0,1,""],Embedding:[235,0,1,""],EmbeddingBag:[236,0,1,""],Flatten:[237,0,1,""],Fold:[238,0,1,""],FractionalMaxPool2d:[239,0,1,""],GELU:[240,0,1,""],GRU:[241,0,1,""],GRUCell:[242,0,1,""],GroupNorm:[243,0,1,""],Hardshrink:[244,0,1,""],Hardsigmoid:[245,0,1,""],Hardswish:[246,0,1,""],Hardtanh:[247,0,1,""],HingeEmbeddingLoss:[248,0,1,""],Identity:[249,0,1,""],InstanceNorm1d:[250,0,1,""],InstanceNorm2d:[251,0,1,""],InstanceNorm3d:[252,0,1,""],KLDivLoss:[253,0,1,""],L1Loss:[254,0,1,""],LPPool1d:[255,0,1,""],LPPool2d:[256,0,1,""],LSTM:[257,0,1,""],LSTMCell:[258,0,1,""],LayerNorm:[259,0,1,""],LeakyReLU:[260,0,1,""],Linear:[261,0,1,""],LocalResponseNorm:[262,0,1,""],LogSigmoid:[263,0,1,""],LogSoftmax:[264,0,1,""],MSELoss:[265,0,1,""],MarginRankingLoss:[266,0,1,""],MaxPool1d:[267,0,1,""],MaxPool2d:[268,0,1,""],MaxPool3d:[269,0,1,""],MaxUnpool1d:[270,0,1,""],MaxUnpool2d:[271,0,1,""],MaxUnpool3d:[272,0,1,""],Module:[273,0,1,""],ModuleDict:[274,0,1,""],ModuleList:[275,0,1,""],MultiLabelMarginLoss:[276,0,1,""],MultiLabelSoftMarginLoss:[277,0,1,""],MultiMarginLoss:[278,0,1,""],MultiheadAttention:[279,0,1,""],NLLLoss:[280,0,1,""],PReLU:[281,0,1,""],PairwiseDistance:[282,0,1,""],ParameterDict:[283,0,1,""],ParameterList:[284,0,1,""],PixelShuffle:[285,0,1,""],PoissonNLLLoss:[286,0,1,""],RNN:[287,0,1,""],RNNBase:[288,0,1,""],RNNCell:[289,0,1,""],RReLU:[290,0,1,""],ReLU6:[292,0,1,""],ReLU:[291,0,1,""],ReflectionPad1d:[293,0,1,""],ReflectionPad2d:[294,0,1,""],ReplicationPad1d:[295,0,1,""],ReplicationPad2d:[296,0,1,""],ReplicationPad3d:[297,0,1,""],SELU:[298,0,1,""],Sequential:[299,0,1,""],Sigmoid:[300,0,1,""],SmoothL1Loss:[301,0,1,""],SoftMarginLoss:[302,0,1,""],Softmax2d:[304,0,1,""],Softmax:[303,0,1,""],Softmin:[305,0,1,""],Softplus:[306,0,1,""],Softshrink:[307,0,1,""],Softsign:[308,0,1,""],SyncBatchNorm:[309,0,1,""],Tanh:[310,0,1,""],Tanhshrink:[311,0,1,""],Threshold:[312,0,1,""],Transformer:[313,0,1,""],TransformerDecoder:[314,0,1,""],TransformerDecoderLayer:[315,0,1,""],TransformerEncoder:[316,0,1,""],TransformerEncoderLayer:[317,0,1,""],TripletMarginLoss:[318,0,1,""],Unfold:[319,0,1,""],Upsample:[320,0,1,""],UpsamplingBilinear2d:[321,0,1,""],UpsamplingNearest2d:[322,0,1,""],ZeroPad2d:[323,0,1,""],intrinsic:[488,3,0,"-"],qat:[488,3,0,"-"],quantized:[488,3,0,"-"]},"torch.nn.AdaptiveLogSoftmaxWithLoss":{log_prob:[202,1,1,""],predict:[202,1,1,""]},"torch.nn.Embedding":{from_pretrained:[235,1,1,""]},"torch.nn.EmbeddingBag":{from_pretrained:[236,1,1,""]},"torch.nn.Flatten":{"double":[237,1,1,""],"float":[237,1,1,""],add_module:[237,1,1,""],apply:[237,1,1,""],bfloat16:[237,1,1,""],buffers:[237,1,1,""],children:[237,1,1,""],cpu:[237,1,1,""],cuda:[237,1,1,""],eval:[237,1,1,""],extra_repr:[237,1,1,""],half:[237,1,1,""],load_state_dict:[237,1,1,""],modules:[237,1,1,""],named_buffers:[237,1,1,""],named_children:[237,1,1,""],named_modules:[237,1,1,""],named_parameters:[237,1,1,""],parameters:[237,1,1,""],register_backward_hook:[237,1,1,""],register_buffer:[237,1,1,""],register_forward_hook:[237,1,1,""],register_forward_pre_hook:[237,1,1,""],register_parameter:[237,1,1,""],requires_grad_:[237,1,1,""],state_dict:[237,1,1,""],to:[237,1,1,""],train:[237,1,1,""],type:[237,1,1,""],zero_grad:[237,1,1,""]},"torch.nn.Module":{"double":[273,1,1,""],"float":[273,1,1,""],add_module:[273,1,1,""],apply:[273,1,1,""],bfloat16:[273,1,1,""],buffers:[273,1,1,""],children:[273,1,1,""],cpu:[273,1,1,""],cuda:[273,1,1,""],dump_patches:[273,2,1,""],eval:[273,1,1,""],extra_repr:[273,1,1,""],half:[273,1,1,""],load_state_dict:[273,1,1,""],modules:[273,1,1,""],named_buffers:[273,1,1,""],named_children:[273,1,1,""],named_modules:[273,1,1,""],named_parameters:[273,1,1,""],parameters:[273,1,1,""],register_backward_hook:[273,1,1,""],register_buffer:[273,1,1,""],register_forward_hook:[273,1,1,""],register_forward_pre_hook:[273,1,1,""],register_parameter:[273,1,1,""],requires_grad_:[273,1,1,""],state_dict:[273,1,1,""],to:[273,1,1,""],train:[273,1,1,""],type:[273,1,1,""],zero_grad:[273,1,1,""]},"torch.nn.ModuleDict":{clear:[274,1,1,""],items:[274,1,1,""],keys:[274,1,1,""],pop:[274,1,1,""],update:[274,1,1,""],values:[274,1,1,""]},"torch.nn.ModuleList":{append:[275,1,1,""],extend:[275,1,1,""],insert:[275,1,1,""]},"torch.nn.MultiheadAttention":{forward:[279,1,1,""]},"torch.nn.ParameterDict":{clear:[283,1,1,""],items:[283,1,1,""],keys:[283,1,1,""],pop:[283,1,1,""],update:[283,1,1,""],values:[283,1,1,""]},"torch.nn.ParameterList":{append:[284,1,1,""],extend:[284,1,1,""]},"torch.nn.RNNBase":{flatten_parameters:[288,1,1,""]},"torch.nn.SyncBatchNorm":{convert_sync_batchnorm:[309,1,1,""]},"torch.nn.Transformer":{forward:[313,1,1,""],generate_square_subsequent_mask:[313,1,1,""]},"torch.nn.TransformerDecoder":{forward:[314,1,1,""]},"torch.nn.TransformerDecoderLayer":{forward:[315,1,1,""]},"torch.nn.TransformerEncoder":{forward:[316,1,1,""]},"torch.nn.TransformerEncoderLayer":{forward:[317,1,1,""]},"torch.nn.functional":{adaptive_avg_pool1d:[470,4,1,""],adaptive_avg_pool2d:[470,4,1,""],adaptive_avg_pool3d:[470,4,1,""],adaptive_max_pool1d:[470,4,1,""],adaptive_max_pool2d:[470,4,1,""],adaptive_max_pool3d:[470,4,1,""],affine_grid:[470,4,1,""],alpha_dropout:[470,4,1,""],avg_pool1d:[470,4,1,""],avg_pool2d:[470,4,1,""],avg_pool3d:[470,4,1,""],batch_norm:[470,4,1,""],bilinear:[470,4,1,""],binary_cross_entropy:[470,4,1,""],binary_cross_entropy_with_logits:[470,4,1,""],celu:[470,4,1,""],conv1d:[470,4,1,""],conv2d:[470,4,1,""],conv3d:[470,4,1,""],conv_transpose1d:[470,4,1,""],conv_transpose2d:[470,4,1,""],conv_transpose3d:[470,4,1,""],cosine_embedding_loss:[470,4,1,""],cosine_similarity:[470,4,1,""],cross_entropy:[470,4,1,""],ctc_loss:[470,4,1,""],dropout2d:[470,4,1,""],dropout3d:[470,4,1,""],dropout:[470,4,1,""],elu:[470,4,1,""],elu_:[470,4,1,""],embedding:[470,4,1,""],embedding_bag:[470,4,1,""],feature_alpha_dropout:[470,4,1,""],fold:[470,4,1,""],gelu:[470,4,1,""],glu:[470,4,1,""],grid_sample:[470,4,1,""],gumbel_softmax:[470,4,1,""],hardshrink:[470,4,1,""],hardsigmoid:[470,4,1,""],hardswish:[470,4,1,""],hardtanh:[470,4,1,""],hardtanh_:[470,4,1,""],hinge_embedding_loss:[470,4,1,""],instance_norm:[470,4,1,""],interpolate:[470,4,1,""],kl_div:[470,4,1,""],l1_loss:[470,4,1,""],layer_norm:[470,4,1,""],leaky_relu:[470,4,1,""],leaky_relu_:[470,4,1,""],linear:[470,4,1,""],local_response_norm:[470,4,1,""],log_softmax:[470,4,1,""],logsigmoid:[470,4,1,""],lp_pool1d:[470,4,1,""],lp_pool2d:[470,4,1,""],margin_ranking_loss:[470,4,1,""],max_pool1d:[470,4,1,""],max_pool2d:[470,4,1,""],max_pool3d:[470,4,1,""],max_unpool1d:[470,4,1,""],max_unpool2d:[470,4,1,""],max_unpool3d:[470,4,1,""],mse_loss:[470,4,1,""],multi_margin_loss:[470,4,1,""],multilabel_margin_loss:[470,4,1,""],multilabel_soft_margin_loss:[470,4,1,""],nll_loss:[470,4,1,""],normalize:[470,4,1,""],one_hot:[470,4,1,""],pad:[470,4,1,""],pairwise_distance:[470,4,1,""],pdist:[470,4,1,""],pixel_shuffle:[470,4,1,""],poisson_nll_loss:[470,4,1,""],prelu:[470,4,1,""],relu6:[470,4,1,""],relu:[470,4,1,""],relu_:[470,4,1,""],rrelu:[470,4,1,""],rrelu_:[470,4,1,""],selu:[470,4,1,""],sigmoid:[470,4,1,""],smooth_l1_loss:[470,4,1,""],soft_margin_loss:[470,4,1,""],softmax:[470,4,1,""],softmin:[470,4,1,""],softplus:[470,4,1,""],softshrink:[470,4,1,""],softsign:[470,4,1,""],tanh:[470,4,1,""],tanhshrink:[470,4,1,""],threshold:[470,4,1,""],threshold_:[470,4,1,""],triplet_margin_loss:[470,4,1,""],unfold:[470,4,1,""],upsample:[470,4,1,""],upsample_bilinear:[470,4,1,""],upsample_nearest:[470,4,1,""]},"torch.nn.init":{calculate_gain:[471,4,1,""],constant_:[471,4,1,""],dirac_:[471,4,1,""],eye_:[471,4,1,""],kaiming_normal_:[471,4,1,""],kaiming_uniform_:[471,4,1,""],normal_:[471,4,1,""],ones_:[471,4,1,""],orthogonal_:[471,4,1,""],sparse_:[471,4,1,""],uniform_:[471,4,1,""],xavier_normal_:[471,4,1,""],xavier_uniform_:[471,4,1,""],zeros_:[471,4,1,""]},"torch.nn.intrinsic":{ConvBn1d:[488,0,1,""],ConvBn2d:[488,0,1,""],ConvBnReLU1d:[488,0,1,""],ConvBnReLU2d:[488,0,1,""],ConvReLU1d:[488,0,1,""],ConvReLU2d:[488,0,1,""],ConvReLU3d:[488,0,1,""],LinearReLU:[488,0,1,""],qat:[488,3,0,"-"],quantized:[488,3,0,"-"]},"torch.nn.intrinsic.qat":{ConvBn2d:[488,0,1,""],ConvBnReLU2d:[488,0,1,""],ConvReLU2d:[488,0,1,""],LinearReLU:[488,0,1,""]},"torch.nn.intrinsic.quantized":{ConvReLU2d:[488,0,1,""],ConvReLU3d:[488,0,1,""],LinearReLU:[488,0,1,""]},"torch.nn.parallel":{DistributedDataParallel:[324,0,1,""],data_parallel:[470,4,1,""]},"torch.nn.parallel.DistributedDataParallel":{no_sync:[324,1,1,""]},"torch.nn.parameter":{Parameter:[325,0,1,""]},"torch.nn.qat":{Conv2d:[488,0,1,""],Linear:[488,0,1,""]},"torch.nn.qat.Conv2d":{from_float:[488,1,1,""]},"torch.nn.qat.Linear":{from_float:[488,1,1,""]},"torch.nn.quantized":{BatchNorm2d:[488,0,1,""],BatchNorm3d:[488,0,1,""],Conv1d:[488,0,1,""],Conv2d:[488,0,1,""],Conv3d:[488,0,1,""],DeQuantize:[488,0,1,""],ELU:[488,0,1,""],FloatFunctional:[488,0,1,""],GroupNorm:[488,0,1,""],Hardswish:[488,0,1,""],InstanceNorm1d:[488,0,1,""],InstanceNorm2d:[488,0,1,""],InstanceNorm3d:[488,0,1,""],LayerNorm:[488,0,1,""],Linear:[488,0,1,""],QFunctional:[488,0,1,""],Quantize:[488,0,1,""],ReLU6:[488,0,1,""],ReLU:[488,0,1,""],dynamic:[488,3,0,"-"],functional:[488,3,0,"-"]},"torch.nn.quantized.Conv1d":{from_float:[488,1,1,""]},"torch.nn.quantized.Conv2d":{from_float:[488,1,1,""]},"torch.nn.quantized.Conv3d":{from_float:[488,1,1,""]},"torch.nn.quantized.Linear":{from_float:[488,1,1,""]},"torch.nn.quantized.dynamic":{LSTM:[488,0,1,""],Linear:[488,0,1,""]},"torch.nn.quantized.dynamic.Linear":{from_float:[488,1,1,""]},"torch.nn.quantized.functional":{adaptive_avg_pool2d:[488,4,1,""],avg_pool2d:[488,4,1,""],conv1d:[488,4,1,""],conv2d:[488,4,1,""],conv3d:[488,4,1,""],hardswish:[488,4,1,""],interpolate:[488,4,1,""],linear:[488,4,1,""],max_pool2d:[488,4,1,""],relu:[488,4,1,""],upsample:[488,4,1,""],upsample_bilinear:[488,4,1,""],upsample_nearest:[488,4,1,""]},"torch.nn.utils":{clip_grad_norm_:[326,4,1,""],clip_grad_value_:[327,4,1,""],parameters_to_vector:[328,4,1,""],remove_spectral_norm:[346,4,1,""],remove_weight_norm:[347,4,1,""],spectral_norm:[353,4,1,""],vector_to_parameters:[354,4,1,""],weight_norm:[355,4,1,""]},"torch.nn.utils.prune":{BasePruningMethod:[329,0,1,""],CustomFromMask:[330,0,1,""],Identity:[331,0,1,""],L1Unstructured:[332,0,1,""],LnStructured:[333,0,1,""],PruningContainer:[334,0,1,""],RandomStructured:[335,0,1,""],RandomUnstructured:[336,0,1,""],custom_from_mask:[337,4,1,""],global_unstructured:[338,4,1,""],identity:[339,4,1,""],is_pruned:[340,4,1,""],l1_unstructured:[341,4,1,""],ln_structured:[342,4,1,""],random_structured:[343,4,1,""],random_unstructured:[344,4,1,""],remove:[345,4,1,""]},"torch.nn.utils.prune.BasePruningMethod":{apply:[329,1,1,""],apply_mask:[329,1,1,""],compute_mask:[329,1,1,""],prune:[329,1,1,""],remove:[329,1,1,""]},"torch.nn.utils.prune.CustomFromMask":{apply:[330,1,1,""],apply_mask:[330,1,1,""],prune:[330,1,1,""],remove:[330,1,1,""]},"torch.nn.utils.prune.Identity":{apply:[331,1,1,""],apply_mask:[331,1,1,""],prune:[331,1,1,""],remove:[331,1,1,""]},"torch.nn.utils.prune.L1Unstructured":{apply:[332,1,1,""],apply_mask:[332,1,1,""],prune:[332,1,1,""],remove:[332,1,1,""]},"torch.nn.utils.prune.LnStructured":{apply:[333,1,1,""],apply_mask:[333,1,1,""],compute_mask:[333,1,1,""],prune:[333,1,1,""],remove:[333,1,1,""]},"torch.nn.utils.prune.PruningContainer":{add_pruning_method:[334,1,1,""],apply:[334,1,1,""],apply_mask:[334,1,1,""],compute_mask:[334,1,1,""],prune:[334,1,1,""],remove:[334,1,1,""]},"torch.nn.utils.prune.RandomStructured":{apply:[335,1,1,""],apply_mask:[335,1,1,""],compute_mask:[335,1,1,""],prune:[335,1,1,""],remove:[335,1,1,""]},"torch.nn.utils.prune.RandomUnstructured":{apply:[336,1,1,""],apply_mask:[336,1,1,""],prune:[336,1,1,""],remove:[336,1,1,""]},"torch.nn.utils.rnn":{PackedSequence:[348,0,1,""],pack_padded_sequence:[349,4,1,""],pack_sequence:[350,4,1,""],pad_packed_sequence:[351,4,1,""],pad_sequence:[352,4,1,""]},"torch.nn.utils.rnn.PackedSequence":{batch_sizes:[348,2,1,""],count:[348,1,1,""],data:[348,2,1,""],index:[348,1,1,""],is_cuda:[348,1,1,""],is_pinned:[348,1,1,""],sorted_indices:[348,2,1,""],to:[348,1,1,""],unsorted_indices:[348,2,1,""]},"torch.onnx":{"export":[485,4,1,""],export_to_pretty_string:[485,4,1,""],is_in_onnx_export:[485,4,1,""],register_custom_op_symbolic:[485,4,1,""],select_model_mode_for_export:[485,4,1,""]},"torch.onnx.operators":{shape_as_tensor:[485,4,1,""]},"torch.optim":{ASGD:[486,0,1,""],Adadelta:[486,0,1,""],Adagrad:[486,0,1,""],Adam:[486,0,1,""],AdamW:[486,0,1,""],Adamax:[486,0,1,""],LBFGS:[486,0,1,""],Optimizer:[486,0,1,""],RMSprop:[486,0,1,""],Rprop:[486,0,1,""],SGD:[486,0,1,""],SparseAdam:[486,0,1,""]},"torch.optim.ASGD":{step:[486,1,1,""]},"torch.optim.Adadelta":{step:[486,1,1,""]},"torch.optim.Adagrad":{step:[486,1,1,""]},"torch.optim.Adam":{step:[486,1,1,""]},"torch.optim.AdamW":{step:[486,1,1,""]},"torch.optim.Adamax":{step:[486,1,1,""]},"torch.optim.LBFGS":{step:[486,1,1,""]},"torch.optim.Optimizer":{add_param_group:[486,1,1,""],load_state_dict:[486,1,1,""],state_dict:[486,1,1,""],step:[486,1,1,""],zero_grad:[486,1,1,""]},"torch.optim.RMSprop":{step:[486,1,1,""]},"torch.optim.Rprop":{step:[486,1,1,""]},"torch.optim.SGD":{step:[486,1,1,""]},"torch.optim.SparseAdam":{step:[486,1,1,""]},"torch.optim.lr_scheduler":{CosineAnnealingLR:[486,0,1,""],CosineAnnealingWarmRestarts:[486,0,1,""],CyclicLR:[486,0,1,""],ExponentialLR:[486,0,1,""],LambdaLR:[486,0,1,""],MultiStepLR:[486,0,1,""],MultiplicativeLR:[486,0,1,""],OneCycleLR:[486,0,1,""],ReduceLROnPlateau:[486,0,1,""],StepLR:[486,0,1,""]},"torch.optim.lr_scheduler.CosineAnnealingWarmRestarts":{step:[486,1,1,""]},"torch.optim.lr_scheduler.CyclicLR":{get_lr:[486,1,1,""]},"torch.optim.lr_scheduler.LambdaLR":{load_state_dict:[486,1,1,""],state_dict:[486,1,1,""]},"torch.optim.lr_scheduler.MultiplicativeLR":{load_state_dict:[486,1,1,""],state_dict:[486,1,1,""]},"torch.quantization":{DeQuantStub:[488,0,1,""],FakeQuantize:[488,0,1,""],HistogramObserver:[488,0,1,""],MinMaxObserver:[488,0,1,""],MovingAverageMinMaxObserver:[488,0,1,""],MovingAveragePerChannelMinMaxObserver:[488,0,1,""],NoopObserver:[488,0,1,""],ObserverBase:[488,0,1,""],PerChannelMinMaxObserver:[488,0,1,""],QConfig:[488,0,1,""],QConfigDynamic:[488,0,1,""],QuantStub:[488,0,1,""],QuantWrapper:[488,0,1,""],RecordingObserver:[488,0,1,""],add_observer_:[488,4,1,""],add_quant_dequant:[488,4,1,""],convert:[488,4,1,""],default_eval_fn:[488,4,1,""],fuse_modules:[488,4,1,""],get_observer_dict:[488,4,1,""],prepare:[488,4,1,""],prepare_qat:[488,4,1,""],propagate_qconfig_:[488,4,1,""],quantize:[488,4,1,""],quantize_dynamic:[488,4,1,""],quantize_qat:[488,4,1,""],swap_module:[488,4,1,""]},"torch.quantization.ObserverBase":{with_args:[488,1,1,""]},"torch.quasirandom":{SobolEngine:[375,0,1,""]},"torch.quasirandom.SobolEngine":{draw:[375,1,1,""],fast_forward:[375,1,1,""],reset:[375,1,1,""]},"torch.random":{fork_rng:[489,4,1,""],get_rng_state:[489,4,1,""],initial_seed:[489,4,1,""],manual_seed:[489,4,1,""],seed:[489,4,1,""],set_rng_state:[489,4,1,""]},"torch.sparse":{FloatTensor:[493,0,1,""],addmm:[493,4,1,""],mm:[493,4,1,""],sum:[493,4,1,""]},"torch.sparse.FloatTensor":{_indices:[493,1,1,""],_nnz:[493,1,1,""],_values:[493,1,1,""],add:[493,1,1,""],add_:[493,1,1,""],clone:[493,1,1,""],coalesce:[493,1,1,""],dim:[493,1,1,""],div:[493,1,1,""],div_:[493,1,1,""],get_device:[493,1,1,""],hspmm:[493,1,1,""],is_coalesced:[493,1,1,""],mm:[493,1,1,""],mul:[493,1,1,""],mul_:[493,1,1,""],narrow_copy:[493,1,1,""],resizeAs_:[493,1,1,""],size:[493,1,1,""],spadd:[493,1,1,""],spmm:[493,1,1,""],sspaddmm:[493,1,1,""],sspmm:[493,1,1,""],sub:[493,1,1,""],sub_:[493,1,1,""],t_:[493,1,1,""],to_dense:[493,1,1,""],transpose:[493,1,1,""],transpose_:[493,1,1,""],zero_:[493,1,1,""]},"torch.torch":{default_generator:[499,2,1,""],device:[495,0,1,""],dtype:[495,0,1,""],finfo:[507,0,1,""],iinfo:[507,0,1,""],layout:[495,0,1,""],memory_format:[495,0,1,""]},"torch.utils":{data:[13,3,0,"-"],model_zoo:[465,3,0,"-"]},"torch.utils.checkpoint":{checkpoint:[4,4,1,""],checkpoint_sequential:[4,4,1,""]},"torch.utils.cpp_extension":{BuildExtension:[9,4,1,""],CUDAExtension:[9,4,1,""],CppExtension:[9,4,1,""],check_compiler_abi_compatibility:[9,4,1,""],include_paths:[9,4,1,""],is_ninja_available:[9,4,1,""],load:[9,4,1,""],load_inline:[9,4,1,""],verify_ninja_availability:[9,4,1,""]},"torch.utils.data":{BatchSampler:[13,0,1,""],ChainDataset:[13,0,1,""],ConcatDataset:[13,0,1,""],DataLoader:[13,0,1,""],Dataset:[13,0,1,""],IterableDataset:[13,0,1,""],RandomSampler:[13,0,1,""],Sampler:[13,0,1,""],SequentialSampler:[13,0,1,""],Subset:[13,0,1,""],SubsetRandomSampler:[13,0,1,""],TensorDataset:[13,0,1,""],WeightedRandomSampler:[13,0,1,""],get_worker_info:[13,4,1,""],random_split:[13,4,1,""]},"torch.utils.data.distributed":{DistributedSampler:[13,0,1,""]},"torch.utils.dlpack":{from_dlpack:[16,4,1,""],to_dlpack:[16,4,1,""]},"torch.utils.mobile_optimizer":{optimize_for_mobile:[464,4,1,""]},"torch.utils.model_zoo":{load_url:[465,4,1,""]},"torch.utils.tensorboard.writer":{SummaryWriter:[497,0,1,""]},"torch.utils.tensorboard.writer.SummaryWriter":{__init__:[497,1,1,""],add_audio:[497,1,1,""],add_custom_scalars:[497,1,1,""],add_embedding:[497,1,1,""],add_figure:[497,1,1,""],add_graph:[497,1,1,""],add_histogram:[497,1,1,""],add_hparams:[497,1,1,""],add_image:[497,1,1,""],add_images:[497,1,1,""],add_mesh:[497,1,1,""],add_pr_curve:[497,1,1,""],add_scalar:[497,1,1,""],add_scalars:[497,1,1,""],add_text:[497,1,1,""],add_video:[497,1,1,""],close:[497,1,1,""],flush:[497,1,1,""]},"torchvision.datasets":{CIFAR100:[500,0,1,""],CIFAR10:[500,0,1,""],CelebA:[500,0,1,""],Cityscapes:[500,0,1,""],CocoCaptions:[500,0,1,""],CocoDetection:[500,0,1,""],DatasetFolder:[500,0,1,""],EMNIST:[500,0,1,""],FakeData:[500,0,1,""],FashionMNIST:[500,0,1,""],Flickr30k:[500,0,1,""],Flickr8k:[500,0,1,""],HMDB51:[500,0,1,""],ImageFolder:[500,0,1,""],ImageNet:[500,0,1,""],KMNIST:[500,0,1,""],Kinetics400:[500,0,1,""],LSUN:[500,0,1,""],MNIST:[500,0,1,""],PhotoTour:[500,0,1,""],QMNIST:[500,0,1,""],SBDataset:[500,0,1,""],SBU:[500,0,1,""],STL10:[500,0,1,""],SVHN:[500,0,1,""],UCF101:[500,0,1,""],USPS:[500,0,1,""],VOCDetection:[500,0,1,""],VOCSegmentation:[500,0,1,""]},"torchvision.datasets.CIFAR10":{__getitem__:[500,1,1,""]},"torchvision.datasets.Cityscapes":{__getitem__:[500,1,1,""]},"torchvision.datasets.CocoCaptions":{__getitem__:[500,1,1,""]},"torchvision.datasets.CocoDetection":{__getitem__:[500,1,1,""]},"torchvision.datasets.DatasetFolder":{__getitem__:[500,1,1,""]},"torchvision.datasets.Flickr30k":{__getitem__:[500,1,1,""]},"torchvision.datasets.Flickr8k":{__getitem__:[500,1,1,""]},"torchvision.datasets.ImageFolder":{__getitem__:[500,1,1,""]},"torchvision.datasets.LSUN":{__getitem__:[500,1,1,""]},"torchvision.datasets.PhotoTour":{__getitem__:[500,1,1,""]},"torchvision.datasets.SBU":{__getitem__:[500,1,1,""]},"torchvision.datasets.STL10":{__getitem__:[500,1,1,""]},"torchvision.datasets.SVHN":{__getitem__:[500,1,1,""]},"torchvision.datasets.USPS":{__getitem__:[500,1,1,""]},"torchvision.datasets.VOCDetection":{__getitem__:[500,1,1,""]},"torchvision.datasets.VOCSegmentation":{__getitem__:[500,1,1,""]},"torchvision.io":{read_video:[502,4,1,""],read_video_timestamps:[502,4,1,""],write_video:[502,4,1,""]},"torchvision.models":{alexnet:[503,4,1,""],densenet121:[503,4,1,""],densenet161:[503,4,1,""],densenet169:[503,4,1,""],densenet201:[503,4,1,""],googlenet:[503,4,1,""],inception_v3:[503,4,1,""],mnasnet0_5:[503,4,1,""],mnasnet0_75:[503,4,1,""],mnasnet1_0:[503,4,1,""],mnasnet1_3:[503,4,1,""],mobilenet_v2:[503,4,1,""],resnet101:[503,4,1,""],resnet152:[503,4,1,""],resnet18:[503,4,1,""],resnet34:[503,4,1,""],resnet50:[503,4,1,""],resnext101_32x8d:[503,4,1,""],resnext50_32x4d:[503,4,1,""],shufflenet_v2_x0_5:[503,4,1,""],shufflenet_v2_x1_0:[503,4,1,""],shufflenet_v2_x1_5:[503,4,1,""],shufflenet_v2_x2_0:[503,4,1,""],squeezenet1_0:[503,4,1,""],squeezenet1_1:[503,4,1,""],vgg11:[503,4,1,""],vgg11_bn:[503,4,1,""],vgg13:[503,4,1,""],vgg13_bn:[503,4,1,""],vgg16:[503,4,1,""],vgg16_bn:[503,4,1,""],vgg19:[503,4,1,""],vgg19_bn:[503,4,1,""],wide_resnet101_2:[503,4,1,""],wide_resnet50_2:[503,4,1,""]},"torchvision.models.detection":{fasterrcnn_resnet50_fpn:[503,4,1,""],keypointrcnn_resnet50_fpn:[503,4,1,""],maskrcnn_resnet50_fpn:[503,4,1,""]},"torchvision.models.segmentation":{deeplabv3_resnet101:[503,4,1,""],deeplabv3_resnet50:[503,4,1,""],fcn_resnet101:[503,4,1,""],fcn_resnet50:[503,4,1,""]},"torchvision.models.video":{mc3_18:[503,4,1,""],r2plus1d_18:[503,4,1,""],r3d_18:[503,4,1,""]},"torchvision.ops":{DeformConv2d:[504,0,1,""],FeaturePyramidNetwork:[504,0,1,""],MultiScaleRoIAlign:[504,0,1,""],PSRoIAlign:[504,0,1,""],PSRoIPool:[504,0,1,""],RoIAlign:[504,0,1,""],RoIPool:[504,0,1,""],deform_conv2d:[504,4,1,""],nms:[504,4,1,""],ps_roi_align:[504,4,1,""],ps_roi_pool:[504,4,1,""],roi_align:[504,4,1,""],roi_pool:[504,4,1,""]},"torchvision.transforms":{CenterCrop:[505,0,1,""],ColorJitter:[505,0,1,""],Compose:[505,0,1,""],FiveCrop:[505,0,1,""],Grayscale:[505,0,1,""],Lambda:[505,0,1,""],LinearTransformation:[505,0,1,""],Normalize:[505,0,1,""],Pad:[505,0,1,""],RandomAffine:[505,0,1,""],RandomApply:[505,0,1,""],RandomChoice:[505,0,1,""],RandomCrop:[505,0,1,""],RandomErasing:[505,0,1,""],RandomGrayscale:[505,0,1,""],RandomHorizontalFlip:[505,0,1,""],RandomOrder:[505,0,1,""],RandomPerspective:[505,0,1,""],RandomResizedCrop:[505,0,1,""],RandomRotation:[505,0,1,""],RandomSizedCrop:[505,0,1,""],RandomVerticalFlip:[505,0,1,""],Resize:[505,0,1,""],Scale:[505,0,1,""],TenCrop:[505,0,1,""],ToPILImage:[505,0,1,""],ToTensor:[505,0,1,""],functional:[505,3,0,"-"]},"torchvision.transforms.Normalize":{__call__:[505,1,1,""]},"torchvision.transforms.ToPILImage":{__call__:[505,1,1,""]},"torchvision.transforms.ToTensor":{__call__:[505,1,1,""]},"torchvision.transforms.functional":{adjust_brightness:[505,4,1,""],adjust_contrast:[505,4,1,""],adjust_gamma:[505,4,1,""],adjust_hue:[505,4,1,""],adjust_saturation:[505,4,1,""],affine:[505,4,1,""],center_crop:[505,4,1,""],convert_image_dtype:[505,4,1,""],crop:[505,4,1,""],erase:[505,4,1,""],five_crop:[505,4,1,""],hflip:[505,4,1,""],normalize:[505,4,1,""],pad:[505,4,1,""],perspective:[505,4,1,""],pil_to_tensor:[505,4,1,""],resize:[505,4,1,""],resized_crop:[505,4,1,""],rotate:[505,4,1,""],ten_crop:[505,4,1,""],to_grayscale:[505,4,1,""],to_pil_image:[505,4,1,""],to_tensor:[505,4,1,""],vflip:[505,4,1,""]},"torchvision.utils":{make_grid:[506,4,1,""],save_image:[506,4,1,""]},torch:{"var":[450,4,1,""],BoolTensor:[498,0,1,""],FloatStorage:[494,0,1,""],Generator:[18,0,1,""],Tensor:[498,0,1,""],__config__:[0,3,0,"-"],abs:[19,4,1,""],absolute:[20,4,1,""],acos:[21,4,1,""],acosh:[22,4,1,""],add:[23,4,1,""],addbmm:[24,4,1,""],addcdiv:[25,4,1,""],addcmul:[26,4,1,""],addmm:[27,4,1,""],addmv:[28,4,1,""],addr:[29,4,1,""],allclose:[30,4,1,""],angle:[31,4,1,""],arange:[32,4,1,""],argmax:[33,4,1,""],argmin:[34,4,1,""],argsort:[35,4,1,""],as_strided:[36,4,1,""],as_tensor:[37,4,1,""],asin:[38,4,1,""],asinh:[39,4,1,""],atan2:[41,4,1,""],atan:[40,4,1,""],atanh:[42,4,1,""],autograd:[2,3,0,"-"],baddbmm:[43,4,1,""],bartlett_window:[44,4,1,""],bernoulli:[45,4,1,""],bincount:[46,4,1,""],bitwise_and:[47,4,1,""],bitwise_not:[48,4,1,""],bitwise_or:[49,4,1,""],bitwise_xor:[50,4,1,""],blackman_window:[51,4,1,""],block_diag:[52,4,1,""],bmm:[53,4,1,""],broadcast_tensors:[54,4,1,""],bucketize:[55,4,1,""],can_cast:[56,4,1,""],cartesian_prod:[57,4,1,""],cat:[58,4,1,""],cdist:[59,4,1,""],ceil:[60,4,1,""],chain_matmul:[61,4,1,""],cholesky:[62,4,1,""],cholesky_inverse:[63,4,1,""],cholesky_solve:[64,4,1,""],chunk:[65,4,1,""],clamp:[66,4,1,""],combinations:[67,4,1,""],compiled_with_cxx11_abi:[68,4,1,""],conj:[69,4,1,""],cos:[70,4,1,""],cosh:[71,4,1,""],cross:[72,4,1,""],cuda:[11,3,0,"-"],cummax:[73,4,1,""],cummin:[74,4,1,""],cumprod:[75,4,1,""],cumsum:[76,4,1,""],deg2rad:[77,4,1,""],dequantize:[78,4,1,""],det:[79,4,1,""],diag:[80,4,1,""],diag_embed:[81,4,1,""],diagflat:[82,4,1,""],diagonal:[83,4,1,""],digamma:[84,4,1,""],dist:[85,4,1,""],distributed:[14,3,0,"-"],distributions:[15,3,0,"-"],div:[86,4,1,""],dot:[87,4,1,""],eig:[88,4,1,""],einsum:[89,4,1,""],empty:[90,4,1,""],empty_like:[91,4,1,""],empty_strided:[92,4,1,""],enable_grad:[93,0,1,""],eq:[94,4,1,""],equal:[95,4,1,""],erf:[96,4,1,""],erfc:[97,4,1,""],erfinv:[98,4,1,""],exp:[99,4,1,""],expm1:[100,4,1,""],eye:[101,4,1,""],fft:[102,4,1,""],flatten:[103,4,1,""],flip:[104,4,1,""],fliplr:[105,4,1,""],flipud:[106,4,1,""],floor:[107,4,1,""],floor_divide:[108,4,1,""],fmod:[109,4,1,""],frac:[110,4,1,""],from_numpy:[111,4,1,""],full:[112,4,1,""],full_like:[113,4,1,""],futures:[17,3,0,"-"],gather:[114,4,1,""],ge:[115,4,1,""],geqrf:[116,4,1,""],ger:[117,4,1,""],get_default_dtype:[118,4,1,""],get_num_interop_threads:[119,4,1,""],get_num_threads:[120,4,1,""],get_rng_state:[121,4,1,""],gt:[122,4,1,""],hamming_window:[123,4,1,""],hann_window:[124,4,1,""],histc:[125,4,1,""],hub:[457,3,0,"-"],ifft:[126,4,1,""],imag:[127,4,1,""],index_select:[128,4,1,""],initial_seed:[129,4,1,""],inverse:[130,4,1,""],irfft:[131,4,1,""],is_complex:[132,4,1,""],is_floating_point:[133,4,1,""],is_nonzero:[134,4,1,""],is_storage:[135,4,1,""],is_tensor:[136,4,1,""],isclose:[137,4,1,""],isfinite:[138,4,1,""],isinf:[139,4,1,""],isnan:[140,4,1,""],istft:[141,4,1,""],jit:[459,3,0,"-"],kthvalue:[154,4,1,""],le:[155,4,1,""],lerp:[156,4,1,""],lgamma:[157,4,1,""],linspace:[158,4,1,""],load:[159,4,1,""],lobpcg:[160,4,1,""],log10:[162,4,1,""],log1p:[163,4,1,""],log2:[164,4,1,""],log:[161,4,1,""],logaddexp2:[166,4,1,""],logaddexp:[165,4,1,""],logcumsumexp:[167,4,1,""],logdet:[168,4,1,""],logical_and:[169,4,1,""],logical_not:[170,4,1,""],logical_or:[171,4,1,""],logical_xor:[172,4,1,""],logspace:[173,4,1,""],logsumexp:[174,4,1,""],lstsq:[175,4,1,""],lt:[176,4,1,""],lu:[177,4,1,""],lu_solve:[178,4,1,""],lu_unpack:[179,4,1,""],manual_seed:[180,4,1,""],masked_select:[181,4,1,""],matmul:[182,4,1,""],matrix_power:[183,4,1,""],matrix_rank:[184,4,1,""],max:[185,4,1,""],mean:[186,4,1,""],median:[187,4,1,""],meshgrid:[188,4,1,""],min:[189,4,1,""],mm:[190,4,1,""],mode:[191,4,1,""],mul:[192,4,1,""],multinomial:[193,4,1,""],multiprocessing:[466,3,0,"-"],mv:[194,4,1,""],mvlgamma:[195,4,1,""],narrow:[196,4,1,""],ne:[197,4,1,""],neg:[198,4,1,""],no_grad:[356,0,1,""],nonzero:[357,4,1,""],norm:[358,4,1,""],normal:[359,4,1,""],numel:[360,4,1,""],ones:[361,4,1,""],ones_like:[362,4,1,""],onnx:[485,3,0,"-"],optim:[486,3,0,"-"],orgqr:[363,4,1,""],ormqr:[364,4,1,""],pca_lowrank:[365,4,1,""],pinverse:[366,4,1,""],poisson:[367,4,1,""],polygamma:[368,4,1,""],pow:[369,4,1,""],prod:[370,4,1,""],promote_types:[371,4,1,""],qr:[372,4,1,""],quantization:[488,3,0,"-"],quantize_per_channel:[373,4,1,""],quantize_per_tensor:[374,4,1,""],rad2deg:[376,4,1,""],rand:[377,4,1,""],rand_like:[378,4,1,""],randint:[379,4,1,""],randint_like:[380,4,1,""],randn:[381,4,1,""],randn_like:[382,4,1,""],random:[489,3,0,"-"],randperm:[383,4,1,""],range:[384,4,1,""],real:[385,4,1,""],reciprocal:[386,4,1,""],remainder:[387,4,1,""],renorm:[388,4,1,""],repeat_interleave:[389,4,1,""],reshape:[390,4,1,""],result_type:[391,4,1,""],rfft:[392,4,1,""],roll:[393,4,1,""],rot90:[394,4,1,""],round:[395,4,1,""],rsqrt:[396,4,1,""],save:[397,4,1,""],searchsorted:[398,4,1,""],seed:[399,4,1,""],set_default_dtype:[400,4,1,""],set_default_tensor_type:[401,4,1,""],set_flush_denormal:[402,4,1,""],set_grad_enabled:[403,0,1,""],set_num_interop_threads:[404,4,1,""],set_num_threads:[405,4,1,""],set_printoptions:[406,4,1,""],set_rng_state:[407,4,1,""],sigmoid:[408,4,1,""],sign:[409,4,1,""],sin:[410,4,1,""],sinh:[411,4,1,""],slogdet:[412,4,1,""],solve:[413,4,1,""],sort:[414,4,1,""],sparse_coo_tensor:[415,4,1,""],split:[416,4,1,""],sqrt:[417,4,1,""],square:[418,4,1,""],squeeze:[419,4,1,""],stack:[420,4,1,""],std:[421,4,1,""],std_mean:[422,4,1,""],stft:[423,4,1,""],sum:[424,4,1,""],svd:[425,4,1,""],svd_lowrank:[426,4,1,""],symeig:[427,4,1,""],t:[428,4,1,""],take:[429,4,1,""],tan:[430,4,1,""],tanh:[431,4,1,""],tensor:[432,4,1,""],tensordot:[433,4,1,""],topk:[434,4,1,""],trace:[435,4,1,""],transpose:[436,4,1,""],trapz:[437,4,1,""],triangular_solve:[438,4,1,""],tril:[439,4,1,""],tril_indices:[440,4,1,""],triu:[441,4,1,""],triu_indices:[442,4,1,""],true_divide:[443,4,1,""],trunc:[444,4,1,""],unbind:[445,4,1,""],unique:[446,4,1,""],unique_consecutive:[447,4,1,""],unsqueeze:[448,4,1,""],vander:[449,4,1,""],var_mean:[451,4,1,""],view_as_complex:[452,4,1,""],view_as_real:[453,4,1,""],where:[454,4,1,""],zeros:[455,4,1,""],zeros_like:[456,4,1,""]},torchvision:{get_image_backend:[501,4,1,""],set_image_backend:[501,4,1,""],set_video_backend:[501,4,1,""]}},objnames:{"0":["py","class","Python class"],"1":["py","method","Python method"],"2":["py","attribute","Python attribute"],"3":["py","module","Python module"],"4":["py","function","Python function"],"5":["std","envvar","environment variable"]},objtypes:{"0":"py:class","1":"py:method","2":"py:attribute","3":"py:module","4":"py:function","5":"std:envvar"},terms:{"00000e":[90,178,413],"0000e":[92,165,173,366,498],"0303j":8,"041m":2,"048m":2,"0545e":498,"0633j":[127,385,498],"0705e":92,"0949e":498,"10k":500,"10x7":[200,204],"1239e":92,"1269e":165,"13x12":239,"1421j":8,"1428e":91,"148m":2,"1548e":366,"1681j":8,"16x112x112":503,"17m1129830":160,"1918j":8,"1921e":[130,366],"1_batch_16":497,"1cycl":486,"1e4":486,"1e6":486,"1hr":5,"1mb":11,"1st":[15,474],"1x1":503,"20l":[143,237,273],"224x224":503,"2352e":366,"2gb":[457,485],"2nd":[15,281,304,470,474,498],"2x2":473,"2x3":[319,493],"3121e":366,"3136j":453,"32x4d":503,"32x8d":503,"3487j":8,"3493e":91,"3553j":[127,385,498],"3839j":453,"3842e":62,"3rd":[474,486,498,501],"3x4":319,"3xhxw":497,"4064e":91,"427l":500,"483m":2,"4842e":[92,498],"4901e":366,"4th":[474,500],"4us":2,"50k":500,"50x":503,"5390e":366,"54_":497,"5751e":91,"5765e":498,"5772j":452,"5874j":8,"5955e":91,"5c106cde":[457,465],"5mb":503,"5x2":493,"5x7":[200,204],"5x7x9":[201,205],"60k":500,"60s":490,"6391e":366,"640l":500,"6503e":425,"6531e":425,"6623j":452,"6699j":453,"727m":2,"7497j":452,"7567e":366,"7896j":[127,385,498],"7981j":8,"7x7":[200,204],"7x7x7":[201,205],"7x9x8":[201,205],"8000e":91,"8119j":[127,385,498],"816u":2,"8182e":498,"88131e":402,"8b3f7e2e7a0f2aba0e629e23d89f07c7fc0e6a5":485,"9073e":[130,319],"9120j":452,"9407e":366,"9451j":453,"9683e":92,"9802e":[179,366],"\u2102":473,"\u211d":473,"abstract":[13,15,329,477,488,490],"boolean":[2,11,15,47,48,49,50,67,137,138,139,140,160,181,212,213,214,235,236,243,250,251,252,259,309,427,434,461,462,470,478,486,495,498,500,505],"break":[2,5,15,406,462,483,486],"byte":[11,15,142,159,279,461,462,467,486,494,498],"case":[1,2,3,8,9,10,11,13,14,32,44,46,66,79,89,130,131,134,143,150,159,160,165,168,175,177,193,202,207,208,209,210,211,221,222,223,225,226,227,229,232,233,236,237,238,241,244,245,246,247,248,253,254,255,256,257,260,265,267,268,269,273,280,281,287,290,301,307,312,319,324,357,390,398,412,415,426,443,454,457,466,467,468,470,471,472,473,474,475,476,478,479,481,483,485,486,488,489,490,491,492,493,496,497,498,500,504,505,507],"catch":459,"char":[467,494,498],"ciss\u00e9":202,"class":[1,2,10,11,13,14,15,17,18,93,142,143,144,145,146,148,149,150,151,152,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,329,330,331,332,333,334,335,336,348,356,375,403,460,462,466,468,470,472,478,479,481,482,483,485,486,488,490,491,493,494,495,497,498,500,503,504,505,507],"const":[480,485],"default":[1,4,8,9,11,14,30,32,37,44,51,53,55,59,62,63,64,72,75,76,81,82,83,90,91,92,101,102,112,113,118,123,124,126,131,137,141,143,145,149,150,151,158,159,160,173,177,184,185,187,191,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,221,222,223,224,225,226,227,228,229,230,231,234,235,236,237,238,239,241,242,243,244,247,248,250,251,252,253,254,255,256,257,258,259,260,261,262,265,266,267,268,269,270,271,272,273,276,277,278,279,280,281,282,286,287,289,290,291,292,298,301,302,306,307,309,312,313,315,317,318,319,320,324,325,329,330,331,332,333,334,335,336,349,350,352,353,355,357,358,361,362,365,366,370,375,377,378,379,380,381,382,383,384,389,392,397,398,400,401,406,415,423,424,425,426,427,432,437,438,440,442,443,446,447,449,455,456,457,459,464,465,466,470,471,472,473,475,476,477,478,479,484,485,486,488,489,490,493,494,497,498,499,500,502,503,504,505,506,507],"enum":[14,485,490,505],"export":[2,10,11,14,16,144,146,149,152,349,350,459,461,478,490,503],"final":[14,15,24,27,28,43,57,67,159,241,257,287,459,461,462,467,478,488,491,492,503,505,506],"float":[1,2,8,13,15,25,30,32,44,45,51,56,59,85,94,109,115,118,122,123,124,133,137,138,139,140,143,150,151,155,156,158,160,165,173,176,184,193,197,202,206,216,218,219,220,227,228,231,232,233,234,235,236,237,239,243,244,247,248,250,251,252,255,256,259,260,262,266,273,278,281,282,286,288,290,293,294,295,296,307,309,312,313,318,320,321,322,326,327,332,333,335,336,338,341,342,343,344,351,352,353,358,359,366,369,373,374,384,387,388,400,401,402,406,437,443,459,460,461,462,466,467,469,470,471,472,478,479,482,485,486,488,490,493,494,495,497,498,502,504,505,506,507],"function":[1,4,5,8,9,10,11,13,17,18,30,36,44,51,53,59,61,81,83,84,87,89,93,96,97,98,102,116,117,123,124,126,130,131,136,141,142,143,144,146,148,149,150,152,157,159,160,163,165,173,177,182,185,187,189,190,191,194,195,206,210,216,217,218,219,220,227,231,234,237,240,241,242,244,245,246,247,248,255,256,257,258,260,263,264,266,273,278,281,287,290,291,292,293,294,295,296,297,300,303,305,306,307,308,309,310,311,313,315,317,318,319,321,323,324,338,348,349,352,356,359,362,363,364,365,366,368,372,375,384,387,392,403,413,423,425,427,437,446,447,452,453,456,457,458,462,465,466,468,471,474,476,477,478,479,480,482,486,489,490,491,492,495,497,498,499,500,501,502,503],"herv\u00e9":202,"import":[2,5,6,9,11,13,14,17,52,141,144,145,146,147,148,149,150,151,152,273,324,350,351,352,358,459,461,462,466,472,473,475,476,477,478,479,480,481,482,485,486,488,490,491,492,495,497,498,500,503,505],"int":[1,11,13,14,15,18,33,34,35,36,44,46,51,56,58,65,67,72,73,74,75,76,80,81,82,83,90,92,101,102,103,112,114,119,120,123,124,125,126,128,131,141,143,144,154,158,160,167,173,174,180,183,185,186,187,189,191,193,195,196,199,200,201,202,203,204,205,207,208,209,215,217,218,219,220,221,222,223,224,225,226,228,229,230,235,236,237,238,239,242,243,250,251,252,255,256,258,259,261,262,264,267,268,269,270,271,272,273,275,278,280,281,284,285,288,289,293,294,295,296,297,303,305,306,309,313,318,319,320,321,322,323,324,326,327,332,333,335,336,338,341,342,343,344,351,353,355,358,359,360,361,365,368,370,373,374,375,377,379,380,381,383,388,389,390,391,392,393,394,404,405,414,416,419,420,421,422,423,424,426,433,434,436,437,439,440,441,442,443,445,446,447,448,449,450,451,455,459,460,461,462,466,467,470,484,485,486,488,489,490,493,494,495,497,498,500,502,503,504,505,506,507],"j\u00e9gou":202,"long":[2,5,6,13,112,129,191,217,229,257,258,280,371,440,442,446,466,467,468,470,474,478,479,481,485,488,489,494,495,497,498],"new":[1,2,4,6,11,13,14,15,17,21,22,23,37,38,39,40,41,42,55,60,70,71,77,81,86,99,100,105,106,107,127,128,137,138,139,140,143,149,161,162,163,164,181,192,196,198,212,213,214,237,241,250,251,252,273,274,279,283,309,329,333,334,335,337,338,339,341,342,343,344,352,376,385,386,390,395,396,397,398,400,401,408,409,410,411,417,418,420,429,430,431,444,448,452,453,457,459,461,464,466,467,468,470,473,476,478,480,481,483,484,486,488,492,494,496,497,498,504],"return":[0,1,2,4,8,9,11,13,14,15,16,17,18,21,22,23,32,33,34,35,36,37,38,39,40,41,42,44,45,46,51,52,55,57,60,61,62,63,64,65,66,67,68,70,71,72,73,74,75,76,77,78,80,81,82,83,85,86,88,90,91,92,93,94,99,100,101,102,105,106,107,108,111,112,113,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,143,144,145,146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,162,163,164,167,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,191,192,193,196,197,198,202,203,204,205,210,211,227,228,229,230,236,237,239,248,253,254,264,265,266,267,268,269,273,274,275,276,277,278,280,283,284,286,301,302,303,304,305,309,318,324,326,328,329,330,331,332,333,334,335,336,337,339,340,341,342,343,344,348,349,350,351,352,353,355,356,357,358,359,360,361,362,363,365,366,367,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,388,389,390,391,392,395,396,398,399,402,408,409,410,411,412,413,414,415,417,418,419,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,444,445,446,447,448,449,450,451,452,453,454,455,456,457,459,462,464,465,466,468,470,471,472,473,475,476,478,480,484,485,486,488,489,490,491,493,494,495,496,498,499,500,502,503,504,505,507],"short":[141,217,257,258,406,423,461,467,470,474,488,490,494,495,498,505],"static":[2,459,460,461,480,485,488,490,494],"super":[13,144,145,149,150,151,152,273,274,275,283,284,285,459,461,462,478,485,486],"switch":[8,13,397,466,470,473,483,503],"throw":[17,134,177,351,490,498],"transient":492,"true":[1,2,4,9,11,13,14,15,25,30,37,44,46,47,49,50,51,55,56,62,63,64,67,86,88,93,94,95,102,114,115,122,123,124,126,131,132,133,134,135,136,137,138,139,140,141,143,146,150,151,152,154,155,160,169,170,171,172,174,176,177,179,181,184,185,186,187,189,191,193,197,202,203,204,205,206,207,208,209,210,211,212,213,214,215,217,221,222,223,224,225,226,227,229,231,232,233,235,236,237,239,241,242,243,248,250,251,252,253,254,255,256,257,258,259,261,265,266,267,268,269,270,271,272,273,276,277,278,279,280,282,286,287,288,289,301,302,309,313,318,320,321,324,325,340,348,349,350,351,352,353,355,356,357,364,365,370,372,375,392,397,398,402,403,406,414,421,422,423,424,425,427,432,434,438,443,446,447,449,450,451,454,457,460,461,465,466,467,468,470,472,473,474,476,477,478,479,480,482,485,486,488,489,490,491,493,494,495,496,497,498,499,500,503,504,505,506],"try":[3,5,14,46,146,150,217,221,222,223,224,225,226,320,324,457,459,462,470,473,478,479,481,485,486,490,498,505],"var":[2,212,213,214,243,250,251,252,259,309,460,467,498],"void":[18,480],"while":[1,6,13,14,15,41,143,144,150,151,202,237,250,251,252,273,279,313,324,337,338,339,341,342,343,344,358,372,462,468,470,472,473,476,479,481,486,488,490,492,496,497,498,505],AND:[47,169],Abs:485,And:[73,74,154,185,187,189,217,473,484,488,505],But:[2,5,150,473,478,479,496,498],Doing:10,For:[1,2,3,4,5,6,8,9,10,11,13,14,15,24,25,26,27,28,29,43,47,48,49,50,53,75,76,102,114,126,131,143,148,149,150,151,160,167,174,182,183,185,187,189,190,202,206,210,211,218,219,220,221,222,223,224,225,226,230,236,237,238,241,257,273,276,277,278,286,287,293,294,295,296,297,306,319,323,324,348,349,350,352,392,415,419,452,453,457,459,463,467,468,470,472,473,474,475,476,478,479,481,485,486,488,490,491,492,493,494,495,496,497,498,500,503,505],Going:503,Has:[248,266,278,320,373,374,420,470,488],IDs:489,Its:[143,237,273,477,486],NFS:14,NMS:504,NOT:[14,48,170,329,330,331,332,333,334,335,336,345,485,492,493],Not:[459,461,462,478,488],One:[9,14,52,320,379,380,459,468,470,474,475,478,480,482,486,492,497,500,503],Ops:[3,476,498],PRs:[5,6],RHS:178,Such:[9,13,425,427,449],That:[175,464,478,479,490,505],The:[1,2,4,6,8,9,10,11,13,14,15,16,17,18,22,23,25,26,27,28,30,41,42,44,45,46,47,48,49,50,51,56,57,63,67,80,81,82,83,85,86,88,89,90,92,94,96,97,98,102,109,111,115,122,123,124,125,126,127,128,131,141,143,144,146,147,148,149,150,151,155,156,158,159,160,173,174,175,176,177,178,180,181,182,184,185,187,189,192,193,196,197,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,217,221,222,223,224,225,226,227,229,230,235,236,237,238,239,241,242,243,247,248,250,251,252,253,254,256,257,258,259,261,264,265,266,268,269,273,276,278,280,286,287,289,290,301,309,312,313,318,319,320,324,326,327,328,329,330,331,332,333,334,335,336,339,345,351,353,355,357,358,359,365,366,369,372,375,377,379,381,385,387,389,392,393,397,400,401,406,407,415,419,425,426,427,429,432,433,434,436,437,439,440,441,442,448,449,452,454,457,459,460,461,462,463,464,465,466,467,468,470,471,472,473,474,475,476,477,478,479,480,481,483,484,485,486,488,489,490,491,492,494,495,497,498,499,500,501,502,503,504,505,506,507],Then:[2,238,319,474,477,478,483,485,486,490,491,505],There:[2,5,6,14,89,230,457,459,461,468,473,476,478,479,480,481,482,483,484,485,488,490,492,498,499],These:[1,9,10,13,14,15,141,143,202,459,460,461,467,468,469,472,477,478,485,490,491,493,495,499,500,503,505],Use:[2,11,13,14,86,102,126,131,152,230,303,309,324,392,467,468,470,481,488,490,491,497,498,505],Used:[13,18,400,488,495],Useful:[11,203,204,205,239,267,268,269,495,498],Uses:[11,462],Using:[2,13,15,136,150,232,233,285,324,459,478,481,485,486,490],WITH:485,Will:[7,14,415,461,468,488,505],With:[13,15,151,212,213,214,222,223,225,226,235,250,251,252,259,309,320,462,470,476,478,485,486,488,490,497],Yes:485,__and__:460,__array_function__:478,__background__:503,__bool__:460,__bytes__:462,__call__:505,__config__:[458,475],__constants__:[459,461],__del__:462,__dict__:486,__file__:[457,484],__float__:460,__format__:462,__getitem__:[13,500],__hash__:462,__hex__:460,__iand__:460,__ilshift__:460,__init__:[2,13,15,144,145,149,150,151,152,273,274,275,283,284,459,461,478,479,485,497,505],__int__:460,__ior__:460,__irshift__:460,__iter__:[13,462],__ixor__:460,__len__:[13,460,500],__lshift__:460,__main__:[13,474,477,481,484,491],__matmul__:1,__name__:[13,477,478,481,484,491],__new__:[461,462],__oct__:460,__or__:460,__pow__:1,__r:462,__rdiv__:1,__repr__:478,__rpow__:1,__rshift__:460,__rtruediv__:1,__slots__:462,__str__:460,__torch__:460,__xor__:460,_audio_channel:500,_audio_sampl:500,_back:[220,297,470],_bottom:[219,220,294,296,297,323,470],_call:15,_caller:489,_cat:15,_channel:[221,222,223,224,225,226,243,470,488],_class:202,_compilation_unit:[150,151],_contextmethodmixin:2,_dependentproperti:15,_devices_kw:489,_dim:235,_direct:[241,287],_ext:484,_extra_fil:[142,143,147,148,480],_factor:[285,320,321,322],_featur:[202,215,261,470,488],_fft:423,_force_outplac:[150,151],_fork:475,_formatt:406,_forward_cl:2,_frames_up:149,_front:[220,297,470],_glibcxx_use_cxx11_abi:68,_greaterthan:15,_greaterthaneq:15,_growth_track:1,_halfopeninterv:15,_if_scalar_type_a:485,_in:471,_index:280,_indic:[415,493],_instanc:15,_integerinterv:15,_interv:15,_invers:15,_key_padding_mask:313,_layer:[241,287],_left:[218,219,220,293,294,295,296,297,323,470],_length:[44,51,123,124,141,217,423],_lessthan:15,_like:498,_load_from_state_dict:273,_log_api_usage_onc:480,_mask:[313,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,345],_metadata:[273,478],_mode:471,_module_class:[150,151],_nn:460,_nnz:493,_onnx_master_opset:485,_onnx_stable_opset:485,_orig:[329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,345],_out:471,_overrid:478,_pad:[224,225,226],_precomputed_metadata:500,_random_sampl:[239,460],_rcb:149,_resnet18:457,_retain_param_nam:485,_right:[218,219,220,293,294,295,296,297,323,470],_run_process:491,_safe_foo:9,_sampl:193,_scalar:485,_set_rpc_timeout:490,_shape:259,_size:[207,208,209,221,222,223,224,225,226,238,241,242,255,256,257,258,267,268,269,270,271,272,287,289,319],_slope:[260,470,471],_stack:15,_stacklevel:[460,470],_sync_param:477,_tensor:498,_tensor_str:406,_top:[219,220,294,296,297,323,470],_use_new_zipfile_seri:[397,483],_valu:[202,327,415,478,493],_video_height:500,_video_min_dimens:500,_video_width:500,_wait:475,_weight:[235,236],_with_arg:488,a3c:481,a_big:[425,427],a_dict:461,a_float32:1,a_i:318,a_l:179,a_lu:[177,178,179],a_tupl:461,a_u:179,aaa:497,abbrevi:11,abc:348,abi:[9,10],abil:[6,397,480,483],abl:[5,148,313,366,459,467,478,485,488,490],abnorm:[466,481],about:[2,6,11,13,348,457,459,461,473,475,478,479,480,481,485,490,491,492,496,498,504,505],abov:[2,10,14,15,44,51,80,81,82,83,123,124,160,210,238,306,319,359,379,380,406,423,437,439,440,441,442,457,459,461,473,474,475,476,478,482,485,486,491,492,500,505],abridg:479,abruptli:466,abs:[15,20,59,62,130,160,291,313,319,355,358,365,460,467,468,470,485,486,498,503],abs_:[460,467,498],absent:477,absolut:[2,6,8,9,19,30,137,254,301,332,333,335,336,338,341,342,343,344,412,460,470,485,498,505],absolute_:[460,498],abstransform:15,acc:503,acceler:[5,212,213,214,309,486],accept:[2,5,6,14,111,143,145,229,237,273,280,334,348,349,468,478,485,486,488,490,495,497,498],access:[2,6,13,14,143,144,150,202,237,273,349,459,460,462,464,466,468,473,476,479,480,490,495,496,498,507],accident:5,accimag:501,accommod:[270,271,272],accompani:5,accomplish:5,accord:[2,45,54,181,193,202,236,329,330,331,332,333,334,335,336,416,468,471,484,485,486,492,500,503,504],accordingli:[473,490,498,500,503,505],accordinli:490,account:[3,324,475],accumul:[1,2,24,324,459,460,473,477,479,490,491,498],accumulategrad:[2,473],accur:[11,163,375,476,485,491],accuraci:[1,472,488,497,503],achiev:[13,14,15,217,280,470,480,485,490,492],ack:492,acknowledg:492,aco:[1,460,467,485,498],acos_:[460,467,498],acosh:[460,467,498],acosh_:[460,467,498],acquaint:5,acquir:492,across:[2,11,13,14,33,34,148,150,229,230,238,262,281,309,319,324,334,338,372,459,467,470,473,476,477,479,480,481,482,488,490,491,494,497,498,500],act:[15,211,274,275,284,329,330,331,332,333,334,335,336,337,339,341,342,343,344,345,488,505],action:[6,15,473,476,492,500,503],activ:[2,4,5,11,206,232,233,243,259,274,290,313,315,317,464,466,478,488,490],activation_post_process:488,active_byt:11,actual:[2,150,224,225,226,339,457,461,467,473,476,477,478,481,484,485,486,488],actual_input_1:485,acycl:473,adadelta:486,adagrad:[235,486,490],adam:[6,7,15,486],adamax:486,adamw:486,adapt:[199,200,201,202,203,204,205,231,375,470,486,488,504],adaptive_avg_pool1d:[460,478,485],adaptive_avg_pool2d:[460,478,485,488],adaptive_avg_pool3d:[460,478,485],adaptive_max_pool1d:[460,478,485],adaptive_max_pool1d_with_indic:[460,478],adaptive_max_pool2d:[460,485],adaptive_max_pool2d_with_indic:460,adaptive_max_pool3d:[460,485],adaptive_max_pool3d_with_indic:460,adaptiveavgpool1d:470,adaptiveavgpool2d:[470,488],adaptiveavgpool3d:470,adaptivelogsoftmaxwithloss:463,adaptivemaxpool1d:470,adaptivemaxpool2d:[200,470],adaptivemaxpool3d:[201,470],add:[1,2,5,8,10,11,17,24,25,26,29,143,149,202,217,221,222,223,224,225,226,237,273,275,279,280,284,286,324,329,330,331,332,333,334,335,336,457,459,460,461,467,470,472,474,475,478,480,485,486,488,490,491,492,493,495,496,497,498,503,504],add_:[2,460,467,474,493,498],add_argu:[14,476],add_audio:497,add_bias_kv:279,add_custom_scalar:497,add_embed:497,add_figur:497,add_graph:497,add_histogram:497,add_hparam:497,add_imag:497,add_mesh:497,add_modul:[143,237,273],add_observer_:488,add_param_group:486,add_pr_curv:497,add_pruning_method:334,add_quant_dequ:488,add_relu:488,add_scalar:[488,497],add_text:497,add_video:497,add_zero_attn:[279,460],addbmm:[1,43,460,498],addbmm_:[460,498],addcdiv:[1,460,498],addcdiv_:[460,498],addcmul:[1,460,498],addcmul_:[460,498],added:[5,9,17,23,24,25,26,27,28,29,43,143,207,208,209,212,213,214,221,222,223,224,225,226,237,238,243,250,251,252,259,267,268,269,270,271,272,273,279,286,299,309,313,319,324,325,334,459,461,470,480,485,486,488,493,497,498,504],adder:2,addglobalcallback:480,adding:[13,14,32,165,211,280,337,338,339,341,342,343,344,457,459,461,468,472,478,485,486,488,498],addit:[1,2,5,6,9,10,11,15,141,143,145,202,210,211,212,213,214,215,216,224,225,226,234,236,237,240,244,245,246,247,250,251,252,253,254,260,261,262,263,264,265,270,271,272,273,281,286,290,291,292,298,300,301,302,303,305,306,307,308,309,310,311,312,313,324,425,446,447,452,459,461,467,468,470,475,476,478,480,481,482,484,486,488,490,491,492,493,496,498],addition:[2,13,14,15,145,202,250,251,252,479,482,498,499,505],addmm:[1,460,467,485,493,498],addmm_:[1,460,467,498],addmv:[1,460,467,498],addmv_:[460,467,498],addr:[1,460,498],addr_:[460,498],address:[2,13,14,466,490,491,498,503],adequ:488,adher:6,adjac:[32,52,232,233,384],adjust:[14,247,475,505],adjust_bright:505,adjust_contrast:505,adjust_gamma:505,adjust_hu:505,adjust_satur:505,admit:476,adopt:[6,488],advanc:[4,10,313,315,317,357,468,473,476,481,485,496,497],advantag:[14,211,479,490],adventur:485,adversari:353,advic:5,advis:[32,36,481,498],advisori:5,aeroplan:503,affect:[1,2,5,11,93,118,143,237,273,320,356,403,470,472,488,494],affin:[15,212,213,214,243,250,251,252,259,309,470,473,488,498,505],affine_grid:460,affine_grid_gener:460,affinetransform:15,aforement:481,afram:502,after:[1,2,5,9,11,13,14,89,134,143,182,230,237,273,276,324,329,333,335,457,461,466,470,471,472,476,477,479,480,481,483,486,488,490,491,492,495,497,498,504,505],afterward:[2,235],again:[1,4,13,14,193,500],against:[2,3,14,32,150,151,488,505],agent:490,aggreg:[14,236,338,470,503],aggress:[2,141,473],agnost:[468,470],agre:492,ahead:[5,488],aid:[5,473],aidan:[313,315,317],ail:7,ailzhang:7,aim:[5,468],airplan:503,aka:[2,482,495],akin:480,alban:7,alband:7,alex:7,alexandr:449,alfredo:7,algebra:7,algorithm:[5,12,15,18,46,61,141,160,217,221,222,223,224,225,226,238,241,257,287,319,320,365,425,426,470,488,490,498],alia:[15,20,348,498],alias:[461,478],alican:7,alicanb:7,align:[209,217,253,268,269,320,467,470,486,488,504],align_a:[460,467,468],align_corn:[320,321,460,470,488],align_tensor:460,align_to:[460,467,468],aliv:[479,481,490,491,492],all:[1,2,4,5,6,8,9,10,11,13,14,15,17,18,24,30,33,34,45,52,57,58,66,67,89,141,143,147,148,149,150,159,177,185,186,187,188,189,195,202,209,211,215,217,219,220,221,222,223,224,225,226,230,235,236,237,238,241,242,243,248,253,254,257,258,261,265,269,270,271,272,273,274,275,276,277,278,279,280,281,283,284,287,289,293,294,295,296,297,301,309,313,315,317,318,319,323,324,326,334,338,348,352,357,359,370,415,419,420,421,422,423,424,425,427,439,440,441,442,445,447,450,451,452,457,459,460,461,464,466,467,468,470,472,473,475,476,477,478,479,481,482,484,485,486,488,489,490,491,492,493,494,495,497,498,500,503,504,505,506],all_gath:14,all_gather_multigpu:14,all_reduc:14,all_reduce_multigpu:14,all_to_al:14,allclos:[2,372,427,460,485,498],alloc:[2,3,8,11,15,90,92,432,466,473,476,477,495,498],allocated_byt:11,allow:[1,2,5,6,8,9,10,13,14,15,56,67,146,152,165,230,273,276,279,313,324,327,357,457,461,467,468,472,473,474,475,476,477,478,480,481,485,486,488,490,495,496,497,498,500],allow_unreach:2,allow_unus:[2,460],allreduc:477,almost:[126,131,484,500],alon:461,along:[1,9,11,13,14,15,24,35,65,104,114,128,154,196,203,204,205,228,239,264,267,268,269,303,305,333,335,342,343,352,357,388,389,393,414,416,420,434,437,445,457,461,470,474,478,479,480,486,488,498],alongsid:[143,237,273],alpha:[15,23,24,27,28,29,43,123,206,216,234,262,298,460,470,478,485,486,488,493,498],alpha_dropout:460,alpha_dropout_:460,alpha_f:485,alphabet:[89,470,490,500],alphadropout:470,alreadi:[1,2,8,11,13,14,37,143,159,237,273,324,348,445,446,457,459,465,467,468,472,478,481,485,486,488,491,492,494,496,498,500],also:[1,2,4,5,6,8,9,10,11,13,14,15,17,44,51,75,76,93,118,123,124,143,144,145,150,188,202,210,212,213,214,221,222,223,224,225,226,229,236,237,238,241,257,273,280,287,299,301,309,319,324,337,339,341,342,343,344,356,366,381,397,401,419,425,446,447,454,457,459,461,464,466,467,468,470,471,472,473,475,476,477,478,479,480,481,482,484,485,486,488,490,491,493,496,497,498,499,500,505],alter:472,altern:[2,13,147,159,299,362,456,457,462,470,472,484,488],although:[5,15,224,225,226,281,472,478],alwai:[1,2,11,13,14,44,51,59,80,123,124,148,150,175,210,230,235,250,251,252,306,324,348,366,372,398,432,443,446,466,474,475,476,477,478,480,485,489,490,492,493,495,498,506],amazonaw:[457,465,484],ambigu:[15,134,224,225,226,238,270,271,272,320],among:[11,13,14,15,230,359,485],amount:[2,3,5,11,141,221,222,223,224,225,226,238,262,276,319,332,333,335,336,338,340,341,342,343,344,345,468,473,475,476,479,490,505,506],amp:[458,472],amplitud:486,amsgrad:486,an_error:461,anaconda:484,analog:[30,425,443,486],analysi:[365,462],analyt:[2,15],analyz:[477,478],ancestor:492,anchor:[318,460,470],andrea:160,andrew:160,angl:[15,41,77,260,376,460,498,505],ani:[1,2,3,4,5,6,8,11,13,14,15,17,32,54,57,58,142,143,145,148,149,150,199,200,201,203,204,205,206,210,211,215,216,230,231,234,237,238,240,244,245,246,247,248,249,253,254,260,261,263,264,265,273,281,286,290,291,292,298,299,300,301,302,303,305,306,307,308,309,310,311,312,313,319,324,329,330,331,332,333,334,335,336,339,349,350,352,384,397,404,406,459,460,461,464,466,467,468,470,472,473,475,476,478,480,481,482,483,485,486,488,490,491,492,497,498,505],anm:89,ann_fil:500,anneal:486,anneal_strategi:486,annfil:500,annot:[2,459,461,462,490,500],annotation_path:500,anoth:[2,5,11,13,14,274,283,459,461,472,475,476,478,481,484,485,491,492,498,499,504],another_forward:459,another_input:324,answer:[5,6,211,340,488],anticip:4,anymor:[2,14,324,498],anyon:6,anystr:461,anyth:[4,5,14,149,459,488],anywher:472,aoa:484,apart:8,apaszk:[6,7],api:[6,8,11,14,17,148,149,457,458,464,466,467,473,476,477,485,490,491,493,497,498,500,501],aplli:505,appear:[1,3,14,15,89,105,106,159,191,325,389,425,427,459,467,468,478,486],append:[2,14,17,83,182,242,258,275,284,289,324,461,473,475,481,484,485,497,498,503],appl:503,appli:[1,2,4,15,81,83,143,160,199,200,201,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,221,222,223,224,225,226,227,229,234,237,239,240,241,243,244,245,246,247,248,250,251,252,253,254,255,256,257,259,260,261,262,263,264,265,266,267,268,269,273,276,277,278,280,281,286,287,290,291,292,298,300,301,302,303,304,305,306,307,308,309,310,311,313,318,321,322,324,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,348,349,353,355,358,369,373,374,423,446,447,448,459,466,468,470,472,473,478,485,486,488,490,491,498,504,505],applic:[11,14,15,230,315,317,324,473,475,476,477,478,480,482,488,490,491,492,498,505],apply_:[463,498],apply_mask:[329,330,331,332,333,334,335,336],apprear:89,appreci:5,approach:[14,59,397,459,466,473,488,490],appropri:[1,5,14,15,150,177,229,273,280,462,468,490,491,492,503],approv:6,approx:426,approxim:[1,2,160,202,286,306,365,426,470,477,478,486],apr:141,arang:[8,13,14,29,54,104,105,106,117,154,156,157,293,294,295,296,320,321,322,358,359,369,384,390,394,416,424,433,434,435,460,470,485,497,498],arbitrari:[2,14,102,159,230,235,254,265,301,319,348,392,425,470,473,480,485,498,499,505],arbitrarili:[144,470],arccosin:21,architectur:[313,402,501,503],architecutr:11,archiv:480,arcsin:38,arctang:[40,41],area:[5,6,470,505],aren:[1,467,491],arg0:2,arg1:[2,14],arg2:14,arg3:14,arg:[1,2,3,4,9,14,15,17,66,143,144,177,188,210,211,227,229,237,241,248,249,253,254,257,265,266,273,276,277,278,280,286,287,299,301,302,309,318,324,329,334,348,446,447,457,460,462,466,468,470,473,476,477,478,481,483,485,488,490,491,492,494,498,500,505],arg_constraint:15,arg_nam:460,argmax:[185,202,460,485,498],argmin:[189,460,485,498],argpars:[14,476],argsort:[460,498,504],argument:[1,2,3,4,9,11,13,14,15,17,18,22,23,24,27,28,29,32,39,42,43,53,77,80,81,82,83,86,90,92,94,108,112,115,122,126,131,138,139,143,144,150,151,155,159,160,165,166,176,182,193,197,212,213,214,217,221,222,223,224,225,226,229,236,237,238,247,249,250,251,252,270,271,272,273,274,280,281,283,309,319,321,322,329,333,334,338,342,348,361,376,377,379,381,384,403,426,427,433,438,439,440,441,442,443,446,455,457,460,461,463,466,467,468,470,472,474,476,477,478,479,480,485,486,488,489,490,494,495,497,498,500,506,507],argumentpars:[14,476],ari:485,aris:15,arithmet:[61,391,392,462,467,468,488,495],arm:[464,488],armand:202,around:[2,5,6,8,11,14,17,459,466,476,490,498,504,505],arr:485,arrai:[13,37,46,105,106,111,159,175,238,241,242,257,258,389,406,449,459,462,470,485,488,494,497,498,500],arrang:[52,500],array_lik:[37,415,432,498],arriv:[490,492],arrow:492,art:375,articul:6,artifact:480,artifici:2,arxiv:[15,290,291,313,355,365,426,488,503,505],as_strid:[92,460,488,496,498],as_strided_:460,as_subclass:[463,498],as_tensor:[432,460,478,497,498],as_tupl:[357,454],asap:466,ascend:[35,414,427,437,446],ascent:15,ascii:[11,159],asd932_:500,asgd:486,ashish:[313,315,317],asin:[1,460,467,485,498],asin_:[460,467,498],asinh:[460,467,498],asinh_:[460,467,498],ask:[14,458],aspect:[5,478,505],assembl:[8,13],assert:[13,15,144,145,461,462,485],assert_allclos:459,assert_int_or_pair:460,assign:[1,2,5,13,14,202,229,273,280,325,459,462,472,478,479,485,488,491,492,496,497,500],assign_x:461,assist:477,associ:[2,11,89,143,159,217,237,273,459,467,468,470,482,485,490,491,495,498],assp:141,assum:[1,8,13,14,15,150,184,217,266,320,324,352,365,426,438,459,461,467,470,473,478,480,485,486,490,491,492,503,505],assumpt:[217,473,477,490,491,505],ast_1:[228,470],ast_2:[228,470],astensor:505,astyp:485,asuhan:7,asymmetr:[469,488],async:[2,14,462,480,494,498],async_add:490,async_add_chain:490,async_execut:490,async_op:14,asyncexecutionclass:490,asynchron:[3,17,143,144,153,237,273,462,475,477,490,494,497,498],atan2:[1,460,467,498],atan2_:[460,467,498],atan:[460,467,485,498],atan_:[460,467,498],atanh:[460,467,498],atanh_:[460,467,498],aten:[193,459,475,484],aten_thread:475,atol:[2,30,137,459,460,478,498],atom:[462,482],atomicadd:482,attach:[17,457,459,461,467,478,488,491,498],attempt:[2,9,145,148,177,459,467,468,472,476,484,490],attend:[279,313],attent:[5,279,313,315,317,484,496],attn:[315,317],attn_mask:[279,460],attn_output:279,attn_output_weight:279,attr1:485,attr1_f:485,attr2:485,attr2_i:485,attr:[253,309,324,358,470,485,500],attribut:[1,2,8,13,14,142,143,144,145,148,149,160,230,237,273,313,324,325,349,458,460,462,472,473,476,478,485,488,490,498,500,507],attributeerror:478,audio:[497,500,502],audio_fp:502,aug_add_x:461,augment:[10,462,505],author:472,auto:[14,210,211,497],autocastmodel:1,autoencod:15,autograd:[1,3,4,5,15,32,44,51,90,91,92,101,112,113,123,124,131,143,158,173,237,273,324,361,362,377,378,379,380,381,382,383,384,405,415,432,455,456,458,460,463,470,477,479,480,485,498],autograd_context_id:491,autograd_hook:477,autograd_message_id:491,autograd_tensor:2,autom:[459,485],automat:[9,11,14,150,188,324,325,406,457,458,461,465,467,468,473,474,476,478,481,485,488,490,497,498],aux_logit:503,aux_loss:503,auxiliari:[457,480,503],avail:[2,9,10,11,13,14,53,102,126,131,177,313,320,365,392,423,426,457,461,466,470,476,478,484,485,488,490,500,505],averag:[2,14,143,199,200,201,207,208,209,210,211,212,213,214,227,229,236,237,248,253,254,255,256,265,266,273,276,277,278,280,286,301,302,309,318,324,470,477,486,488],averaging_const:488,avg:[2,505],avg_pool1d:[460,485],avg_pool2d:[460,485,488],avg_pool3d:[460,485,488],avgpool1d:470,avgpool2d:[470,488],avgpool3d:470,avi:500,avmgithub:7,avoid:[1,2,6,13,15,18,32,131,159,228,254,265,282,286,301,319,392,423,432,446,468,470,473,475,476,479,482,485,488,490,491,496,497,498,505],avx2:488,awai:[468,470],await:[462,490],awar:[5,468,473,488,491,498,503],axbc:348,axes:485,axi:[104,114,373,389,393,394,460,485,488,498,505],b_float32:1,b_hf:257,b_hg:257,b_hh:[241,242,257,258,287,289,460],b_hi:257,b_hn:241,b_ho:257,b_hr:241,b_hz:241,b_if:257,b_ig:257,b_ih:[241,242,257,258,287,289,460],b_ii:257,b_in:241,b_io:257,b_ir:241,b_iz:241,back:[1,159,457,459,478,481,485,490,493,505],backbon:503,backcompat:474,backend:[2,9,46,102,126,131,217,221,222,223,224,225,226,324,392,459,460,461,464,470,475,476,482,485,488,498,501],backend_str:14,backendtyp:490,background:[46,217,221,222,223,224,225,226,470,481,490,498,500,503],backoff:1,backoff_factor:1,backpack:503,backprop:366,backpropag:[2,15,479,486],backward:[1,2,4,6,15,79,88,93,143,168,210,211,217,229,230,237,241,254,257,265,273,280,286,287,318,324,325,356,366,412,425,427,460,468,470,471,472,477,478,479,480,481,482,486,488,490,493,498],bad:466,baddbmm:[1,460,485,498],baddbmm_:[460,498],bag:[236,470],bai:7,balanc:[18,500],ball:503,balnta:318,banana:503,band:[14,505],bandwidth:[14,488,490],bao:7,bar:[5,144,147,148,457,459,461,465,485,503],bare:9,barrier:14,bartlett:44,bartlett_window:[460,463],base:[2,5,6,9,10,11,13,15,156,162,164,166,173,230,273,276,277,278,313,315,317,324,329,333,335,369,375,397,403,425,426,440,442,460,470,473,475,477,478,483,485,486,488,490,491,496,497,498,500,504,505],base_distribut:15,base_lr:486,base_momentum:486,base_se:13,basebal:503,basedistribut:15,basep:15,basepruningmethod:[334,340],baseq:15,basi:[15,160,480,486,488,490],basic:[2,5,160,324,462,469,486,488,491,496,497],bat:503,batch1:[24,43,460,498],batch2:[24,43,460,498],batch:[15,24,43,53,59,62,64,79,81,83,89,102,126,130,131,160,168,177,178,182,183,210,211,212,213,214,217,221,222,227,229,230,232,233,235,236,238,241,242,243,248,250,251,252,253,254,257,258,259,265,266,276,277,278,279,280,286,287,289,301,302,309,313,314,315,316,317,318,319,324,348,349,351,352,365,366,372,392,412,413,419,423,425,426,427,438,439,441,467,468,470,472,476,479,481,482,485,486,488,497,500,503,504,505,506],batch_first:[241,257,287,288,349,351,352,460,479],batch_ndx:13,batch_norm:460,batch_norm_backward_elemt:460,batch_norm_backward_reduc:460,batch_norm_elemt:460,batch_norm_gather_stat:460,batch_norm_gather_stats_with_count:460,batch_norm_stat:460,batch_norm_update_stat:460,batch_per_it:472,batch_sampl:13,batch_shap:15,batch_siz:[13,15,348,350,351,460,479,497,500,504],batch_sz:504,batchmean:[253,470],batchnorm1d:[309,470,488],batchnorm2d:[230,464,470],batchnorm3d:[309,470],batchnorm:[143,237,273,309,324,464,485,488],batchsampl:13,batchsiz:[253,470],batchwis:282,bbb:497,bbox:500,bceloss:[1,211,470],bcewithlogit:1,bcewithlogitsloss:[1,470],bckenstler:486,bddppq:7,beam:459,bear:503,becaus:[1,2,3,4,5,13,15,141,147,159,212,213,214,221,222,223,224,225,226,230,309,325,398,423,459,463,466,467,468,473,474,476,477,479,480,482,485,486,488,490,492,497,498,503],becom:[1,2,5,6,13,15,126,221,222,223,224,225,226,241,257,278,287,470,473,477,485,486,488,490,498],bed:503,bedroom_train:500,been:[1,2,8,11,14,15,93,144,145,159,241,247,257,287,329,333,335,375,466,467,468,470,472,475,481,484,486,490,492,497,503,504],befor:[1,2,5,11,13,14,15,75,76,105,106,143,230,236,237,238,273,275,309,319,353,355,370,393,398,404,405,423,424,438,443,446,459,461,466,470,472,473,476,477,478,480,484,485,486,488,490,491,492,493,497,498,504],beforehand:5,begin:[1,5,11,13,14,32,44,66,89,175,209,210,211,227,241,242,244,245,246,247,248,253,254,257,258,260,265,268,269,280,281,290,301,307,312,324,406,423,446,454,470,472,473,478,480,485,486,488,498],behav:[9,10,150,461,488,498],behavior:[2,5,9,14,25,36,54,57,67,86,92,131,143,148,150,159,182,230,237,253,273,309,320,324,357,390,457,459,462,463,467,470,473,474,476,485,486,488,490,496,498,503,504,505],behaviour:[2,30,470],behind:[491,500],being:[2,6,13,15,101,137,143,145,210,211,227,229,235,236,237,239,241,248,253,254,257,265,266,273,276,277,278,280,286,287,301,302,318,324,329,330,331,332,333,334,335,336,372,423,438,459,467,468,470,472,478,479,481,482,485,488,490,491,498,505],belair:7,believ:1,belong:[4,11,14,15,55,476,486,505],below:[1,2,9,13,14,15,80,81,82,83,131,143,151,184,224,225,226,229,237,270,271,272,273,280,301,320,357,439,440,441,442,459,461,463,466,467,470,472,473,476,477,478,481,484,485,488,490,491,492,496,505],ben:239,bench:503,benchmark:[460,476,482],benefit:[5,14,466,486],benefiti:14,bengio:471,bernoulli:[206,231,232,233,241,257,460,467,470,498,499],bernoulli_:[460,467,498,499],bert:313,besid:[14,477,497],bessel:[421,422,450,451],best:[1,2,5,10,13,14,15,58,150,151,458,459,461,466,472,473,478,479,486,490],beta:[2,8,24,27,28,29,43,123,212,213,214,243,250,251,252,259,262,306,309,460,464,470,485,486,488,490,493,495,498],better:[5,6,11,13,136,150,273,303,375,398,470,472,475,484,485,488,497],between:[1,2,5,11,14,15,27,28,29,32,41,53,59,125,141,143,158,173,210,211,217,221,222,223,224,225,226,228,232,233,237,238,254,265,267,268,269,273,276,277,278,282,302,303,318,319,324,329,330,331,332,333,334,335,336,338,341,342,343,344,367,379,380,384,420,423,437,459,461,462,466,470,472,473,475,476,481,482,486,488,490,492,494,497,498,500,503,504,505],bewar:5,beyond:[6,393,479,486,492],bfg:486,bfloat16:[2,143,237,273,463,467,494,495,498],bfloat16tensor:[495,498],bia:[6,143,202,215,221,222,223,224,225,226,237,241,242,257,258,259,261,273,279,287,288,289,337,339,341,353,355,460,464,470,478,488,497,504],bias:[212,213,214,241,242,243,250,251,252,257,258,259,287,289,309,421,422,450,451],bias_:488,bias_defin:460,bias_g:460,bias_hh:[242,258,289],bias_hh_l:[241,257,287],bias_ih:[242,258,289],bias_ih_l:[241,257,287],bias_k:460,bias_mask:[337,339],bias_v:460,bicub:[320,470,505],bicycl:503,bidirect:[241,257,287,288,460,485],big:[5,415],bij:89,biject:15,biject_to:15,bik:89,bilenear:488,bilinear:[1,89,320,321,460,488,505],bin:[46,125,460,488,497,498,504],binari:[1,10,15,45,181,210,211,279,337,338,339,340,341,342,343,344,462,467,468,470,480,485,497,498,500,503],binary16:[495,498],binary_cross_entropi:460,binary_cross_entropy_with_logit:460,binaryio:506,bincount:[460,482,498],bind:[9,11,458,462,485,501],binomi:460,bird:503,bit:[5,18,399,484,488,489,495,498,507],bitshift:485,bitwidth:[469,488],bitwis:[14,47,48,49,50,462],bitwise_and:[460,498],bitwise_and_:[460,498],bitwise_not:[460,467,498],bitwise_not_:[460,467,498],bitwise_or:[460,498],bitwise_or_:[460,498],bitwise_xor:[460,498],bitwise_xor_:[460,498],bivari:15,bjk:89,bl_flip:505,bla:475,black:505,blacklist:464,blackman:51,blackman_window:[460,463],blank:[217,460,462,470],blob:[480,485,497],blobnam:497,block0:[459,485],block1:459,block:[5,11,13,14,17,52,160,221,222,223,224,225,226,238,276,319,459,461,466,469,470,473,477,485,490,503],block_diag:460,blog:5,blogpost:496,blow:479,blue:500,bmatrix:473,bmm:[1,178,179,460,467,498],bn1:488,bnmodul:488,bnrelu2d:488,bnrelu3d:488,board:6,boat:503,bodi:[149,459,461,462],boil:5,book:503,bool:[1,2,4,9,11,13,14,15,30,32,33,34,35,44,47,48,49,50,51,53,55,56,62,63,64,88,90,91,92,95,101,102,111,112,113,114,123,124,126,131,132,133,134,137,138,139,141,143,150,151,154,158,160,169,170,171,172,173,174,177,179,184,185,186,187,189,191,193,202,203,204,205,206,207,208,209,210,211,215,216,217,221,222,223,224,225,226,227,229,231,232,233,234,235,236,237,239,242,243,247,248,250,251,252,253,254,255,256,258,259,260,261,265,266,267,268,269,273,276,277,278,279,280,282,286,288,289,290,291,292,298,301,302,309,312,318,320,324,325,349,350,351,352,358,361,362,365,370,372,375,377,378,379,380,381,382,383,384,392,398,402,403,414,415,421,422,423,424,425,432,434,438,443,446,447,449,450,451,455,456,457,459,460,461,463,465,466,467,468,470,485,486,488,489,490,494,495,497,498,500,503,504,505,506],bool_tensor:495,booltensor:[94,115,122,140,155,176,181,197,279,313,454,495,498],bootcamp:5,bootstrap:484,bor:14,border:[470,505],both:[2,8,11,13,14,15,43,88,109,125,138,141,143,154,182,207,208,212,213,214,218,221,222,223,224,225,226,237,238,243,250,251,252,257,258,259,267,268,269,273,309,319,320,324,387,423,427,443,459,461,467,468,469,470,474,478,482,485,486,488,490,492,493,498,500,502,503,505],bottl:503,bottleneck:[458,503],bottom:[2,470,505],bound:[3,10,55,66,290,383,398,462,470,471,483,486,498,500,504],boundari:[55,218,219,220,293,294,295,296,297,320,323,398,460,470,486,488,490,500],bowen:7,bowenbao:7,bowl:503,box:[468,477,500,503,504,505],bozkurt:7,bparam:160,bptt:479,br_flip:505,bracket:491,brain:[495,498],branch:[5,457,461,503],brand:14,bregman:15,breviti:[2,485],brief:[14,324,466,490],bright:[500,505],brightness_factor:505,bring:[470,490],broadcast:[11,14,15,23,24,25,26,27,28,29,41,43,53,54,85,86,87,94,108,109,115,117,122,155,156,176,181,182,185,189,190,192,194,197,279,324,369,387,389,433,454,458,467,468,477,485,498],broadcast_buff:324,broadcast_coalesc:11,broadcast_multigpu:14,broadcast_tensor:460,broadcast_warn:474,broadcastinglist1:470,broadcastinglist2:[470,488],broadcastinglist3:470,broader:[6,480,499],broccoli:503,broken:[5,11,13],brokenpipeerror:484,bsize:497,bucket0:477,bucket1:477,bucket:[202,324,398,460,477],bucket_cap_mb:[324,477],buf:[143,237,273],buffer:[2,3,11,13,143,147,148,154,159,230,237,273,324,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,345,397,414,434,461,473,477,478],buffer_s:11,bug:[1,6,177,472,481],bugfix:5,build:[2,9,10,14,15,313,459,469,470,473,488,491,497,505],build_directori:9,build_ext:9,buildextens:9,built:[5,14,68,473,475,481,486],builtin:[159,459,461,462,490,492],bulk:13,bump:273,bundl:480,bus:503,bvar:160,bwd:1,bxor:14,byclass:500,bymerg:500,bypass:476,byte_arrai:159,bytecod:13,bytesio:[147,148,159,397],bytesliter:462,bytetensor:[11,18,94,121,279,313,407,489,495,498],bz2:500,c10:480,c10_log_api_usage_onc:480,c10d:[14,477],c655:160,c676:160,c99:484,c_0:[257,258],c_1:258,c_float32:1,c_j:[207,208,209,267,268,269],c_n:257,c_t:257,cach:[11,15,102,126,131,325,392,466,479,498,503],cache_s:15,caffe2:[485,497],cake:503,calcul:[2,4,13,53,59,79,81,93,141,165,166,168,207,208,209,212,213,214,217,224,225,226,238,243,250,251,252,259,309,319,320,324,334,353,356,358,366,403,412,421,422,427,440,442,450,451,470,473,474,477,484,486,488],calculate_gain:[463,471],calculate_qparam:488,calib_data:488,calibr:[1,472,488],call:[1,2,9,10,11,13,14,15,116,134,143,144,146,148,149,159,160,206,212,213,214,230,231,232,233,237,238,270,271,272,273,280,281,309,319,324,334,337,338,339,341,342,343,344,353,355,356,363,364,368,381,404,405,423,433,457,459,462,466,468,470,472,475,476,477,478,479,480,481,484,485,486,488,490,491,492,495,496,497,498,503,506,507],callabl:[2,13,15,17,143,144,149,150,159,160,237,273,457,459,461,462,486,488,490,498,500],callback:[17,480,490],calle:[490,492],caller:[473,476,490,492],camera:[480,497],can:[2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,25,37,45,46,58,64,88,89,90,94,102,115,122,126,130,131,141,143,144,145,148,149,150,151,154,155,159,176,177,179,188,197,200,201,202,204,205,206,207,208,209,210,211,212,213,214,216,217,221,222,223,224,225,226,229,230,231,234,235,237,239,241,247,253,254,256,257,260,264,265,267,268,269,270,271,272,273,274,275,278,280,283,284,286,287,288,289,290,291,292,298,299,301,306,309,312,313,320,324,326,348,349,358,361,369,377,381,390,392,397,403,404,406,413,414,415,419,423,425,427,432,434,438,448,455,457,459,460,461,464,466,467,468,470,472,473,474,475,476,477,478,480,481,482,483,484,485,486,488,490,491,492,493,495,496,497,498,499,500,502,503,505,507],can_cast:460,cancel:141,candid:2,cannot:[1,2,13,15,17,141,146,193,217,320,425,426,457,459,460,461,462,463,468,470,477,478,484,485,490,492,493,494,495,498,505],cap:500,capabl:[10,11,14,375,476,480,490,499],capac:476,capacit:15,captur:[2,10,11,144,459,462,476,478,485],car:503,card:484,cardin:15,care:[5,9,15,425,427,466,473,475,476,477,478,479,481,493],carefulli:485,carlo:15,carri:[1,474,488,498],carrier:15,carrot:503,cartesian:[15,57],cartesian_prod:460,cast:[1,2,56,75,76,143,237,273,358,370,415,424,443,459,470,472,485,494,495,498,505],cast_input:[1,472],castabl:86,cat:[1,15,291,459,460,467,485,488,493,498,500,503],categor:[5,462,470,490],categori:[15,193,463,495,500,503],categorynam:497,cattransform:15,cauchi:[473,498,499],cauchy_:[460,467,498,499],caught:466,caus:[1,2,4,9,13,14,149,150,423,459,466,470,474,476,479,481,484,485,488,492,498],caveat:[466,476],cb_fut:17,ccc:497,cdf:15,cdist:1,cdot:[195,210,211,228,246,253,276,277,278,280,423,470],cdoubl:[2,8,495,498],ceil:[13,207,208,209,255,256,267,268,269,460,467,470,485,488,498,504],ceil_:[460,467,498],ceil_mod:[207,208,209,255,256,267,268,269,460,470,488],celeba:501,celebfac:500,cell:[242,257,258,289,503],cellparamsbas:460,celu:[460,485],celu_:460,center:[141,365,423,460,470,486,488,497,498,504,505],center_crop:505,center_flip:505,centercrop:[503,505],central:[480,505],cerr:480,certain:[11,13,14,81,141,143,147,159,237,259,273,279,319,357,468,470,474,480,485,490,491,493],certainli:131,cfloat:[2,8,127,385,453,495,498],ch_axi:488,chain:[2,13,15,17,61,236,473,498,505],chain_cb_fut:17,chain_matmul:[1,460],chainabl:486,chaindataset:13,chair:503,challeng:[5,491],chanan:[6,7],chanc:[5,15],chang:[1,2,5,8,11,14,15,17,81,118,128,143,148,149,235,237,253,273,320,324,357,419,423,436,459,464,466,467,468,470,472,473,474,475,476,478,484,485,486,488,490,492,493,494,496,497,498,503,505],channel:[6,13,141,212,213,214,221,222,223,224,225,226,231,232,233,238,243,250,251,252,259,262,281,304,309,319,320,321,322,333,334,335,342,343,355,373,468,469,470,471,485,488,497,498,500,502,503,504,505],channel_shuffl:460,channels_last:[143,237,273,324,495],chao:160,charact:[406,459,468,470,490],characterist:426,chart:497,chartensor:[495,498],chartnam:497,cheap:[15,202],cheaper:13,check:[1,3,8,9,11,13,14,15,30,102,126,131,136,138,139,140,141,150,151,177,324,340,350,392,398,457,461,462,467,468,472,478,479,480,485,486,490,497,498,500],check_compiler_abi_compat:9,check_hash:[457,465],check_input:[150,151,459],check_model:485,check_reduct:324,check_sparse_nnz:2,check_toler:[150,151],check_trac:[150,151],check_undefined_grad:2,checker:[150,151,485],checkout:485,checkpoint:[1,2,159,324,457,458,465,492],checkpoint_sequenti:4,cher:7,cherniavskii:7,child:[13,143,237,273,334,466,484,488,492],children:[143,237,273,466,488,492],chintala:[6,7],choic:[150,274,283,475,485,505],choleski:[15,63,64,160,460,498],cholesky_invers:[460,498],cholesky_solv:[460,498],choos:[2,10,53,210,471,472,475,497],chose:472,chosen:[1,81,154,406,414,434,472,485,488,505],chr:460,christian:7,chrome:2,chunk:[4,11,13,14,58,230,324,416,459,460,467,490,496,498],chunk_siz:11,church_outdoor_train:500,chw:497,cifar100:500,cifar10:500,cifar:501,circleci:5,circular:[15,221,222,223,470],circumst:[46,217,221,222,223,224,225,226,470,498],circumv:4,cityscap:501,claim:5,clamp:[210,460,464,467,470,485,488,498],clamp_:[460,467,498],clamp_max:[460,485],clamp_max_:460,clamp_min:[460,485],clamp_min_:460,class_async_add:490,class_i:500,class_index:[13,500],class_x:500,classat_1_1_tensor:10,classif:[211,217,229,276,278,280,302,470,471,500,501],classifi:[473,485,486,497],classmethod:[11,235,236,309,329,330,331,332,333,334,335,336,462,488,490],classvar:461,claus:479,clean:[11,14,457,466],cleaner:473,clear:[274,283,457,476,486],click:499,client:490,clip:[1,326,327,500,503],clip_grad_norm_:[1,472],clip_grad_value_:472,clip_valu:327,clock:503,clockwis:505,clone:[2,10,13,36,54,92,145,432,438,460,466,470,488,493,494,495,498],cloned_coeffici:438,close:[10,11,55,137,398,478,490,497],closest:[59,395,470],closur:1,cloud:497,clr:[61,486],cls:[490,498],cluster:[202,497],clutter:497,cmake:484,cmake_gener:484,cmake_include_path:484,cmdclass:9,cmyk:505,cnn:[301,473,488,504],coalesc:[11,460,477,493,498],coars:500,coco:[501,503],coco_instance_category_nam:503,coco_person_keypoint_nam:503,coco_util:503,cococapt:500,cocodetect:500,code:[2,3,6,8,9,10,13,14,15,143,145,146,148,149,150,151,152,159,288,324,405,457,461,468,473,474,477,478,479,480,481,482,484,485,486,489,490,491,492,493,495,496,498,503],code_with_const:143,codebas:6,codec:159,codomain:15,coeffici:[123,438,486],coexist:468,cohes:6,col2im:[238,460],col:[440,442,460,500],col_offset:460,col_offsets_hh:460,col_offsets_ih:460,colesburi:[6,7],collaps:467,collat:13,collate_wrapp:13,collect:[2,5,13,17,59,90,361,377,381,455,460,461,486,488,490,492,497,500],collect_al:17,collector:488,colon:490,color:[252,497,500,505],colorjitt:505,colors_tensor:497,column:[2,88,101,105,106,160,175,193,221,222,223,224,225,226,319,365,425,440,442,449,470,471,498,504,505],columns_prun:343,com:[5,6,14,313,457,465,484,485,488],combin:[1,11,13,17,211,229,238,319,334,459,460,461,470,472,476,485,488,490],combinations_with_replac:67,come:[5,13,15,159,232,233,464,480,490,492,500],comm:[11,477],comma:[14,89],command:[2,3,14,484,491],comment:[5,462,478,497],commit:[5,6,457,482],committ:6,common:[13,32,159,212,213,214,217,309,397,468,476,478,479,481,488,496,500,501,505],commonli:[14,15,463,472,486,488,495],commun:[5,6,458,477,490,491],comp:15,compact:[478,488],compani:6,compar:[2,4,9,13,30,32,89,94,115,122,137,155,176,185,189,197,273,478,484,488,490,497],comparison:[94,115,122,150,151,155,176,197,462,478],compat:[9,13,15,146,152,390,461,466,467,472,478,494,498,500],compil:[9,10,11,145,146,149,150,151,152,459,461,462,463,472,475,480,484],compilationunit:[150,151],complementari:[97,505],complet:[5,11,13,14,17,144,149,153,372,461,462,466,470,472,473,476,482,490,491,498,505],complex128:[8,111,132,400,495,498],complex32:498,complex64:[8,111,132,400,495,498],complex:[1,2,5,88,102,126,127,131,132,138,139,140,143,237,273,375,385,392,400,423,452,453,458,462,481,494,495,498,505],complex_doubl:494,complex_double_tensor:495,complex_float:494,complex_float_tensor:495,complex_tensor:8,complic:[3,468,474,490,492],compon:[5,10,14,15,102,314,316,365,452,453,462,477,480,505],component_distribut:15,compos:[15,62,64,130,199,200,201,203,204,205,207,208,209,221,222,223,224,225,226,239,255,256,262,267,268,269,318,321,322,459,467,470,485,488,497,503,505],composetransform:15,composit:[15,459,482],compound:462,comprehens:[462,468,476],compris:4,comput:[1,4,5,8,11,13,14,15,19,31,37,47,48,49,50,59,61,62,63,67,69,84,85,87,88,89,93,94,96,97,98,102,109,110,115,116,122,125,126,131,143,144,149,155,157,160,169,170,171,172,174,175,176,177,184,195,197,202,206,207,208,209,212,213,214,228,231,235,236,237,241,243,250,251,252,255,256,257,259,264,267,268,269,270,271,272,273,280,282,286,287,303,305,309,324,326,329,330,331,332,333,334,335,336,337,349,355,356,363,368,372,387,388,392,403,423,425,426,427,433,443,459,467,468,469,470,472,473,475,476,478,479,482,485,486,488,490,493,498,501,503,504,505,506],compute_mask:[329,330,331,332,333,334,335,336],compute_mod:59,compute_uv:[425,460,498],compute_z:475,concat:[279,485],concatdataset:13,concaten:[2,9,11,13,58,217,221,222,223,224,225,226,236,326,420,462,470],concentr:15,concentrarion:15,concentration0:15,concentration1:15,concept:[5,485,495],conceptu:[2,473,492],concern:[13,466],concis:490,concret:[15,320,459,470,478,481,488,503],concurr:[475,476,490,491],cond:485,conda:[484,485],condit:[2,12,30,141,150,241,257,287,350,454,459,460,461,462,473,478,485,497,498],condition:[2,403],condsid:470,conduct:[6,324,365,426,490],confer:6,confid:[5,497],config:484,config_dict:497,configur:[0,5,13,14,102,126,131,324,348,392,402,476,477,484,488,490,497,503],confirm:[5,459,478,485,490,492],confirmed_by_own:490,conform:348,conj:[8,460,498],conjuct:324,conjug:[69,88,131,160,392,423,486],conjunct:[13,324,470],connect:[14,221,222,223,224,225,226,466,473,488,490,503],connectionist:[217,470],conquer:425,consecut:[1,14,446,447,468,498,505],consensu:5,consequ:476,consid:[2,30,64,80,81,82,83,137,140,143,184,237,238,253,273,276,319,325,329,330,331,332,333,334,335,336,427,439,440,441,442,457,459,470,472,474,478,479,486,488,491,492,495,498,500],consider:[5,41,141,236,475],consist:[13,15,62,372,425,427,459,468,485,486,488,501],consol:497,constant:[2,13,141,143,145,150,160,218,219,220,236,238,319,366,460,470,472,478,485,486,488,505],constant_:471,constant_pad_nd:460,constantpad2d:470,constantpadnd:485,constmap:143,constrain:[15,306],constraint:[2,324,348],constraint_registri:15,constraintregistri:15,construct:[2,10,13,15,80,116,143,149,150,151,159,221,222,223,237,273,324,348,365,415,426,432,459,473,477,481,488,490,492,493,495,497,498,503],construct_transform:15,constructor:[9,13,202,278,299,321,322,324,459,462,476,477,488,490,493,495,498,503,507],consum:[13,16,89,466,481,497],consumpt:[2,356,497],contain:[1,2,4,8,9,10,11,13,14,15,18,24,43,44,45,51,53,55,88,94,102,109,115,122,123,124,126,127,128,131,138,139,140,143,147,148,150,151,155,159,175,176,177,181,185,187,189,193,197,202,211,229,230,235,236,237,238,241,242,243,248,253,257,258,266,273,274,275,280,283,284,287,289,299,302,309,319,324,329,330,331,332,333,334,335,336,337,339,341,342,343,344,345,346,347,348,349,350,351,353,355,357,365,367,385,387,392,397,398,412,413,423,425,427,440,442,446,447,459,461,462,468,470,472,473,477,478,479,480,485,486,488,490,492,494,495,497,498,499,500,502,503,504,505],containu:150,content:[2,5,147,148,419,436,457,465,466,486,490,496,497,498],contenti:6,context:[1,11,93,324,356,403,462,466,472,476,478,480,481,485,489,490,492,499],context_id:[324,460,490,491],contigu:[2,8,103,130,237,276,324,390,413,425,427,460,468,470,494,496,498],contiguous_format:[90,324,495,498],continu:[2,13,15,216,217,253,366,462,485,488,498,499],continuous_bernoulli:15,continuum:484,contract:[433,468],contrail:500,contrari:[5,475],contrast:[15,486,503,505],contrast_factor:505,contribut:[2,6,229,280,437,458,470],contributor:[5,6],control:[1,2,9,13,35,44,51,80,81,82,83,102,123,124,126,131,149,150,177,202,221,222,223,224,225,226,238,260,267,268,269,319,324,392,402,414,423,425,427,434,439,440,441,442,459,473,475,476,477,481,485,488,492,505],conv1:[149,273,299,459,488,497],conv1d:[1,224,460],conv2:[149,273,299,459],conv2d:[1,149,150,151,225,232,237,273,274,280,299,319,342,459,460,464,485,497],conv3d:[1,226,233,460],conv4:[143,237,273],conv5:[143,237,273],conv:[150,151,221,222,223,224,225,226,274,280,471,485,488],conv_bn_fus:464,conv_fus:488,conv_tbc:460,conv_transpose1d:[1,460],conv_transpose2d:[1,460],conv_transpose3d:[1,460],convbnmodul:488,conveni:[1,5,9,457,461,472,476,478,480,489],convent:[2,89,212,213,214,250,251,252,273,309,397,437,457,465,473,485,498],conver:488,converg:[160,472,486],converged_count:160,convers:[5,56,134,348,462,473,485,488,498,501],convert:[2,13,37,57,67,77,143,237,273,309,328,354,373,374,376,459,460,461,478,485,488,497,498,505],convert_image_dtyp:505,convert_sync_batchnorm:309,convmodul:488,convolut:[1,221,222,223,224,225,226,232,233,285,290,318,319,460,464,471,475,488,504],convolv:[221,222,223,224,225,226,470,488],convtranspos:353,convtranspose1d:470,convtranspose2d:470,convtranspose3d:470,coo:[415,493,495,498],cooldown:486,coordin:[5,15,41,415,440,442,493,497,498,504,505],cope:481,copi:[5,8,11,13,14,37,143,149,160,230,237,238,273,319,348,390,432,459,460,466,474,476,478,481,485,488,490,494,495,496,498],copy_:[2,320,459,460,467,476,488,494,498],copysign:460,copyslic:473,core:[5,11,475,477,485],corner:[52,320,470,488,505],coroutin:462,corpor:[5,6],correct:[3,5,14,15,128,131,150,151,230,253,324,348,405,421,422,450,451,459,461,467,468,494,498,505],correctli:[4,13,14,150,324,459,461,468,470,472,473,478,481,485,490,498],correl:[2,15,221,222,223,224,225,226,232,233],correspond:[1,2,5,11,13,14,15,37,63,88,137,143,151,160,185,189,192,193,230,235,237,273,279,313,324,337,338,339,341,342,343,344,353,367,392,393,398,448,457,459,460,467,468,470,472,477,478,480,485,486,488,490,491,494,497,498,503,504,505],correspondingli:464,corrupt:[1,230,481,500],cos:[21,51,123,124,227,228,460,467,485,486,497,498],cos_:[460,467,498],cosh:[1,22,460,467,498],cosh_:[460,467,498],cosin:[22,70,71,227,228,470,486],cosine_embedding_loss:[1,460],cosine_similar:[1,460],cosineannealinglr:486,cosineannealingwarmrestart:486,cosineembeddingloss:470,cost:[2,3,46,61,217,221,222,223,224,225,226,470,491,498],cotang:473,couch:503,could:[3,5,11,13,15,141,159,253,366,446,461,466,473,476,477,484,486,490,491,492,496],couldn:[484,485],count:[2,11,15,46,348,446,447,460,490,492],count_include_pad:[207,208,209,460,470,488],counter:[2,11,230,466,473,505],counterpart:[464,488,499],coupl:[480,482,491],cours:[3,457,477,478,486,490],courtesi:15,cov_diag:15,cov_factor:15,covari:[15,212,213,214,309,365,505],covariance_matrix:15,covector:473,cover:[463,468,478,480,488,490,500],coverag:[5,458,459,463,468],cow:503,cpp:[5,6,9,14,193,477],cpp_autograd:10,cpp_c10d_extens:14,cpp_extens:[14,458,478],cpp_frontend:10,cpp_sourc:9,cppdoc:[5,10],cppextens:9,cprofil:3,cpu:[1,2,3,8,9,11,14,18,32,37,44,51,90,92,101,102,112,119,120,123,124,126,131,143,147,148,158,159,173,177,185,187,189,230,235,237,273,324,348,361,377,379,381,383,384,392,402,404,405,415,425,432,433,440,442,446,455,458,459,460,464,466,467,470,476,481,482,484,485,488,489,490,494,495,498,499,504],cpu_memory_usag:2,cpu_model:459,cpu_tim:2,cpu_time_tot:2,cpuhrsch:7,crack:5,crash:[466,473,490,492,497],creat:[1,2,4,5,9,11,13,14,15,17,18,36,52,81,92,111,141,144,153,188,193,210,227,235,236,238,254,265,266,276,277,278,301,302,309,318,319,324,348,415,432,462,464,466,472,473,476,477,478,481,485,488,490,491,492,494,496,497,498,499,500,504,507],create_extens:484,create_graph:[2,460,472,498],creation:[2,11,13,324,329,459,462,466,476,488,490,492,498,500],creator:[473,490,492],crelu:291,criteria:160,criterion:[160,210,211,227,229,253,254,265,266,276,277,278,301,302,318,470,479,486,504],critic:[353,475,488],crop:[503,504,505],cross:[1,5,15,210,221,222,223,224,225,226,460,470,476,484,498],cross_entropi:[1,460],crossentropyloss:[280,470],crucial:10,csr:236,csrc:[484,485],ctc_loss:[217,460,482],ctcloss:470,ctx:[2,472,478],cube:[201,205,375],cubla:[8,11],cublashandle_t:11,cuda0:[476,498],cuda1:495,cuda2:476,cuda92:484,cuda:[2,3,4,9,13,14,18,32,37,44,46,51,53,90,92,101,102,112,123,124,126,131,143,158,159,173,177,191,217,221,222,223,224,225,226,230,235,237,273,309,324,361,377,379,381,383,384,392,415,432,433,440,442,446,455,458,460,467,470,472,478,482,485,486,488,489,490,494,495,498,499,503],cuda_extens:9,cuda_hom:9,cuda_launch_block:476,cuda_memory_usag:2,cuda_prefix:484,cuda_runtim:9,cuda_sourc:9,cuda_tim:2,cuda_time_tot:2,cuda_visible_devic:[11,476],cudaev:2,cudaeventsynchron:11,cudaextens:9,cudamalloc:11,cudart:[9,484],cudastreamsynchron:11,cudastreamwaitev:11,cudnn:[12,46,217,221,222,223,224,225,226,241,257,287,288,460,470,498,503],cudnn_affine_grid_gener:460,cudnn_batch_norm:460,cudnn_convolut:460,cudnn_convolution_transpos:460,cudnn_en:460,cudnn_grid_sampl:460,cudnn_is_accept:460,cufft:[102,126,131,392],cufft_plan_cach:476,cuh:9,cultur:6,cummax:[460,498],cummin:[460,498],cumprod:[1,460,467,498],cumsum:[1,460,467,485,498],cumul:[15,73,74,75,76,167,212,213,214,240,309,470],cunningham:15,cup:503,cur:486,curl:484,current:[1,2,4,6,8,9,11,13,14,17,18,32,37,44,51,90,92,101,102,111,112,118,123,124,126,131,143,145,150,158,160,173,235,236,237,238,273,309,319,324,332,333,334,335,336,341,342,343,344,361,377,379,381,383,384,392,415,432,440,442,446,455,459,461,462,463,466,470,472,476,480,482,484,485,486,488,490,491,494,495,498,500,502,504],current_blas_handl:11,current_datetime_hostnam:497,current_devic:[11,495],current_stream:11,curv:497,custom:[1,9,10,13,14,143,235,237,273,313,329,338,462,466,467,473,480,484,486,488,498,501,505],custom_bwd:[1,472],custom_decod:313,custom_domain:485,custom_encod:313,custom_fwd:[1,472],custom_loop:485,custom_op:485,custom_opset:485,customiz:462,cut:[5,488],cutoff:[202,366],cxx11:10,cxx:9,cycl:[2,486,498],cycle_momentum:486,cyclic:[486,505],cycliclr:486,d_1:[229,280,470],d_2:[229,280,470],d_float32:1,d_k:[229,280,470],d_model:[313,314,315,316,317],daemon:466,dag:2,dai:5,damania:7,dampen:486,danger:492,dantu:7,dark:505,darker:505,dart:500,dash:[490,492],data1:500,data2:500,data:[1,2,5,8,12,14,15,32,37,44,51,55,75,76,90,91,92,101,112,113,123,124,125,132,133,150,158,159,160,173,179,215,217,230,241,243,250,251,252,257,259,261,280,287,288,320,324,325,348,349,350,351,358,361,362,365,370,373,374,375,377,378,379,380,381,382,383,384,390,398,415,424,432,440,442,448,455,456,458,459,460,462,466,470,472,473,474,476,478,480,481,483,484,486,488,490,492,493,494,495,496,497,498,499,500,504,505],data_load:[481,486,500],data_parallel:479,data_ptr:[463,467,494,496,498],data_sourc:13,data_typ:488,databas:[13,500],dataformat:497,dataload:[13,324,476,479,484,486,497,498,500],dataparallel:[1,14,324,351,479,481],dataset:[202,211,479,480,484,486,488,497,501,503,505],dataset_it:13,datasetfold:501,datatyp:[1,143,184,237,273,485],datetim:14,datset:500,david:[7,202],dcgan:485,ddp:[309,324,477],ddp_model:[324,477],ddp_sync_bn_network:309,deactiv:505,deadlock:[14,324],deal:[5,433,466,479,505],dealloc:[466,476,479],debug:[2,3,13,14,461,473,475,480,482,484,485],debugg:146,debuginfoguard:480,decai:[281,486],decemb:375,decent:13,decid:[3,5,14,338,500],decis:[150,472],declar:[2,9,13,461,462,485],decod:[16,159,313,314,315,501,502],decoder_lay:[314,315],decompos:473,decomposit:[15,62,116,365,366,372,425,426],decompress:[457,465],deconvolut:[224,225,226,470],decor:[1,2,15,93,146,149,152,356,459,461,472,478,490],decoupl:[355,486],decreas:[11,15,232,233,349,350,437,486,495,504],dedic:476,deep:[5,6,212,213,214,309,458,471,486,488,503],deeper:503,deeplabv3_resnet101:503,deeplabv3_resnet50:503,def:[1,2,13,15,17,93,143,144,145,146,148,149,150,151,152,237,273,274,275,283,284,356,457,459,461,468,472,473,475,477,478,479,481,484,485,486,490,491,492,498,505],default_dynamic_qconfig:488,default_eval_fn:488,default_fake_qu:488,default_gener:499,default_load:500,default_mask:[329,330,331,332,333,334,335,336],default_observ:488,default_qat_qconfig:488,default_qconfig:488,default_stream:11,default_weight_fake_qu:488,default_weight_observ:488,defin:[1,2,4,9,10,13,15,89,90,92,96,97,98,112,116,137,160,188,191,230,247,255,256,290,303,305,312,324,333,335,342,343,359,361,377,379,381,406,425,427,439,440,441,442,454,455,457,459,463,466,467,470,477,484,485,486,488,490,493,498,499,500,505],define_macro:484,definit:[5,13,15,62,63,64,253,457,459,461,462,470,472,473,478,485,488,497,503],deform:504,deform_conv2d:504,deformconv2d:504,deg2rad:[460,467,498],deg2rad_:[460,467],degrad:[475,478],degre:[15,77,282,318,376,394,460,473,505],del:[462,466,479],delai:492,delet:[14,457,466,489,490,492],delimit:462,deliv:6,deliveri:492,delta:[15,241,248,257,471,486],delv:471,demand:[11,461,480,490],demonstr:217,denomin:[25,86,108,212,213,214,243,250,251,252,259,309,486],denorm:402,denot:[2,15,221,222,486,491,505],dens:[2,44,51,53,123,124,160,426,493,495,498,503],dense_dim:[415,460,493,498],densenet121:503,densenet161:503,densenet169:503,densenet201:503,densenet:485,densiti:15,depend:[2,3,4,13,14,15,149,150,182,210,211,221,222,223,224,225,226,227,229,236,238,248,253,254,265,266,276,277,278,280,286,301,302,318,319,320,334,365,372,375,390,438,454,457,459,461,466,470,475,476,482,485,486,488,490,493,498,503],dependent_properti:15,deploi:[5,480],deploy:458,deprec:[11,14,210,211,227,229,247,248,253,254,265,266,276,277,278,280,286,301,302,318,321,322,384,459,463,466,470,474,485,488,494,498,505],depth:[11,209,223,226,269,320,470,488,503,504,505],depthwis:[221,222,223],dequant:[460,498],dequantstub:488,deriv:[2,6,14,84,177,324,366,368,461,478,488,490,498],derivedp:15,derivedq:15,descend:[35,143,237,273,414,425,460,498],descent:[8,15,486],describ:[1,4,5,11,13,56,86,202,207,208,209,210,211,212,213,214,221,222,223,224,225,226,229,231,232,233,238,239,243,246,250,251,252,253,254,259,265,267,268,269,280,286,290,309,318,319,423,459,461,470,471,472,473,477,479,480,485,486,488,491,492,498,503,504],descript:[0,5,9,160,461,470,476,478,480,485,507],descriptor:[13,318,462,485,500],deseri:[159,457,465],design:[2,5,6,13,15,457,478,503],desir:[1,2,11,13,14,15,18,32,37,44,51,75,76,90,91,92,101,112,113,123,124,143,158,173,180,210,237,273,348,358,361,362,370,373,374,375,377,378,379,380,381,382,383,384,407,415,424,432,440,442,455,456,467,468,470,472,473,476,485,489,490,493,494,495,498,505],desmaison:7,despit:[150,151],destin:[11,14,114,143,175,237,273,490,491,494,498],destroi:[230,473,490],destruct:[490,492],destructor:[466,492],det:[15,168,412,460,485,498],detach:[2,4,217,324,432,459,460,467,470,479,496,498],detach_:[2,460,467,498],detail:[0,1,2,5,8,10,11,13,15,79,102,116,126,131,143,150,166,168,175,185,187,189,202,206,216,224,225,226,230,235,236,237,239,241,257,273,279,285,287,298,318,325,351,357,363,364,366,392,412,459,460,461,470,473,477,478,479,480,485,486,488,490,491,492,493,496,497,498,499,503,505],detect:[4,9,13,14,145,466,485,490,501,504],detect_anomali:2,detector:231,detectron2:504,determin:[2,6,8,9,11,13,15,44,51,56,61,79,86,91,113,123,124,131,168,239,282,329,330,331,332,333,334,335,336,362,366,378,380,382,412,423,456,462,468,470,476,477,482,486,488,492,495,497,505,506],determinist:[4,15,18,46,53,150,151,185,187,189,217,221,222,223,224,225,226,399,460,470,473,482,486,489,498],deterministicli:144,dev:6,dev_idx:14,develop:[14,461,478,480,485,488,490],deviat:[15,206,212,213,214,243,250,251,252,259,309,359,421,422,471,498,505],devic:[1,2,4,11,14,18,32,37,44,51,90,91,92,101,112,113,123,124,143,147,148,158,159,173,177,185,187,189,230,237,273,324,348,361,362,377,378,379,380,381,382,383,384,415,432,433,440,442,455,456,458,459,460,461,463,467,470,472,477,479,482,485,486,488,489,490,494,498],device_count:[11,14],device_id:[14,159,230,309,324,470,477],device_of:11,devito:7,df1:15,df2:15,dfrac:[228,353,355,470,498],dhanainm:7,dhanasekar:7,diag:[15,365,425,426,427,460,498],diag_emb:[83,425,427,460,498],diagflat:[80,460,498],diagn:15,diagnost:459,diagon:[15,52,80,81,82,89,101,435,438,439,440,441,442,460,470,478,496,498],diagonaltensor:478,diagram:492,dict:[1,11,15,143,150,151,159,160,230,237,238,273,274,283,299,319,457,459,460,462,465,478,485,486,488,490,491,497,502,503],dictat:324,dictionari:[9,11,13,15,143,147,150,151,160,235,236,237,273,274,283,461,462,470,478,485,486,488,490,497,500,503],did:[2,5,461],didn:[473,478,484,486],dies:466,dieterich:7,diff:[5,459],differ:[1,2,4,9,11,13,14,15,32,81,83,86,89,105,106,128,131,143,148,150,202,212,213,214,218,219,220,230,237,250,251,252,271,273,276,279,293,294,295,296,297,309,315,317,323,324,365,389,392,446,447,457,459,461,463,466,467,470,472,473,474,475,476,477,478,481,482,484,485,486,488,490,492,493,495,497,498,500,503],differenti:[15,216,217,324,470,473,478,479,490,498],difficult:[2,5],difficulti:[5,471],digamma:[368,460,467,498],digamma_:[460,467,498],digit:[406,457,465,480,500],dilat:[221,222,223,224,225,226,238,267,268,269,319,460,470,485,488,504],dim0:[436,460,498],dim1:[81,83,436,460,498],dim2:[81,83,460,498],dim:[2,11,15,33,34,35,58,65,72,73,74,75,76,103,104,114,128,154,167,174,185,186,187,189,191,196,202,228,230,236,237,264,279,280,281,303,305,324,329,333,335,342,343,353,355,358,370,388,389,393,394,414,416,419,420,421,422,424,433,434,437,445,446,447,448,450,451,459,460,468,470,479,485,488,493,495,498],dim_arang:485,dim_feedforward:[313,315,317],dimems:498,dimens:[2,8,11,13,15,24,33,34,35,52,58,61,62,64,65,72,73,74,75,76,79,81,82,83,89,102,126,128,130,131,154,167,168,174,178,182,185,186,187,188,189,191,195,196,208,209,210,211,212,213,214,215,216,217,222,223,225,226,228,229,230,234,235,236,238,240,244,245,246,247,248,250,251,252,253,254,256,259,260,261,262,263,264,265,268,269,279,280,281,282,286,290,291,292,298,300,301,302,303,304,305,306,307,308,309,310,311,312,313,315,317,318,319,324,329,330,331,332,333,334,335,336,349,350,352,353,355,357,358,366,370,372,373,375,388,389,390,392,393,398,406,412,413,414,415,416,419,420,421,422,423,424,425,427,428,433,434,436,437,438,439,440,441,442,445,446,447,448,450,451,452,453,460,461,470,471,474,479,488,493,495,497,498,505],dimension:[2,15,52,57,81,83,105,106,114,158,173,182,188,202,218,219,220,229,230,235,236,264,280,293,294,295,296,297,303,305,309,323,357,375,415,432,470,471,474,494,495,498,499],dims_i:485,dims_oth:460,dims_self:460,dine:503,diningt:503,dir:[457,485,500],dirac:471,dirac_:[463,471],direct:[5,6,8,14,105,106,143,237,241,253,257,273,287,355,365,375,394,473,478,482,488,505],directli:[1,5,6,9,10,13,14,15,116,143,237,273,303,349,363,364,459,461,470,476,477,480,481,485,488,490,493,497],directori:[9,14,457,465,480,483,497,500,503],dirnam:457,dirti:473,disabl:[1,93,150,151,324,356,402,403,406,461,472,475,476,489],disable_cuda:476,disable_jit_exampl:459,disadvantag:459,disallow:[490,495],disambigu:165,disappear:467,discard:[141,457,461,473,504],disconnect:2,discourag:[2,11,473],discov:[14,490],discrep:375,discret:[15,102,126,131,253,392,470,498,499],discrimin:353,discuss:[6,15,490,492,503],disjoint:459,disk:[2,13,397,497],dispatch:[14,146,478,485],displai:[11,457,462,465,470,485,497,503,506],displaystyl:195,dissimilar:[227,248],dist:[1,14,15,413,425,460,477,492,498],dist_autograd:[324,490,491],dist_autograd_simpl:491,dist_optim:[324,490,491],distanc:[59,141,196,227,248,253,282,318,423,437,486,500,504],distinct:[79,168,412,425,427,478,490,491],distort:505,distortion_scal:505,distribut:[8,13,17,45,193,202,206,230,231,232,233,240,253,286,290,309,324,359,367,375,377,378,379,380,381,382,458,460,468,471,472,476,488,492,493,497,498,499],distributed_test:14,distributeddataparallel:[1,13,14,230,309,481],distributedoptim:[324,490,491],distributedsampl:13,distutil:9,div:[25,108,202,443,460,467,485,493,495,498],div_:[460,467,493,498],div_factor:486,div_valu:202,dive:477,diverg:[150,151,253,470,485],divid:[1,4,11,86,102,148,210,211,217,227,229,248,253,254,265,266,276,277,278,280,286,301,302,318,392,425,470],dividend:[109,387,443],divis:[13,25,65,86,108,109,148,221,222,223,224,225,226,228,254,265,282,301,387,416,443,470,472,488],divisor:[109,208,209,238,319,387,443,470,488,498],divisor_overrid:[208,209,460,470,488],divmod:460,dlibenzi:7,dll:484,dlpack:458,dltensor:16,dmytro:[6,7],dnn:475,do_constant_fold:485,doc:[2,3,10,153,314,315,316,317,462,466,473,478,485,488,497],doc_str:485,docstr:[9,457],document:[11,13,14,33,34,35,56,86,116,143,202,235,236,237,273,333,342,363,364,371,391,457,461,466,467,468,469,472,478,479,485,488,496,499,506],doe:[1,2,3,4,5,6,9,11,14,15,53,87,89,117,128,131,142,148,150,156,177,181,182,185,187,189,190,194,212,213,214,221,222,223,224,225,226,229,235,236,238,241,242,250,251,252,257,258,267,268,269,274,280,283,287,289,309,319,331,362,456,457,459,461,463,464,466,467,468,470,472,474,475,476,477,478,481,485,488,490,492,493,495,498,501,505],doesn:[1,2,4,5,8,11,13,14,79,147,159,168,230,253,303,324,325,338,412,459,462,467,470,474,478,480,481,484,485,486,488,491],dog:[500,503],doi:160,doing:[5,10,13,136,150,470,478,484,488],domain:[6,15,22,42,485],domin:488,don:[1,2,3,5,8,14,181,185,189,250,251,252,320,324,359,457,459,462,466,467,468,470,473,478,479,481,484,485,486,488,490,491,498,505],done:[10,13,14,15,17,150,177,184,212,213,214,230,250,251,252,309,419,464,466,475,477,479,482,485,488,490,492,498,505],donot_use_mm_for_euclid_dist:59,donut:503,dot:[1,2,73,74,75,76,102,126,182,210,211,238,248,253,254,265,279,280,392,423,452,453,460,467,498,505],doubl:[2,56,79,143,168,169,170,171,172,236,237,273,366,412,425,467,470,478,488,494,495,498],double_tensor:495,doubler:[2,93,356],doubletensor:[23,24,25,26,27,28,29,43,66,192,401,432,495,498],dow:497,down:[2,5,11,13,15,106,108,470,480,481,488,490,492,497],download:[465,484,497,500,503],download_url_to_fil:457,downsampl:[225,320,470],downstream:1,doxygen:5,dp_m:479,dp_model:472,dpotri:63,dpython:[56,505],dqm:488,draw:[13,45,193,375,497,498],drawn:[13,193,359,375,379,380,471,498,499],drier:503,drive:[6,14,473],driven:6,driver:490,drop:[13,146,206,459,468,473,481,500],drop_last:13,dropout2d:460,dropout3d:460,dropout:[4,143,206,232,233,237,241,257,273,279,287,288,313,315,317,460,464,468,485],dropout_:[460,464],dropout_p:460,dropout_st:460,dset:500,dst1:11,dst2:11,dst:[14,457],dst_name:491,dst_rank:491,dst_tensor:14,dst_type:[143,237,273],dtype:[1,8,11,12,13,14,32,37,44,45,46,47,48,49,50,51,56,75,76,86,90,91,92,101,111,112,113,118,123,124,127,138,139,143,158,169,170,171,172,173,177,193,211,217,229,237,238,241,257,273,280,287,293,294,295,296,319,320,321,322,338,348,358,361,362,370,371,373,374,375,377,378,379,380,381,382,383,384,385,391,400,401,402,415,424,432,440,442,443,446,452,453,455,456,459,460,461,463,468,470,476,478,485,493,494,497,498,500,505,507],dtype_filt:488,dtype_input:488,duck:478,due:[2,3,4,5,15,131,177,313,366,426,459,470,473,476,482,490,492,498],duersch:160,duerschetal2018:160,dummi:[13,478,504],dummy_add:478,dummy_input1:485,dummy_input2:485,dummy_input:485,dump:484,dump_alias_db:145,dump_patch:273,duplic:[13,44,51,67,123,124,143,237,273,415,446,447,479,493,498],dure:[1,2,4,9,11,14,148,150,159,206,212,213,214,230,231,250,251,252,309,315,317,324,440,442,464,467,470,472,473,475,476,477,480,485,488,490,492,493,498,503],dynam:[1,9,10,13,147,150,159,461,462,471,485,486],dynamic_ax:485,dynamic_threshold:486,dzhulgakov:[6,7],e_float16:1,each:[1,2,4,9,11,13,14,15,16,23,24,32,43,46,53,55,59,60,62,65,66,73,74,77,86,88,89,94,96,97,98,102,105,106,107,110,115,122,126,131,137,138,139,140,143,150,151,154,155,159,160,174,175,176,177,183,185,186,187,188,189,191,192,193,197,202,207,210,211,215,217,221,222,223,224,225,226,227,229,230,231,232,233,235,236,237,238,241,242,243,248,250,251,252,253,254,255,256,257,258,259,261,265,266,273,276,277,278,279,280,281,286,287,289,301,302,304,309,312,318,319,324,348,349,351,357,359,367,369,370,376,384,388,389,392,393,395,396,398,406,416,421,422,423,424,425,427,437,446,447,449,450,451,457,461,467,468,470,471,472,473,474,475,476,477,478,479,480,481,482,485,486,488,490,491,492,493,495,497,498,500,502,503,504,505,506],eager:[405,488],eagerli:11,earli:[232,233],earlier:[1,2,479,480,485],earliest:477,eas:[2,475,478],easi:[13,459,479,480,481,485,488,490,491],easier:[5,13,36,299,459,461,468,474,478],easili:[5,8,14,280,470,486,489,490,492,497],ecosystem:480,edg:[2,470,488,491,505],edgeitem:406,edit:496,edouard:202,edu:217,edward:[6,7],effect:[1,2,5,9,13,143,202,217,224,225,226,231,232,233,237,273,320,325,334,356,403,457,459,464,470,472,473,476,486,488,494,497,498,505],effici:[2,8,13,15,61,152,160,202,232,233,236,285,464,473,477,478,488,490,491,493,495,496,498,499,503],effort:490,eig:[8,460,498],eigenpair:160,eigenproblem:160,eigensolv:160,eigenvalu:[88,160,184,365,427],eigenvector:[88,160,427,460,498],eight:[457,465],einstein:89,einsum:[460,485],either:[2,9,13,14,15,58,109,140,141,143,159,188,200,201,204,205,208,209,210,211,222,223,225,226,227,229,237,248,253,254,256,265,266,268,269,273,276,277,278,280,286,287,289,301,302,318,320,321,322,324,340,369,371,387,423,454,457,459,461,463,468,470,471,474,476,478,479,480,481,485,486,488,490,491,492,496,498,502,507],elaps:11,elapsed_tim:[11,476],elapsed_time_m:476,elast:490,eleg:481,elem:460,element:[2,11,13,14,15,19,21,22,23,25,26,30,31,33,34,36,38,39,40,41,42,45,52,54,60,66,67,69,70,71,73,74,75,76,77,80,82,83,86,88,92,94,95,96,97,98,99,100,107,109,110,114,115,122,125,134,137,138,139,140,141,154,155,161,162,164,167,169,170,171,172,175,176,177,185,186,187,189,192,193,195,197,198,206,207,210,211,212,213,214,216,217,221,222,223,224,225,226,227,229,231,232,233,234,236,238,241,242,244,245,246,247,248,253,254,257,258,259,260,263,265,266,267,268,269,274,276,277,278,279,280,281,283,285,286,287,289,290,291,292,298,300,301,302,303,305,306,308,309,310,311,312,313,318,319,348,349,351,352,357,359,360,366,367,369,370,372,376,386,387,389,390,393,395,396,406,408,409,410,411,414,415,417,418,421,422,424,429,430,431,434,435,437,438,439,440,441,442,444,446,447,450,451,454,470,471,474,475,488,493,494,495,496,497,498,499,500,504,505],element_s:[460,467,494,498],elementari:116,elementwis:[11,30,250,251,252,307,449,470],elementwise_affin:[259,488],eleph:503,elf:479,elif:461,elig:492,elimin:[14,446,447,498],ell:[210,211,248,253,254,265,280],ell_c:211,ellips:89,ellipsi:[89,462,468],ellipsis_idx:460,elman:[287,289],els:[5,9,13,14,15,46,149,152,241,257,287,459,461,462,463,466,470,476,478,494,498,500,505],elsewher:[101,457],elu:[460,485],elu_:[460,470],embed:[10,202,227,236,248,279,460,475,485,488,490,497],embed_dim:279,embed_dim_to_check:460,embedding_bag:[460,482],embedding_dim:[235,236,470],embedding_matrix:470,embedding_renorm_:460,embedding_sum:236,embeddingbag:470,emerg:484,emit:[2,9,150,489,500],emit_nvtx:[2,3],emnist:501,empir:290,emploi:486,employe:6,empti:[1,14,45,46,58,88,91,92,156,169,170,171,172,195,210,211,229,236,280,324,362,415,427,432,456,459,460,461,463,464,467,468,470,471,474,476,485,493,498,499,500],empty_cach:[11,476],empty_lik:[460,463,467,485],empty_meta:460,empty_quant:460,empty_strid:[460,463],emptydatastructur:461,emul:[462,478,488],enabl:[1,2,12,13,14,93,241,257,287,288,324,329,330,331,332,333,334,335,336,402,403,406,464,472,474,475,476,480,484,485,486,489,490,491,498,499],enable_grad:[2,356,403,463,499],enable_onnx_check:485,enable_tim:[11,476],enablerecordfunct:480,encapsul:[17,490],encod:[14,159,210,211,313,314,315,316,317,459,462,478,491],encoder_lay:[316,317],encount:[14,235,459,463,470,475],encourag:6,end:[1,5,6,11,13,14,32,44,66,83,125,141,156,158,160,173,175,196,209,210,211,227,241,242,244,245,246,247,248,253,254,257,258,260,265,268,269,275,280,281,284,290,301,307,312,384,406,446,447,454,459,460,461,466,470,472,473,477,479,484,486,488,490,498,502],end_dim:[103,237,460,498],end_ev:[11,476],end_pt:502,endl:480,endpoint:505,enforc:[143,237,273,496],enforce_sort:[349,350,351],engin:[2,8,10,375,473,477,478,488,490,491,498],enhanc:505,enough:[149,193,415,461,466,473,478,486,495,505],enqueu:[11,476,491],ensur:[1,2,3,5,6,13,14,206,276,277,279,313,324,405,457,459,461,465,466,472,473,476,478,481,482,485,488,491,498,503],ensure_tensor:478,enter:[1,14],entir:[4,5,9,13,232,233,250,251,252,259,333,335,355,470,478,479,480,483,488,490,492,505],entiti:500,entranc:5,entri:[1,2,14,15,83,89,105,106,128,279,333,334,342,415,459,462,473,477,478,486,488,493,497,500],entropi:[1,15,210,277,470],entrypoint:466,entrypoint_nam:457,enumer:[13,15,143,237,273,275,284,460,461,472,476,484,486,497],enumerate_support:15,env:[14,15,159,397,490],envelop:141,environ:[5,9,10,15,150,457,459,473,475,476,484,490,503],environment:11,epoch:[1,13,472,486,497],eps:[2,184,212,213,214,228,243,250,251,252,259,282,286,309,318,353,460,470,478,486,488,507],epsilon:[32,184,212,213,214,228,243,250,251,252,259,309,353,460,470,486],epub:160,eq_:[460,498],equal:[1,11,14,15,30,44,51,60,61,66,82,94,107,123,124,125,134,137,158,177,178,199,200,201,203,204,205,210,211,217,222,223,225,226,230,238,239,241,257,278,286,287,319,349,352,416,423,454,460,462,467,468,470,474,488,497,498],equal_nan:[30,137,460,498],equat:[8,64,89,123,210,413,438,460,473,505],equival:[4,13,15,57,59,67,81,91,92,105,106,113,131,142,143,148,150,151,202,212,213,214,221,222,223,224,225,226,235,236,237,243,250,251,252,259,273,309,319,321,362,375,378,382,387,392,428,432,443,447,456,459,461,470,473,485,488,495,498,503],eras:505,erf:[98,460,467,485,498],erf_:[460,467,498],erfc:[460,467,498],erfc_:[460,467,498],erfinv:[1,460,467,498],erfinv_:[460,467,498],errno:484,error:[1,2,4,5,9,11,13,15,17,32,96,97,98,146,159,177,193,195,210,211,240,254,265,301,419,423,459,461,466,467,468,470,472,473,476,478,482,485,488,490,498,503,505],especi:[6,8,13,14,36,54,92,461,470,473,485,490,498],essenti:[13,14,468,484],estim:[1,13,15,131,141,212,213,214,243,250,251,252,259,309,421,422,437,450,451,486],eta:486,eta_:486,eta_min:486,eta_t:486,etaminu:486,etapli:486,etc:[2,8,13,14,15,141,143,237,273,389,461,478,479,481,485,486,488,490,497,499],eth0:14,eth1:14,eth2:14,eth3:14,ethernet:14,euclidean:[59,470],eval:[143,145,150,212,213,214,237,250,251,252,273,309,464,485,503],evalu:[3,15,143,202,206,212,213,214,231,237,243,250,251,252,259,273,286,290,309,375,462,470,473,478,482,486,488,500,503],even:[2,13,14,131,134,230,356,425,452,459,470,476,478,479,481,482,492,495,498],event:[2,15,150,151,165,466,476,497],event_dim:15,event_file_writ:497,event_nam:480,event_shap:15,eventfilewrit:497,eventlist:2,eventu:[2,5],ever:459,everi:[1,2,13,14,15,143,206,231,232,233,237,273,303,305,324,353,355,356,447,470,472,473,476,477,478,485,486,488,490,491,492,494,497,498,500,503],everyon:5,everyth:[5,13,15,459,466],everywher:[423,470],evid:5,evolv:[477,485],exact:[2,33,34,35,185,187,189,225,324,471,477,481,483,493,504],exactli:[2,9,14,15,89,141,143,236,237,238,273,467,470,473,476,477,478,485,500,504,505],examin:485,exampl:[1,2,4,5,9,11,13,14,15,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,45,46,47,48,49,50,52,53,54,55,56,57,58,59,60,61,62,63,64,66,67,69,70,71,72,73,74,75,76,77,79,80,81,82,83,84,85,86,87,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,114,115,117,118,122,125,126,127,128,130,131,134,137,138,139,140,141,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,161,162,163,164,165,167,168,169,170,171,172,173,174,175,176,177,178,179,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,249,250,251,252,254,255,256,257,258,259,260,261,262,263,264,265,267,268,269,270,271,272,273,274,275,276,279,280,281,282,283,284,285,286,287,289,290,291,292,293,294,295,296,297,298,299,300,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,337,338,339,340,341,342,343,344,345,346,347,350,351,352,353,355,356,357,358,359,360,361,362,366,367,368,369,370,371,372,373,374,375,376,377,379,381,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,400,401,402,403,408,409,410,411,412,413,414,415,416,417,418,419,421,422,424,425,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,461,462,465,467,468,470,471,473,474,475,476,478,479,480,481,484,486,488,490,492,493,495,496,497,498,499,500,503,504,505,506],example_forward_input:[150,151],example_input:[150,151],example_method2_input:151,example_output:485,example_weight:[150,151],exce:165,except:[2,4,5,11,14,15,22,42,58,147,152,154,159,174,185,186,187,189,191,241,257,287,320,348,353,370,389,421,422,424,437,443,450,451,459,461,462,463,466,470,476,478,484,485,490,492,493,495,498,503,505],exchang:[14,81],exclud:[325,439,440,441,442,470,491,500],exclus:[13,14,15,379,380,383,473],execut:[1,2,3,4,5,9,10,11,13,14,17,144,150,151,159,230,324,404,459,461,462,464,472,473,474,475,479,480,481,482,484,485,488,490,491],exist:[2,5,6,9,13,14,15,36,145,150,160,274,283,366,457,459,466,467,474,478,480,485,490,492,496,498,500],exit:[1,2,3,324,466,481,485,492],exp1:497,exp2:497,exp:[1,2,15,167,174,211,216,229,234,263,264,277,286,298,300,302,303,305,306,310,369,423,460,467,470,485,498],exp_:[460,467,498],exp_add:2,exp_famili:15,exp_rang:486,exp_reduc:2,expand:[2,6,15,36,188,457,460,467,468,474,485,488,496,498,505],expand_a:[130,460,478,485,496,498],expans:505,expect:[2,5,13,14,128,141,150,151,185,187,189,212,213,214,229,241,242,243,250,251,252,253,257,258,259,280,287,289,303,309,313,315,317,320,349,428,452,463,470,473,477,479,486,497,500,503,504,505],expens:[3,13,15,480,490,498],experi:[8,324,478,497,503],experiment:[14,17,324,459,461,467,468,482,484,485],expert:6,explain:[10,457,472,476],explan:[473,478],explicilti:461,explicit:[1,116,136,433,462,467,470,472,476,478,485,488,496],explicitli:[1,11,14,81,83,459,461,462,470,476,478,480,485,486,488,489,490,493],explitili:461,explod:301,explor:457,expm1:[1,460,467,498],expm1_:[460,467,498],expon:[15,202,262,369,460,470,495,498],exponenti:[99,100,165,166,167,174,216,498,499],exponential_:[460,467,498,499],exponential_average_factor:460,exponentiallr:486,export_chrome_trac:2,export_param:485,export_raw_ir:485,export_to_pretty_str:485,expos:[1,2,14,17,476,480,490],express:[8,89,102,126,423,462,464,473,478,498],exptransform:15,ext:[457,465,500],ext_modul:9,extend:[2,15,275,284,458,480,481,485],extens:[9,14,15,159,397,472,490,500,506],extension_kernel:9,extent:475,extern:[150,475,484],external_data_format:485,extra:[5,14,143,147,148,159,237,273,280,425,427,468,473,475,477,478,479,480,500,504],extra_block:504,extra_cflag:9,extra_compile_arg:[9,484],extra_cuda_cflag:9,extra_fil:[147,148],extra_include_path:9,extra_ldflag:9,extra_repr:[143,237,273,478],extract:[235,238,319,470,490],extrafilesmap:[142,143,147,148,480],extrafpnblock:504,extrem:3,extrema:470,extrud:479,eye:[15,63,130,184,372,460,463,478],eye_:[463,471],eyes:5,ezyang:[6,7,496],f_add:488,f_float16:1,f_float32:1,f_t:257,fab:460,face:[478,497],facebook:6,faces_tensor:497,facil:[159,466],facilit:[15,81,457,459,482],fact:[2,44,51,123,124,459,478,491,498],factor:[1,15,27,28,29,43,62,63,64,175,177,178,179,231,262,285,363,364,372,413,470,471,472,486,488,504,505],factori:[2,8,15,460,468,476,488],fail:[2,5,11,15,131,147,148,159,160,177,463,466,481,484,485,490],failur:[2,6,14,15,143,150,151,237,273,466,490,492],fake:[488,500],fake_quant_en:488,fake_quantize_per_channel_affin:460,fake_quantize_per_tensor_affin:460,fakedata:501,fakequant:488,fall:[5,159,301,470,485],fallback:[9,14,472,485],fals:[1,2,4,9,11,13,14,15,30,32,33,34,35,44,47,49,50,51,53,55,56,62,63,64,67,88,90,91,92,94,95,101,102,112,113,114,115,122,123,124,126,131,134,137,138,139,140,141,143,146,150,151,152,154,155,158,169,170,171,172,173,174,176,177,181,184,185,186,187,189,191,193,197,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,227,229,231,232,233,234,235,236,237,239,241,242,243,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,265,266,267,268,269,273,276,277,278,279,280,282,286,287,288,289,290,291,292,298,301,302,309,312,313,318,320,324,340,349,350,351,352,356,357,358,361,362,364,370,372,375,377,378,379,380,381,382,383,384,392,397,398,402,403,406,414,415,421,422,423,424,425,427,432,434,438,449,450,451,454,455,456,457,459,460,461,464,465,466,468,470,472,473,479,482,483,485,486,488,489,490,494,496,497,498,499,500,503,504,505,506],famili:15,familiar:[10,11,459,473,491,492],fan:471,fan_in:471,fan_out:471,fang:7,faq:[13,230,351,458],far:470,fashion:[5,14,165,338,459,498,501],fashionmnist:500,fast:[5,13,250,251,252,301,375,475,476,478,486,490,495,496,504],fast_forward:375,faster:[1,2,8,13,53,89,160,288,303,324,464,470,476,488,501],faster_rcnn:503,fasterrcnn_resnet50_fpn:503,fastest:[324,357],fatal:[466,481],favor:[11,247,321,322,384,470,488,505],fbgemm:488,fbgemm_linear_fp16_weight:460,fbgemm_linear_fp16_weight_fp32_activ:460,fbgemm_linear_int8_weight:460,fbgemm_linear_int8_weight_fp32_activ:460,fbgemm_linear_quantize_weight:460,fbgemm_pack_gemm_matrix_fp16:460,fbgemm_pack_quantized_matrix:460,fcn:[503,504],fcn_resnet101:503,fcn_resnet50:503,fcntl:14,feat0:504,feat1:504,feat2:504,feat3:504,featmap_nam:504,featur:[6,8,10,14,149,199,200,201,202,203,204,205,226,231,232,233,239,241,242,257,258,279,287,289,304,313,315,317,318,324,365,458,459,461,462,468,470,478,479,485,488,490,497,504],feature_alpha_dropout:460,feature_alpha_dropout_:460,feature_dropout:460,feature_dropout_:460,feature_pyramid_network:504,featurealphadropout:470,featuredropout:485,featurepyramidnetwork:504,fed:497,fedyunin:7,feed:[459,479],feedback:5,feedforward:[313,315,317,471],feel:5,feng:7,fep:160,fetch:[13,329,330,331,332,333,334,335,336,490],few:[1,2,5,457,473,479,484,496,498,499],fewer:[15,154,174,185,186,187,189,191,370,398,421,422,424,450,451,474,493,498,503],ffi:484,ffmpeg:501,fft:[8,126,131,392,460,476,498],fft_size:141,field:[2,5,14,143,202,210,211,227,229,237,248,253,254,265,266,273,276,277,278,280,286,301,302,318,348,470,477,481,485,486,491,502,503],figur:[5,475,477,485,492,497],file:[1,2,5,6,8,9,11,13,147,148,159,397,457,459,462,463,465,467,468,480,483,484,485,491,494,497,500,502,506],file_nam:[457,465],filenam:[9,142,147,148,457,460,465,494,497,502,506],filename_suffix:497,fileno:485,filesystem:14,filesytem:457,fill:[14,46,81,90,92,112,113,177,236,313,361,362,377,378,379,380,381,382,455,456,468,470,471,476,498,505],fill_:[143,156,237,273,388,460,467,494,498],fill_diagonal_:[460,498],fill_row_zero:459,fill_valu:[112,113,217,460,476,498],fillcolor:505,filter:[141,221,222,223,224,225,226,423,470,488,498,505],final_div_factor:486,financi:6,find:[2,5,6,9,14,154,160,224,225,226,365,398,426,457,464,466,468,475,476,477,478,479,481,485,490,495,497],find_unused_paramet:[324,477],fine:[9,14,150,324,457,466,473,478,486,488,500,505],finetun:[143,237,273,473],finish:[14,17,476,477,484,490,492],finit:[2,3,15,137,138,193,210,478],fire:[477,480,503],first:[1,2,3,4,5,6,9,11,13,14,15,23,24,27,29,30,36,41,43,47,49,50,53,54,55,72,81,83,88,92,94,103,115,122,137,147,155,159,175,176,182,185,187,189,190,192,193,197,202,208,209,215,222,223,225,226,235,236,237,241,256,257,266,268,269,287,324,338,348,365,393,394,398,415,433,436,440,442,447,449,457,459,461,465,466,467,470,472,473,476,478,479,481,483,484,485,486,488,491,492,493,497,498,500,504,505],fisher:15,fit:[2,141,389,486,490,498],five:1,five_crop:505,fivecrop:505,fix:[13,15,89,235,236,459,470,472,479,481,482,484,485,500,503],flag:[2,9,11,14,44,51,53,62,123,124,179,324,392,403,459,466,470,473,476,485,497,498,505],flat:[389,485],flat_img:468,flatten:[33,34,82,319,389,393,446,447,460,467,468,471,485,488,498,505],flatten_paramet:288,flexibl:478,flickr30k:500,flickr8k:500,flickr:501,flip:[105,106,460,498,505],fliplr:[460,498],flipud:[460,498],float16:[12,111,133,143,237,241,257,273,287,472,488,495,498,507],float16_dynamic_qconfig:488,float32:[13,111,118,133,211,320,321,322,371,375,391,400,401,415,452,470,472,485,488,495,498,505,507],float64:[1,8,111,118,133,143,237,273,373,400,401,402,415,432,452,495,498,505,507],float_tensor:495,floatstorag:494,floattensor:[1,2,14,23,24,25,26,27,28,29,43,66,118,192,235,236,276,279,313,401,493,495,498,503,505],floor:[148,207,208,209,255,256,267,268,269,423,460,467,470,485,488,498],floor_:[460,467,498],floor_divid:[25,86,460,485,498],floor_divide_:[460,498],flow:[1,150,459,470,473,478,485,488,492],flush:[1,2,11,148,397,402,497],flush_sec:497,fly:[13,329,330,331,332,333,334,335,336,473,500],fmassa:7,fmod:[387,460,498],fmod_:[460,498],focu:486,focus:461,fold:[319,426,460,464,485,488,500],fold_param:[238,319],folder:[5,9,13,457,497,500],folk:5,follow:[1,2,5,6,8,10,11,12,13,14,15,55,86,88,89,96,97,102,126,131,143,160,182,185,189,202,211,217,236,237,238,241,257,273,287,319,324,358,365,392,398,415,423,437,457,459,460,461,462,463,464,465,466,467,468,470,471,472,473,474,475,476,479,481,484,485,488,490,491,492,493,495,496,498,500,503,505,507],followup:492,foo:[9,144,147,148,149,150,457,459,461,485,488],foo_build:488,foo_forward:485,foo_instance1:488,foo_instance2:488,foo_namespac:485,foomodel:485,foomodul:485,foral:498,forc:[1,2,9,11,144,153,457,459,472,476,497],force_reload:457,force_stop:160,forev:[466,477],forg:[484,485],forget:[257,461],forgotten:484,fork:[13,153,324,475,479,480,481,484,489,490,492,503],fork_rng:489,forkid:492,forkingpickl:484,forkserv:[324,466,481],form:[2,5,6,8,13,15,62,81,88,200,201,204,205,217,239,241,257,287,319,320,364,433,459,462,470,473,478,482,485,486,488,497],formal:[55,398,468],format:[2,12,90,91,113,131,143,217,236,237,241,257,273,287,324,349,351,362,378,380,382,392,397,415,456,457,459,462,478,483,488,491,493,495,497,498,500,502,503,504,505,506],formul:[216,234,244,264,306,307,470],formula:[2,15,44,51,89,123,124,156,286,374,470,473,478,486,488],forth:[449,457,486,505],fortun:479,forum:[5,6,479,481],forward:[1,2,4,9,143,144,145,146,148,149,150,151,152,206,210,230,231,232,233,236,237,241,257,270,271,272,273,274,275,279,280,283,284,287,313,314,315,316,317,324,329,330,331,332,333,334,335,336,345,353,355,375,425,459,461,464,466,468,470,471,472,473,475,476,477,478,479,480,482,485,488,490,493],forward_hook:488,forward_pre_hook:340,found:[1,10,55,72,73,74,154,185,187,189,191,206,216,298,398,459,472,478,481,485,488,497,503],four:[478,490,492,505],fourier:[102,126,131,141,392,423],fp16:324,fp32:[78,324,488],fparam:160,fpn:[503,504],fps:[497,502],frac:[15,25,32,44,51,84,86,96,97,102,108,123,124,126,195,202,207,208,209,210,211,212,213,214,215,221,222,223,224,225,226,229,231,238,241,242,243,250,251,252,255,256,257,258,259,261,262,263,264,267,268,269,276,277,278,280,287,289,290,300,301,302,303,305,306,308,309,310,319,368,384,386,392,396,408,423,443,460,467,470,471,473,486,488,498,505],frac_:[460,467,498],fraction:[13,110,224,225,226,239,332,333,335,336,338,341,342,343,344,471,502,505],fractional_max_pool2d:460,fractional_max_pool2d_with_indic:460,fractional_max_pool3d:460,fractional_max_pool3d_with_indic:460,fragment:11,frame:[141,423,479,497,500,502,503],frame_r:500,frames_per_clip:500,framework:[5,6,15,17,324,406,458,485,486,491,492],francisco:7,frank:15,free:[2,5,14,15,144,150,160,464,471,473,479,481,484],freed:[2,11,466,476,490,498],freedom:[15,473],freez:[143,235,236,237,273,473],freeze_bn:488,freeze_modul:464,freeze_support:484,frequenc:[46,131,202,235,236,423,470,486],frequent:[8,202,458],fresh:457,frexp:460,friendli:485,frisbe:503,fritz:7,fritzo:7,fro:[333,342,358,498],frobeniu:358,frobenius_norm:[460,485],from:[1,2,4,5,6,9,10,11,13,14,15,17,18,32,37,44,45,51,52,55,56,77,111,123,124,141,143,144,146,147,148,159,160,178,179,193,196,202,206,212,213,214,215,221,222,223,224,225,226,227,230,231,232,233,235,236,237,238,241,242,243,250,251,252,257,258,259,261,273,274,275,279,283,284,287,289,290,309,314,315,319,324,325,329,330,331,332,333,334,335,336,338,340,345,346,347,348,349,350,351,352,355,359,363,364,365,367,375,376,377,378,379,380,381,382,383,384,389,390,391,394,397,398,406,415,423,425,426,432,438,440,442,446,447,449,454,459,460,461,463,464,465,466,468,469,470,471,476,477,478,479,480,481,486,488,490,491,492,493,495,497,498,499,500,502,503,504,505,506],from_buff:494,from_dlpack:16,from_fil:[460,494],from_float:488,from_ipc_handl:11,from_numpi:498,from_pretrain:[235,236],front:[160,276,468,498],frontend:10,frozen:[145,462,473,484,486,503],frozen_modul:145,full:[10,13,14,15,44,51,113,123,124,131,160,175,211,217,221,222,223,224,225,226,286,313,392,406,425,426,457,459,460,461,463,468,470,472,478,485,488,490,491,496,500],full_lik:[156,460,463,485],fulli:[13,14,270,271,272,473,478,488],func:[2,144,150,151,153,472,478,490,492],func_dict:478,func_nam:490,func_output:2,functional_modul:488,functioneventavg:2,functool:[478,488],functor:15,fundament:[5,461,490],further:[2,6,9,14,116,202,363,364,481,482,492,497],furthermor:[9,231,467,468,482,488],fuse:[464,467,488,505],fuse_known_modul:488,fuse_modul:488,fused_m:488,fuser_func:488,fusion:[150,151,464,488],fut0:17,fut1:[17,490],fut2:490,fut:[17,144,475,490],fut_list:17,futur:[2,11,25,86,144,148,153,458,459,460,461,462,464,468,470,475,478,485,486,488,490,493,498],fvar:160,fwd:1,fwd_output:472,g_cpu:18,g_cpu_oth:18,g_cuda:18,g_float16:1,g_float32:1,g_t:257,gain:[6,471,505],galleri:5,gamma:[84,157,195,212,213,214,243,250,251,252,259,309,460,486,505],gamma_:195,gan:[143,237,273,353],ganem:15,gap:[32,384],garbag:[13,492],gate:[241,242,257,470],gather:[11,14,460,478,479,480,485,498],gather_list:14,gaussian:[15,240,470],gcc:10,gcd:460,gchanan:[6,7],ge_:[460,498],gelu:[1,313,315,317,460,485],gemm:[475,485],gen_non_contig_grad_output:2,gencod:11,gener:[2,5,9,13,14,15,45,116,121,123,129,131,160,180,185,187,189,193,238,313,319,320,329,330,331,332,333,334,335,336,353,359,365,367,375,379,380,399,407,426,433,449,459,460,461,462,463,464,467,470,471,473,476,478,479,480,482,484,485,486,488,489,490,491,493,495,497,498,500,501,503],generate_square_subsequent_mask:313,gentl:459,geometr:[449,470,488,498,499],geometri:[102,126,131,392,476],geometric_:[460,498,499],georg:7,geq:[114,115,175,229,260,280,281,290,368,470,471],geqrf:[363,364,460,498],ger:[460,498],gesdd:425,gesvd:425,get:[2,8,9,11,13,14,17,18,24,55,80,118,143,150,235,236,237,255,256,270,271,272,273,324,325,349,353,388,398,457,459,466,467,473,476,478,479,480,485,486,488,490,492,496,497,498,500,501,504],get_all_sharing_strategi:466,get_arch_list:11,get_backend:14,get_backoff_factor:1,get_context:481,get_debug_st:142,get_default_dtyp:[32,384,495,507],get_default_qat_qconfig:488,get_default_qconfig:488,get_devic:[460,467,493,495,498],get_device_cap:11,get_device_nam:11,get_dir:[457,465],get_gencode_flag:11,get_gradi:[460,490,491],get_growth_factor:1,get_growth_interv:1,get_ignored_funct:478,get_image_backend:501,get_info:[177,498],get_input:485,get_lr:486,get_num_interop_thread:475,get_num_thread:475,get_observer_dict:488,get_overridable_funct:478,get_rank:14,get_rng_stat:[11,489],get_rng_state_al:11,get_scal:[1,472],get_sharing_strategi:466,get_stat:18,get_testing_overrid:478,get_worker_info:[13,490],get_world_s:14,getattr:[460,490],getenv:480,getsourc:480,gil:[13,14,473,476,490],gimelshein:7,giraff:503,girshick:301,github:[5,6,14,313,457,463,478,485,486,488],give:[1,2,3,5,8,13,89,253,278,319,320,357,372,457,459,466,468,473,476,478,485,486,500,505],given:[1,2,5,6,9,11,13,14,15,17,19,31,32,35,45,48,54,57,58,64,65,67,69,72,78,80,89,104,131,143,147,150,151,154,156,160,167,169,170,171,172,174,175,185,186,187,189,191,195,202,210,211,217,227,229,230,235,236,237,239,241,248,253,257,266,270,271,272,273,275,277,278,279,280,284,287,301,304,318,320,321,322,324,348,353,355,358,359,364,367,370,373,374,384,389,393,414,415,416,419,424,426,429,433,434,436,445,450,451,457,459,465,466,470,471,472,473,475,477,478,480,485,486,488,490,491,493,497,498,500,505,506],glass:503,global:[4,13,14,15,32,44,51,90,92,101,112,123,124,144,150,158,173,334,338,361,377,379,381,384,455,459,462,472,478,480,481,490,491,492,497,503],global_step:497,globalcontext:484,gloo:[14,324,477,490],gloo_socket_ifnam:14,glorot:471,glove:503,glu:[460,485],gmm:15,goal:492,goe:[206,479],going:[2,5,14,466,473,475,480,484,497,498],gomez:[313,315,317],good:[5,9,18,281,457,466,478,480],got:478,govern:[5,458],gpu1:[143,237,273],gpu:[1,2,3,5,11,12,13,143,159,175,185,187,189,202,230,237,241,257,273,287,288,309,324,348,425,458,459,476,482,484,486,490,494,498,499,503,504],gpu_model:459,gpudirect:14,grace:490,grad0:477,grad1:477,grad:[1,2,4,8,15,93,324,403,459,460,467,468,472,473,477,481,486,490,491,493,498],grad_bia:478,grad_fn:[2,473,493,498],grad_input:[143,237,273,478,484],grad_loss:468,grad_norm:472,grad_out:460,grad_output:[2,143,237,273,460,473,478,484],grad_param:472,grad_tensor:[2,460],grad_vari:2,grad_weight:478,gradcheck:[2,131,478],gradgradcheck:[2,478],gradient:[4,8,13,14,15,93,114,143,160,185,187,189,210,217,224,225,226,229,230,235,236,237,255,256,273,280,301,324,325,326,327,356,403,425,427,459,460,468,470,473,477,478,479,486,490,491,493,498],gradscal:[1,472],graham:239,grai:505,grain:[14,473,488,505],grangier:202,grant:6,granular:472,graph:[2,4,15,37,143,144,145,149,150,324,464,469,477,478,485,488,490,491,492,497,498],graphexecutorst:142,graphic:484,graphroot:2,graphtask:473,grave:[202,217],grayscal:[497,505],great:5,greater:[3,60,61,195,210,318,353,470,473,485,488,504],greater_than:15,greater_than_eq:15,greaterthan:15,greaterthaneq:15,greatli:9,greedili:468,greg:[6,7],gregori:7,grep:479,grid:[188,460,470,497,504,506],grid_i:188,grid_sampl:460,grid_sampler_2d:460,grid_sampler_3d:460,grid_x:188,griffin:141,gross:[6,7],ground:[5,497,503],group:[2,6,13,221,222,223,224,225,226,243,309,324,447,457,460,466,470,471,477,485,486,488,497,498,504],group_by_input_shap:2,group_nam:14,group_norm:[1,460,485],grow:[5,493],growth:1,growth_factor:1,growth_interv:1,gru:[242,460],gru_cel:460,grucel:488,gt_:[460,498],gtcoars:500,gtfine:500,guanheng:7,guarante:[2,4,13,14,15,230,475,482,490,492,504],guard:481,guess:13,guid:[2,13,149,458],guidanc:[5,10],guidelin:[6,338,503],gumbel:470,gumbel_softmax:460,gunnar:[365,426],h_0:[241,257,258,287],h_1:258,h_i:304,h_n:[241,257,287],h_t:[241,257,287],hack:5,had:[5,150],hadamard:[241,242,257,258],haidar:7,hair:503,half:[1,2,15,131,143,221,222,223,224,225,226,237,239,273,392,423,467,470,486,494,495,498],half_cauchi:15,half_norm:15,half_open_interv:15,halfopeninterv:15,halftensor:[495,498],halko:[365,426],ham:[59,123,470],hamiltonian:15,hamming_window:[460,463],hand:[2,3,85,89,206,438,459,461,485],handbag:503,handi:476,handl:[1,2,4,8,9,11,13,14,143,230,237,273,324,329,330,331,332,333,334,335,336,426,457,466,468,470,476,478,479,481,485,488,490,492,498,500],handled_funct:478,handler:[334,480],hang:[324,477],hann:124,hann_window:[123,423,460,463],happen:[2,5,6,14,15,309,324,466,477,478,479,481,484,485,486,488,496,498],happi:5,hard:[2,5,160,244,459,460,461,470,473,485],harden:490,harder:[221,222,223,224,225,226,238,267,268,269,319],hardshrink:[460,498],hardsigmoid:[460,488],hardsigmoid_:460,hardswish:460,hardswish_:460,hardtanh:[460,464,485,488],hardtanh_:[460,470],hardwar:488,has:[1,2,4,5,6,8,10,11,12,13,14,15,17,18,33,34,37,45,59,62,81,83,93,109,128,141,143,145,147,148,149,150,154,159,168,174,175,177,185,186,187,188,189,191,210,211,212,213,214,221,222,223,224,225,226,229,230,231,236,237,238,239,241,243,250,251,252,253,257,259,267,268,269,273,277,278,280,281,287,303,309,319,320,324,329,333,335,338,348,349,356,357,358,359,370,387,389,397,398,403,412,419,421,422,424,450,451,459,461,466,467,468,470,472,473,474,475,476,477,478,480,481,484,485,486,488,489,490,491,492,493,494,495,497,498,499,500,503,505],has_bias:460,has_enumerate_support:15,has_nam:467,has_rsampl:15,hasattr:[460,478],hash:[457,460,465],hash_prefix:457,hasn:486,hat:[212,213,214,250,251,252,309],have:[1,2,4,5,6,8,11,13,14,15,18,44,45,51,58,59,72,79,95,102,114,123,124,128,142,143,144,145,147,149,150,151,154,159,168,170,174,175,185,186,187,188,189,191,193,202,206,210,221,222,223,224,225,226,229,230,235,236,237,239,247,250,251,252,259,266,273,276,277,278,279,280,324,325,326,327,351,356,358,370,375,412,421,422,423,424,427,432,443,450,451,452,457,459,460,461,463,466,467,468,470,471,472,473,474,476,477,478,479,480,481,482,484,485,486,488,489,490,491,492,493,495,496,497,498,500,503,504,505],hdr:7,head:[202,279,313,315,317,504],head_1:279,head_bia:202,head_h:279,head_i:279,header:[2,9,484],health:6,healthi:[5,6],heard:491,heart:13,heavi:[2,14,473,484],heavili:[3,475,478,486],hei:5,height:[208,209,222,223,225,226,256,268,269,280,304,320,468,470,485,488,500,504,505],held:[11,17,472],hello:461,help:[1,2,3,5,6,8,11,13,14,143,232,233,237,273,457,467,468,472,473,474,476,477,485,490,491,499],helper:[1,4,14,309,457,461,476,477,485,488,490],henc:[45,270,271,272,320,415,476,477,485,490,492,500],here:[1,2,5,6,10,13,14,15,149,212,213,214,250,251,252,281,299,309,324,375,425,457,459,461,463,467,468,470,472,476,478,479,480,484,485,486,496,497,498,500,503,506],hessian:[2,471],heurist:[9,13,504],hex:460,hflip:505,hidden:[4,241,242,257,258,287,289,325,476,497],hidden_s:[241,242,257,258,287,288,289,460],hierarch:497,hierarchi:[462,488],high:[3,5,10,15,217,379,380,460,466,488,490,497,498],higher:[5,11,14,125,229,266,280,426,478,480,488,490,495,498,504],highest:[202,379,380],highli:[6,202,324,457,485],highlight:488,hing:[276,278],hinge_embedding_loss:[1,460],hingeembeddingloss:470,hint:[459,461],hinton:486,his:486,histc:[460,498],histogram:[125,488,497],histogramobserv:488,histor:[11,25,475],histori:[2,478,479,486,491],history_s:486,hit:[4,457],hmc:15,hmdb51:501,hogwild:473,hold:[2,17,160,238,274,275,283,284,319,334,348,415,474,478,479,480,481,486,490,491,492,495,498,505],holist:5,holomorph:[8,473],hong:7,hood:[2,466,477,481,492],hook:[2,143,230,237,273,324,329,330,331,332,333,334,335,336,345,353,355,477,480,488,498],hop:[141,423],hop_length:[141,423,460,498],hope:473,horizont:505,hors:503,host:[13,14,143,237,273,324,476,491,494,498],hot:[15,470,503],houseroad:7,how:[2,4,5,6,10,13,14,102,126,131,148,159,238,273,319,320,324,348,392,459,461,465,466,467,468,469,470,472,475,477,478,479,481,485,488,490,491,492,497,503,505],howev:[1,3,4,5,6,8,10,11,13,14,15,81,83,126,144,148,159,160,177,210,224,225,226,230,235,236,324,348,366,461,472,473,476,478,481,482,483,484,485,490,492,493,498,500],hparam:497,hparam_dict:497,hpp:477,hspmm:[460,493],hsv:505,html:[2,3,5,10,486,488,497],http:[2,3,5,10,14,15,89,160,217,290,291,313,355,365,457,462,465,484,485,486,488,497,503,505],hub:[458,465],hub_dir:[457,465],hubconf:457,huber:301,hue:505,hue_factor:505,huge:426,human:[0,11,471,485],hundr:[1,472,480],hurt:477,hvp:2,hwc:497,hxw:460,hybrid:493,hydrant:503,hyper:[461,497],hyperbol:[22,39,42,71,411,431],hyperparamet:497,i_0:433,i_d:433,i_n:433,i_t:257,icdf:15,icml_2006:217,idea:[5,202,480,491],ideal:[150,468],idempot:492,ident:[2,9,13,14,15,81,126,131,160,183,206,231,454,462,470,471,473,482,488,493,498,500],identifi:[5,14,159,309,462,466,473,474,480,490,491,492,497],identity_transform:15,idiom:484,ids:[309,470],idx:[13,143,202,237,273,460,468],ieee:141,iff:15,ifft:[102,131,460,498],ifs:462,ignor:[5,11,33,34,102,125,126,149,152,210,211,227,229,236,248,253,254,265,266,276,277,278,279,280,286,301,302,313,318,358,406,423,425,459,468,470,478,485,486,488,498],ignore_index:[229,280,460,470],ilia:7,ill:470,illia:[313,315,317],illustr:478,im2col:[319,460,485],imag:[13,200,204,205,221,222,223,224,225,226,229,238,239,251,280,285,304,319,321,322,460,470,473,496,497,498,500,501,503,504,506],image_s:[500,504],image_set:500,imagefold:501,imagenet:[14,471,501,503],imagenet_data:500,imagenet_root:500,imagin:490,imaginari:[8,88,102,126,127,138,139,140,423,452,453,462,473,498],imagnumb:462,imbalanc:202,img:[468,497,500,503,505],img_batch:497,img_height:505,img_hwc:497,img_tensor:497,img_width:505,immedi:[5,6,143,144,237,273,490,492],impact:[482,488,496],imped:472,imper:14,implement:[2,4,11,13,14,15,25,36,143,147,148,159,160,185,187,189,202,217,230,237,255,256,273,285,291,306,315,317,324,338,351,353,355,366,368,372,375,397,425,426,433,446,461,462,466,470,472,473,475,478,479,480,481,482,484,485,486,488,490,491,493,496,498,500,501,503,504],impli:[466,490],implic:[150,490],implicit:[207,208,209,221,222,223,224,225,226,238,267,268,269,319,460,462,470,485,488,496],implicit_cast:485,implicitcasttyp:485,implicitli:[5,89,150,151,159,207,208,209,267,268,269,459,461],implicitly_compiled_method:459,imported_funct:472,importerror:484,impos:[466,472],imposs:472,improb:13,improv:[1,2,6,12,14,231,241,257,287,472,477,478,485,486,488,490,503],in1:[215,470],in1_featur:215,in2:[215,470],in2_featur:215,in_channel:[221,222,223,224,225,226,488,504],in_channels_list:504,in_featur:[143,202,237,261,273,353,355,488],in_height:504,in_proj_bia:460,in_proj_weight:460,in_width:504,inaccur:13,inaccuraci:2,inact:11,inactive_split:11,inactive_split_byt:11,inc:461,incas:498,incept:[485,505],inception_v3:503,incid:[490,492],includ:[1,2,3,4,5,6,9,10,13,14,143,207,208,209,217,230,237,270,271,272,273,349,350,352,439,440,441,442,457,459,461,464,466,470,475,476,479,480,482,488,490,492,498,499,500,501,503],include_last_offset:[236,460,470],include_path:9,inclus:[15,125,379,380,420,498],incom:[1,215,261,466,470,488],incompat:[6,9,474],incomplet:[13,463],inconsist:[32,478],incorpor:488,incorrect:[3,36,54,92,150,159,423,459,470,476,498],increas:[1,2,5,11,15,46,55,202,211,217,221,222,223,224,225,226,285,398,449,460,470,473,475,476,486,498,504,505],increment:[2,145,230,459,461,473],incur:[1,4,61,481],inde:[459,492],indent:462,independ:[2,6,11,13,14,231,232,233,355,459,470,472,488,498],index:[10,11,13,15,55,73,74,89,114,128,151,154,167,174,177,181,185,187,189,191,193,202,217,229,235,236,253,274,275,280,283,284,319,333,335,342,343,348,357,392,398,415,423,429,448,458,459,460,466,467,468,470,473,476,477,485,486,488,492,493,495,496,497,498,500,504],index_add:[460,498],index_add_:[460,482,498],index_copi:[460,485,498],index_copy_:[460,498],index_fil:[460,467,485,498],index_fill_:[460,467,498],index_put:[1,460,485,498],index_put_:[460,498],index_select:[460,482,485,498],indexerror:[333,335],indic:[1,2,11,13,14,15,33,34,35,55,62,73,74,89,102,114,128,143,146,152,154,159,167,174,177,179,184,185,187,189,191,193,202,203,204,205,235,236,239,267,268,269,270,271,272,276,278,357,392,398,414,415,429,434,439,440,441,442,446,447,454,459,460,467,468,470,478,485,486,490,493,496,497,498,504],individu:[5,6,13,62,130,143,183,217,237,273,309,324,467,472,478,480,482,488,490,498,502],induc:470,ineffici:488,inf:[1,15,22,42,55,85,98,137,138,139,168,264,303,313,326,333,342,358,398,412,472],infer:[2,8,10,32,37,89,356,384,390,400,401,415,432,458,459,461,467,470,485,486,488,493,498,503,504],inferencesess:485,infin:[138,210,326,486],infiniband:[14,324,490],infinit:[13,139,160,210,217,470,490],influenc:6,info:[11,14,177,458,502],inform:[2,3,5,13,14,131,141,143,151,237,273,279,313,315,317,348,371,391,459,475,478,480,485,490,495,497,498,500,503,505],infrastructur:6,infti:[59,141,210,255,256,470],ingredi:[250,251,252],inher:467,inherit:[340,459,461,478,481],init:[11,14,143,237,273,281,458,463,480],init_method:[14,324,490],init_process_group:[14,324,477,490],init_rpc:[490,491],init_scal:1,init_weight:[143,237,273],initi:[1,2,3,11,13,18,37,118,129,143,159,160,215,217,224,225,226,230,235,236,237,241,242,243,250,251,252,257,258,259,261,273,281,287,289,324,400,401,415,432,461,470,471,476,477,478,480,484,485,486,488,489,490,491,498,503],initial_accumulator_valu:486,initial_lr:486,initial_se:[11,13,18,489],inject:480,inlin:[9,143,145,150,475],inline_extens:9,inlined_graph:143,inner:[87,485,490],innermost:[15,398],inp:[2,13,319],inp_unf:319,inplac:[143,206,216,231,232,233,234,237,247,260,273,290,291,292,298,312,460,470,478,485,488,505],inplace_assign:485,inplaceindexedassign:485,input1:[215,228,241,242,282,287,289,460,470,472,484,485],input2:[64,215,228,241,242,282,287,289,363,364,460,470,472,484,485,498],input3:[364,460,498],input:[2,4,6,8,10,11,12,13,14,15,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,55,57,59,60,62,63,64,65,66,67,69,70,71,72,73,74,75,76,77,79,80,81,82,83,84,85,86,87,88,91,94,95,96,97,98,99,100,102,103,104,105,106,107,108,109,110,113,114,115,116,117,122,123,124,125,126,127,128,130,131,132,133,134,137,140,141,143,144,145,149,150,151,154,155,156,157,160,161,162,163,164,165,166,167,168,169,170,171,172,174,175,176,178,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,276,277,278,279,280,281,285,286,287,289,290,291,292,293,294,295,296,297,298,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,329,330,331,332,333,334,335,336,337,339,341,342,343,344,348,349,350,352,356,357,358,360,362,363,364,365,366,367,368,369,370,372,373,374,376,378,380,382,384,385,386,387,388,389,390,391,392,393,394,395,396,408,409,410,411,412,413,414,417,418,419,421,422,423,424,425,426,427,428,429,430,431,434,435,436,437,438,439,441,443,444,445,446,447,448,449,450,451,452,453,456,459,460,461,462,463,464,468,470,471,473,475,476,477,478,479,480,485,486,488,490,491,493,495,496,498,500,503,504,505],input_1:485,input_2:485,input_3x3:320,input_data:485,input_featur:478,input_g:460,input_length:[217,460,470,479],input_list:14,input_nam:485,input_on:[238,319],input_s:[241,242,257,258,287,288,289],input_scal:460,input_split:14,input_tensor_list:14,input_to_model:497,input_tupl:459,input_var:[4,230],ins:459,insecur:159,insensit:249,insert:[15,17,274,275,283,398,406,420,448,459,464,488],insert_fold_prepack_op:464,insid:[2,5,459,461,464,472,476,480],insight:5,inspect:[1,2,143,149,472,478,480,495],inspir:[478,486],inst:500,instal:[2,9,10,14,102,126,131,392,457,459,485,490,497,500,503],instanc:[1,13,15,150,160,235,236,238,250,251,252,259,314,316,319,334,348,353,415,459,461,462,464,466,468,470,472,477,478,479,488,490,491,492,498,500,501],instance_norm:[460,485],instancenorm1d:470,instancenorm2d:470,instancenorm3d:470,instancenorm:[243,488],instantan:11,instanti:[2,14,93,236,348,356,457,459,461,470,478,488,490],instead:[2,4,6,9,13,14,15,55,86,116,126,136,146,175,207,208,209,210,211,212,213,214,227,229,230,232,233,248,253,254,255,256,265,266,267,268,269,276,277,278,280,286,287,301,302,303,309,318,324,392,398,425,459,461,468,470,472,473,477,478,479,481,484,485,486,488,491,493,498,505,506],instruct:[3,8,459,485],instrument:480,insuffici:11,int16:[111,170,495,498,507],int32:[55,111,177,217,371,398,488,495,498,505,507],int64:[14,32,46,55,91,111,348,383,384,398,470,476,485,495,498,504,505,507],int64tensor:503,int8:[47,48,49,50,111,169,170,171,172,488,495,498,507],int_:[96,97],int_a:437,int_b:437,int_repr:[373,374,460,488,498],int_tensor:495,int_zerodim:495,intact:490,integ:[11,13,14,15,23,24,25,26,27,28,29,32,43,44,51,60,66,86,90,107,108,109,112,123,124,148,160,192,202,217,221,222,223,259,348,359,361,365,373,374,377,379,380,381,383,387,395,416,426,433,443,444,455,461,462,467,470,478,485,486,488,495,498,505,507],integer_interv:15,integergreaterthan:15,integr:[13,25,45,47,48,49,50,86,112,143,237,273,375,437,480,485,486,495,498],intel:[484,501],intel_openmp:484,intend:470,intens:[486,505],intent:5,intention:490,inter:[119,404,475,477,490],interact:[2,6,10,11,13,462,485,497],interchang:[15,461,486],interconnect:14,interest:[5,6,458,488,500,504],interfac:[10,478,480,485,486,497],interfer:[1,485],interleav:486,intermedi:[4,236,313,315,317,459,470,473,479,485],intermediari:[9,15],intern:[1,6,11,13,15,36,79,143,168,212,213,214,309,366,412,415,462,472,473,475,476,485,490,491,492,493,496,500,503],internet:[5,500],interop:404,interperet:160,interpol:[156,320,321,322,482,485,488,504,505],interpolation_mod:460,interpret:[11,13,14,15,119,143,146,149,150,253,404,461,466,470,475,476,488,493,496,502,505],interprocess:11,interrupt:466,intersect:504,interv:[1,15,32,377,378,437,505],intervent:[1,490],intra:[475,477],intraop:405,introduc:[15,160,241,257,287,393,457,474,477,482,485,490,498],introduct:[14,324,459,462,467,474,490,497],inttensor:[177,178,495,498],intuit:485,inv:[15,63],inv_scal:472,invalid:[193,472,473],invari:[15,348,415,492,493,505],invers:[8,15,22,39,42,58,63,64,98,102,126,131,141,183,224,225,226,235,236,238,270,271,272,319,351,366,392,460,470,486,498],inverse_indic:[446,447],invert:[15,64,79,126,131,168,183,270,271,272,412,503],invest:6,investig:5,invis:476,invoc:[4,144,150,459,478,480,485,488,490,492],invok:[1,10,14,17,143,144,230,237,273,324,459,462,464,472,475,477,478,480,486,491],involv:[5,6,8,13,467,476,477,479,482,490,491,492],invstd:460,iotamudelta:7,iou:[503,504],iou_threshold:504,iparam:160,ipc:11,ipc_collect:11,ipc_handl:11,ipp:501,irecv:14,irfft:[392,460,498],irrelev:[2,462],irrespect:[130,175,413,425,427,476],is_accept:460,is_avail:[11,14,102,126,131,392,476],is_coalesc:[460,493],is_complet:14,is_complex:[460,495,498],is_contigu:[460,467,496,498],is_cuda:[348,467,494,498],is_distribut:[13,460],is_en:1,is_floating_point:[460,467,495,498],is_in_onnx_export:485,is_initi:[11,14],is_leaf:[2,460,467,498],is_meta:498,is_mpi_avail:14,is_nccl_avail:14,is_ninja_avail:9,is_nonzero:460,is_own:490,is_pin:[13,348,460,467,494,498],is_python_modul:9,is_quant:498,is_same_s:460,is_script:461,is_set_to:[460,498],is_shar:[463,467,494,498],is_sign:[460,467,498],is_spars:[467,494,498],is_tensor:467,is_train:[2,403,499],is_valid_fil:500,is_vulkan_avail:460,isclos:[460,498],isend:14,isfinit:[460,498],isinf:[460,498],isinst:[15,136,460,478],isn:[5,13,141,476,478],isnan:[460,485,498],isol:466,issu:[1,4,6,8,9,14,177,324,463,466,467,468,470,472,473,478,481,484],issubclass:478,istep:160,istft:[460,498],itch:5,item:[13,274,283,406,457,459,460,461,467,488,490,497,498,500,504],iter:[1,2,5,11,14,15,143,160,237,273,274,275,283,284,324,325,326,327,328,329,330,331,332,333,334,335,336,338,353,354,365,426,460,462,466,468,472,473,474,477,478,486,489,497,504],iter_end:13,iter_start:13,iterabledataset:[13,480],iters_to_accumul:472,itertool:[15,57,67],its:[1,2,3,5,6,9,10,11,13,14,15,33,34,35,63,64,80,83,143,148,182,210,212,213,214,221,222,223,224,225,226,230,237,250,251,252,273,274,283,309,324,325,334,337,338,339,340,341,342,343,344,349,355,401,403,426,452,459,461,464,466,470,472,473,474,476,477,478,479,484,485,486,488,490,491,492,493,495,496,498,500,503,505],itself:[4,5,143,149,150,237,273,303,324,329,330,331,332,333,334,335,336,345,459,466,470,485,488,490,496],ivalu:480,ivar:160,jacobian:[2,15,131,473],jakob:[313,315,317],jang:15,javadoc:458,jax:473,jed:160,jit:[8,9,119,142,143,404,405,458,461,463,464,468,475,480,485,490],jitter:505,job:[14,324,480,486,497],joel:[365,426],johann:7,johnson:7,join:[5,14,17,457,462,466,473,477,481],jointli:[15,279],jone:[313,315,317],joulin:202,journal:375,jpeg:480,json:[480,500],juggl:4,jump:[495,498],junji:7,just:[2,5,9,15,150,151,232,233,324,439,440,441,442,457,459,466,472,473,476,478,480,485,488,490,491,496,498],jvp:2,k_0:433,k_proj_weight:460,kaiming_normal_:[463,471],kaiming_uniform_:471,kaiser:[313,315,317],karl:7,karuppasami:7,kdim:279,keep:[2,5,13,159,212,213,214,235,250,251,252,282,309,334,388,457,459,466,468,470,473,476,477,479,481,485,486,490,491,492,504,505],keep_initializers_as_input:485,keep_intermedi:9,keep_var:[143,237,273],keepdim:[33,34,154,174,185,186,187,189,191,282,358,370,421,422,424,450,451,460,467,470,485,498],kei:[2,13,14,143,151,159,237,273,274,279,283,313,314,315,316,317,341,460,461,478,480,485,486,488,490,491,494,497,498],kept:[212,213,214,250,251,252,309,466,470,488,504],kernel:[3,8,9,11,207,208,209,221,222,223,224,225,226,238,239,255,256,267,268,269,270,271,272,319,464,470,478,482,485,488,504],kernel_height:504,kernel_s:[207,208,209,221,222,223,224,225,226,238,239,255,256,267,268,269,270,271,272,319,460,470,488,497,504],kernel_shap:485,kernel_width:504,kesheng:160,key_averag:2,key_padding_mask:[279,460],keyboard:503,keypoint:501,keypoint_rcnn:503,keypointrcnn_resnet50_fpn:503,keyword:[1,2,18,22,23,39,42,77,86,108,143,144,150,151,159,165,166,230,237,247,249,273,329,334,338,362,376,438,443,456,457,462,468,478,485,486,490,497],kick:[477,490,491],kickoff:491,kill:[466,479],kind:[14,325,371,478,481,495],kinet:[501,503],kinetics400:500,kite:503,kl_div:[1,460],kl_diverg:15,kl_normal_norm:15,kl_version1:15,kl_version2:15,kldivloss:470,kmnist:501,knife:503,know:[2,4,5,148,459,472,473,485,491,492,498],knowledg:492,known:[5,14,150,151,159,221,222,223,224,225,226,238,301,319,366,459,460,463,466,471,475,482,485,490,492,505],knuth:5,knyazev2001:160,knyazev:160,kostmo:7,kth:154,kthvalu:[460,467,498],kullback:[15,253,470],kuzushiji:500,kw_i:279,kwarg:[1,2,4,9,143,144,146,177,237,241,249,257,273,287,329,334,338,348,397,446,447,457,462,470,478,483,485,488,490,494,498,500,503,505,506],kwlist:497,l1_loss:[1,460],l1loss:470,l1unstructur:338,l2norm:488,l423:485,l_1:[210,211,248,253,254,265,280],l_c:211,l_n:[210,211,248,253,254,265,280],l_p:470,label:[5,13,202,211,217,227,248,266,276,277,349,470,477,481,486,497,500,503],label_img:497,labori:478,lack:8,lambd:[244,307,460,470,486,498,505],lambda1:486,lambda2:486,lambda:[2,13,15,17,59,159,244,307,462,470,478,486,490,498,505],lambdalr:486,landmark:500,langl:15,languag:[9,149,202,313,458,470,479,485],lapack:[8,63,116,363,364,372,425],laptop:503,lara:7,larg:[1,5,11,13,18,202,238,319,372,458,466,468,470,475,479,485,486,488,490,493,495,498,500,503,505],large_model:485,large_pool:11,larger:[1,2,6,46,66,202,230,235,236,266,320,324,470,479,480,485,497,498,503,505],largest:[1,46,107,160,434,460,461,470,488,498,507],last:[2,4,8,13,44,51,55,65,81,102,103,123,124,134,141,154,187,191,202,215,221,222,223,224,225,226,236,237,241,257,259,261,280,286,287,314,315,319,325,357,358,392,393,398,414,416,423,425,433,434,437,452,453,461,467,470,473,486,503,505],last_epoch:486,late:472,latenc:475,later:[2,5,159,229,267,268,269,280,324,459,475,476,477,478,483,488,491,492],latest:[5,14,15,334,457,485,490],latin1:159,latter:[8,143,237,273,481,488],launch:[3,13,324,473,475,476,490],launcher:14,law:[202,505],layer:[1,14,207,208,209,211,212,213,214,215,221,222,223,224,225,226,232,233,241,242,243,250,251,252,257,258,259,261,267,268,269,279,280,287,289,309,313,314,315,316,317,470,471,473,478,479,480,486,488,503],layer_count:485,layer_norm:[1,460,485],layernorm:[243,250,251,252,470],layout:[11,32,44,51,90,91,92,101,112,113,123,124,158,173,361,362,377,378,379,380,381,382,383,384,415,440,442,455,456,457,459,460,461,463,493,497,498],lazi:486,lazili:[11,459],lbfg:486,lbrace:[439,440,441,442],lceil:[32,60],ldexp:460,ldot:[15,188,259,267,268,269],le_:[460,498],lead:[2,5,86,102,392,419,468,475,477,482,484,498,505],leadership:6,leaf:[2,432,472,488,498],leak:[2,466],leaki:[290,470,471],leaky_relu:[460,471,485],leaky_relu_:[460,470],leakyrelu:[274,470],learn:[1,5,10,15,215,227,232,233,235,236,248,261,281,318,458,469,471,488,490,492,500,503],learnabl:[212,213,214,215,221,222,223,224,225,226,235,236,241,242,243,250,251,252,257,258,259,261,281,287,289,309,470,488],learned_0:485,learned_14:485,learned_15:485,learned_1:485,learned_2:485,learned_3:485,learned_:485,least:[15,46,81,83,102,105,106,126,131,141,160,175,182,202,349,392,457,468,471,474,479,492,494,498,503],leav:[2,146,152,419,459,461,473,498,500],left:[32,44,51,52,55,60,84,89,105,107,108,110,123,124,141,146,165,166,193,195,202,207,208,209,210,211,221,222,223,224,225,226,229,238,253,254,255,256,262,263,264,265,267,268,269,276,277,278,282,283,318,319,320,321,322,327,364,384,398,423,433,449,459,460,470,478,485,486,488,498,505],left_ankl:503,left_ear:503,left_elbow:503,left_ey:503,left_hip:503,left_kne:503,left_should:503,left_wrist:503,lefteye_i:500,lefteye_x:500,leftimg8bit:500,leftmouth_i:500,leftmouth_x:500,legaci:[470,495,504],legitim:281,leibler:[15,253,470],lemma:15,len:[13,14,145,174,186,230,333,335,351,415,416,421,422,424,449,450,451,459,460,470,485,486,493,497,500,503],length:[2,11,13,14,15,67,88,128,141,150,196,211,217,221,230,236,238,241,255,257,279,287,313,319,348,349,350,351,352,375,423,460,468,470,474,479,488,498,503,505],lens_unpack:351,leq:[30,44,45,66,137,155,217,229,276,278,280,423,470],lerp:[460,498],lerp_:[460,498],less:[2,5,11,13,14,15,89,107,160,177,202,286,301,307,351,440,442,457,478,481,488,501,503],less_than:15,lesser:[475,488],let:[2,5,13,15,467,468,473,476,477,478,481,484,491,492,497,498],letter:[89,500],level:[5,10,13,116,230,324,459,462,466,471,475,478,490,497,498,503],leverag:490,lexic:462,lexicograph:357,lfloor:[60,107,108,110,202,207,208,209,221,222,223,224,225,226,238,255,256,267,268,269,319,320,321,322,384,392,423,470],lgamma:[460,498],lgamma_:[460,498],lib64:9,lib:[159,397,484],libenzi:7,librari:[3,6,8,9,10,11,13,177,387,458,475,477,478,479,480,481,482,484,485,488,490,501],library_root:10,libtorch:10,libx264:502,lie:[303,305,470,497],lies:500,life:498,lifetim:[5,490],lift:468,light:[497,503,504],lighter:505,like:[1,2,3,4,5,6,8,9,10,11,13,14,15,36,44,51,89,90,123,124,130,147,148,150,159,202,210,238,241,250,251,252,257,274,275,283,284,287,319,324,325,348,361,377,381,397,413,455,457,459,461,466,467,468,470,472,476,479,480,481,484,485,488,490,491,495,498,505],likelihood:[15,202,280,286,470],likewis:504,lim:[15,141],lim_:210,limit:[13,217,235,338,466,468,473,477,488,490,491],limits_:167,line:[2,3,14,143,148,237,273,406,459,462,470,474,478,484,485],line_search_fn:486,linear:[1,2,7,11,64,143,145,149,156,178,210,216,237,240,247,273,275,287,289,291,306,309,320,337,338,339,340,341,343,344,345,346,347,353,355,365,413,460,461,464,471,473,476,477,478,479,485,486,498,503],linear_relu:488,linearfunct:478,linearli:[320,470,479,488],lineartransform:505,liner:290,linewidth:406,link:[9,10,15,221,222,223,224,225,226,238,267,268,269,319,468,470,480,485],linker:9,linspac:[8,46,460,463],linux:[10,14,457],list:[1,2,4,5,6,9,10,11,13,14,15,17,37,54,57,65,67,78,89,90,104,112,131,143,145,150,151,186,188,230,235,237,259,273,275,284,309,324,325,329,330,331,332,333,334,335,336,345,348,349,350,351,352,358,361,377,381,394,415,416,421,422,424,432,433,446,447,455,457,459,460,462,463,464,467,468,470,478,484,485,486,488,490,491,493,494,495,496,497,498,499,500,502,503,504,505,506],listconstruct:[459,485],listloopmodel:485,listofproperti:497,liter:[460,462,468],literatur:[221,222,223],littl:[478,492],live:[143,237,273,459,479,486,490,492],llion:[313,315,317],lmbda:486,load:[1,2,8,9,10,148,150,273,324,397,459,464,465,468,480,483,484,485,486,488,500,501,503],load_inlin:9,load_nvprof:2,load_state_dict:[1,143,159,237,273,457,483,486],load_state_dict_from_url:[457,465],load_url:[465,503],loadabl:457,loadann:500,loaded_weight:498,loader:[13,500],loaiza:15,loc:[15,159],local:[1,14,93,160,232,233,238,262,319,324,356,403,457,461,466,470,472,477,479,490,491,492,497,500],local_process_rank:14,local_rank:[14,309],local_response_norm:460,local_valu:490,localhost:[490,491],locallr_0:497,localresponsenorm:470,locat:[2,9,11,15,36,54,55,73,74,92,94,115,122,138,139,140,154,155,159,176,185,187,189,191,193,197,230,238,304,319,324,398,457,459,465,470,485,486,492,493,497,498,500,503,505],lock:[5,13,14,15,473,476,481,491],log10:[1,460,467,498],log10_:[460,467,498],log1p:[1,460,467,485,498],log1p_:[460,467,498],log2:[1,460,467,485,498],log2_:[460,467,498],log:[1,9,13,15,99,100,157,163,165,167,168,174,195,202,210,211,229,253,263,264,277,280,286,302,303,306,412,460,467,470,485,497,498,499],log_2:166,log_:[161,162,163,164,460,467,498],log_abs_det_jacobian:15,log_dir:497,log_input:[286,460,470],log_norm:15,log_normal_:[460,467,498,499],log_pob:202,log_prob:[15,202,217,460,470],log_sigmoid:[460,485],log_softmax:[1,217,460,468,485],log_target:[253,460,470],logabsdet:412,logaddexp2:[460,498],logaddexp:[166,460,498],logarithm:[84,157,161,162,163,164,165,166,167,173,217,470],logcumsumexp:[460,498],logdet:[412,460,485,498],logdir:497,logic:[4,13,47,48,49,50,169,170,171,172,371,391,462,478],logical_and:[460,498],logical_and_:[460,498],logical_not:[460,467,498],logical_not_:[460,467,498],logical_or:[460,498],logical_or_:[460,498],logical_xor:[460,498],logical_xor_:[460,498],logist:[15,302],logit:[15,211,460,470],logsoftmax:[229,280,303,470],logspac:[8,460,463],logsumexp:[165,460,467,485,498],long_tensor:495,long_zerodim:495,longer:[2,25,86,490,492],longest:[217,349,351,352,479],longtensor:[33,34,35,73,74,114,128,154,185,187,189,191,193,235,236,276,357,383,414,415,429,434,454,470,493,495,498],look:[3,5,6,10,14,15,202,285,340,366,459,461,467,470,472,473,480,481,484,485,490,491],lookup:[15,235,459,462,470,475,485,491],loop:[11,150,459,460,475,479,485,488,497,505],loop_and_list:485,loop_count:485,loop_in_traced_fn:459,loop_rang:485,loopmodel2:485,loopmodel:485,loos:480,lorentz:15,lose:468,loss0:472,loss1:472,loss:[1,2,8,15,141,202,210,211,217,227,229,248,253,254,265,266,276,277,278,280,286,301,302,318,324,349,468,473,477,479,486,488,490,491,497,500,503],loss_fn:[1,472,477,481,486],loss_func:[324,490],lost:[1,131,221,222,223,224,225,226,230,270,271,272,372,503],lot:[5,466,481,489,491,497],low:[5,15,116,217,365,375,379,380,426,460,466,498],lower:[2,11,14,15,52,55,62,63,64,66,89,125,193,202,290,371,388,398,427,438,439,440,459,460,469,470,471,473,482,485,486,488,504],lower_bound:15,lower_choleski:15,lower_triangular:15,lowercas:14,lowercholeski:15,lowercholeskytransform:15,lowest:[61,332,333,341,342,379,380],lowrank_multivariate_norm:15,lp_pool1d:460,lp_pool2d:460,lppool1d:470,lppool2d:470,lr_0:497,lr_decai:486,lr_lambda:486,lr_schedul:486,lrelu:274,lrn:262,lru:[102,126,131,392,476],lstm:[4,258,460,485,497],lstm_cell:460,lstmcell:488,lstsq:[460,498],lsun:501,lt_:[460,498],lu_data:[178,179,460,498],lu_pivot:[178,179,460,498],lu_solv:[460,498],lu_unpack:177,lukasz:[313,315,317],lvert:[30,137,318,470],macbook:497,machin:[14,306,324,480,489,490,491],machineri:478,maco:[14,466],macro:9,maddison:15,made:[2,6,315,317,461,484,486,497,505],mae:254,magic:[460,462],magma:[63,177,425,484],magma_2:484,magma_hom:484,magnitud:[1,355,372,471,472],mai:[1,2,3,5,9,11,13,14,15,36,46,54,89,92,109,141,143,144,148,150,159,160,165,202,217,221,222,223,224,225,226,229,237,273,280,315,317,324,372,387,390,423,459,461,464,468,470,472,474,475,476,478,479,482,484,485,486,490,492,493,494,498,499,505],main:[13,14,15,80,81,82,83,439,440,441,442,459,466,468,470,472,473,477,478,483,484,490,491,497,498],main_tag:497,mainli:[15,217,470,488],maintain:[1,5,14,15,206,348,470,472,505],major:[2,5,11,253,470,485,493],make:[2,3,4,9,10,11,13,14,15,46,62,63,64,81,93,143,148,160,210,217,221,222,223,224,225,226,237,273,299,324,338,356,400,427,434,457,459,461,466,467,468,470,472,473,474,476,477,478,479,481,482,484,485,486,488,490,491,492,495,497,498,500,505,506],make_dict:459,make_grid:[497,506],malici:159,manag:[1,2,5,15,18,93,324,356,403,462,479,480,485,489,490,491,498,499],mandat:478,mandatorili:13,mani:[1,2,5,6,8,9,13,14,18,36,143,217,237,273,439,440,441,442,459,461,467,471,473,474,475,478,480,482,488,492,495,497,498,499,501],manipul:[472,479,488],manner:[2,4,468,474,498],manoj:7,mantissa:498,manual:[1,13,14,145,210,211,229,277,278,280,348,459,466,470,472,476,478,479,482,484,485,497],manual_se:[11,13,18,460,467,482,489],manual_seed_al:11,map:[9,15,22,42,147,148,159,224,225,226,232,233,238,270,271,272,274,279,283,374,446,447,462,468,470,477,478,484,485,488,490,491,492,494,504,505],map_:[463,498],map_loc:[147,159,324,457,465],margin:[227,248,266,276,278,318,460,470,497],margin_ranking_loss:[1,460],marginrankingloss:470,mark:[2,11,17,324,459,461,473,477,478,491,498],mark_dirti:[2,478],mark_non_differenti:[2,478],marker:11,market:[5,6],marten:471,martinsson:[365,426],mask:[181,206,217,279,313,314,315,316,317,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,460,467,468,470,498,504],mask_rcnn:503,masked_fil:[460,467,485,498],masked_fill_:[460,467,468,498],masked_scatt:[460,485,498],masked_scatter_:[460,498],masked_select:[460,467,485,498],maskrcnn_resnet50_fpn:503,mass:15,massa:7,master:[5,313,457,485,490],master_addr:[14,490,491],master_port:[14,490,491],mat1:[27,190,460,493,498],mat2:[27,53,190,460,493,498],mat:[28,194,364,375,460,493,497,498,500],match:[1,2,11,14,15,143,159,181,185,189,236,237,273,320,359,373,433,459,467,470,474,478,485,486,488,490,495,498,500,505],math:[13,99,100,253,365,426,459,461,470],mathbb:280,mathbf:[15,353,355],mathbin:[24,27,28,43,53],mathcal:[215,221,222,223,224,225,226,235,236,241,242,257,258,261,287,289,290,309,381,471],mathemat:[2,8,131,210,212,213,214,250,251,252,309,392,470,499],mathrm:[15,45,96,97,98,212,213,214,243,250,251,252,259,286,309],matmul:[1,8,53,62,130,190,319,365,366,372,413,425,427,460,467,498],matplotlib:497,matric:[15,24,27,43,53,61,62,64,79,81,116,160,168,175,177,183,190,365,372,406,412,413,425,426,427,438,439,441,460,467,470,493,498],matrix:[15,24,27,28,29,43,45,52,53,59,61,62,63,64,79,80,81,83,88,89,116,117,130,160,168,175,177,179,182,183,184,190,193,194,235,236,319,353,358,363,364,365,366,372,412,413,415,425,426,427,433,435,438,439,440,441,442,449,467,468,470,471,473,475,488,493,497,498,505],matrix_pow:[460,498],matrix_rank:460,matter:[2,3,6,81,147,148,150,473],max:[2,13,14,33,46,59,62,66,73,125,130,149,175,184,187,203,204,205,216,217,227,228,234,236,239,248,255,256,260,262,266,267,268,269,270,271,272,276,277,278,281,291,292,298,318,319,326,351,459,460,470,474,479,485,486,488,498,505,506,507],max_:[267,268,269,353],max_bin:497,max_ev:486,max_indic:[185,187],max_it:486,max_job:9,max_lr:486,max_memory_alloc:[11,476],max_memory_cach:11,max_memory_reserv:[11,476],max_momentum:486,max_norm:[1,235,236,326,460,470,472],max_pool1d:460,max_pool1d_with_indic:460,max_pool2d:[460,488],max_pool2d_with_indic:460,max_pool3d:460,max_pool3d_with_indic:460,max_queu:497,max_siz:476,max_unpool1d:460,max_unpool2d:460,max_unpool3d:460,max_val:[247,460,470],max_valu:[247,460],maxim:[66,185,270,271,272,486],maximum:[11,15,33,73,74,125,160,185,247,327,375,388,470,472,476,486,488,504,505],maxnorm:[388,460,498],maxpool1d:[270,470,485],maxpool2d:[271,274,470,485,488],maxpool3d:[272,470,485],maxpool:[239,485],maxunpool1d:[203,267,470],maxunpool2d:[204,239,268,470],maxunpool3d:[205,269,470],may04_22:497,mayb:5,mc3:503,mc3_18:503,mean:[1,2,4,5,10,11,13,14,15,43,148,193,200,201,202,204,205,206,210,211,212,213,214,215,216,217,227,229,231,234,236,240,241,243,244,245,246,247,248,250,251,252,253,254,257,259,260,261,263,264,265,266,276,277,278,280,281,286,287,290,291,292,298,300,301,302,303,305,306,307,308,309,310,311,312,318,324,359,381,382,422,426,451,459,460,461,466,467,468,470,471,472,477,478,479,484,485,486,488,490,491,492,498,503,505],mean_di:460,mean_dy_xmu:460,mean_vector:505,meant:[348,472,490],meantim:[210,211,227,229,248,253,254,265,266,276,277,278,280,286,301,302,318,470],measur:[11,15,210,211,227,248,253,254,265,266,318,470,476,480,486],mechan:[14,458,466,478,480,488,490,491],median:[15,460,467,498],medium:5,meet:476,megabyt:324,meiyu:160,member:[5,6,13,14,143,237,273,459,461,479],membership:[6,462],memo:[143,237,273],memoiz:15,memori:[2,4,8,15,16,36,54,89,90,91,92,111,113,143,152,236,237,257,258,273,313,314,315,348,356,362,378,380,382,432,456,459,464,466,468,470,473,481,486,488,490,494,495,496,498,503],memory_alloc:[11,476],memory_cach:11,memory_effici:[152,503],memory_format:[90,91,113,143,237,273,324,362,378,380,382,456,460,498],memory_key_padding_mask:[313,314,315],memory_mask:[313,314,315],memory_reserv:[11,476],memory_snapshot:[11,476],memory_stat:[11,476],memory_summari:11,mendoza:7,mention:[457,461,468,476,478,496,504],mere:5,merg:[5,6,13,274,283],mesh:497,meshgrid:460,messag:[5,11,457,459,460,462,479,485,486,490,492],messmer:7,met:160,meta:[490,497,498],metaclass:462,metadata:[159,397,478,490,491,497,502],metadata_head:497,metadatatensor:478,meter:503,meth:[13,159],method2:151,method:[1,5,9,10,11,13,14,15,17,33,34,35,102,126,131,143,144,145,146,148,149,150,151,152,159,160,184,202,210,235,237,273,274,275,283,284,324,329,331,334,337,338,339,341,342,343,344,345,351,353,366,392,423,425,457,459,462,464,466,467,468,470,471,472,476,478,479,481,485,486,488,490,492,493,495,497,498,499,500,503],metric:[11,486,497],metric_dict:497,michael:7,microwav:503,middl:485,might:[2,3,6,9,10,15,88,150,151,221,222,223,224,225,226,324,325,457,459,473,475,477,478,480,485,490,491,492,496,498,500,505],mileston:486,millisecond:11,mimick:8,min:[13,14,34,66,74,125,193,216,234,260,262,281,292,298,365,372,425,439,440,441,442,460,467,470,485,486,488,490,498,505,506,507],min_indic:[189,460],min_lr:486,min_siz:503,min_val:[247,460,470],min_valu:247,min_x:175,mind:[235,473,485],minfunc:486,ming:160,mingzh:7,mingzhe09088:7,mini:[13,212,213,214,235,236,243,248,250,251,252,259,266,276,278,309,318,470,488,503,506],minibatch:[13,177,202,210,211,227,229,248,253,254,265,266,276,277,278,280,286,301,302,318,320,470,488],minim:[1,2,5,8,66,189,457,472,481,486,488],minimum:[9,34,46,74,125,189,217,247,415,486,488,495,503],ministri:478,minkowski:[59,470],minlength:[46,460,498],minmax:488,minmaxobserv:488,minor:[6,11],minu:100,minut:[5,14,497],miopen_batch_norm:460,miopen_convolut:460,miopen_convolution_transpos:460,miopen_depthwise_convolut:460,miopen_rnn:460,mirror:498,misalign:467,mise:15,mismatch:[1,131,461,472,477,478,479,505],miss:[143,227,237,250,251,252,273,484,485],missing_kei:[143,237,273],mistak:479,mix:[9,15,324,458,475,485],mixtur:[1,15],mixture_distribut:15,mixture_same_famili:15,mkl:[102,126,131,392,475,484],mkl_2018:484,mkl_2020:484,mkl_fft:484,mkl_num_thread:475,mkl_thread:475,mkldnn:498,mkldnn_adaptive_avg_pool2d:460,mkldnn_convolut:460,mkldnn_convolution_backward_weight:460,mkldnn_cpu_runtim:475,mkldnn_linear:460,mkldnn_max_pool2d:460,mkldnn_reorder_conv2d_weight:460,mmap:466,mnasnet0_5:503,mnasnet0_75:503,mnasnet1_0:503,mnasnet1_3:503,mnist:[497,501],mnist_train:497,mnt:14,mobil:[464,488,503],mobile_optim:458,mobilenet_v2:[485,503],mobilenetv2:503,mobilenetv3:[246,470],mobileoptimizertyp:464,mod:[144,145,151,461,488],mode:[2,3,13,14,15,131,143,145,150,152,212,213,214,236,237,243,250,251,252,253,259,273,288,309,320,321,356,402,403,460,464,467,470,471,473,477,479,485,486,488,490,498,500,503,505],model0:472,model1:472,model:[1,2,3,4,11,14,15,143,145,146,150,152,159,202,230,237,252,273,279,299,309,313,315,317,324,325,328,338,354,397,459,461,462,464,465,470,473,475,476,477,481,482,485,486,490,491,497,501,504,505],model_dir:[457,465],model_zoo:[458,503],moder:4,modf:460,modif:[2,10,111,488,498],modifi:[1,2,13,141,143,144,145,235,237,273,313,315,317,324,326,327,337,338,339,341,342,343,344,459,467,470,472,473,476,478,485,486,488,490,496,498],modified_tensor:145,modl:15,modul:[1,2,4,9,14,143,144,145,146,147,148,149,150,151,152,159,202,206,212,213,214,215,221,222,223,224,225,226,230,231,232,233,235,236,237,243,250,251,252,259,261,274,275,279,283,284,288,299,303,309,313,324,325,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,351,353,355,397,457,458,462,464,466,468,469,470,472,473,475,476,477,479,480,481,484,485,488,490,497,498,499,503,504,505],modular:[1,472],module_kwarg:470,moduledict:461,modules_to_fus:488,modulo:15,modulu:392,momemtum:[250,251,252,309],moment:[2,464,466,485,486,488,490],momentum:[212,213,214,250,251,252,309,460,470,473,486,488],monitor:[11,102,126,131,392,476,486],monoton:[15,55,398],mont:15,moor:366,more:[1,2,3,6,8,9,10,11,13,14,15,36,52,54,55,61,62,64,79,82,92,102,126,130,131,134,136,151,160,163,166,168,178,202,206,211,216,217,235,236,279,285,286,298,309,325,357,358,366,371,372,391,392,398,412,413,425,427,438,457,459,461,465,466,467,468,469,470,471,473,475,476,478,479,480,485,486,488,490,491,492,493,495,496,497,498,499,500,503,504,505],more_img:468,moreov:[131,490,498],most:[2,3,5,10,11,13,14,15,134,191,202,457,459,461,463,466,468,470,473,476,478,481,486,488,491,492,493,495,497,498],mostli:[5,15,473],motiv:[5,491],motorbik:503,motorcycl:503,mountain:500,mous:503,moustapha:202,move:[4,143,147,159,212,213,214,237,273,309,461,465,466,468,470,476,479,481,486,488,490,494,498],movement:496,moviepi:497,movingaverageminmaxobserv:488,movingaverageperchannelminmaxobserv:488,mpi:14,mro:462,mrshenli:7,mse_loss:[1,460],mseloss:[301,470,477],msg:11,msys2:484,much:[1,2,3,5,6,10,13,160,236,338,459,476,486,490,491,498,505],mul:[2,459,460,467,478,485,488,491,493,495,498],mul_:[8,460,467,493,498],mul_scalar:488,mulbackward0:2,mulconst:478,mult:13,multi:[3,11,143,211,230,237,241,257,273,276,277,278,287,313,315,320,324,459,475,476,485,490,495,498,499,504],multi_head_attention_forward:460,multi_margin_loss:[1,460],multicast:14,multidimension:250,multihead:279,multihead_attn:279,multiheadattent:[313,315,317],multilabel_margin_loss:[1,460],multilabel_soft_margin_loss:460,multilabelmarginloss:470,multilabelsoftmarginloss:470,multilay:[241,257],multilin:497,multilinear:89,multimarginloss:470,multinomi:[460,485,498],multipi:210,multipl:[1,11,13,14,15,17,24,26,27,59,89,143,151,182,190,210,211,224,225,226,227,229,236,237,238,248,253,254,262,265,266,273,276,277,278,280,286,301,302,318,319,324,329,330,331,332,333,334,335,336,433,438,457,461,466,467,468,470,473,475,476,477,480,481,484,486,488,490,491,492,493,500,504,505],multiplex:490,multipli:[1,23,24,25,26,27,28,29,43,53,89,126,131,182,190,192,194,221,222,223,226,241,257,320,321,322,364,423,467,470,486,488,493,503,505],multiplicand:192,multiplicativelr:486,multiprocess:[13,14,230,324,458,468,477,491,500],multiprocessing_context:13,multiscaleroialign:504,multisteplr:486,multithread:476,multivari:[15,195],multivariate_norm:15,must:[1,2,9,11,13,14,15,17,23,24,25,26,27,28,29,41,43,45,47,48,49,50,53,55,58,66,72,81,83,85,86,94,102,105,106,109,114,115,117,122,143,148,150,155,156,160,176,178,181,182,185,189,192,193,195,197,211,217,221,222,223,224,225,226,230,236,237,238,273,276,307,324,338,348,365,369,387,392,393,398,405,423,426,433,440,442,452,454,459,460,461,466,467,468,470,471,472,474,477,478,481,482,485,486,488,490,491,492,494,498,505],mutabl:[150,459],mutat:[145,488,498,505],mute:457,mutex:473,mutual:[13,14],mvlgamma:[460,498],mvlgamma_:[460,498],mvn:15,my_add:491,my_api:480,my_const:459,my_constraint:15,my_dict:[459,461],my_experi:497,my_factori:15,my_imag:497,my_image_batch:497,my_image_hwc:497,my_int:[459,461],my_lib:484,my_lib_add_backward_cuda:484,my_lib_add_forward_cuda:484,my_list:461,my_lstm:479,my_mesh:497,my_model:[324,459],my_modul:459,my_module_inst:459,my_paramet:461,my_qconfig:488,my_registri:15,my_script_add:490,my_script_modul:[459,461],my_scripted_model:459,my_segmentation_transform:505,my_submodul:461,my_transform:15,my_variable_nam:461,myconstraint:15,myconstraintclass:15,mycpuorg:7,myfloat32func:472,myfunc:2,myiterabledataset:13,mymm:472,mymodel:[472,481,488],mymodul:[145,146,148,149,152,274,275,283,284,459,461,479],mymodule2:145,mypi:[136,461],myrotationtransform:505,myscriptmodul:459,mytransform:15,n_0:470,n_1:[102,126,188,392],n_2:188,n_class:202,n_d:[102,126,392],n_epoch:13,n_fft:[141,423,460,498],n_frame:141,n_i:[102,126,131,207,208,209,221,222,223,267,268,269,318,392],n_iter:497,n_k:[188,470],n_power_iter:353,n_t:241,naiv:13,name:[2,9,11,14,15,143,147,148,151,159,237,273,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,353,355,397,401,449,457,458,459,460,462,463,465,466,471,477,478,480,485,488,490,491,494,497,500,501,504,507],named_buff:[143,237,273],named_children:[143,237,273],named_flat_img:468,named_img:468,named_modul:[143,237,273],named_paramet:[143,145,237,273],named_tensor:468,namedshap:468,namedtupl:[13,73,74,88,116,143,154,175,185,187,189,191,202,237,273,365,372,412,413,414,425,427,434,438,459,461],namespac:[1,459,462,478,485,488],nan:[1,2,15,22,30,38,42,55,137,138,139,140,161,163,168,396,398,412,417,425,427,472],narrow:[460,467,485,496,498],narrow_copi:[460,493,498],nasdaq:497,natalia:7,nathan:[365,426],nativ:[1,148,459,466,490,501,504],native_batch_norm:460,native_group_norm:460,native_layer_norm:460,native_norm:460,natur:[2,3,5,8,15,161,163,202],nbatch:[210,211],nccl2:324,nccl:324,nccl_blocking_wait:14,nccl_debug:14,nccl_debug_subsi:14,nccl_socket_ifnam:14,nchannel:281,nchw:497,ncrop:505,ndarrai:[37,111,415,432,485,498,505],ndata:478,ndim:[467,498],ndimens:[463,467,498],ne_:[460,498],nearest:[108,320,322,470,488,505],nearli:[2,365,481,490,498],necessari:[1,2,9,13,18,128,149,349,350,459,468,473,474,476,477,484,488,490,491,492,495,498],necessarili:[14,15,88,185,187,189,229,280,366,476,478,485],need:[1,2,5,6,10,11,13,14,15,36,54,61,81,83,92,131,181,185,189,193,270,271,272,279,313,315,317,324,329,333,335,359,420,425,427,459,461,464,466,468,470,473,475,476,478,479,480,481,482,484,485,486,488,490,491,492,493,494,495,498,500],need_weight:[279,460],needs_input_grad:[2,478],needsinput:480,neeraj:7,neerajprad:7,neg:[9,11,13,15,46,138,168,183,193,202,211,260,276,280,286,318,433,437,439,440,441,442,448,459,460,467,470,471,473,482,485,498,505],neg_:[460,467,498],negat:473,negative_binomi:15,negative_slop:[260,460,470,471],neglig:[2,485],negoti:[6,490],neighbor:[141,320,322,423,488,504],neighborhood:[238,319],neighbour:[262,470,488],neither:[13,14,490],nelement:[277,302,463,498],nep:478,neq:[197,276,278,486],nest:[1,2,11,144,150,273,490,498],nesterov:486,net:[1,10,143,150,151,230,237,273,324,338,461,472,473,476,486,497],netlifi:5,network:[1,2,5,10,15,143,150,151,206,212,213,214,217,230,231,232,233,237,273,280,285,290,298,309,313,315,317,351,353,459,461,470,471,472,473,476,485,486,488,490,491,492,504,505],neural:[5,10,206,217,231,273,280,285,298,313,315,317,459,461,471,476,486,503],neurip:15,neuron:231,never:[2,4,5,14,59,141,159,324,348,473,490,498],nevertheless:492,new_:[476,498],new_data:485,new_empti:[460,498],new_factor:1,new_ful:[460,476,498],new_group:[14,309],new_interv:1,new_lr:486,new_on:[463,498],new_scal:1,new_stat:[11,18,407,489],new_strategi:466,new_tensor:[463,476,498],new_zero:[460,498],newer:[475,476],newli:[5,373,374,473],newtyp:461,next:[1,2,13,14,15,145,241,242,253,258,287,289,466,470,472,475,481,485,490,491,495,497,498,500],next_stat:15,nfs:14,ngimel:7,nhead:[313,314,315,316,317],nhwc:[495,497],nice:[2,221,222,223,224,225,226,238,267,268,269,319,468],nichola:15,niederreit:375,nielsen:15,niki:[313,315,317],ninja:[9,484],nist:500,niter:[160,365,426],nll:280,nll_loss2d:460,nll_loss:[1,460,485],nllloss:[229,253,303,470],nlp:[250,251,252],nms:504,nn_func:478,nn_module_inst:459,nnode:14,nnq:488,nnz:[2,415,493,498],no_grad:[2,4,93,143,237,273,463,485,499],no_sync:324,noam:[313,315,317],noarch:484,nock:15,node:[14,217,230,324,464,476,485,490,491,492],node_rank:14,nois:[460,482],nola:141,nomin:461,non:[1,2,4,8,9,11,14,15,18,32,46,53,55,58,62,130,143,144,150,151,160,170,177,182,193,207,208,209,222,223,225,226,229,237,241,256,257,267,268,269,270,271,272,273,276,278,279,280,287,289,313,324,357,398,399,415,433,446,459,461,463,466,471,474,476,478,479,488,489,490,492,495,496,497,498,504,505],non_block:[143,237,273,348,460,476,494,498],non_leaf_module_list:488,noncontigu:2,nondet_tol:2,nondetermin:[2,482],nondeterminist:[46,217,221,222,223,224,225,226,470,482,498],nondetermnist:482,none:[1,2,9,11,13,14,15,17,19,20,21,22,23,24,25,26,27,28,29,31,32,33,34,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,55,58,60,62,63,64,66,69,70,71,72,73,74,75,76,77,80,84,86,88,90,91,92,94,96,97,98,99,100,101,107,108,109,110,112,113,114,115,116,117,122,123,124,125,128,130,131,141,142,143,145,147,149,150,151,154,155,156,157,158,159,160,161,162,163,164,165,166,167,169,170,171,172,173,174,175,176,177,178,181,182,184,185,186,187,189,190,191,192,193,194,197,198,200,201,204,205,207,208,209,210,211,212,213,214,217,227,229,230,235,236,237,239,247,248,253,254,255,256,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,283,284,286,288,301,302,303,305,309,313,314,315,316,317,318,320,321,322,324,329,330,331,332,333,334,335,336,351,352,353,355,357,358,359,361,362,365,367,368,369,370,372,375,376,377,378,379,380,381,382,383,384,386,387,388,389,393,395,396,398,406,408,409,410,411,413,414,415,417,418,419,420,421,423,424,425,426,427,430,431,432,434,439,440,441,442,444,446,447,449,450,455,456,457,459,460,461,464,465,466,467,468,470,471,476,478,481,485,486,488,489,490,493,494,497,498,500,502,503,504,505,506],nonexist:461,nonfinit:137,nonlinear:[210,227,248,287,289,471],nonlinearli:5,nonloc:462,nonmask:334,nonneg:[15,365,426],nonnegative_integ:15,nonzero:[2,141,169,171,172,177,454,460,485,498],noopobserv:488,noordhui:7,noplot:5,nor:[13,14,324,371],noreturn:461,norm:[1,59,85,175,178,179,235,236,265,282,314,316,318,326,332,333,338,341,342,353,355,388,460,463,470,472,485,486,488,498],norm_except_dim:460,norm_typ:[235,236,255,256,326,460,470],normal:[1,2,88,102,126,131,141,143,146,165,206,212,213,214,232,233,243,250,251,252,259,262,298,309,314,316,324,326,327,338,346,347,353,355,381,382,388,392,423,457,459,460,463,467,471,476,486,488,490,497,498,499,503,505,506],normal_:[460,467,471,476,498,499],normalized_shap:[259,460,470,488],nose:503,nose_i:500,nose_x:500,notabl:505,notat:[406,462,498],note:[2,8,9,10,11,13,14,15,16,17,32,41,46,61,81,131,136,160,210,211,217,221,222,223,224,225,226,227,229,235,236,248,253,254,265,266,274,276,277,278,279,280,283,286,301,302,313,318,324,375,457,458,459,460,462,466,470,473,474,475,477,478,480,481,485,486,488,491,492,493,496,497,498,500,502,503,505],notebook:[5,506],noth:[5,9,11,459,461,492],notic:[14,131,210,320,425,459,473,486],notifi:[6,492],notimpl:[462,478],notimplementederror:15,notion:[13,212,213,214,250,251,252,309],now:[2,4,11,118,131,145,150,288,320,338,459,467,468,472,474,476,477,478,485,486,491,492,498,503],nproc:[466,477,491],nproc_per_nod:14,nrow:506,nsdf3:500,nthread:500,nuanc:5,nuc:[333,342,358],nuclear:358,nuclear_norm:460,num:[193,241,243,287],num_alloc_retri:11,num_channel:[243,468,488],num_class:[460,470,500,503],num_decoder_lay:313,num_direct:[241,257,287],num_embed:[235,236,470],num_encoder_lay:313,num_featur:[143,212,213,214,237,250,251,252,273,309,470,488],num_gpus_you_hav:14,num_group:[243,460,488],num_head:[279,460],num_keypoint:503,num_lay:[241,257,287,288,314,316,460,485],num_lin:500,num_oom:11,num_output_channel:505,num_paramet:281,num_proc:472,num_process:481,num_replica:13,num_sampl:[13,193,460,498],num_send_recv_thread:490,num_threshold:497,num_work:[13,484,500],num_worker_thread:490,number:[1,2,3,4,5,9,13,14,15,18,23,24,25,26,27,28,29,32,43,45,46,53,54,57,65,66,67,86,88,89,90,94,101,102,109,112,113,115,119,120,121,122,125,126,128,129,131,155,158,160,165,173,176,180,192,193,195,197,199,200,201,202,203,204,205,207,208,209,210,211,215,216,217,221,222,223,224,225,226,227,229,230,234,235,238,239,240,241,242,243,244,245,246,247,248,253,254,257,258,259,260,261,263,264,265,266,267,268,269,273,276,277,278,279,280,281,286,287,289,290,291,292,298,300,301,302,303,305,306,307,308,310,311,312,313,314,315,316,317,318,319,324,332,333,335,336,338,341,342,343,344,348,349,350,352,353,357,359,360,361,365,367,369,375,377,378,379,381,382,387,389,390,391,392,393,394,399,400,402,404,405,406,407,415,420,423,426,433,440,442,446,447,449,452,453,455,458,460,461,462,463,466,470,471,474,476,478,482,485,486,488,489,490,491,493,494,495,497,498,499,500,502,503,504,505,506,507],number_of_vertic:497,numel:[134,460,467,498],numer:[1,13,15,25,55,86,108,131,150,151,174,184,211,212,213,214,243,250,251,252,259,303,306,309,353,398,462,470,478,485,486,498,507],numpi:[13,30,37,111,389,406,415,432,463,474,478,479,484,485,495,496,497,498,500,505,507],nvcc:[9,11],nvidia:[2,14,476,479,484,499],nvlink:490,nvprof:[2,3],nvtx:[2,3],nvvp:2,o_ort:485,o_t:257,obermey:7,obj:[11,135,136,149,397,484],object:[1,2,11,13,14,15,16,17,18,135,136,143,147,148,149,150,151,159,160,180,230,232,233,237,250,251,252,273,309,340,349,350,397,457,461,462,464,465,466,473,475,476,478,479,480,481,484,485,486,489,490,492,494,495,497,498,500,501,504,505,506,507],obscur:9,observ:[1,210,211,212,213,214,227,229,248,250,251,252,253,254,265,266,276,277,278,280,286,301,302,309,318,324,470,472,480],observer_en:488,observer_kwarg:488,observer_non_leaf_module_list:488,observerbas:488,obtain:[2,13,14,15,184,217,280,365,426,466,467,470,473,475,488,498,503],obviou:[479,492,493],obvious:5,occas:[2,5,473],occasion:493,occupi:[11,262,470,476,507],occur:[1,8,11,13,141,144,217,461,468,470,472,476,479,485,490,492,496,498],occurr:[185,187,189,348,446,447],oct:460,octob:11,odd:15,odict_kei:341,odot:257,off:[2,5,11,44,51,123,124,141,150,211,403,470,475,477,480,488,490,491],offer:[14,476],offici:[6,14,202,503],offlin:[148,505],offset:[36,81,82,83,236,373,374,440,442,460,470,488,498,500,504,505],offset_group:504,often:[1,2,3,5,9,13,14,15,131,150,191,235,250,251,252,253,470,479,480,485,486,490,497,498],old:[362,397,456,459,473,483,484,486],older:476,omagma:484,omega:423,omega_1:[102,126,392],omega_d:[102,126,392],omega_i:[102,126],omit:[4,9,14,89,286,484,485,490,505,506],omkl:484,omp:475,omp_num_thread:475,onc:[1,2,5,10,13,14,16,89,143,145,159,230,237,273,404,459,464,466,472,473,475,476,478,480,485,486,497],one:[1,2,3,4,5,8,9,10,11,13,14,15,17,36,46,54,55,82,89,92,102,126,132,133,134,145,158,173,182,193,202,207,210,211,212,213,214,217,221,224,225,226,229,236,239,250,251,252,254,255,256,265,277,309,320,324,325,328,338,349,354,355,357,358,372,373,374,398,406,419,423,436,448,459,464,466,467,468,470,473,474,475,476,477,478,480,481,482,484,485,486,488,490,492,494,495,497,498,500,501,502,503,504,505],one_hot:460,one_hot_categor:15,onecyclelr:486,ones:[2,13,14,15,17,36,45,54,92,101,141,149,159,211,238,243,259,277,278,280,319,329,330,331,332,333,334,335,336,338,339,352,362,388,454,460,463,467,468,470,473,474,476,478,485,486,490,492,495,498,503],ones_:471,ones_lik:[460,476,485],onesid:[131,141,392,423,460,498],onfunctionent:480,onfunctionexit:480,ongo:490,onli:[1,2,3,4,5,6,8,11,13,14,15,16,17,44,45,51,53,88,90,92,102,123,124,126,127,131,137,143,144,145,149,150,151,159,202,224,225,226,230,235,236,237,238,253,273,276,278,281,288,309,319,320,324,348,349,350,358,366,385,392,402,404,419,423,425,427,432,440,442,446,447,452,453,460,461,464,466,467,468,470,471,472,473,476,477,478,479,480,481,483,484,485,486,488,490,491,492,493,495,496,497,498,503,505],onlin:486,only_input:2,onnx:[349,350,458,468,503],onnx_model:485,onnxruntim:485,onto:[11,147,148,159,466,479],oom:479,opaqu:14,open:[2,6,15,147,159,459,466,484,490],openbla:484,opencv:10,openmp:[475,484],oper:[1,3,4,5,6,8,10,11,13,15,17,32,36,44,46,51,54,58,61,73,74,75,76,90,91,92,101,102,112,113,120,123,124,126,131,143,148,149,150,151,158,167,173,206,211,216,217,221,222,223,224,225,226,230,231,232,233,234,236,237,238,239,247,248,249,254,260,265,270,271,272,273,290,291,292,298,301,312,319,324,351,358,361,362,369,370,377,378,379,380,381,382,383,384,391,392,415,419,424,425,427,432,454,455,456,458,459,462,470,472,474,475,476,477,479,481,482,486,489,490,491,493,495,496,498,501,502,504,505],operand:[89,462,478,482,495],operatiton:488,operator_export_typ:485,operatorexporttyp:485,operatornam:[110,210,211,217,248,253,254,265,409],opinion:5,opnam:485,opportun:[459,491],oppos:505,ops:[1,2,14,150,151,463,464,467,468,475,476,478,485,488,496,498,499,501],opset:485,opset_vers:[485,503],opt:[149,459],opt_einsum:89,optim:[1,2,5,8,9,10,14,15,89,143,149,150,151,160,212,213,214,235,237,250,251,252,273,276,277,278,302,309,324,365,458,459,461,464,468,471,473,475,477,479,481,485,488],optimiz:[459,485],optimization_blacklist:464,optimize_for_mobil:464,optimizer0:472,optimizer1:472,optimizer2:472,optimizer_class:490,optimizer_param:324,optimum:486,option:[1,2,4,9,11,13,14,15,18,19,21,22,23,24,25,26,27,28,29,30,31,32,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,55,58,60,62,63,64,66,67,69,70,71,72,73,74,75,76,77,80,81,82,83,85,86,88,90,91,92,94,96,97,98,99,100,101,102,107,108,109,112,113,114,115,116,117,122,123,124,125,126,128,130,131,137,141,143,145,150,151,154,155,156,157,158,159,160,161,162,163,164,165,166,167,169,170,171,172,173,174,175,176,177,178,179,181,182,184,185,186,187,189,190,191,192,193,194,197,198,202,206,210,211,212,216,217,221,222,223,224,225,226,227,228,229,232,233,234,235,236,237,238,239,247,248,250,253,254,259,260,264,265,266,270,271,272,273,274,275,276,277,278,279,280,282,283,284,286,290,291,292,298,301,302,303,305,309,312,313,314,315,316,317,318,319,320,321,322,324,325,329,330,331,332,333,334,335,336,346,347,348,349,350,351,352,353,355,357,358,359,361,362,365,367,368,369,370,372,375,376,377,378,379,380,381,382,383,384,386,387,388,389,392,395,396,398,406,408,409,410,411,413,414,415,417,418,419,420,421,423,424,425,426,427,430,431,432,434,438,439,440,441,442,443,444,446,447,449,450,455,456,457,459,460,463,464,465,470,471,478,479,480,482,485,488,490,493,495,497,498,500,502,503,504,505,506],orang:503,ord:[358,460],order:[2,4,5,14,15,17,35,52,61,81,88,104,105,106,193,202,217,230,274,283,299,324,334,348,349,350,351,358,368,398,413,414,425,427,434,437,440,442,446,449,457,459,460,462,466,467,468,470,473,474,476,477,478,482,485,486,488,490,491,492,495,498,503,504,505],ordereddict:[274,283,299,338,460,504],ordin:[495,498],ordinari:[11,472],ordinarili:[1,472],org:[2,3,5,10,15,160,290,291,313,355,365,457,462,484,488,497,503,505],organ:[5,6,477,480],orgqr:[460,498],origin:[2,8,13,56,61,128,130,131,141,147,149,150,151,181,202,206,230,309,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,348,351,353,355,393,413,414,416,425,427,434,446,447,459,466,468,476,478,479,480,481,485,486,488,494,498,504,505],ormqr:[460,498],orphan:[241,257,287],ort:485,ort_sess:485,ortho:160,ortho_bparam:160,ortho_fparam:160,ortho_iparam:160,orthogon:[160,363,364,372,471],orthogonal_:[463,471],orthonorm:[425,427],ossci:484,ostmo:7,other:[1,2,3,5,6,9,10,11,13,15,23,30,32,37,41,47,49,50,52,55,72,81,85,86,93,94,95,108,109,115,122,128,137,149,155,165,166,167,169,171,172,174,176,182,185,188,189,192,197,221,222,223,224,225,226,230,238,273,274,283,319,324,338,356,358,384,387,398,403,415,419,432,436,439,441,452,459,460,461,462,463,466,467,468,470,472,473,474,475,476,477,478,479,481,482,483,485,486,488,490,491,492,497,498,503,505,506],other_help:461,otherwis:[1,2,5,6,8,9,13,14,23,24,25,26,27,28,29,32,37,43,55,66,88,95,138,139,143,144,154,159,160,174,185,186,187,189,191,192,195,208,209,232,233,237,241,244,245,246,247,257,260,273,277,278,280,281,287,288,290,301,307,312,324,348,352,356,365,370,372,375,384,390,398,400,421,422,423,424,425,427,446,447,450,451,454,461,464,467,470,472,478,481,485,486,488,490,492,494,495,496,497,498,500,503],otim:[29,470],our:[2,5,210,478,481,485,491,493],out:[1,2,5,6,8,10,11,19,20,21,22,23,24,25,26,27,28,29,31,32,34,38,39,40,41,42,43,45,46,47,48,49,50,53,55,58,60,62,63,64,66,69,70,71,72,73,74,75,76,77,80,84,86,88,90,94,96,97,98,99,100,101,107,108,109,110,112,113,114,115,116,117,122,125,128,130,149,154,155,156,157,158,161,162,163,164,165,166,167,169,170,171,172,173,174,175,176,177,178,181,182,185,186,187,189,190,191,192,193,194,197,198,207,208,209,215,218,219,220,221,222,223,224,225,226,231,232,233,241,242,255,256,261,267,268,269,270,271,272,285,287,289,293,294,295,296,297,313,314,315,316,317,319,320,321,322,323,332,333,334,335,357,358,359,361,362,367,368,369,372,375,376,377,379,381,383,384,386,387,388,395,396,398,408,409,410,411,413,414,417,418,419,420,421,425,427,430,431,432,434,436,439,441,443,444,450,454,455,456,457,459,460,466,468,470,473,474,477,478,481,485,488,490,491,492,493,495,497,498,504,505],out_channel:[221,222,223,224,225,226,488,504],out_dim:[460,468],out_featur:[143,215,237,261,273,353,355,488],out_h:504,out_height:504,out_int32:[55,398,460],out_j:223,out_ort:485,out_padh:470,out_padt:470,out_padw:470,out_proj_bia:460,out_proj_weight:460,out_unf:319,out_w:504,out_width:504,outdim:460,outer:[29,89,117,503],outlier:301,outlin:491,outmost:490,output0:472,output1:[202,241,287,472,485],output2:[202,241,287],output:[1,2,3,4,5,11,13,14,15,17,19,21,22,23,24,25,26,27,28,29,31,32,33,34,36,38,39,40,41,42,43,45,46,47,48,49,50,53,55,58,59,60,62,63,64,66,69,70,71,72,73,74,75,76,77,80,81,83,86,88,89,90,91,92,94,96,97,98,99,100,101,107,108,109,112,113,114,115,116,117,122,125,128,130,131,141,143,145,149,150,151,154,155,156,157,158,161,162,163,164,165,166,167,169,170,171,172,173,174,176,177,178,181,182,185,186,187,188,189,190,191,192,193,194,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,276,277,278,279,280,281,282,285,286,287,289,290,291,292,293,294,295,296,297,298,300,301,302,303,304,305,306,307,308,309,310,311,312,313,318,319,320,321,322,323,324,349,351,352,353,355,357,358,359,361,362,368,369,370,375,376,377,378,379,380,381,382,383,384,386,387,388,389,392,395,396,398,406,408,409,410,411,413,414,417,418,419,420,421,422,424,425,427,430,431,434,438,439,441,443,444,446,447,449,450,451,455,456,459,460,464,467,468,470,472,473,475,477,478,479,484,485,486,488,491,493,495,496,497,498,500,503,504,505],output_2d:262,output_4d:262,output_devic:[14,230,309,324,470],output_featur:478,output_nam:485,output_nr:460,output_pad:[224,225,226,460,470],output_ratio:[239,460],output_s:[199,200,201,203,204,205,225,238,239,270,271,272,319,460,470,488,504,505],output_scal:460,output_split:14,output_tensor_list:14,output_zero_point:460,outsid:[1,4,6,13,22,42,461,470,476,479,486,505],outstand:490,oven:503,over:[2,6,13,14,15,58,73,74,75,76,89,143,150,159,167,186,188,199,200,201,203,204,205,206,207,208,209,210,211,212,213,214,217,221,222,223,224,225,226,227,229,236,237,238,239,243,248,250,251,252,253,254,255,256,259,262,265,266,267,268,269,273,276,277,278,280,286,301,302,304,309,318,319,326,355,388,421,422,424,433,466,467,468,470,472,474,475,477,478,481,485,486,488,490,491,493,498,499,500,504,505,506],overal:[6,14,473,475,481,505],overall_end:13,overall_start:13,overestim:[365,426],overflow:[1,75,76,370,424,440,442,470,505],overhead:[1,2,3,14,475,476,477,480,488,491,498],overheard:500,overlap:[2,13,141,238,319,324,476,495,504],overload:461,overparameter:15,overrid:[9,14,15,210,211,227,229,248,253,254,265,266,276,277,278,280,286,301,302,318,329,397,406,470,485,486,490,497],overridden:[2,9,478],override_dict:478,overriden:478,overshoot:470,oversubscript:475,overview:[10,14,324,466,473,490],overwhelm:5,overwrit:[13,274,283,473],overwritten:488,overwrritten:488,owen:375,own:[1,5,6,14,15,143,159,221,222,223,224,225,226,237,273,472,473,476,485,488,490,492],owner:[457,478,490,491],owner_nam:490,ownerrref:[490,492],ownership:[5,6],p1d:470,p2d:470,p3d:470,p_c:211,p_i:318,p_tensor:498,pace:5,pack:[179,230,241,257,287,348,349,350,351,460,464,479,484,488],pack_padded_sequ:[241,257,287,348,351,479],pack_sequ:[257,287,351],packag:[5,11,15,17,324,457,478,486,490,497,499,501,502],packagesnotfounderror:484,packed_hh:460,packed_ih:460,packed_input:479,packed_output:479,packed_weight:460,packedsequ:[12,241,257,287,349,350,351],pad:[13,141,207,208,209,217,218,219,220,221,222,223,224,225,226,235,238,267,268,269,270,271,272,276,277,279,293,294,295,296,297,319,323,349,351,352,423,460,479,482,485,488,497,504,505,506],pad_if_need:505,pad_mod:[423,498],pad_packed_sequ:479,pad_valu:506,padd:488,padded_input:479,padding_idx:[235,460,470],padding_input:479,padding_mod:[221,222,223,224,225,226,460,470,488,505],padding_valu:[351,352],padh:[470,488],padt:470,padw:[470,488],page:[1,5,13,160,313,315,317,476,477],pai:[484,496],pair:[32,59,88,274,279,283,384,423,461,467,470,486,490,491,492,493,497],pairwis:[15,248,282,318],pairwise_dist:460,pairwisedist:470,paper:[5,15,202,206,212,213,214,216,231,232,233,239,243,246,250,251,252,259,285,290,298,301,309,313,315,317,318,470,486,503,504],parallel:[0,1,13,14,119,120,144,230,279,309,324,404,405,458,470,472,473,475,481,484,490,492,505],parallel_info:[0,475],parallelli:500,param1:15,param2:15,param:[1,2,15,143,153,237,273,283,284,324,460,471,472,473,477,486,488,503],param_byt:486,param_group:486,param_shap:15,paramet:[1,2,4,9,11,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,88,89,90,91,92,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,112,113,114,115,116,117,122,123,124,125,126,127,128,130,131,132,133,134,135,136,137,140,141,142,143,144,145,147,148,149,150,151,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,241,242,243,244,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,301,302,303,305,306,307,309,312,313,314,315,316,317,318,319,320,321,322,323,324,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,349,350,351,352,353,354,355,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,400,401,402,403,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,427,428,429,430,431,432,433,434,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,459,463,464,465,466,468,470,471,472,473,477,478,480,481,483,485,488,489,490,491,493,494,497,498,500,501,502,503,504,505,506],parameter:[15,498],parameteriz:15,parameters_to_prun:338,parameters_to_vector:338,parameterserver2:490,parametr:[15,331,478],params_rref:490,paramter:488,parent:[466,484,488,492,497],parenthes:462,parenthesi:[2,93,356],park:503,parmar:[313,315,317],pars:[2,14],parse_arg:[14,476,485],parser:[14,476],part:[1,3,4,5,6,9,10,14,15,88,102,126,131,138,139,140,143,148,150,151,237,273,324,423,439,440,441,442,457,459,461,464,465,472,473,478,479,485,486,488,490,491,492,493,500],parti:[6,457,459,476,501],partial:[15,83,178,270,271,272,334,462,468,470,473,485,488,492],particip:[13,14,324,491],particular:[1,5,13,143,230,237,273,438,459,461,476,479,480,482,485,498,500],particularli:[13,229,230,280,459],partit:[202,491,492],partli:6,partner:5,pascal:[500,503],pass:[1,2,4,5,9,13,14,15,17,55,83,88,143,150,151,159,202,203,204,205,230,235,236,237,239,253,273,278,299,314,315,316,317,324,329,334,348,351,397,398,425,432,457,459,462,464,466,467,468,470,471,472,473,475,476,477,478,480,483,485,486,488,490,492,493,497,498,500,503,504,505],past:[14,479,503],paszk:[6,7],patch:[5,238,319],path:[2,3,9,14,288,457,461,473,478,482,483,500,502,506],path_importer_cach:457,path_to_hub_dir:457,pathlib:506,pathlik:[159,397],patienc:486,pattern:[14,230,351,459,473,476,478,479,488],paus:490,pca:365,pct_start:486,pdb:[146,149,152,459,461],pdf:[217,290,488,505],pdist:[1,282,460],peak:[11,486],peer:[5,14,476],penalti:[1,486,488],pend:[490,497],penros:366,peopl:5,pep:[459,461],per:[1,9,11,13,14,89,160,210,211,212,213,214,227,229,230,236,243,248,250,251,252,253,254,259,265,266,276,277,278,280,286,301,302,309,313,314,315,316,317,318,324,355,359,365,373,406,426,468,469,470,475,477,480,482,488,491,497,498,502,503],per_channel_affin:[373,488],per_channel_symmetr:488,per_index_weight:236,per_sample_weight:[236,460,470],per_tensor_affin:[374,488],per_tensor_symmetr:488,per_work:13,percentag:486,perchannelminmaxobserv:488,perfectli:[482,504],perform:[1,2,4,8,12,13,14,15,24,25,26,27,28,29,37,43,46,53,75,76,86,143,148,150,165,190,194,217,221,222,223,224,225,226,236,237,241,253,257,273,281,287,324,348,358,365,370,391,398,424,425,426,443,459,466,467,468,469,470,471,472,473,475,476,477,478,482,486,488,490,491,492,493,494,495,496,497,498,502,504,505],perhap:501,period:[11,44,51,123,124,460,481,486],perman:[329,330,331,332,333,334,335,336,345,492],permiss:478,permit:493,permut:[13,89,383,460,468,485,496,498],perplex:15,persist:[4,5,12,143,237,241,257,273,287,484],person:[5,6,458,500,501],perspect:[477,491,505],perturb:[2,131],pervas:15,peter:7,peterjc123:[7,484],phase:[2,484],phenomenon:479,phi:[240,470],phone:503,photo:500,phototour:501,phy:375,physic:[462,475],pic:505,pick:[490,505],pickl:[13,159,273,397,466],pickle_load_arg:159,pickle_modul:[159,397],pickle_protocol:397,pid:479,piec:[5,491],pieter:7,pietern:7,pil:[500,501],pil_to_tensor:505,pillow:[497,505],pin:[90,92,143,237,273,348,432,494,498],pin_memori:[13,90,92,432,459,460,476,494,498],pinvers:[460,498],pip:[484,497],pipe:490,pipelin:505,pivot:[177,178,179,498],pixel:[222,232,233,280,285,320,470,488,500,504,505,506],pixel_shuffl:[285,460,485],pixelshuffl:470,pixelwis:503,pizza:503,pkg:484,place:[1,5,8,11,13,14,18,36,54,92,143,193,206,216,230,231,232,233,234,237,247,260,273,289,290,291,292,298,312,324,326,327,337,338,339,341,342,343,344,393,433,459,461,468,470,472,476,480,485,488,490,491,494,496,498,505],placehold:[249,488],plai:14,plain:[9,211,274,283],plan:[2,5,14,102,126,131,324,392],plane:[81,199,200,201,203,204,205,207,208,209,221,222,223,224,225,226,239,255,256,259,262,267,268,269,355,394,470,473,488,500],plant:503,platform:[9,372,464,482,488,503],pleas:[1,2,3,5,6,8,10,14,15,36,46,54,92,217,221,222,223,224,225,226,253,324,366,463,467,468,469,470,472,473,478,484,485,486,488,490,491,496,497,498,500],plenti:479,plot:[475,497],plu:[2,505],plugin:497,plume:500,pmf:15,png:500,point:[1,2,5,6,8,11,13,18,32,44,45,51,109,118,123,124,131,133,141,143,150,151,156,158,160,165,173,207,208,209,221,222,223,224,225,226,237,238,267,268,269,273,319,324,366,373,374,375,384,387,400,401,406,437,443,459,461,462,469,470,472,473,477,482,486,488,490,491,495,497,498,500,502,504,505,507],pointer:[11,288,477,480,490,492,498],pointwis:[15,165,166,467,474],poisson:[286,460,470],poisson_nll_loss:[1,460],poissonnllloss:470,polar:15,poli:500,polici:[15,486],policy_network:15,polosukhin:[313,315,317],polyfil:459,polygamma:[460,498],polygamma_:[460,498],polygon:500,polymorph:461,pool:[11,199,200,201,203,204,205,207,208,209,239,255,256,267,268,269,270,271,272,274,475,478,481,482,488,490,504],pooled_w:504,poor:472,pop:[11,274,283],popul:[2,15,498],popular:501,popularli:505,port:14,portion:[110,230,324,329,330,331,332,333,334,335,336,427,470,486],pos_weight:[211,460,470],pose:491,posit:[2,13,15,44,46,51,62,63,64,123,124,143,144,160,211,221,222,223,228,230,236,237,273,279,306,313,318,393,439,440,441,442,448,457,460,467,468,470,478,485,488,498,504,505,507],position:[467,468],positive_definit:15,positive_integ:15,positivedefinit:15,possess:6,possibl:[6,9,10,13,15,143,150,159,211,217,237,273,390,416,459,461,466,467,470,471,473,475,477,478,481,484,488,490,492,495,498,500],post:[5,479,484,488,503,505],postprocess:503,pot:503,potenti:[14,46,217,221,222,223,224,225,226,324,461,466,470,473,485,496,498],potential_energi:15,pottedpl:503,pow:[1,2,460,467,472,485,498],pow_:[460,467,498],pow_adder_reduc:2,pow_reduc:2,powbackward0:2,power:[183,255,256,353,369,388,449,462,470,486,505],powertransform:15,pr_curv:497,practic:[13,15,458,459,466,468,478,503],pradhan:7,pre:[2,10,143,237,273,329,330,331,332,333,334,335,336,337,457,459,464,475,485,486,488,498,500,503],preced:[462,475,486],precis:[2,9,15,207,208,209,211,221,222,223,267,268,269,324,372,406,458,469,470,476,485,488,495,497,498,503],precision_matrix:15,precompil:480,precondit:160,precondition:160,pred:[324,490],predict:[202,211,497,503],predict_net:485,preemptiv:[324,488],preexist:2,prefer:[6,13,131,160,280,398,459],prefix:[143,237,273,457,488,493],prelu:[1,274,460,485],prepack:464,prepar:[462,485],prepare_for_backward:477,prepare_qat:488,prepend:[9,13,143,182,237,273,474],preprocess:[10,143,498,503],prerequisit:477,presenc:6,present:[6,14,143,177,202,237,273,348,457,465,466,467,468,473,478,491,495,500,502,503,504],preserv:[2,13,105,106,145,148,274,283,320,398,459,464,467,470,471,476,485,488,490,495,498,505],preserve_format:[91,113,362,378,380,382,456,495,498],preserve_rng_st:4,preserved_attr:145,pressur:[2,473],pretrain:[235,236,457,473,485,503],pretrained_backbon:503,pretti:[143,406,459],prevent:[1,5,11,13,14,75,76,141,231,279,301,370,424,440,442,466,470,472,477,479,492,493],previou:[14,148,241,257,287,324,329,330,331,332,333,334,335,336,375,423,464,473,484,492,498],previous:[2,147,459,474,476,489,490,498],prim:[459,485],primari:[6,462],primarili:[15,17,488,498],primit:[14,459,461,462,475,490],princip:365,print:[2,13,17,143,145,147,149,177,215,237,249,261,273,285,337,338,339,340,343,406,457,459,460,470,475,476,478,485,486,488,490,497,498,500,504],printable_graph:485,printer:459,printout:11,prior:[5,6,338,474,486,488],prioriti:[5,11,461],pritam:7,pritamdamania87:7,privat:478,pro:[484,497],prob:[15,460],probabilist:[365,426],probabl:[13,45,165,193,202,206,217,231,232,233,241,253,257,280,287,466,470,478,484,485,497,498,505],problem:[5,14,150,160,175,229,280,466,470,479,481,482,484,492],problemat:[5,459],proce:[472,476,490],procedur:[150,151,160,490,500],proceed:[11,491,492],process:[1,2,8,9,11,14,15,148,160,210,211,227,229,235,236,248,253,254,265,266,270,271,272,276,277,278,280,286,301,302,309,313,315,317,318,324,457,459,466,467,468,470,473,475,476,477,478,480,481,482,484,488,492,493,494,500,503],process_group:[309,324,490],process_id:309,processcontext:466,processgroup:14,processgroupag:490,processgroupgloo:[477,490],processgroupmpi:477,processgroupnccl:477,processgrouprpcbackendopt:490,prod:[1,237,238,319,460,467,485,498],prod_:[102,126,131,222,223,225,226,392],prod_d:[238,319],produc:[1,5,9,11,13,18,116,149,150,151,185,187,189,217,221,222,223,224,225,226,324,375,459,461,466,467,470,472,474,476,480,484,488,493,496],producer_info:480,product:[2,10,14,15,24,27,28,29,43,53,57,61,72,75,87,89,117,182,190,194,241,242,257,258,370,433,459,467,470,480,498,505],prof:2,profil:[3,406,490],profile_memori:2,program:[2,3,11,13,14,459,461,462,473,476,479,480,481,484,497],programm:461,progress:[11,449,457,465,486,503],project:[5,89,365,457,483],projector:497,promot:[56,86,108,232,233,371,391,495],promote_typ:460,prompt:484,prone:[466,481],propag:[2,15,466,467,478,480,485,488,493,498],propagate_qconfig_:488,proper:[13,221,222,223,224,225,226,461,473,476,484],properli:[5,13,274,275,283,284,324,425,427,478,481,490,491,495],properti:[2,13,15,143,206,303,325,348,470,476,486,490,495,507],proport:[255,256,505],proportion:[320,470,488],propos:[6,7,486,491],protect:473,proto:485,protobuf:485,protocol:[13,397,478,484,490],prototyp:[468,490,495],prove:466,proven:[5,231,324],provid:[1,2,5,6,8,9,10,11,13,14,15,17,52,55,58,63,64,89,112,141,147,149,150,224,225,226,229,241,242,257,258,270,271,272,279,280,287,289,313,324,329,365,391,398,415,440,442,457,459,461,464,466,467,468,470,476,477,478,485,486,488,490,491,492,493,494,495,497,498,499,502,503,504,505,507],proxi:490,prune:[329,330,331,332,333,334,335,336],pruned_tensor:[329,330,331,332,333,334,335,336],pruning_method:338,pruning_typ:[334,338],ps_roi_align:504,ps_roi_pool:504,pseudo:[18,366],pseudoinvers:15,pseudorandom:[45,193,359,365,367,379,426,482],psi:[84,368],psroialign:504,psroipool:504,pth:[457,459,465],pts:502,pts_unit:502,publish:5,puhrsch:7,pull:[6,10],purchas:6,pure:[10,144,459],purg:497,purge_step:497,purpos:[14,182,217,406,491,498],push:[5,6,11],put:[5,13,159,243,457,466,476,481,486,491,492,498,500],put_:[460,498],pyav:501,pybind11:[9,10,461],pybind:9,pyc:480,pycapsul:16,pyplot:497,pyramid:504,python3:[159,397],python:[1,2,3,6,9,10,11,13,14,57,58,67,86,92,129,143,144,145,146,148,149,150,159,174,186,230,274,275,283,284,324,358,390,393,400,421,422,424,433,443,450,451,457,458,466,468,470,473,474,475,476,477,478,479,480,481,484,485,488,489,490,491,492,493,498,501,505],python_only_fn:149,pytorch:[0,2,3,8,9,11,13,15,36,56,68,112,132,133,134,135,136,148,210,217,313,324,348,397,457,461,465,468,469,474,475,476,479,480,481,483,484,486,488,490,491,495,496,497,498,500,503,504,507],pytorch_jit:459,q_add:488,q_filter:488,q_input:488,q_per_channel_axi:[460,488,498],q_per_channel_scal:[460,488,498],q_per_channel_zero_point:[460,488,498],q_proj_weight:460,q_scale:[460,488,498],q_zero_point:[460,488,498],qconfig:488,qconfig_dict:488,qconfig_spec:488,qconfigdynam:488,qint32:[373,374,488],qint8:[373,374,488],qmnist:501,qnnpack:488,qparams_dict:488,qscheme:[460,488,498],qtensor:[460,498],quad:[210,211,253,254,265,280],quadrant:41,quadrat:479,qualiti:[5,500],quant:488,quant_max:[460,488],quant_min:[460,488],quantiti:[332,333,335,336,338,341,342,343,344,486],quantiz:[2,8,78,373,374,458,485,495,498],quantization_schem:[373,374],quantize_dynam:488,quantize_dynamic_jit:488,quantize_jit:488,quantize_per_channel:[460,488],quantize_per_tensor:[460,488],quantize_qat:488,quantized_batch_norm:460,quantized_gru:460,quantized_gru_cel:460,quantized_input:488,quantized_lstm:460,quantized_lstm_cel:460,quantized_max_pool2d:460,quantized_rnn_relu_cel:460,quantized_rnn_tanh_cel:460,quantstub:488,quantwrapp:488,quasi:375,quasirandom:375,quennevil:7,queri:[11,279,460,476],question:458,queu:[11,476,498],queue:[5,466,497],queue_2:466,quick:[2,5],quickli:5,quint8:[373,374,488],quit:[5,478,479,490],qw_i:279,r2plus1d_18:503,r3d:503,r3d_18:503,r_t:241,race:473,racket:503,rad2deg:[460,467,498],rad2deg_:[460,467],radian:[15,31,41,77,376,460],rais:[1,2,4,5,9,15,146,147,152,159,183,333,335,338,348,462,466,473,476,478,479,490,498,505],raise_except:2,ram:159,rand:[1,2,15,130,145,149,150,151,152,162,164,313,314,315,316,317,324,367,378,459,460,461,463,467,468,470,485,490,491,496,497,498,499,503,504],rand_lik:[460,463,499],randint:[46,191,217,460,463,468,470,493,497,498,499,503,505],randint_lik:[460,463,499],randn:[2,8,15,21,22,23,24,25,26,27,28,33,34,35,36,38,39,40,41,42,43,53,58,60,61,62,63,64,66,70,71,72,73,74,75,76,79,80,81,82,83,85,86,89,102,107,126,127,128,130,131,149,161,163,167,168,174,177,178,179,181,182,183,185,186,187,189,190,191,192,194,198,199,200,201,203,204,205,206,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,225,226,228,229,231,232,233,234,238,239,240,241,242,243,244,245,246,247,249,250,251,252,254,255,256,257,258,259,260,261,262,263,264,265,267,268,269,272,280,281,282,283,284,285,286,287,289,290,291,292,297,298,300,303,304,305,306,307,308,309,310,311,312,318,319,323,360,366,369,370,372,382,385,386,392,395,396,408,410,411,412,413,414,417,418,421,422,424,425,427,428,430,431,433,436,437,438,439,441,444,450,451,452,453,454,460,461,463,467,468,470,473,474,475,476,477,478,485,488,493,495,497,498,499],randn_lik:[460,463,485,499],random:[15,18,45,121,129,160,180,206,217,241,257,290,329,335,336,343,344,359,365,375,377,378,379,380,381,382,383,399,407,426,457,458,460,470,482,485,497,498,500,503,504,505],random_:[210,211,229,280,460,467,470,498,499],random_devic:18,random_offset:500,random_sampl:460,random_split:13,random_tensor:491,random_unstructur:[340,345],randomaffin:505,randomappli:505,randomchoic:505,randomcrop:[500,505],randomeras:505,randomgrayscal:505,randomhorizontalflip:505,randomli:[2,13,206,231,232,233,290,335,470,480,488,500,505],randomord:505,randomperspect:505,randomresizedcrop:505,randomrot:505,randomsampl:13,randomsizedcrop:505,randomverticalflip:505,randperm:[460,463,499],rang:[1,2,11,13,14,15,22,42,45,66,98,103,125,165,202,229,237,239,242,247,258,264,275,280,284,289,303,304,305,327,448,459,460,470,473,475,479,481,485,486,488,495,497,498,499,500,503,505,506],range_pop:11,range_push:11,rangl:15,rank:[13,14,15,175,184,266,309,324,365,366,425,426,477,481,490,491],rao:7,rapidli:479,rare:[1,5,472,488],rate:[1,15,232,233,367,480,497,502,503],rather:[2,4,9,116,406,459,468,470,474,478,485,488,490,497,498,506],ratio:[15,239,504,505],ravel:334,raw:229,rbrace:[439,440,441,442],rceil:[32,60],rcond:[366,460],rdinat:[415,493],reach:[5,6,13,160,481,486,490],reachabl:14,read:[13,14,36,147,159,432,467,468,473,474,476,480,485,486,490,498,502],read_video:502,read_video_timestamp:502,readabl:[0,11,13,485],readi:[5,9,17,44,51,123,124,324,459,477,490,491],readlin:[147,159],readthedoc:89,real:[13,15,23,24,25,26,27,28,29,43,66,88,102,126,131,138,139,140,192,282,285,392,423,425,427,452,453,457,460,473,490,492,496,498,505],real_vector:15,realiti:3,realli:[2,5,425,427,473],realloc:128,realvector:15,rearrang:[285,468,470],reason:[13,14,150,151,185,187,189,210,397,459,461,470,473,477,483,485,488,490,495],rebas:5,rebuild:5,rebuilt:5,recal:[211,478,497,503],receiv:[2,5,11,13,14,15,17,324,466,472,481,490,491,492],recent:[1,2,5,134,461],recip:329,reciproc:[1,396,460,467,485,498],reciprocal_:[460,467,498],recogn:[13,490],recognit:[500,503],recommend:[1,2,13,14,15,18,136,144,160,202,230,324,397,432,446,457,459,466,468,470,471,472,473,475,476,478,481,485,488,498],recomput:[4,355,470,486],recompute_scale_factor:470,reconstruct:[11,210,211],record:[2,11,32,44,51,90,91,92,101,112,113,123,124,143,150,158,173,230,237,273,361,362,377,378,379,380,381,382,383,384,415,432,455,456,459,461,472,473,476,485,488,490,497,498],record_ev:11,record_shap:2,record_stream:[463,498],recordfunct:480,recordfunctioncallback:480,recordingobserv:488,recov:[126,131,179,324,348,472,479],recoveri:479,recreat:[2,473],rectangl:505,rectangular:179,rectifi:[290,291,470,471,488],recurr:[14,150,217,230,241,242,257,287,351,476,486],recurs:[15,143,149,237,273,461,486],recv1:491,recv2:491,recv:[14,491],redirect:9,redistribut:484,reduc:[1,2,11,14,24,33,34,174,185,186,187,189,191,210,211,212,213,214,227,229,236,248,253,254,265,266,276,277,278,280,286,301,302,309,318,324,356,370,372,421,422,424,425,450,451,460,466,467,470,475,477,484,486,488,490,493,498],reduce_add:11,reduce_multigpu:14,reduce_op:14,reduce_rang:488,reduce_scatt:14,reduce_scatter_multigpu:14,reducelronplateau:486,reduceop:14,reducesum:485,reduct:[1,14,165,210,211,217,227,229,236,248,253,254,265,266,276,277,278,280,286,301,302,318,324,460,467,470,477,488],redund:[14,131,392,423],redundantli:472,reevalu:486,refactor:[5,483,484],refcount:[466,481],refer:[2,11,13,14,15,17,36,54,92,144,149,153,160,217,279,324,365,375,426,457,460,466,467,469,470,472,473,477,478,479,481,488,490,491,495,496,497,498,499,501,503,504],referenc:[438,461,473,490],refin:468,refine_nam:[460,467,468],reflect:[111,141,221,222,223,293,294,423,459,470,479,496,498,505],reflection_pad1d:460,reflection_pad2d:460,reflection_pad:485,reflectionpad2d:470,reflector:116,refriger:503,regard:[224,225,226,235,236,459,470,492],regardless:[1,13,446,472,490],region:[1,15,239,247,427,459,466,470,472,476,488,504,505],regist:[2,10,14,15,143,159,237,273,274,275,283,284,324,325,466,477,478,480,485,490,498],register_backend:[14,490],register_backward_hook:[143,237,273],register_buff:[143,237,273,459,461,478],register_custom_op_symbol:485,register_forward_hook:[143,237,273],register_forward_pre_hook:[143,230,237,273],register_hook:[2,143,237,273,463,467,498],register_kl:15,register_packag:159,register_paramet:[143,237,273,478],registr:324,regress:[5,210,253,482,503],regular:[2,3,8,14,217,231,232,233,273,274,275,283,284,468,470,478,480,485,486,488],regularli:[5,485],reimplement:[143,237,273],reinforc:15,reiniti:457,reinterpret:[15,498],reinterpreted_batch_ndim:15,rel:[2,6,9,15,30,137,318,470,475,476,480,486],relat:[5,6,13,14,238,319,324,365,490],relationship:2,relative_path_to_checkpoint:457,relative_to:484,relax:[15,150,151],relaxed_bernoulli:15,relaxed_categor:15,releas:[5,11,14,25,86,253,397,457,461,466,470,475,476,482,483,484,485,490],relev:[6,462,472,473,498],reli:[6,13,230,473,475,477,482,496],reliabl:490,reload:457,relu1:[299,488],relu2:299,relu6:460,relu:[149,273,287,289,299,306,313,315,317,459,460,464,468,471,485],relu_:[460,470,488],rem:484,remain:[1,2,15,175,329,330,331,332,333,334,335,336,345,390,466,472,479,500],remaind:[109,460,498],remainder_:[460,498],remap:[147,159,457,465],rememb:[479,481],remot:[13,14,324,490,491,503],remov:[2,6,14,141,143,145,182,237,273,274,283,324,329,330,331,332,333,334,335,336,341,342,343,344,346,347,419,437,445,464,470,492,498,504],removablehandl:[143,237,273],remove_dropout:464,renam:[460,467,468],rename_:[460,467,468],rename_map:468,renamed_img:468,render:[5,497],rendezv:[477,490],renorm:[1,235,236,460,470,498],renorm_:[460,498],rep:485,repackag:479,reparameter:[15,329,330,331,332,333,334,335,336,345,346,347,355],reparametr:[15,329,330,331,332,333,334,335,336,339,470],reparametriz:15,repeat:[15,177,365,389,426,460,470,485,498,504,505],repeat_interleav:[460,482,498],repeatedli:[102,126,131,392,476,493],repetit:389,repl:2,replac:[2,9,13,14,146,152,193,312,337,338,339,341,342,343,344,355,459,460,464,473,480,481,484,485,488,498],replic:[13,148,221,222,223,230,238,295,296,297,319,324,470],replica:[13,14,230,324,477],replication_pad1d:460,replication_pad2d:460,replication_pad3d:460,replication_pad:485,replicationpad2d:470,repo:[5,457,484,486,503],repo_nam:457,repo_own:457,report:[2,3,6,472,476,503],repositori:[6,457,478,481],repr:406,repres:[2,8,11,13,15,16,89,102,125,137,138,139,140,142,150,151,202,217,241,287,319,328,329,332,333,334,335,336,338,341,342,343,344,348,354,364,365,413,423,427,437,446,447,452,453,459,461,473,478,480,485,486,488,490,493,495,500,507],represent:[1,143,237,273,279,459,478,485,488,493,498,504,507],reproduc:[5,13,46,217,221,222,223,224,225,226,457,458,470,486,498],requant:488,request:[6,11,14,160,472,473,475,476,490,491,492],requir:[1,2,4,6,9,10,11,13,14,15,105,106,131,143,160,236,237,273,313,314,315,316,317,324,325,329,425,457,459,463,464,466,468,470,472,473,475,476,477,478,479,480,481,485,486,488,490,491,492,497,498,500,503],require_grad:2,requires_grad:[2,15,32,37,44,51,90,91,92,93,101,112,113,123,124,143,158,173,210,211,229,235,236,237,254,265,273,280,286,318,324,325,356,361,362,377,378,379,380,381,382,383,384,403,415,432,455,456,460,463,467,468,470,478,485,490,491,493,498,499],requires_grad_:[2,143,217,237,273,432,460,467,470,493,498],rerr:160,rerun:4,res1:485,res2:485,res:[53,485],resampl:505,rescal:[210,211,229,277,278,280,303,305,353,470,505],research:[5,457],resembl:10,reserv:[11,462],reserved_byt:11,reset:[2,11,241,288,365,375,426,485,489],reset_max_memory_alloc:11,reset_max_memory_cach:11,reset_peak_memory_stat:11,reset_peak_stat:11,reshap:[10,238,293,294,295,296,319,353,358,416,433,460,468,485,493,496,497,498,505],reshape_a:[460,485,496,498],reshuffl:13,resid:[14,159,324,476,498],residu:[160,175,503],resili:[486,490],resiz:[111,320,467,470,488,494,498,503,505],resize_:[2,154,459,460,461,467,488,494,498],resize_as_:[2,460,467,498],resizeas_:493,resized_crop:505,resnet101:503,resnet152:503,resnet18:[457,459,461,465,473,503],resnet34:503,resnet3d:503,resnet50:[457,497,503],resnet:[457,459,461,485,497],resnext101_32x8d:503,resnext50_32x4d:503,resolut:[285,462,470],resolv:[5,6,15,224,225,226,238,461,462,484],resourc:[9,13,466],respect:[1,2,14,15,27,28,29,42,81,83,92,143,160,210,217,224,225,226,230,237,241,257,273,274,283,287,318,320,329,333,335,372,413,425,433,468,472,486,488,494,498,500,504,505],respond:5,respons:[3,5,6,14,15,17,262,324,470,473,476,478,490],rest:[5,13,468,488,490,493],restart:[466,486,497],restor:[4,18,393,483],restrict:[13,253,461,462,468,488],restructur:5,result:[2,3,5,9,11,13,14,15,17,23,24,25,26,27,28,36,43,46,54,57,66,67,73,74,75,76,79,86,89,92,102,126,131,144,145,150,151,153,154,156,167,168,174,185,186,187,189,191,192,230,232,233,238,241,257,287,319,356,357,359,365,366,369,370,375,391,392,398,412,421,422,423,424,426,429,436,439,441,450,451,459,460,461,467,468,470,471,472,473,474,475,476,477,478,479,482,485,486,490,491,493,495,497,498,503,504,505],result_avg:505,result_typ:460,resum:[486,490,492,497],ret:[478,490],ret_fut:490,retain:[2,33,34,37,145,154,174,185,186,187,189,191,358,370,397,421,422,424,439,440,441,442,450,451,466,481,483,498],retain_grad:[2,460,498],retain_graph:[2,460,472,473,490,498],rethink:503,retri:[11,492],retriev:[2,4,13,235,238,319,349,470,480,490,491,492],return_count:[446,447,460,498],return_indic:[203,204,205,239,267,268,269,270,271,272,460,470,488],return_invers:[446,447,460,498],return_typ:[73,74,154,185,187,189,191,412,434,438],reus:[2,14,473,488,498,505],reveal:[477,493],revers:[1,15,104,324,329,330,331,332,333,334,335,336,345,449,460,461,473,477,498,505],revert:[6,306,470,492],review:6,reward:15,rewrit:[464,473],rfc:491,rfft:[131,460,498],rfloor:[60,107,108,110,202,207,208,209,221,222,223,224,225,226,238,255,256,267,268,269,319,320,321,322,384,392,423,470],rgb:[251,252,497,503,505],rgba:505,rho:486,riba:318,richard:15,riemann:473,right:[1,5,14,15,32,44,51,52,55,60,84,85,89,105,107,108,110,123,124,141,159,165,166,193,195,202,207,208,209,210,211,221,222,223,224,225,226,229,238,253,254,255,256,262,263,264,265,267,268,269,276,277,278,282,283,288,318,319,320,321,322,327,384,398,423,433,438,449,457,460,466,467,468,470,478,485,486,488,492,505],right_ankl:503,right_ear:503,right_elbow:503,right_ey:503,right_hip:503,right_kne:503,right_should:503,right_wrist:503,righteye_i:500,righteye_x:500,rightmost:15,rightmouth_i:500,rightmouth_x:500,risk:5,riski:5,rmsprop:486,rng:[4,11,13,399,479,482,489],rnn:[241,242,257,258,289,325,348,460,463,479,485,488,497],rnn_relu:460,rnn_relu_cel:460,rnn_tanh:460,rnn_tanh_cel:460,rnncell:488,robin:14,robust:[160,466,501],roi:504,roi_align:504,roi_pool:504,roi_width:504,roialign:504,roipool:504,roll:[460,498],roof:2,root:[396,417,460,473,486,490,491,493,500],ross:301,rot90:[460,498],rotat:[15,394,473,505],rotation_transform:505,rough:5,roughli:[13,131,477,503],round:[13,14,32,108,372,460,467,470,482,485,488,498],round_:[460,467,498],roundtrip:5,routin:[63,425],row:[13,59,88,101,105,106,154,174,175,185,186,187,189,191,193,357,370,388,421,422,424,440,442,449,450,451,460,470,493,497,498,506],row_limit:2,rowmajor:[2,324],rpc:[17,324,458,491,492],rpc_async:[17,490,492],rpc_backend_opt:490,rpc_sync:[490,491,492],rpc_timeout:490,rpcagent:490,rpcbackendopt:490,rpn:503,rprop:486,rref1:[490,491],rref2:[490,491],rref:[324,491],rrefid:492,rrelu:[460,485],rrelu_:[460,470],rrelu_with_nois:460,rrelu_with_noise_:460,rsampl:15,rsqrt:[1,460,467,485,498],rsqrt_:[460,467,498],rst:5,rsub:[460,485],rtol:[2,30,137,459,460,498],rule:[2,14,15,55,56,86,108,185,189,212,213,214,250,251,252,309,329,330,331,332,333,334,335,336,398,437,459,461,467,473,474,478,495,498],run:[1,2,3,4,5,10,13,14,17,89,102,126,131,143,144,145,147,150,151,159,185,187,189,212,213,214,230,237,250,251,252,273,309,392,405,440,442,459,464,466,472,473,475,476,477,478,479,480,481,482,484,485,486,488,489,490,491,492,497,499],run_14h:497,run_arg:488,run_fn:[2,4,488],run_model:479,run_process:491,runnabl:497,running_mean:[143,212,213,214,237,250,251,252,273,309,460,470],running_var:[143,212,213,214,237,250,251,252,273,309,460,470],runtim:[2,4,9,14,467,468,478,481,485,488],runtimeerror:[1,2,9,134,193,459,461,467,472,474,479,484,485,495,498,505],runtimewarn:15,rv0:459,rv1:459,rvert:[30,137],rvert_p:[318,470],rzou:[159,397],s1064827500366124:160,s1064827500370883:160,s_min:217,s_n:217,sacrif:503,safe:[1,11,324,459,472,473,480,490],safest:[9,493],safeti:[459,468],sai:[5,459,472,479,485,491,492,498,500],said:2,sam:[6,7],same:[1,2,5,9,10,11,13,14,15,17,24,37,43,45,46,53,54,55,58,72,81,83,89,91,95,102,109,111,113,114,126,127,128,131,141,143,148,149,150,151,154,174,181,185,186,187,189,191,196,200,201,204,205,206,208,209,210,211,212,213,214,215,216,218,219,220,222,223,224,225,226,228,229,231,232,233,234,236,238,240,243,244,245,246,247,248,250,251,252,253,254,256,259,260,261,262,263,264,265,268,269,270,271,272,276,277,279,280,281,282,286,290,291,292,293,294,295,296,297,298,300,301,302,303,304,305,306,307,308,309,310,311,312,313,319,320,323,324,329,330,331,332,333,334,335,336,348,352,359,362,367,369,370,372,378,380,382,385,387,389,390,392,393,398,420,421,422,424,429,437,446,447,448,450,451,456,457,459,461,466,467,468,470,472,473,474,475,476,477,478,479,480,481,485,488,490,491,492,493,494,495,496,497,498,500,503,504,505,506],sampl:[13,15,18,45,151,158,173,177,193,206,210,211,215,221,222,223,224,225,226,227,229,231,232,233,235,236,248,250,251,252,253,254,261,265,266,276,277,278,280,286,290,301,302,309,318,359,365,367,375,379,437,470,471,472,480,482,486,488,497,498,500,504,505],sample_input_cpu:459,sample_input_gpu:459,sample_n:15,sample_r:497,sample_shap:15,sampler:488,sampling_ratio:504,samplingprob:480,sandwich:503,sane:406,satisfi:[2,12,15,30,55,131,202,217,238,241,257,287,338,372,398,423,486,495,498,504],satur:[470,505],saturation_factor:505,save:[2,4,5,8,10,14,142,143,146,147,150,152,159,237,273,324,459,460,465,468,473,478,481,482,485,486,488,497,498,500,502,506],save_for_backward:[2,472,478],save_imag:506,save_invstd:460,save_mean:460,save_to_buff:142,saved_tensor:[2,472,473,478],saved_weight:498,sax:471,sbd:501,sbdataset:500,sbu:501,sbucaptionedphotodataset:500,scalar1:460,scalar2:460,scalar:[2,15,23,25,26,37,55,86,108,156,182,188,192,202,210,211,217,229,230,248,253,254,259,266,276,277,278,280,286,301,302,318,357,361,362,369,371,398,415,432,443,446,447,455,456,460,461,470,471,478,485,486,488,490,493,495,497,498],scalar_tensor:[460,485],scalar_valu:497,scalartensor:478,scale:[5,13,15,27,28,29,43,206,231,235,236,259,298,320,321,322,373,374,458,460,468,470,471,473,479,486,488,498,500,503,504,505,506],scale_channel:468,scale_each:506,scale_factor:[320,321,322,470,488],scale_fn:486,scale_grad_by_freq:[235,236,460,470],scale_hh:460,scale_ih:460,scale_mod:486,scale_tril:15,scaled_grad_param:472,scaler:[1,472],scales_d:460,scales_h:460,scales_w:460,scatter:[11,14,230,460,479,485,490,498],scatter_:[460,498],scatter_add:[460,485,498],scatter_add_:[460,482,498],scatter_list:14,scenario:[1,13,476,485,490],scene:497,schedul:[480,486],schema:[459,460],scheme:498,schmidtm:486,sci:160,sci_mod:406,scientif:406,scipi:[59,470,497,500,503],scissor:503,scope:[5,309,338,459,461,479,485,492],score:[229,503,504],scrambl:375,scratch:[5,159,397,473],script:[1,3,13,14,144,145,146,148,150,152,324,457,461,464,475,480,490,503],script_add:490,script_bar:144,script_method:[459,485],script_modul:464,scriptabl:152,scripted_fn:459,scripted_modul:[145,149],scriptfuncion:149,scriptfunct:[147,149,150],scriptmodul:[142,145,147,148,149,150,151,459,461,464,485],scrutini:5,search:[5,8,55,246,398,459,467,468,470,488,503],searchsort:460,seat:6,sebastian:7,sec:502,second:[2,4,9,14,23,24,27,29,30,33,34,35,41,43,47,49,50,53,72,81,83,88,94,115,122,137,155,159,165,166,176,182,185,189,190,192,197,202,208,209,215,222,223,225,226,235,236,241,256,257,262,266,268,269,287,338,394,415,436,440,442,449,461,470,473,479,482,483,484,490,493,497,502,505],secondli:210,section:[2,5,13,15,230,272,351,459,461,462,466,468,473,477,478,481,488,491,497,498],see:[1,2,3,4,5,6,9,10,11,13,14,15,32,33,34,35,37,44,46,51,53,79,90,92,101,102,108,112,116,123,124,126,131,143,145,149,150,151,153,154,158,160,166,168,173,174,177,185,186,187,189,190,191,202,210,211,217,221,222,223,224,225,226,227,229,230,235,236,237,241,248,253,254,257,265,266,270,271,272,273,276,277,278,279,280,286,287,290,301,302,314,315,316,317,318,320,324,325,333,342,351,353,355,357,361,363,364,366,370,371,377,379,381,383,384,390,391,392,397,412,415,421,422,423,424,432,440,442,450,451,454,455,457,459,460,461,462,465,466,467,468,470,472,473,476,478,479,480,481,482,484,485,488,490,491,493,495,496,498,499,503,504,505,506],seed:[11,13,18,129,180,365,375,426,460,479,482,489,500],seed_al:11,seek:[147,159],seem:[5,485,505],seen:[2,15,58,224,225,226,459,486,498],segfault:466,segment:[4,11,500,501,505],select:[10,11,12,13,15,46,61,160,217,221,222,223,224,225,226,241,257,287,343,344,454,459,460,466,467,468,470,475,476,485,488,496,498,500,503,504,505],select_model_mode_for_export:485,self:[1,2,13,127,142,143,144,145,146,148,149,150,151,152,202,206,237,273,274,275,283,284,298,315,317,333,335,348,369,385,459,460,461,467,468,472,473,474,475,478,479,485,486,488,490,494,498,505],self_cpu_memory_usag:2,self_cpu_time_tot:2,self_cuda_memory_usag:2,selu:[206,460,485],selu_:460,semant:[6,11,33,34,35,54,145,148,447,458,461,485,500,501,505],semi:[227,248,471],semidefinit:64,send1:491,send2:491,send:[5,11,13,14,466,477,481,484,490,491,492,499],sender:[14,492],sens:[3,15,338,446,447],sensit:[301,485,491,504],sent:[11,14,438,466,481,490,491,492],separ:[1,2,9,13,14,89,116,148,241,243,250,251,252,257,259,281,287,359,457,460,470,472,475,486,491,497,506],seq:[2,58,67,188,241,257,287,351,445,498],seq_len:[241,257,287],seq_unpack:351,sequenc:[2,11,13,15,55,57,58,61,78,90,116,150,188,202,217,221,230,236,241,257,279,287,313,314,315,316,317,334,348,349,350,351,352,359,361,375,377,381,398,420,423,455,459,470,476,479,485,486,488,490,498,505],sequenceat:485,sequenceinsert:485,sequenti:[4,13,143,237,273,309,338,466,485,488],sequentialsampl:13,seri:[217,250],serial:[10,13,148,159,457,458,460,465,468,473,476,480,481,488,490,491],serializ:[459,485],seriou:[466,483],serv:[1,5,10,14,490,491],server:[5,13,490],servic:477,sess:485,set:[0,1,2,4,6,9,11,13,14,15,17,18,32,46,52,55,67,90,92,102,112,118,126,131,143,147,149,150,151,158,159,160,173,177,180,184,202,206,210,211,212,213,214,215,217,221,222,223,224,225,226,227,229,230,231,232,233,235,237,241,243,248,250,251,252,253,254,255,256,257,259,261,265,266,270,271,272,273,276,277,278,279,280,286,287,301,302,309,318,324,372,375,384,392,399,400,401,403,404,405,406,407,432,439,440,441,442,457,459,461,462,464,465,466,470,471,472,474,475,476,477,478,479,480,481,482,484,485,486,488,489,490,497,498,500,503,504,505],set_:[2,460,498],set_backoff_factor:1,set_default_dtyp:118,set_default_tensor_typ:[32,37,44,51,90,92,101,112,118,123,124,158,173,361,377,379,381,383,384,415,432,440,442,455],set_detect_anomali:2,set_devic:[11,14,324,495],set_dir:457,set_epoch:13,set_grad_en:[2,93,499],set_growth_factor:1,set_growth_interv:1,set_image_backend:501,set_num_interop_thread:475,set_num_thread:475,set_result:[17,490],set_rng_stat:[11,489],set_rng_state_al:11,set_sharing_strategi:466,set_start_method:481,set_stat:18,set_trac:[146,149,152,459],set_train:485,set_video_backend:501,setapiusagehandl:480,setapiusagelogg:480,setexportmoduleextrafileshook:480,setup:[9,324,475,490,491],setuptool:9,sever:[10,14,89,199,200,201,202,203,204,205,207,208,209,210,221,222,223,224,225,226,239,255,256,262,267,268,269,270,271,272,321,322,459,470,472,475,476,480,486,488,490,505],sgd:[1,13,235,324,472,473,477,486,490,491],sgdr:486,sgn:[110,409],sha256:[457,465],shadow:505,shall:273,shallow:[230,318],shamelessli:406,shao:160,shape:[2,8,11,15,23,25,26,36,41,45,46,58,59,83,85,86,88,89,90,92,94,102,109,112,115,122,126,128,131,150,151,155,156,175,176,181,185,189,192,193,197,202,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,228,229,231,232,233,234,235,236,237,238,240,241,242,243,244,245,246,247,248,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,276,277,279,280,281,282,285,286,287,289,290,291,292,293,294,295,296,297,298,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,333,335,359,361,369,377,379,380,381,387,389,390,392,393,415,419,423,425,427,429,437,446,447,454,455,459,460,467,468,470,473,474,478,479,485,488,490,493,497,498,500,503,504,505,506],shape_as_tensor:485,shard:[5,13],share:[2,5,9,11,13,15,16,111,127,196,230,359,385,419,436,448,460,473,475,481,484,485,490,494,496,498],share_memori:481,share_memory_:[463,466,494,498],shared_memori:466,sharedfil:14,shazeer:[313,315,317],shceme:488,shear:505,sheep:503,shell:9,shen:7,shi:285,shift:[206,212,213,214,309,393,460,462,470,498,504,505,506],ship:[475,490],shippabl:5,shm_open:466,shorter:[141,485,490],shortest:349,shorttensor:[495,498],should:[1,2,3,4,5,6,9,10,11,13,14,15,23,24,27,28,29,32,43,44,45,46,51,66,72,89,90,91,92,101,102,112,113,123,124,126,131,141,143,146,149,150,151,152,158,159,165,173,179,192,202,210,211,215,227,229,230,232,233,236,237,241,257,266,273,280,281,287,318,320,324,329,330,331,332,333,334,335,336,338,341,342,343,344,348,349,350,361,362,372,373,377,378,379,380,381,382,383,384,390,415,432,438,455,456,457,459,461,465,466,468,470,472,473,475,476,477,478,479,481,482,484,485,486,488,490,492,493,496,497,498,500,503,504,505,506],shouldn:[493,496],shout:485,show:[0,3,5,13,14,457,467,475,476,477,486,490,492],showcas:[6,270,476,481],shown:[1,11,459,472,478,479],shrinkag:[244,307,470],shuffl:[13,497,500],shufflenet_v2_x0_5:503,shufflenet_v2_x1_0:503,shufflenet_v2_x1_5:503,shufflenet_v2_x2_0:503,shufflenetv2:503,shut:[13,490],shutdown:[490,491],siam:160,side:[2,9,85,89,141,207,208,209,218,219,220,221,222,223,224,225,226,238,267,268,269,293,294,295,296,297,319,323,423,438,457,459,470,472,485,486,488,490,505],sigma:[15,211,241,242,257,258,300,353,460,470,498],sigmoid:[1,15,210,211,241,242,257,258,460,467,468,471,485,498],sigmoid_:[460,467,498],sigmoidtransform:15,sign:[5,15,41,81,109,387,412,460,467,473,485,488,495,498,503],sign_:[460,467,498],signal:[8,102,126,131,141,199,200,201,203,204,205,207,208,209,221,222,223,239,255,256,262,267,268,269,321,322,392,466,470,481,488,490],signal_2d:262,signal_4d:262,signal_length:141,signal_ndim:[102,126,131,392,460,498],signal_s:[131,460,498],signatur:[2,13,143,237,273,348,423,478,488,498],signific:[2,473,476,486],significand:[495,498],significantli:[2,324],silent:[11,128,150],silli:478,sim:[45,286,367,381,470],similar:[5,13,14,15,57,67,131,143,227,228,237,238,248,250,251,252,273,318,348,359,389,447,461,466,467,470,473,475,478,485,488,491,493,498,500,504,507],similarli:[5,37,62,241,257,287,329,330,331,332,333,334,335,336,345,439,440,441,442,461,479,485,488],simon:7,simpl:[1,10,11,145,149,212,213,214,235,309,457,459,462,470,472,475,477,478,479,480,482,485,490],simplecustombatch:13,simplequeu:481,simpler:[459,478],simplest:[207,208,209,221,222,223,267,268,269,478,488,492],simplex:15,simpli:[1,2,9,13,15,136,206,231,329,330,331,332,333,334,335,336,459,461,473,488,493],simplic:491,simplifi:[17,147,264,486,491],simul:[15,488],simultan:[473,486,490],sin:[9,38,124,460,467,485,497,498],sin_:[460,467,498],sin_add:9,sinc:[5,11,13,14,15,61,88,131,141,143,146,148,177,210,237,270,271,272,273,320,324,338,425,427,459,460,461,464,470,472,473,478,479,480,484,485,486,488,489,490,491,493,495,496,498,505],sine:[39,410,411],singl:[2,9,14,15,17,36,44,51,54,92,123,124,134,142,143,150,151,165,200,201,204,205,208,209,211,221,222,223,225,226,229,230,237,239,243,255,256,259,268,269,273,281,285,309,324,326,327,328,354,369,390,416,446,447,457,459,461,466,468,470,473,475,476,478,481,482,485,486,488,490,491,492,494,495,498,504,505],singleton:[15,259,448,474,498],singular:[79,160,168,177,184,365,366,412,425,426],sinh:[1,39,460,467,498],sinh_:[460,467,498],sink:503,site:5,situat:[15,466,481,488,492],size:[2,5,11,13,14,15,28,29,32,36,43,44,46,51,53,54,55,62,64,65,72,75,76,79,81,89,90,91,92,95,102,112,113,114,117,123,124,126,128,130,131,141,143,154,158,160,168,173,174,175,177,178,182,184,185,186,187,188,189,191,193,194,199,200,201,202,203,204,205,207,208,209,210,211,212,213,214,215,217,218,219,220,221,222,223,224,225,226,229,230,235,236,237,238,239,243,249,250,251,252,253,254,255,256,259,261,262,265,266,267,268,269,270,271,272,273,276,277,278,279,280,285,293,294,295,296,297,309,313,319,320,321,322,323,324,338,348,349,350,351,352,353,355,357,359,361,362,365,366,367,370,371,372,373,374,375,377,378,379,380,381,382,384,392,393,398,412,413,415,416,419,420,421,422,423,424,425,426,427,432,433,438,446,447,448,450,451,452,453,455,456,459,460,467,468,470,472,473,474,476,477,478,479,480,485,486,488,490,493,494,495,497,498,500,503,504,505,506],size_averag:[210,211,227,229,248,253,254,265,266,276,277,278,280,286,301,302,318,460,470],sizedim:498,sizeof:494,skateboard:503,skeleton:329,skew:[2,3],ski:503,skip:[1,459,472,477,478,486],sky:500,slack:5,sleep:17,slice:[212,213,214,303,305,309,388,445,459,462,470,485,496,498],slide:[141,238,319,423,470],slightli:[6,13,365,398,426,457,503],slogdet:[460,498],slope:[260,471],slow:[2,446,481,497],slow_conv3d:460,slow_conv_dilated2d:460,slow_conv_dilated3d:460,slow_conv_transpose2d:460,slow_conv_transpose3d:460,slow_set_futur:17,slower:[2,3,14,53,470,478,482,503],slowli:489,small:[1,2,5,6,11,13,14,15,32,163,165,202,228,282,286,299,320,366,459,461,470,476,478,479,488],small_pool:11,smaller:[13,65,66,371,416,486,498,505],smallest:[60,154,160,371,434,493,507],smart:[478,490],smessmer:7,smi:[11,476,479],smm:460,smnt:500,smoke:500,smooth:[306,485,486],smooth_l1_loss:[1,460],smoother:457,smoothl1loss:470,snapshot:[11,476],snd_tensor:497,snedecor:15,snippet:457,snow:500,snowboard:503,snowi:500,sobol:375,soboleng:375,socket:[466,490],sofa:503,soft:[307,470,503],soft_margin_loss:[1,460],softmarginloss:470,softmax:[1,15,202,264,304,460,468,485],softmaxtransform:15,softmin:[1,460],softplu:[1,460,485],softshrink:460,softshrinkag:307,softsign:460,softwar:486,sole:486,solid:[492,505],solut:[5,8,175,210,413,438,460,471,472,479,481],solv:[5,8,64,160,175,178,438,460,484,498],solver:[413,438],some:[1,2,4,5,6,9,11,14,15,46,131,141,143,148,150,202,206,210,211,217,221,222,223,224,225,226,227,229,230,231,237,248,250,251,252,253,254,265,266,273,276,277,278,280,286,301,302,318,324,325,372,425,457,459,460,461,462,464,466,467,468,470,472,473,476,478,479,480,481,482,483,484,485,486,488,490,491,492,493,497,498,500,503,504,505],some_dict:461,some_entry_point:149,some_fn2:459,some_fn3:459,some_fn4:459,some_fn:459,someon:[5,468],someth:[5,150,463,466,467,484,490],sometim:[2,5,131,150,238,319,466,470,479,481,495,498],somewher:[468,480],soon:[8,490,492],sophist:486,sort:[2,35,89,125,202,349,350,357,398,434,446,460,478,479,485,488,498,504],sort_bi:2,sorted_indic:[348,351],sorted_sequ:[398,460],sorted_sequence_1d:398,soumith:[6,7],sound:497,sourc:[0,1,2,3,4,9,11,13,14,15,17,52,54,57,59,61,68,89,93,114,121,129,135,136,141,143,144,145,146,147,148,149,150,151,152,153,159,160,179,180,188,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,358,365,375,397,399,400,401,403,406,407,416,423,426,433,457,459,460,461,464,466,468,470,471,479,480,482,485,486,488,489,490,491,493,494,497,498,500,501,502,503,504,505,506],space:[13,15,150,151,158,173,202,221,222,223,224,225,226,238,253,267,268,269,319,437,470,488,504,505],spadd:493,span:[11,253,490,498],spandan:7,spandantiwari:7,spars:[2,8,53,114,134,160,235,236,303,365,415,426,458,460,463,471,486,495,496,498],sparse_:471,sparse_coo:[415,493,495,498],sparse_coo_tensor:[460,463,493,498],sparse_dim:[415,460,493,498],sparse_grad:[114,460],sparse_mask:[460,493,498],sparse_resize_:460,sparse_resize_and_clear_:460,sparseadam:[235,486],sparseaddmmbackward:493,sparsedim:498,sparsefloattensor:493,sparsetensor:[2,415,493,498],sparsiti:471,spatia:470,spatial:[59,213,238,285,304,319,320,321,322,470,488,504],spatial_scal:504,spatio:[214,309],spawn:[13,144,324,472,477,481,484,491],spawncontext:466,speak:[131,493],special:[5,8,159,230,325,357,462,468,473,478,480,488,496,497],specif:[2,4,5,6,9,11,14,15,18,65,126,131,141,143,150,151,160,185,187,189,237,238,259,273,329,457,459,461,463,468,473,476,481,482,483,485,486,488,490,492,497,498,502,504],specifi:[2,9,11,13,14,15,36,46,75,76,80,81,83,86,114,143,145,150,151,159,160,170,184,208,209,210,211,217,225,227,229,230,236,237,238,248,253,254,259,265,266,271,273,276,277,278,279,280,286,301,302,313,318,319,321,322,324,327,329,330,331,332,333,334,335,336,338,341,342,343,344,355,358,365,370,375,390,393,394,397,406,424,446,447,448,449,457,459,461,465,467,468,470,473,476,478,484,485,486,488,489,490,493,494,495,497,498,500,501,505,506],specifii:488,spectral:[8,346,353],spectral_norm:[230,346],speed:[5,9,102,126,131,202,392,425,475,476,477,478,479,482,488,490],spend:[3,5,160],spent:[2,3,14,475,486],sphinx:5,split:[5,13,14,58,65,230,324,459,460,467,470,485,488,490,496,498,500,503,504],split_siz:[416,460,498],split_size_or_sect:416,split_with_s:460,spmm:493,sponsorship:6,spoon:503,sport:503,spotri:63,spread:[11,476],sqrt:[96,97,102,126,131,212,213,214,215,221,222,223,224,225,226,241,242,243,250,251,252,255,256,257,258,259,261,287,289,309,392,396,460,467,471,472,485,486,493,498],sqrt_:[460,467,498],squar:[79,80,82,88,130,141,168,175,177,183,200,204,208,209,222,223,225,226,239,256,265,268,269,272,301,313,396,412,413,417,449,460,470,486,488,493,498,505],square_:[460,498],squeez:[154,174,185,186,187,189,191,370,421,422,424,450,451,460,467,485,493,496,498],squeeze_:[460,498],squeezebackward1:2,squeezenet1_0:503,squeezenet1_1:503,src:[11,14,193,313,316,317,429,460,488,498],src_key_padding_mask:[313,316,317],src_mask:[313,317],src_tensor:14,srinivasan:7,ssa:459,sse3:402,ssnl:7,sspaddmm:[460,493],sspmm:493,stabil:[1,174,211,212,213,214,243,250,251,252,259,306,309,353,470,486],stabl:[1,2,15,89,160,211,425,427,478,485,488,490],stack:[1,11,13,15,217,241,257,287,314,316,352,460,476,477,479,485,505],stacktransform:15,stage:[5,492],stagnat:486,stai:[5,230,481,488,490,498],stand:[461,492],standalon:[149,150,459],standard:[5,9,15,206,212,213,214,243,250,251,252,259,309,315,317,359,365,381,421,422,461,462,471,475,481,485,488,498,500,503,505],star:[221,222,223],start:[2,3,6,11,13,14,17,32,156,158,173,196,202,236,276,324,329,333,335,384,404,457,460,461,466,468,470,473,474,476,477,479,481,484,485,486,490,491,492,498,502,503],start_dim:[103,237,460,498],start_epoch:13,start_ev:476,start_method:466,start_process:466,start_pt:502,startpoint:505,startup:3,stash:[2,4,478],stat:[11,309,324],state:[1,2,4,11,13,15,18,121,143,144,150,160,237,241,242,257,258,273,287,289,325,375,407,464,472,473,476,477,481,484,486,488,489],state_dict:[1,143,237,273,341,457,465,477,481,483,485,486],stateless:488,statement:[150,462,473,478,481,485,490],stathopoulo:160,stathopoulosetal2002:160,static_async_add:490,static_k:460,static_v:460,staticmethod:[2,472,478,490],statist:[11,15,165,212,213,214,243,250,251,252,259,309,479,488],statu:[177,462,466],std:[9,18,359,447,460,467,471,480,484,485,498,503,505],std_mean:[460,467],stddev:15,stderr:[457,465,503],stdin:2,stdout:486,step:[1,3,6,9,13,14,15,24,32,46,158,160,173,239,324,348,375,384,459,460,468,470,472,476,477,479,481,482,484,488,490,491,497,498,500],step_between_clip:500,step_siz:486,step_size_down:486,step_size_up:486,steplr:486,steps_per_epoch:486,stft:[8,44,51,123,124,141,460,498],stick:15,stickbreakingtransform:15,still:[1,2,13,14,15,131,145,152,254,265,301,397,459,466,467,468,472,476,477,479,483,484,486,488,490,491,492],stirl:[286,470],stitch:490,stl10:501,stl10_binari:500,stmt:475,stochast:[13,15,239,486],stop:[11,15,32,160,217,384,459,486,490,503],storag:[2,11,36,127,128,135,147,159,181,196,230,385,419,436,457,458,463,465,466,473,476,481,490,495,496,498],storage_offset:[36,460,498],storage_typ:[463,498],storageshar:484,store:[2,4,9,14,24,53,147,148,160,165,235,337,338,339,341,342,343,344,348,457,459,468,469,477,478,479,480,485,488,490,491,492,493,497,498,500,505],store_tru:476,str:[2,9,11,14,59,142,143,144,145,160,210,211,217,221,222,223,224,225,226,227,229,236,237,248,253,254,265,266,273,274,276,277,278,280,283,286,288,289,301,302,313,318,320,329,330,331,332,333,334,335,336,337,339,341,342,343,344,345,346,347,353,355,423,459,460,461,462,466,468,470,486,488,490,494,497,498,500,502,504,505,506],straight:[210,470],strategi:[5,13,14,202,461,486],stream:[13,498,500],strict:[2,143,150,151,237,273],strictli:[6,13,143,237,273,473],stride:[2,8,32,36,44,51,90,92,101,112,113,123,124,130,158,173,175,207,208,209,221,222,223,224,225,226,238,255,256,267,268,269,270,271,272,285,319,324,361,377,379,380,381,383,384,390,413,425,427,440,442,452,455,460,462,467,470,485,488,490,495,497,498,504],strike:5,string:[0,2,9,11,14,89,143,147,148,159,210,211,217,221,222,223,227,229,236,237,248,253,254,265,266,273,274,276,277,278,280,283,286,301,302,318,338,397,401,423,457,460,461,462,465,466,468,470,478,480,485,488,490,494,495,497,498,500,501,506],strip:[459,470,485],strip_doc_str:485,strive:5,strong:6,strong_wolf:486,strongli:[6,232,233,457],struct:[10,480],structur:[5,6,13,150,273,334,338,365,426,461,462,476,477,478,481,483,484,485,490,497,498,499],stub:488,student:15,studio:484,style:[357,459,461,488],styliz:[250,251,252],sub:[17,149,150,151,185,187,189,285,313,314,316,388,459,460,467,485,488,493,495,498],sub_:[460,467,493,498],subclass:[1,2,9,13,15,148,273,325,329,334,462,472,478,490,498,500],subdir:500,subfold:9,subgradi:486,subgraph:[325,477],subject:[8,14,17,32,175,324,467,468,478,488,490],submatrix:15,submit:11,submod:144,submodul:[10,143,145,148,149,230,237,273,274,275,324,459,461,464,485,488],subpackag:503,subprocess:[13,14,479,481],subregion:1,subscript:462,subsequ:[5,9,10,143,150,221,222,223,224,225,226,237,273,490],subset:[13,14,143,149,237,273,459,461,478,485,488,503],subsetrandomsampl:13,subspac:[279,365,425,426,498],substanti:6,substitut:495,subsystem:[5,8],subtl:[5,250,251,252],subtleti:[13,230,479],subtli:486,subtract:[470,498,505],subtyp:461,succe:[14,478,484],succeed:177,success:[6,15,177,334],successfulli:[324,402,466,485,490],succinct:457,suffici:[9,15,131,457,485,488,495],suffix:[497,498],sugar:461,suggest:[6,227,457,463,472,479],suhan:7,suit:[459,461,485,490],suitabl:[13,15,55,398,486,497],suitcas:503,sum:[1,2,11,13,14,15,76,89,165,166,167,174,175,193,210,211,217,226,227,229,230,236,238,248,253,254,255,256,265,266,276,277,278,280,286,301,302,303,305,318,319,338,343,344,358,415,435,460,467,470,472,473,476,477,478,485,486,490,491,493,498],sum_:[24,102,126,141,195,207,208,209,221,222,223,255,256,262,276,280,282,301,423,433],sum_i:[277,278,302],sum_j:[174,229,264,303,305,470],sum_pair:461,sum_to_s:[460,498],sumbackward0:2,sumbackward1:2,summar:[3,406],summari:[2,11,406,497,503],summarywrit:497,summat:[89,141,167,174],sunset:[6,7],suo:7,superclass:478,superresolut:485,supervis:[227,248],suppli:[1,4,5,9,10],support:[1,2,5,6,8,9,10,11,13,14,15,25,44,51,86,88,102,123,124,127,149,150,160,175,182,235,236,238,273,278,309,319,324,362,385,392,402,440,442,452,453,456,457,459,461,462,463,464,466,469,470,473,474,475,478,481,484,486,488,490,493,495,496,497,498,500,501,504,505],suppos:[13,14,141,427,473,493,504,505],suppress:[489,504],sure:[2,5,13,14,93,145,150,151,324,356,434,467,473,477,479,484,485,486,490,491,492,497],surfboard:503,surg:159,surpass:471,surpris:457,surrog:15,surround:[1,461,472,488],sutskev:486,svd:[8,79,168,184,365,366,412,426,460,498,505],svhn:501,svi:15,swap:[318,436,460,462,470,488,498],swap_modul:488,symbol:[484,485],symbolic_fn:485,symbolic_foo_forward:485,symbolic_help:485,symbolic_nam:485,symbolic_opset10:485,symbolic_opset9:485,symbolic_opset:485,symeig:[8,88,460,498],symmetr:[44,51,62,63,64,123,124,160,184,427,460,488,505],symmetri:[131,392,423],sync:[1,324,477],sync_bn_modul:309,sync_bn_network:309,synchron:[3,11,160,309,324,475,476,477,481,490],syntact:6,syntax:[143,459],sys:457,system:[5,9,10,11,64,147,159,178,313,315,317,324,402,413,438,462,473,475,476,480,484,490],t4d:470,t_0:486,t_max:486,t_mult:486,tabl:[2,14,235,460,470,478,490,503],tag:[2,5,14,159,457,480,497],tag_nam:457,tag_scalar_dict:497,taiwan:497,take:[1,2,3,5,6,9,11,13,15,17,64,72,81,83,130,188,202,211,236,239,241,257,267,268,269,270,271,272,281,287,313,321,322,324,369,413,438,457,459,460,464,466,467,468,470,472,475,477,478,479,482,484,485,488,490,491,492,495,496,497,498,500,504],taken:[15,32,89,185,189,217,236,406,425,427,470,475,476,478,479,480,485,500,504],talk:480,tall:[478,498],tamper:159,tan:[1,40,460,467,485,497,498],tan_:[460,467,498],tangent:[42,430,431,473],tanh:[15,42,241,242,257,258,287,289,311,460,467,468,471,485,498],tanh_:[460,467,498],tanhshrink:460,tanhtransform:15,tanx:497,tape:5,tar:500,tarbal:500,target:[1,17,56,199,200,201,202,203,204,205,210,211,217,229,239,248,253,254,265,266,270,271,272,276,277,278,279,280,286,301,302,313,320,460,470,472,473,481,486,488,490,497,498,500,503,505],target_dict:488,target_length:[217,460,470],target_n:217,target_transform:500,target_typ:500,task:[2,5,144,153,250,251,252,475,480,484,503,505],tau:[116,363,364,460,470],tbb:475,tcp:490,tdr:484,team:[5,6],technic:[5,6,473,479],techniqu:[231,329,469,488],teddi:503,tell:[2,5,147,159,459,478,498],temperatur:[15,470],tempor:[212,214,217,309,320,470],temporari:[9,325,479],temporarili:485,temporary_fil:457,ten:[461,497,505],ten_crop:505,tencrop:505,tend:5,tenni:503,tensor1:[25,26,182,391,460,498],tensor2:[25,26,182,391,460,498],tensor:[1,4,5,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,122,123,124,125,126,127,128,130,131,132,133,134,136,137,138,139,140,141,143,144,145,147,148,149,150,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,202,206,207,210,211,217,218,219,220,221,222,223,224,225,226,227,229,230,231,232,233,235,236,237,238,241,242,248,253,254,257,258,264,265,266,270,271,272,273,276,277,278,279,280,281,285,287,289,293,294,295,296,297,302,303,304,305,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,345,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,400,401,402,403,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,458,459,461,469,470,471,472,473,474,475,476,477,479,481,482,484,485,486,490,491,493,494,497,500,501,502,503,504,506],tensor_a:[57,67],tensor_b:57,tensor_index:10,tensor_list:14,tensorboard:458,tensordataset:13,tensordot:[1,460,463],tensorflow:[15,486,497],tensorpipeag:490,tensorpiperpcbackendopt:490,term:[6,15,61,89,202,210,221,222,223,257,258,278,286,301,329,330,331,332,333,334,335,336,470,472,479,486,488,491,498],termin:[466,486,490],terminolog:[212,213,214,309],test10k:500,test50k:500,test:[2,9,14,132,133,134,135,136,459,462,466,482,488,497,500,503,505],testcod:[144,145,461],text:[5,15,19,21,22,23,24,25,26,27,28,29,30,31,32,38,39,40,41,42,43,44,45,51,53,60,66,69,70,71,86,88,107,108,110,115,122,123,124,137,141,155,156,157,167,173,174,175,176,185,189,192,193,198,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,232,233,234,235,238,240,241,242,243,244,245,246,247,248,250,251,252,253,254,255,256,257,258,259,260,261,263,264,265,266,267,268,269,270,271,272,276,277,278,279,280,281,285,286,287,289,290,291,292,293,294,295,296,297,298,300,301,302,303,305,306,307,308,309,310,311,312,319,320,321,322,323,327,367,369,372,381,384,386,396,408,409,410,411,417,423,427,430,431,443,454,470,471,486,488,497,498,505],text_str:497,texttt:[30,137,202,498],tgt:[13,313,314,315],tgt_key_padding_mask:[313,314,315],tgt_mask:[313,314,315],thalloc:484,than:[1,2,3,4,6,8,9,11,13,14,36,46,54,60,61,81,82,92,105,106,107,125,128,134,141,149,154,163,185,187,189,191,193,195,210,211,230,235,236,266,271,286,301,307,318,324,351,353,358,370,371,388,406,440,442,457,459,461,463,468,469,470,471,473,474,476,478,479,481,482,485,486,488,490,493,495,497,498,500,501,503,504,505,506],thank:[15,478],thc:484,thc_state:484,thcstate:484,thcudacheck:484,thcudatensor:484,thcudatensor_cadd:484,thcudatensor_fil:484,thcudatensor_issamesizea:484,thcudatensor_resizea:484,the_model:483,the_templ:460,thei:[1,2,4,5,6,8,11,13,14,15,17,24,27,28,29,43,66,137,138,141,143,147,154,159,175,181,185,187,189,191,193,224,225,226,237,238,273,279,288,299,319,324,325,326,348,351,443,449,459,461,463,464,466,467,468,470,472,473,476,477,478,481,484,485,486,488,490,493,498,499,500,502,503,504,505],them:[1,2,4,5,8,10,13,14,36,54,78,81,92,159,186,235,273,303,305,334,349,352,421,422,424,457,461,464,466,467,468,470,472,473,474,478,479,480,484,486,488,490,491,492,493,497,498,500],themodelclass:483,themselv:[1,2,434,488],theophil:449,therebi:[13,488],therefor:[1,2,4,13,14,15,36,44,51,123,124,126,131,150,236,319,324,366,432,470,472,479,480,485,486,492,493,498,505],theta:[15,460,470],thi:[1,2,3,4,5,6,9,10,11,13,14,15,17,22,30,33,34,35,36,42,46,53,59,61,75,76,79,81,83,87,88,89,93,102,116,117,118,123,126,130,131,136,141,143,144,146,147,148,149,150,151,152,159,160,163,165,168,177,182,185,187,189,190,191,194,202,206,210,211,212,213,214,217,221,222,223,224,225,226,227,229,230,231,232,233,235,236,237,238,239,243,248,250,251,252,253,255,256,259,267,268,269,270,271,272,273,276,280,285,288,303,306,309,315,317,318,319,320,321,322,324,325,338,348,349,350,351,352,353,355,356,362,363,364,365,366,368,370,372,375,384,389,392,400,401,403,406,412,413,419,423,424,425,427,428,446,447,448,452,453,456,457,459,460,461,462,463,464,466,467,468,470,471,472,473,475,476,477,478,479,480,481,482,483,484,485,486,488,489,490,491,492,493,494,495,497,498,499,500,503,504,505,506,507],thin:372,thing:[2,5,14,210,461,470,473,476,478,479,481,488,492,493],think:[5,459,461,492],third:[15,177,202,209,223,226,269,459,476],thnn_conv2d:460,thnn_conv_depthwise2d:460,thoma:7,those:[2,3,11,13,36,81,83,150,159,202,210,211,227,229,236,248,253,254,265,266,276,277,278,280,286,301,302,318,320,324,425,461,467,468,470,472,476,486,488,490,492],though:[2,14,459,462,468,481,482],thousand:1,thrash:14,thread:[1,2,7,11,13,14,17,93,119,120,230,356,403,404,405,458,459,472,480,481,485,490,492,499],threadlocaldebuginfo:480,three:[2,8,14,209,223,226,269,477,486,488,490,492,497,500],threej:497,threshold:[184,306,406,460,472,485,486,497,503],threshold_:[460,470],threshold_mod:486,through:[1,2,4,5,6,10,13,14,15,79,144,150,151,153,168,280,314,315,316,317,412,425,427,457,461,466,467,468,470,478,479,480,484,485,488,490,491,492,496,498,499,507],throughout:[348,488],throughput:475,thrown:[11,17,195,498],thtensor:498,thtensorrandom:193,thu:[2,13,14,15,182,235,273,320,324,415,459,464,470,475,479,480,485,486,488,490,496,498],thumb:14,tie:[15,503],tile:498,time:[1,2,3,5,9,11,13,14,15,17,18,23,24,25,26,27,28,29,30,43,53,59,61,75,88,89,117,137,141,143,147,150,151,156,159,160,175,182,190,192,193,194,195,198,207,208,209,211,212,213,214,217,221,222,223,224,225,226,230,236,237,238,239,241,250,251,252,257,259,260,267,268,269,270,271,272,273,285,287,306,309,319,320,321,322,324,357,372,389,394,419,423,425,433,461,462,464,466,470,471,473,475,476,477,478,479,480,481,482,484,486,488,490,491,492,493,497,498,502,503,505],timedelta:14,timefram:490,timeit:475,timelin:[2,3],timeout:[13,14,466,490],timestamp:502,tini:[498,507],tip:5,tiwari:7,tl_flip:505,tmp:[2,9,457],to_dens:[460,493],to_dlpack:16,to_grayscal:505,to_her:[324,490,491,492],to_mkldnn:[460,498],to_pil_imag:505,to_spars:[460,493,498],to_tensor:505,toaster:503,todai:488,togeth:[1,13,14,15,102,126,241,257,287,324,326,423,464,472,479,480,488,490,491,492,497,505],toilet:503,token:[457,462],tol:[160,184,460],told:461,toler:[2,30,137,150,151,160,184,459,486],tolerance_chang:486,tolerance_grad:486,tolist:[494,498],too:[1,5,9,217,273,325,470,472,475,479,481,484,492,493],tool:[2,3,6,457,459,461,475,484],toothbrush:503,top:[2,13,15,210,211,248,254,265,280,320,329,333,335,434,462,466,470,478,500,501,503,504,505],top_level_method:461,topic:[6,480],topilimag:505,topk:[460,467,485,488,498],topolog:2,torch:[6,8,10,12,18,93,142,143,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,329,330,331,332,333,334,335,336,348,356,375,403,458,459,460,461,467,468,472,473,474,475,476,477,479,480,481,482,483,484,490,491,492,496,500,501,503,504,506],torch_14808_1591070686:484,torch_extens:9,torch_extensions_dir:9,torch_funct:478,torch_hom:457,torch_model_zoo:503,torch_shm_manag:466,torchaudio:[8,458],torchelast:458,torchscript:[144,145,146,149,150,152,458,462,485,490,501,504,505],torchserv:458,torchtext:458,torchvis:[457,458,459,461,473,497],toronto:217,total:[2,3,5,11,13,217,238,248,254,265,279,301,319,326,357,359,360,406,423,457,461,470,476,486],total_averag:2,total_count:15,total_length:[351,479],total_loss:479,total_step:486,totensor:[497,500,503,505],touch:[5,485],toward:[6,160,394],tr_flip:505,trace:[2,5,10,13,144,149,151,160,460,461,463,473,476,498],trace_modul:[150,459],trace_nam:2,traceabl:459,traceback:[2,134,461,466],traced_bar:459,traced_cpu:459,traced_fn:459,traced_foo:[150,459],traced_gpu:459,tracer:[150,485],tracerwarn:459,track:[2,4,11,212,213,214,250,251,252,309,334,466,468,476,478,479,480,491,492,498],track_running_stat:[212,213,214,250,251,252,309,488],tracker:[5,6,160],trade:[4,211,475],tradeoff:491,tradition:8,traffic:503,trail:[350,352,471,474,478,505],train2017:503,train:[1,10,11,13,14,143,146,149,150,202,206,212,213,214,229,230,231,237,243,250,251,252,259,273,280,309,324,353,457,459,460,464,470,471,473,476,477,479,482,486,488,490,492,497,500,503,505],train_batch:486,train_extra:500,train_fn:473,train_load:476,train_nov:500,trainabl:[486,503],trainable_backbone_lay:503,trainer3:490,trainer:490,training_method:146,trainingmod:485,trainload:497,trainset:497,trainval:500,tran:141,transb:485,transfer:[13,14,466,476,490],transform:[13,102,126,131,141,215,243,250,251,252,259,261,314,315,316,317,392,423,470,473,488,497,500,501,503],transform_input:503,transform_to:15,transformation_matrix:505,transformed_distribut:15,transformer_decod:314,transformer_encod:316,transformer_model:313,transformerdecoderlay:314,transformerencoderlay:316,transit:459,translat:[492,505],transmit:490,transpar:[477,490,492],transport:490,transpos:[62,130,175,224,225,226,319,351,364,372,413,425,427,428,438,460,467,470,473,485,493,496,498],transpose_:[2,460,493,498],transposed_data:13,trapezoid:437,trapz:460,travers:[324,477,478,488,491],treat:[2,15,159,169,170,171,172,188,236,259,277,278,280,303,357,423,429,461,467,470,486,490,495,498],tree:[5,273,313,492,500],tri:[1,5,143,237,273,461,466,479,498],triag:6,trial:15,triangl:497,triangular2:486,triangular:[15,62,63,64,372,427,438,439,440,441,442,470,486],triangular_solv:[460,498],trick:[2,15,211,470,480,503],tricki:[473,492],trickier:492,trigger:[1,2,5,6,17,406,472,477,480,490,498],tril:[460,498],tril_:[460,498],tril_indic:[460,463],trilinear:[320,470],trim:[44,51,123,124,141],tripl:470,triplet:318,triplet_loss:318,triplet_margin_loss:[1,460],tripletmarginloss:470,triu:[438,460,485,498],triu_:[460,498],triu_indic:[460,463],trivial:[61,492],tropp:[365,426],trou:[221,222,223,224,225,226,238,319],troubleshoot:5,troublesom:478,truck:503,true_divid:[25,86,460,485,498],true_divide_:[460,498],truli:485,trunc:[460,467,498],trunc_:[460,467,498],truncat:[444,479],trust:[13,159],truth:[497,503],tseq:15,tune:[14,486,488],tup:461,tupl:[2,4,11,13,36,37,73,74,88,90,92,104,112,116,143,150,151,154,160,174,175,177,179,185,186,187,189,191,199,200,201,203,204,205,207,208,209,217,218,219,220,221,222,223,224,225,226,230,237,238,239,255,256,267,268,269,270,271,272,273,274,279,283,293,294,295,296,297,319,320,321,322,323,338,351,357,358,361,363,365,372,377,379,381,390,393,394,413,414,415,421,422,424,425,426,427,432,433,434,445,446,447,450,451,454,455,459,460,462,466,468,470,478,485,486,488,490,493,497,498,500,504,505,506],tuple_or_list:461,turn:[9,13,150,314,316,485,491],tutori:[6,10,14,459,478,480,485,488],tval:460,tvar:160,tvmonitor:503,twelv:495,twice:[1,2,17,472,473,479,503],two:[1,2,3,8,9,10,11,13,14,15,30,59,73,74,81,87,95,137,148,156,159,182,185,187,189,191,208,210,211,221,222,223,224,225,226,227,229,238,241,248,253,254,256,257,259,265,266,268,276,277,278,280,281,286,287,301,302,318,319,349,355,357,358,384,415,425,433,457,459,461,467,468,470,473,474,475,476,477,478,482,483,484,486,488,490,491,492,493,497,498,500,503,504],twse:497,txhxwxc:500,txt:[147,148],type1:[371,460],type2:[371,460],type:[2,9,10,11,14,15,17,18,23,24,25,26,27,28,29,32,37,43,44,46,47,48,49,50,51,52,54,55,56,57,58,61,66,67,75,76,86,88,90,91,92,94,101,102,108,112,113,115,118,122,123,124,125,126,131,132,133,134,140,141,143,144,149,150,151,153,155,158,160,173,175,176,177,192,197,202,206,230,237,273,274,283,324,326,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,352,357,358,361,362,370,371,373,374,375,377,378,379,380,381,382,383,384,389,391,392,398,401,415,416,423,424,427,432,440,442,443,446,447,449,454,455,456,457,458,459,462,463,464,467,470,472,475,476,480,484,488,490,493,494,495,497,498,499,500,503,504,505],type_a:[460,467,485,498],type_p:15,type_q:15,typecheck:136,typeerror:[338,478],typic:[9,13,15,143,227,237,248,273,459,475,485,488,496,507],typing_extens:[459,461],typo:5,ubc:486,ucf101:501,udf:492,uint8:[111,338,371,373,374,391,488,495,497,498,502,505,507],uint8_t:498,uint8tensor:503,uint_tensor:495,ultim:[6,9],umbrella:503,unabl:[5,486],unaffect:498,unari:[462,467],unavailbl:461,unbalanc:[229,280],unbatch:102,unbias:[212,213,214,243,250,251,252,259,309,421,422,450,451,460,498],unbind:[460,467,485,496,498],unchang:[143,237,273,279,313,388,419,472,488,498,505],unclear:498,uncoalesc:[415,493],uncondition:[349,457,478],unconstrain:15,uncorrupt:1,undefin:[2,14,86,131,210,476,498],under:[1,2,3,13,56,217,388,466,470,472,473,477,481,484,488,489,492,497,499],underflow:[1,472],underli:[1,11,15,36,116,127,128,143,159,196,363,364,385,436,448,459,470,476,479,482,488,490,496,498],underscor:[457,468,490,493,498],understand:[5,6,299,471,473,476,497],understood:58,undertak:5,underwai:2,undesir:[10,46,217,221,222,223,224,225,226,470,498],undon:[329,330,331,332,333,334,335,336,345],unequ:[222,223,225,226,488],unexpect:[14,143,237,273,324,419,459,478],unexpected_kei:[143,237,273],unexpectedli:498,unflatten:[460,467,468],unflattened_img:468,unflattened_named_img:468,unfold:[238,460,485,496,498],unfortun:[2,4,6,13,324,503],unicod:462,unicodedecodeerror:159,unifi:468,unifies_names_from_input_tensor:467,uniform:[45,290,377,378,471,498,499],uniform_:[22,42,45,195,460,467,471,478,498,499],uniformli:[15,379,380,437,505],unind:489,uniniti:[90,91,92,498],union:[2,11,143,199,200,201,203,204,205,207,208,209,218,219,220,221,222,223,224,225,226,237,238,239,255,256,259,267,268,269,270,271,272,273,293,294,295,296,297,319,320,321,322,323,461,502,504,506],uniqu:[14,185,187,189,447,457,459,463,465,485,490,491,492,497,498],unique_consecut:[446,460,498],unit:[88,206,216,240,241,242,290,291,331,332,336,339,341,344,438,470,473,475,488,502],unit_interv:15,unitari:[102,126,131,392],unitriangular:[438,460,498],univari:15,univers:461,unix:[13,466],unknown:492,unlabel:500,unless:[1,2,3,5,14,46,143,185,187,189,237,273,324,338,473,476,486,488,498],unlik:[2,5,15,185,187,189,259,461,466,481,495,498],unlist:1,unmask:[279,313],unment:468,unmodifi:1,unnam:[467,468],unncessari:496,unnecessari:476,unnorm:[229,470],unnot:466,unoccupi:11,unord:[274,283],unpack:[179,230,241,257,287,351,462,478,479],unpack_data:179,unpack_pivot:179,unpickl:[13,159],unpool:[270,271,272],unpooled_output:272,unprun:[332,333,335,336,337,338,339,340,341,342,343,344],unreadi:477,unreduc:[210,211,253,254,265,280],unrel:[5,478],unresolv:484,unrol:[461,485],unscal:1,unscale_:[1,472],unseg:217,unsign:[488,495,498],unskip:1,unsort:[349,350],unsorted_indic:[348,351],unspecif:303,unspecifi:[14,485,498],unsqueez:[291,460,478,485,496,497,498],unsqueeze_:[460,498],unstabl:[1,15,79,168,366,412,470],unstructur:[334,338],unsuccess:14,unsupport:[112,459,462,468,485],unsupported_linear_op:461,untest:468,until:[5,11,14,17,160,466,470,473,476,479,490,492,498],untouch:13,untrack:150,untrain:485,untrust:159,unus:[11,146,149,249,324,459,461,476,477],unused_argument1:249,unused_argument2:249,unused_method:459,unusu:5,unwant:497,upcom:[14,472],updat:[1,2,6,8,212,213,214,230,235,236,241,250,251,252,274,283,309,457,459,464,472,473,477,481,484,486,488,490,491,492,497,498],upgrad:486,upon:[13,466,492],upper:[15,52,55,62,63,64,66,125,290,372,383,398,427,438,441,442,460,470,471,486,498,505],upper_bound:15,uppercas:14,ups:5,upsampl:[225,321,322,488],upsample_bicubic2d:460,upsample_bilinear2d:460,upsample_bilinear:488,upsample_linear1d:460,upsample_nearest1d:[460,485],upsample_nearest2d:[460,485],upsample_nearest3d:[460,485],upsample_nearest:488,upsample_r:488,upsample_trilinear3d:460,upsample_trilinear:470,upscal:285,upscale_factor:[285,460,470],upstream:484,url:[2,14,457,465,490],usa:497,usag:[1,2,3,5,10,11,13,15,160,366,459,468,472,473,479,485,488,492,497,498,499],use:[1,2,4,5,6,8,9,10,11,13,15,17,36,59,116,128,131,136,143,146,148,149,150,151,159,160,181,193,207,208,209,217,218,219,220,230,237,241,242,253,255,256,257,258,267,268,269,270,273,280,287,288,289,293,294,295,296,297,320,323,324,349,350,355,373,389,397,398,421,422,426,432,437,446,450,451,457,459,460,461,464,466,467,468,469,470,471,472,475,476,478,479,480,481,482,483,484,485,488,490,491,495,497,498,499,500,503,504,505,506],use_cuda:2,use_distribut:14,use_dynam:460,use_env:14,use_external_data_format:485,use_gpu:459,use_input_stat:[460,470],use_memory_effic:152,use_memory_effici:152,use_mkldnn:475,use_mm_for_euclid_dist:59,use_mm_for_euclid_dist_if_necessari:59,use_ninja:9,use_openmp:475,use_separate_proj_weight:460,use_tbb:475,used:[1,2,3,5,8,9,10,11,12,13,14,15,17,43,44,45,51,88,102,119,120,123,124,125,126,131,143,147,149,150,151,154,159,160,202,208,209,210,211,212,213,214,222,223,224,225,226,227,229,230,232,233,235,237,241,248,250,251,252,256,257,259,262,268,269,273,280,281,286,287,289,306,309,318,324,325,326,359,392,397,399,401,403,404,405,414,421,422,423,427,434,448,450,451,457,459,460,461,463,465,468,470,471,472,473,475,476,478,480,481,483,484,485,486,488,489,490,491,492,493,495,497,498,499,500,501,503,504,505,506],useful:[1,2,5,11,13,15,75,76,141,165,229,238,253,280,285,351,356,370,424,426,457,459,461,468,470,473,475,478,480,485,486,488,490,491,499,504,505],user:[2,4,8,10,11,13,14,15,143,159,221,222,223,224,225,226,237,273,313,315,317,324,338,457,459,461,466,468,472,473,476,478,480,481,485,488,490,491,496,497,498,505],userrref:[490,492],userwarn:[474,485],uses:[1,2,3,9,11,13,14,15,18,32,37,44,51,79,90,92,101,112,123,124,149,158,159,168,173,212,213,214,217,218,219,220,243,250,251,252,259,281,293,294,295,296,297,301,309,323,324,361,375,377,379,381,383,384,412,415,425,432,440,442,455,457,459,470,472,473,475,476,477,478,479,480,484,486,488,490,491,492,495,498,500,501],using:[1,2,4,5,6,8,9,10,13,14,15,25,46,61,63,86,89,128,141,143,146,147,148,149,150,151,152,159,160,177,178,184,206,210,211,217,218,219,220,221,222,223,224,225,226,227,230,231,232,233,235,236,237,241,247,248,257,273,275,282,284,287,293,294,295,296,297,299,323,324,353,356,366,375,397,403,432,437,457,458,459,461,462,463,466,468,470,471,472,473,475,476,477,478,479,480,481,482,484,485,486,488,490,491,492,497,498,499,500,503,505],usp:501,usual:[1,2,5,9,13,232,233,248,250,251,252,425,459,472,475,479,480,485,488,490,497,498],uszkoreit:[313,315,317],utf:159,util:[1,5,11,17,143,237,241,257,273,287,329,330,331,332,333,334,335,336,348,458,472,474,475,476,478,479,480,485,486,490,500,501,503],v100:[12,241,257,287,503],v_1:282,v_2:282,v_proj_weight:460,val2017:503,val:[471,498,500],val_loss:486,valid:[2,14,15,143,221,222,223,224,225,226,333,338,342,372,459,461,468,485,486,488,490,491,500,503],validate_arg:15,valu:[1,2,4,5,6,8,9,11,13,14,15,17,19,22,23,25,26,29,32,33,34,35,42,44,45,46,51,55,59,66,73,74,79,94,114,115,122,123,124,125,127,131,134,138,139,140,141,143,144,150,153,154,155,158,159,160,163,168,173,176,177,184,185,186,187,189,191,192,193,197,202,207,208,209,210,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,234,236,237,238,243,244,247,248,250,251,252,253,255,256,259,261,264,266,267,268,269,270,271,272,273,274,278,279,280,281,282,283,286,303,304,305,306,307,309,312,313,315,317,318,319,320,324,327,348,351,352,357,358,361,362,365,366,369,374,384,385,388,389,393,398,406,412,414,415,423,425,426,434,437,439,440,441,442,444,446,447,448,454,455,456,457,459,460,462,465,466,470,471,472,473,475,476,478,479,485,486,488,490,493,495,496,497,498,499,500,502,503,504,505,506],valueerror:[348,351,478],vamshi:7,vander:[460,463],vandermond:449,var1:486,var2:486,var_mean:[460,467],vari:[348,486,488],variabl:[4,9,11,15,90,92,150,160,215,221,222,223,224,225,226,230,235,236,241,242,257,258,261,276,281,287,289,324,348,349,350,351,352,361,377,379,381,432,455,457,468,475,476,479,484,485,486,488,490,497,498,503],variabletyp:485,varianc:[15,212,213,214,250,251,252,309,381,382,450,451,470,471,482,486],variant:[1,438,480,486,488,498],variat:[15,478],varieti:491,variou:[4,6,9,13,160,466,481,483,486],vase:503,vaswani:[313,315,317],vc2017:484,vdantu:7,vdim:279,vec1:[29,460,498],vec2:[29,117,460,498],vec:[28,194,354,358,460,498],vector:[2,8,15,27,28,29,36,41,54,59,67,72,75,76,80,82,92,117,182,188,193,194,211,212,213,214,217,230,235,236,238,243,250,251,252,282,309,318,319,326,328,354,358,365,425,427,449,470,473,488,497,498,500,505],vehicl:6,veloc:486,verbos:[9,457,468,485,486,497],veri:[2,3,5,8,250,251,252,325,461,466,473,478,479,481,484,486,488,489,490,491,503],verifi:[9,457,459,465,478,485],verify_ninja_avail:9,versa:[111,266,494,498],version:[4,15,123,144,145,147,148,182,196,211,273,320,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,423,436,457,467,468,470,473,474,476,478,480,484,485,486,488,498,499,500,504,505],versu:[5,277],vert:[228,282,470],vertex:497,vertic:[497,505],vertical_flip:505,vertices_tensor:497,vflip:505,vframe:502,vgg11:503,vgg11_bn:503,vgg13:503,vgg13_bn:503,vgg16:503,vgg16_bn:503,vgg19:503,vgg19_bn:503,vgg:485,vhp:2,via:[2,5,9,10,11,13,14,15,58,93,160,212,213,214,230,243,250,251,252,259,309,353,355,421,422,450,451,459,461,466,471,473,476,478,479,481,485,486,491,495,496,498,504],vice:[111,266,494,498],vid_tensor:497,video:[285,468,497,500,501],video_arrai:502,video_classif:503,video_codec:502,video_fp:502,video_read:501,videoclip:500,viehmann:7,view:[2,5,6,8,13,36,54,65,83,104,105,106,236,241,257,287,319,320,321,322,326,390,393,394,416,424,429,435,452,453,458,459,460,466,468,470,474,485,488,490,492,495,498,500,505],view_a:[460,496,498],view_as_complex:[8,460],view_as_imag:496,view_as_r:[8,460,496],viewbackward:2,vincent:7,vincentqb:7,violat:6,virtual:485,vishwak:7,vishwakftw:7,visibl:[11,14,274,275,283,284,503],vision:[6,457,501,503,504],visual:[2,221,222,223,224,225,226,238,267,268,269,319,484,497],vitali:7,vitalyfedyunin:7,vjp:2,voc2012:500,voc:[501,503],vocdetect:500,vocsegment:500,vol:141,volumetr:[214,309,320,470],von:15,von_mis:15,vs2017:484,vs2017_runtim:484,vw_i:279,vychisl:375,w_hf:257,w_hg:257,w_hh:460,w_hi:257,w_hn:241,w_ho:257,w_hr:241,w_hz:241,w_if:257,w_ig:257,w_ih:460,w_ii:257,w_in:241,w_io:257,w_ir:241,w_iz:241,w_j:304,w_n:[210,211],w_y:475,w_z:475,wai:[2,4,5,6,9,13,14,15,89,210,236,250,251,252,273,315,317,324,459,461,466,467,468,470,475,478,479,481,482,483,484,485,486,488,490,491,493,496,498,500,503],wait:[2,11,14,17,144,324,460,466,475,476,477,486,490],wait_al:17,wait_ev:11,wait_stream:[11,476],walk:[10,478,491,492,496],walltim:497,wang:7,want:[1,2,5,11,13,14,116,150,151,239,320,325,397,432,457,470,472,473,475,476,478,483,485,486,488,493,498,503],warm:486,warmup:2,warn:[9,144,150,404,405,474,478,485,489],wasn:[159,459],wast:5,weaker:15,weight:[13,15,46,143,145,149,151,156,193,210,211,215,221,222,223,224,225,226,229,235,236,237,241,242,243,257,258,259,261,273,277,278,279,280,281,287,289,313,338,340,341,342,343,344,345,346,347,353,355,457,460,461,464,468,470,471,473,478,479,485,486,488,497,498,503,504],weight_decai:486,weight_fake_qu:488,weight_g:[355,460],weight_hh:[242,258,289],weight_hh_l:[241,257,287],weight_ih:[242,258,289],weight_ih_l:[241,257,287],weight_mask:[341,344],weight_norm:[347,485],weight_orig:341,weight_scal:460,weight_siz:460,weight_stride0:460,weight_u:353,weight_v:355,weight_zero_point:460,weighted_kernel_sum:151,weightedrandomsampl:13,weird:[324,503],welcom:5,well:[2,5,9,14,143,145,148,150,212,213,214,237,253,273,309,425,459,467,470,472,473,478,481,482,485,488,490,492,493,496,497,499,502,503,505],were:[1,2,11,14,17,147,159,324,326,334,351,398,429,461,470,472,478,485,493,498],weren:2,what:[1,2,4,5,6,14,15,150,151,221,222,223,224,225,226,238,267,268,269,319,329,330,331,332,333,334,335,336,457,459,461,467,478,485,486,490,491,493,500],whatev:[432,438,498],wheel:484,when:[1,2,3,4,5,6,9,11,13,14,15,17,32,46,59,62,67,79,109,112,131,137,138,139,140,143,144,149,150,151,159,160,168,175,184,185,187,189,193,202,207,208,209,210,211,212,213,214,217,221,222,223,224,225,226,227,229,230,236,237,238,243,248,250,251,252,253,254,255,256,259,265,266,267,268,269,273,276,277,278,279,280,281,286,301,302,303,304,306,309,318,319,320,321,322,324,325,329,330,331,332,333,334,335,336,351,353,356,357,358,359,365,369,387,390,403,412,419,423,425,427,428,432,433,440,442,443,446,454,457,459,461,464,466,467,468,470,473,474,475,476,477,478,479,480,481,482,483,484,485,486,488,489,490,491,492,493,495,496,497,498,500,503,504,505],whenev:[6,235,466,470,491,492],where:[1,2,3,5,6,8,9,10,13,14,15,44,51,55,62,64,73,74,79,80,88,94,102,114,115,122,123,124,126,130,131,137,154,155,159,160,165,168,174,176,177,178,182,184,185,186,187,188,189,191,193,195,197,202,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,228,229,234,235,236,238,240,241,242,243,244,245,246,247,248,250,251,252,253,254,255,256,257,258,260,261,262,263,264,265,266,267,268,269,270,271,272,276,277,278,279,280,281,282,285,286,287,289,290,291,292,293,294,295,296,297,298,300,301,302,303,305,306,307,308,309,310,311,312,313,318,319,320,321,322,323,324,349,350,351,352,357,366,370,372,388,389,392,412,413,414,415,421,422,423,424,425,427,434,438,439,440,441,442,446,447,450,451,452,453,459,460,462,465,466,470,471,472,473,474,476,479,485,486,488,490,492,493,495,497,498,500,502,503,504,505,506],wherev:[6,467],whether:[1,2,5,6,9,11,13,14,15,33,34,44,51,62,63,64,67,68,102,123,124,126,131,141,143,154,174,177,184,185,186,187,189,191,193,217,227,237,248,253,273,282,286,340,358,370,392,402,403,421,422,423,424,425,427,434,438,446,447,450,451,457,465,470,472,476,478,485,486,490,493,494,496,497,498,500],which:[1,2,3,4,5,6,9,10,11,13,15,17,18,22,36,42,46,55,58,61,65,80,81,82,83,88,109,114,116,128,130,134,141,144,148,149,150,159,165,181,184,188,191,193,196,200,201,202,204,205,206,208,209,212,213,214,217,222,223,225,226,230,236,241,250,251,252,253,255,256,257,259,264,268,269,270,271,272,276,278,303,305,309,324,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,345,355,365,373,387,389,390,393,406,416,419,425,437,439,440,441,442,443,446,448,457,459,461,463,464,465,466,468,470,472,473,474,475,476,477,478,479,480,482,484,485,486,488,489,490,491,492,493,494,495,497,498,500,502,503,504,505,507],whichev:470,whilst:[15,476],white:505,white_list:488,whiten:505,whitespac:462,who:[5,8,473],whole:[13,14,141,143,237,273,309,473,481,488,502,505],whose:[15,61,81,94,115,122,143,151,155,176,197,237,273,324,359,473,478,485,497,500],why:[5,145,485],wide:475,wide_resnet101_2:503,wide_resnet50_2:503,width:[15,125,208,209,222,223,225,226,256,268,269,280,304,320,468,470,485,488,500,504,505],wikipedia:470,wildcard:468,willing:6,win:423,win_length:[141,423,460,498],window:[13,44,51,123,124,141,207,208,209,239,255,256,267,268,269,270,271,272,423,458,460,470,498],window_length:[44,51,123,124,460],wine:503,wip:5,wire:490,wise:[14,15,19,25,26,31,41,69,94,109,115,122,155,169,170,171,172,176,185,189,195,197,216,226,234,244,245,246,247,260,263,281,290,291,292,298,300,301,306,308,310,311,387,470,475,488,496],wish:[1,472],wit:459,with_arg:488,with_cuda:[9,484],with_pytorch_error_handl:9,with_replac:[67,460],within:[2,4,6,11,13,14,15,145,217,232,233,238,309,319,324,329,330,331,332,333,334,335,336,337,339,341,342,343,344,345,398,448,459,461,475,476,480,485,488,490,491,497],without:[1,2,4,5,6,11,13,15,112,116,131,141,193,212,213,214,236,250,251,252,259,281,309,324,339,375,390,445,457,466,468,470,472,474,476,478,481,485,486,488,489,490,497,498,503,504,505,507],won:[1,4,143,149,237,273,324,457,470,472,473,478,485,490,499,504],woodburi:15,word:[1,2,14,55,202,221,222,223,235,236,313,324,398,461,470,479,491],word_language_model:[313,485],work:[1,2,4,5,6,8,9,10,11,14,15,90,92,149,230,288,303,324,404,432,457,459,462,466,467,468,470,473,475,476,477,478,481,484,488,490,491,493,498,499],worker0:490,worker1:[17,324,490,491],worker2:490,worker:[5,9,13,14,324,490,491,492,500],worker_id:13,worker_info:13,worker_init_fn:[13,479],worker_nam:490,workerinfo:490,workflow:[10,457,478],workground:484,workload:[13,14,480],workspac:[9,485],world:[14,309],world_siz:[14,324,477,490,491],worri:490,worst:478,worth:[13,457,496],would:[2,4,6,8,13,14,15,61,90,92,130,146,147,150,151,188,195,210,211,241,257,287,324,325,348,356,391,398,432,436,459,461,467,468,472,474,475,476,477,478,485,490,491,492,493,498],wouldn:492,wrap:[1,2,10,13,143,150,230,237,273,309,324,351,459,460,472,477,478,484,486,488,490,491,498],wrapper:[11,14,17,230,324,459,461,466,488],write:[5,6,14,36,54,92,148,397,461,468,470,473,476,479,485,486,493,497,498,502],write_video:502,writer:497,written:[2,230,459,461,464,477,478,485,486,494,497],wrong:[14,477,481,484,486],wrote:5,www:[217,486,497],x86:[402,488],x86_x64:484,x_0:[114,488],x_1:[73,74,75,76,114,215,227,228,470],x_2:[73,74,75,76,215,227,228,470],x_3:[73,74,75,76],x_clone:466,x_cpu:476,x_cpu_long:476,x_gpu:476,x_i:[66,73,74,75,76,114,163,264,282,301,303,305,318,369,470],x_j:[264,303,305,470],x_n:[210,211,248,253,254,265],x_out:488,x_t:[212,213,214,241,250,251,252,257,287,309],xavier_normal_:471,xavier_uniform_:471,xcosx:497,xdg_cache_hom:457,xeon:475,xiaoqiang:7,xing:375,xla:458,xml:500,xnnpack:464,xor:[50,172],xsinx:497,xuhdev:7,xxx:500,xxy:500,xxz:500,y_cpu:476,y_cpu_long:476,y_gpu:476,y_hard:470,y_i:[66,73,74,75,76,163,301,318],y_n:[210,211,248,253,254,265,280],y_soft:470,yang:[6,7,160],ycbcr:505,year:[490,500],yes:5,yet:[11,144,146,152,191,329,333,335,461,468,488,490,492,495,505],yf225:7,yield:[13,81,83,143,237,273,454,462],yinghai:7,you:[1,2,3,4,5,6,8,9,10,11,13,14,15,36,46,54,89,92,116,143,145,146,150,151,152,159,217,221,222,223,224,225,226,229,237,270,271,272,273,278,279,280,304,313,315,317,320,324,349,356,372,390,397,432,457,459,461,463,466,467,470,472,473,474,476,478,479,480,481,482,483,484,485,486,488,489,490,491,492,493,495,496,497,498,499,500,503,505],your:[1,2,3,5,8,9,10,11,13,14,15,143,146,150,151,152,221,222,223,224,225,226,237,273,280,324,372,398,402,446,459,461,466,467,468,472,473,474,476,478,479,480,482,484,485,486,488,489,491,493,497,498,499,503,505],your_training_script:14,yourself:481,z_t:241,zach:7,zdevito:7,zebra:503,zero:[1,2,11,15,29,45,46,62,64,79,86,101,125,130,134,141,143,160,168,169,170,171,172,177,178,193,206,207,208,209,217,221,222,223,224,225,226,228,231,232,233,235,236,237,238,241,242,243,255,256,257,258,259,267,268,269,270,271,272,273,279,282,286,287,289,307,313,319,320,323,332,333,334,335,350,357,360,366,372,373,374,412,413,415,419,425,427,432,438,456,459,460,463,466,467,468,470,471,476,484,485,488,490,493,495,497,498,499,504,505],zero_:[2,460,467,468,470,493,498],zero_grad:[1,2,143,237,273,472,479,481,486],zero_infin:[217,460,470],zero_point:[373,374,460,488,498],zero_point_hh:460,zero_point_ih:460,zeros_:471,zeros_lik:[460,463,476,485],zhang:7,zhangguanheng66:7,zheng:7,zhong:505,zip:[13,457,460,461,465,480,485],zipf:202,zipfil:[397,483]},titles:["torch.__config__","Automatic Mixed Precision package - torch.cuda.amp","Automatic differentiation package - torch.autograd","torch.utils.bottleneck","torch.utils.checkpoint","PyTorch Contribution Guide","PyTorch Governance","PyTorch Governance | Persons of Interest","Complex Numbers","torch.utils.cpp_extension","C++","torch.cuda","<no title>","torch.utils.data","Distributed communication package - torch.distributed","Probability distributions - torch.distributions","torch.utils.dlpack","torch.futures","Generator","torch.abs","torch.absolute","torch.acos","torch.acosh","torch.add","torch.addbmm","torch.addcdiv","torch.addcmul","torch.addmm","torch.addmv","torch.addr","torch.allclose","torch.angle","torch.arange","torch.argmax","torch.argmin","torch.argsort","torch.as_strided","torch.as_tensor","torch.asin","torch.asinh","torch.atan","torch.atan2","torch.atanh","torch.baddbmm","torch.bartlett_window","torch.bernoulli","torch.bincount","torch.bitwise_and","torch.bitwise_not","torch.bitwise_or","torch.bitwise_xor","torch.blackman_window","torch.block_diag","torch.bmm","torch.broadcast_tensors","torch.bucketize","torch.can_cast","torch.cartesian_prod","torch.cat","torch.cdist","torch.ceil","torch.chain_matmul","torch.cholesky","torch.cholesky_inverse","torch.cholesky_solve","torch.chunk","torch.clamp","torch.combinations","torch.compiled_with_cxx11_abi","torch.conj","torch.cos","torch.cosh","torch.cross","torch.cummax","torch.cummin","torch.cumprod","torch.cumsum","torch.deg2rad","torch.dequantize","torch.det","torch.diag","torch.diag_embed","torch.diagflat","torch.diagonal","torch.digamma","torch.dist","torch.div","torch.dot","torch.eig","torch.einsum","torch.empty","torch.empty_like","torch.empty_strided","enable_grad","torch.eq","torch.equal","torch.erf","torch.erfc","torch.erfinv","torch.exp","torch.expm1","torch.eye","torch.fft","torch.flatten","torch.flip","torch.fliplr","torch.flipud","torch.floor","torch.floor_divide","torch.fmod","torch.frac","torch.from_numpy","torch.full","torch.full_like","torch.gather","torch.ge","torch.geqrf","torch.ger","torch.get_default_dtype","torch.get_num_interop_threads","torch.get_num_threads","torch.get_rng_state","torch.gt","torch.hamming_window","torch.hann_window","torch.histc","torch.ifft","torch.imag","torch.index_select","torch.initial_seed","torch.inverse","torch.irfft","torch.is_complex","torch.is_floating_point","torch.is_nonzero","torch.is_storage","torch.is_tensor","torch.isclose","torch.isfinite","torch.isinf","torch.isnan","torch.istft","ScriptFunction","ScriptModule","torch.jit.fork","torch.jit.freeze","torch.jit.ignore","torch.jit.load","torch.jit.save","torch.jit.script","torch.jit.trace","torch.jit.trace_module","torch.jit.unused","torch.jit.wait","torch.kthvalue","torch.le","torch.lerp","torch.lgamma","torch.linspace","torch.load","torch.lobpcg","torch.log","torch.log10","torch.log1p","torch.log2","torch.logaddexp","torch.logaddexp2","torch.logcumsumexp","torch.logdet","torch.logical_and","torch.logical_not","torch.logical_or","torch.logical_xor","torch.logspace","torch.logsumexp","torch.lstsq","torch.lt","torch.lu","torch.lu_solve","torch.lu_unpack","torch.manual_seed","torch.masked_select","torch.matmul","torch.matrix_power","torch.matrix_rank","torch.max","torch.mean","torch.median","torch.meshgrid","torch.min","torch.mm","torch.mode","torch.mul","torch.multinomial","torch.mv","torch.mvlgamma","torch.narrow","torch.ne","torch.neg","AdaptiveAvgPool1d","AdaptiveAvgPool2d","AdaptiveAvgPool3d","AdaptiveLogSoftmaxWithLoss","AdaptiveMaxPool1d","AdaptiveMaxPool2d","AdaptiveMaxPool3d","AlphaDropout","AvgPool1d","AvgPool2d","AvgPool3d","BCELoss","BCEWithLogitsLoss","BatchNorm1d","BatchNorm2d","BatchNorm3d","Bilinear","CELU","CTCLoss","ConstantPad1d","ConstantPad2d","ConstantPad3d","Conv1d","Conv2d","Conv3d","ConvTranspose1d","ConvTranspose2d","ConvTranspose3d","CosineEmbeddingLoss","CosineSimilarity","CrossEntropyLoss","DataParallel","Dropout","Dropout2d","Dropout3d","ELU","Embedding","EmbeddingBag","Flatten","Fold","FractionalMaxPool2d","GELU","GRU","GRUCell","GroupNorm","Hardshrink","Hardsigmoid","Hardswish","Hardtanh","HingeEmbeddingLoss","Identity","InstanceNorm1d","InstanceNorm2d","InstanceNorm3d","KLDivLoss","L1Loss","LPPool1d","LPPool2d","LSTM","LSTMCell","LayerNorm","LeakyReLU","Linear","LocalResponseNorm","LogSigmoid","LogSoftmax","MSELoss","MarginRankingLoss","MaxPool1d","MaxPool2d","MaxPool3d","MaxUnpool1d","MaxUnpool2d","MaxUnpool3d","Module","ModuleDict","ModuleList","MultiLabelMarginLoss","MultiLabelSoftMarginLoss","MultiMarginLoss","MultiheadAttention","NLLLoss","PReLU","PairwiseDistance","ParameterDict","ParameterList","PixelShuffle","PoissonNLLLoss","RNN","RNNBase","RNNCell","RReLU","ReLU","ReLU6","ReflectionPad1d","ReflectionPad2d","ReplicationPad1d","ReplicationPad2d","ReplicationPad3d","SELU","Sequential","Sigmoid","SmoothL1Loss","SoftMarginLoss","Softmax","Softmax2d","Softmin","Softplus","Softshrink","Softsign","SyncBatchNorm","Tanh","Tanhshrink","Threshold","Transformer","TransformerDecoder","TransformerDecoderLayer","TransformerEncoder","TransformerEncoderLayer","TripletMarginLoss","Unfold","Upsample","UpsamplingBilinear2d","UpsamplingNearest2d","ZeroPad2d","DistributedDataParallel","Parameter","torch.nn.utils.clip_grad_norm_","torch.nn.utils.clip_grad_value_","torch.nn.utils.parameters_to_vector","BasePruningMethod","CustomFromMask","Identity","L1Unstructured","LnStructured","PruningContainer","RandomStructured","RandomUnstructured","torch.nn.utils.prune.custom_from_mask","torch.nn.utils.prune.global_unstructured","torch.nn.utils.prune.identity","torch.nn.utils.prune.is_pruned","torch.nn.utils.prune.l1_unstructured","torch.nn.utils.prune.ln_structured","torch.nn.utils.prune.random_structured","torch.nn.utils.prune.random_unstructured","torch.nn.utils.prune.remove","torch.nn.utils.remove_spectral_norm","torch.nn.utils.remove_weight_norm","PackedSequence","torch.nn.utils.rnn.pack_padded_sequence","torch.nn.utils.rnn.pack_sequence","torch.nn.utils.rnn.pad_packed_sequence","torch.nn.utils.rnn.pad_sequence","torch.nn.utils.spectral_norm","torch.nn.utils.vector_to_parameters","torch.nn.utils.weight_norm","no_grad","torch.nonzero","torch.norm","torch.normal","torch.numel","torch.ones","torch.ones_like","torch.orgqr","torch.ormqr","torch.pca_lowrank","torch.pinverse","torch.poisson","torch.polygamma","torch.pow","torch.prod","torch.promote_types","torch.qr","torch.quantize_per_channel","torch.quantize_per_tensor","SobolEngine","torch.rad2deg","torch.rand","torch.rand_like","torch.randint","torch.randint_like","torch.randn","torch.randn_like","torch.randperm","torch.range","torch.real","torch.reciprocal","torch.remainder","torch.renorm","torch.repeat_interleave","torch.reshape","torch.result_type","torch.rfft","torch.roll","torch.rot90","torch.round","torch.rsqrt","torch.save","torch.searchsorted","torch.seed","torch.set_default_dtype","torch.set_default_tensor_type","torch.set_flush_denormal","set_grad_enabled","torch.set_num_interop_threads","torch.set_num_threads","torch.set_printoptions","torch.set_rng_state","torch.sigmoid","torch.sign","torch.sin","torch.sinh","torch.slogdet","torch.solve","torch.sort","torch.sparse_coo_tensor","torch.split","torch.sqrt","torch.square","torch.squeeze","torch.stack","torch.std","torch.std_mean","torch.stft","torch.sum","torch.svd","torch.svd_lowrank","torch.symeig","torch.t","torch.take","torch.tan","torch.tanh","torch.tensor","torch.tensordot","torch.topk","torch.trace","torch.transpose","torch.trapz","torch.triangular_solve","torch.tril","torch.tril_indices","torch.triu","torch.triu_indices","torch.true_divide","torch.trunc","torch.unbind","torch.unique","torch.unique_consecutive","torch.unsqueeze","torch.vander","torch.var","torch.var_mean","torch.view_as_complex","torch.view_as_real","torch.where","torch.zeros","torch.zeros_like","torch.hub","PyTorch documentation","TorchScript","TorchScript Builtins","TorchScript Language Reference","Python Language Reference Coverage","TorchScript Unsupported Pytorch Constructs","torch.utils.mobile_optimizer","torch.utils.model_zoo","Multiprocessing package - torch.multiprocessing","Named Tensors operator coverage","Named Tensors","torch.nn","torch.nn.functional","torch.nn.init","Automatic Mixed Precision examples","Autograd mechanics","Broadcasting semantics","CPU threading and TorchScript inference","CUDA semantics","Distributed Data Parallel","Extending PyTorch","Frequently Asked Questions","Features for large-scale deployments","Multiprocessing best practices","Reproducibility","Serialization semantics","Windows FAQ","torch.onnx","torch.optim","Javadoc","Quantization","torch.random","Distributed RPC Framework","Distributed Autograd Design","Remote Reference Protocol","torch.sparse","torch.Storage","Tensor Attributes","Tensor Views","torch.utils.tensorboard","torch.Tensor","torch","torchvision.datasets","torchvision","torchvision.io","torchvision.models","torchvision.ops","torchvision.transforms","torchvision.utils","Type Info"],titleterms:{"break":461,"case":[5,459],"class":[459,461,463],"default":[2,13,461],"export":485,"function":[2,6,14,15,459,460,461,463,467,469,470,472,473,485,488,493,505],"import":[457,484],"new":5,"return":[461,479,492],"var":450,"while":461,Adding:[5,478,485],For:461,Not:463,One:484,Ops:[1,463,499],The:5,Use:[461,476,485],With:463,__config__:0,__torch_function__:478,about:5,abs:[8,19],absolut:20,access:[8,461],accumul:472,aco:21,acosh:22,activ:[469,470],adaptive_avg_pool1d:470,adaptive_avg_pool2d:470,adaptive_avg_pool3d:470,adaptive_max_pool1d:470,adaptive_max_pool2d:470,adaptive_max_pool3d:470,adaptiveavgpool1d:199,adaptiveavgpool2d:200,adaptiveavgpool3d:201,adaptivelogsoftmaxwithloss:202,adaptivemaxpool1d:203,adaptivemaxpool2d:204,adaptivemaxpool3d:205,add:23,addbmm:24,addcdiv:25,addcmul:26,addmm:27,addmv:28,addr:29,adjust:486,affine_grid:470,agnost:476,alexnet:[485,503],algebra:8,algorithm:[486,491],align:468,allclos:30,alloc:479,alpha_dropout:470,alphadropout:206,amd:7,amp:1,angl:[8,31],anomali:2,api:[2,7,10,459,468,475,478,480,488],appendix:459,approach:483,arang:32,argmax:33,argmin:34,argsort:35,argument:492,arithmet:461,as_strid:36,as_tensor:37,asin:38,asinh:39,ask:[5,459,479,485],assign:461,assumpt:492,asynchron:[14,476,481],atan2:41,atan:40,atanh:42,aten:485,attach:480,attribut:[459,461,463,495],author:10,autocast:[1,472],autograd:[2,7,8,10,468,472,473,478,490,491],automat:[1,2,13,459,472],avg_pool1d:470,avg_pool2d:470,avg_pool3d:470,avgpool1d:207,avgpool2d:208,avgpool3d:209,avoid:[5,481],awai:467,backend:[14,490],background:[491,492],backward:[473,474,491],baddbmm:43,bartlett_window:44,basepruningmethod:329,basic:[14,468,490],batch:13,batch_norm:470,batchnorm1d:212,batchnorm2d:[213,488],batchnorm3d:[214,488],bceloss:210,bcewithlogitsloss:211,behavior:[1,13],benchmark:7,bernoulli:[15,45],best:[476,481,483],beta:15,between:463,bilinear:[215,470],binary_cross_entropi:[1,470],binary_cross_entropy_with_logit:[1,470],bincount:46,binomi:15,bitwise_and:47,bitwise_not:48,bitwise_or:49,bitwise_xor:50,bla:499,blackman_window:51,block_diag:52,bmm:53,bottleneck:3,bound:463,broadcast:474,broadcast_tensor:54,broken:484,bucket:55,buffer:[476,481],bug:5,build:[5,7,475,480,484],built:[459,460],builtin:460,c10:7,cach:[457,476],call:[461,473],can:[1,479],can_cast:56,caption:500,cartesian_prod:57,cast:461,cat:58,categor:15,cauchi:15,cdist:59,ceil:60,celeba:500,celu:[216,470],cffi:484,chain_matmul:61,chang:6,channel:484,characterist:503,check:[2,459,473],checkpoint:4,chi2:15,choleski:62,cholesky_invers:63,cholesky_solv:64,choos:14,chunk:65,cifar:500,cityscap:500,clamp:66,classif:503,claus:484,clip:472,clip_grad_norm_:326,clip_grad_value_:327,closur:486,cnn:503,coco:500,code:[5,459,476],codebas:5,collate_fn:13,collect:[11,14],combin:67,come:14,common:[5,14,480],commun:[11,14],comparison:[459,461,499],compat:474,compiled_with_cxx11_abi:68,complex:[8,473],compon:484,comput:[2,491,499],concurr:473,conj:69,consider:480,constant:[459,461],constantpad1d:218,constantpad2d:219,constantpad3d:220,constraint:15,construct:[461,463,486],contain:469,context:[2,491],continu:461,continuousbernoulli:15,contract:467,contribut:5,controversi:6,conv1d:[221,470,488],conv2d:[222,470,488],conv3d:[223,470,488],conv_transpose1d:470,conv_transpose2d:470,conv_transpose3d:470,convbn1d:488,convbn2d:488,convbnrelu1d:488,convbnrelu2d:488,convers:505,convolut:[469,470,503],convrelu1d:488,convrelu2d:488,convrelu3d:488,convtranspose1d:224,convtranspose2d:225,convtranspose3d:226,core:6,correct:[2,473],correctli:463,cos:70,cosh:71,cosine_embedding_loss:470,cosine_similar:470,cosineembeddingloss:227,cosinesimilar:228,coverag:[462,467,478,488],cpp:484,cpp_extens:9,cpu:[7,473,475],creat:[8,459,468],creation:499,cross:[72,473],cross_entropi:470,crossentropyloss:229,ctc_loss:470,ctcloss:217,cuda:[1,7,11,466,476,479,481,484],cudnn:482,cufft:476,cummax:73,cummin:74,cumprod:75,cumsum:76,current:468,custom:[472,478,485],custom_from_mask:337,customfrommask:330,data:[13,477,479,485],data_parallel:470,dataload:7,dataparallel:[230,469,470,472,476],dataset:[13,500],datasetfold:500,deadlock:481,debug:[459,488],decis:6,deeplabv3:503,defin:[461,473,478],deg2rad:77,densenet:503,depend:491,deploy:480,deprec:2,dequant:[78,488],deriv:[15,473],descriptor:466,design:[477,490,491,492],det:79,detect:[2,500,503],determin:473,develop:[5,6],devic:[476,495],diag:80,diag_emb:81,diagflat:82,diagon:83,dict:461,differenti:2,digamma:84,dim:467,dimens:[467,468],dirichlet:15,disabl:[2,13,459,499],discuss:5,dispatch:7,dist:85,distanc:[469,470],distribut:[7,14,15,469,470,477,490,491],distributeddataparallel:[324,472,476,477],div:86,diverg:[15,463],dlpack:16,doc:5,document:[5,458],doe:473,doesn:479,domain:473,dot:87,down:484,download:457,driver:484,dropout2d:[232,470],dropout3d:[233,470],dropout:[231,469,470],dtype:[472,488,495],dure:491,dynam:488,edg:459,eig:88,einsum:89,elig:1,elu:[234,470,488],embed:[235,470],embedding_bag:470,embeddingbag:236,emnist:500,empti:90,empty_lik:91,empty_strid:92,enable_grad:93,encod:473,end:[485,491],engin:7,entrypoint:457,environ:[14,480],equal:95,erf:96,erfc:97,erfinv:98,error:[479,484],event:11,exampl:[472,477,485,491],except:479,exclud:473,execut:476,exp:99,explicit:468,expm1:100,exponenti:15,exponentialfamili:15,express:461,extend:[10,478],extens:[10,11,478,480,484],extern:485,eye:101,factori:467,fakedata:500,faq:[6,484],fashion:500,fast:491,faster:503,featur:[5,480],feature_alpha_dropout:470,fft:102,fight:481,file:[14,466],file_descriptor:466,file_system:466,finfo:507,fishersnedecor:15,fix:5,flatten:[103,237],fleet:480,flickr:500,flip:104,fliplr:105,flipud:106,float16:1,float32:1,floatfunct:488,floor:107,floor_divid:108,fmod:109,fold:[238,470],fork:144,format:485,forward:491,found:484,frac:110,fractionalmaxpool2d:239,framework:490,freed:479,freez:145,frequent:[5,459,479,485],from:[8,457,467,473,484,485],from_numpi:111,full:112,full_lik:113,fulli:503,futur:17,gamma:15,gather:114,gelu:[240,470],gener:[7,11,18,474,499,505],geometr:15,geqrf:116,ger:117,get:5,get_default_dtyp:118,get_num_interop_thread:119,get_num_thread:120,get_rng_stat:121,global_unstructur:338,glu:470,googlenet:503,govern:[6,7],gpu:[14,469,470,472,479],gradient:[1,2,472,499],graph:[459,473],grid_sampl:470,group:[14,490],groupnorm:[243,488],gru:241,grucel:242,guid:[5,6],gumbel:15,gumbel_softmax:470,halfcauchi:15,halfnorm:15,hamming_window:123,handler:479,hann_window:124,happen:473,hardshrink:[244,470],hardsigmoid:[245,470],hardswish:[246,470,488],hardtanh:[247,470],higher:2,hinge_embedding_loss:470,hingeembeddingloss:248,hip:7,histc:125,histori:473,hmdb51:500,hogwild:481,hook:473,how:[457,473,486],hub:457,ident:[249,331,339,479],ifft:126,ignor:146,iinfo:507,imag:[8,127,505],imagefold:500,imagenet:500,implement:[5,457,477,492],improv:5,incept:503,includ:484,independ:15,index:499,index_select:128,indic:458,infer:[468,475],info:507,init:471,initi:14,initial_se:129,input:[1,467,472],inspect:459,instal:484,instanc:503,instance_norm:470,instancenorm1d:[250,488],instancenorm2d:[251,488],instancenorm3d:[252,488],instead:476,instrins:488,interest:7,interfac:[14,488],intern:477,interpol:470,interpret:459,intrins:488,introduct:488,invers:130,ipc:484,irfft:131,is_complex:132,is_floating_point:133,is_nonzero:134,is_prun:340,is_storag:135,is_tensor:136,isclos:137,isfinit:138,isinf:139,isn:479,isnan:140,issu:5,istft:141,iter:[13,461],javadoc:487,jit:[7,144,145,146,147,148,149,150,151,152,153,459],join:499,jvp:473,keep:467,kei:[6,484],keypoint:503,kinet:500,kl_div:470,kldivloss:253,kmnist:500,known:457,kthvalu:154,l1_loss:470,l1_unstructur:341,l1loss:254,l1unstructur:332,languag:[459,461,462],lapack:499,laplac:15,larg:480,launch:14,layer:469,layer_norm:470,layernorm:[259,488],layout:[2,495],leaky_relu:470,leakyrelu:260,learn:486,lerp:156,level:[2,7,488],lgamma:157,librari:7,lifetim:492,like:478,limit:[457,485],linear:[8,261,469,470,488],linearrelu:488,linspac:158,list:461,liter:461,ln_structur:342,lnstructur:333,load:[13,147,159,457],loader:479,lobpcg:160,local:[2,499],local_response_norm:470,localresponsenorm:262,log10:162,log1p:163,log2:164,log:[161,480],log_softmax:470,logaddexp2:166,logaddexp:165,logcumsumexp:167,logdet:168,logic:[457,461],logical_and:169,logical_not:170,logical_or:171,logical_xor:172,logitrelaxedbernoulli:15,lognorm:15,logsigmoid:[263,470],logsoftmax:264,logspac:173,logsumexp:174,lookup:461,loop:461,loss:[469,470,472],lowrankmultivariatenorm:15,lp_pool1d:470,lp_pool2d:470,lppool1d:255,lppool2d:256,lstm:[257,488],lstmcell:258,lstsq:175,lsun:500,lu_solv:178,lu_unpack:179,maintain:[6,7],make:[5,6],manag:[11,466,476],manipul:468,manual:2,manual_se:180,map:13,margin_ranking_loss:470,marginrankingloss:266,mask:503,masked_select:181,match:[461,468],math:[460,499],matmul:182,matrix_pow:183,matrix_rank:184,max:185,max_pool1d:470,max_pool2d:470,max_pool3d:470,max_unpool1d:470,max_unpool2d:470,max_unpool3d:470,maxpool1d:267,maxpool2d:268,maxpool3d:269,maxunpool1d:270,maxunpool2d:271,maxunpool3d:272,mean:186,mechan:473,median:187,memori:[11,13,476,479],memory_format:495,meshgrid:188,metadata:480,method:[2,460,461,463],migrat:459,min:189,mistak:5,mix:[1,459,472,503],mixin:2,mixturesamefamili:15,mkldnn:7,mnasnet:503,mnist:500,mobile_optim:464,mobilenet:503,mode:[191,491],model:[10,457,472,479,480,483,488,503],model_zoo:465,moder:6,modul:[7,273,459,460,461,463,478],moduledict:274,modulelist:[275,461],more:5,mse_loss:470,mseloss:265,mul:192,multi:[13,14,469,470],multi_margin_loss:470,multiheadattent:279,multilabel_margin_loss:470,multilabel_soft_margin_loss:470,multilabelmarginloss:276,multilabelsoftmarginloss:277,multimarginloss:278,multinomi:[15,193],multipl:[472,478],multiprocess:[7,466,476,481,484],multithread:473,multivariatenorm:15,mutat:499,mvlgamma:195,name:[461,467,468],narrow:196,nccl:14,need:472,neg:198,negativebinomi:15,network:[14,479,503],nll_loss:470,nllloss:280,no_grad:356,node:473,non:[13,469,470,473,485],nonlinear:469,nonzero:357,norm:358,normal:[15,359,469,470],note:490,notic:457,notion:473,number:[8,11,473,475,479],numel:360,numer:2,numpi:482,nvidia:11,nvtx:11,object:503,observ:488,old:8,one:472,one_hot:470,onehotcategor:15,ones:361,ones_lik:362,onlin:5,onnx:[7,485],onnx_aten:485,onnx_aten_fallback:485,onnx_fallthrough:485,open:5,oper:[2,7,14,461,467,468,473,478,480,484,485,488,499],ops:[472,504],optim:[7,472,486,490,491],option:[461,475,484,486],order:13,orgqr:363,ormqr:364,other:[14,469,499],out:[467,479],over:[1,461],overrid:478,overview:5,owner:492,pack_padded_sequ:349,pack_sequ:350,packag:[1,2,10,14,466,484],packedsequ:348,pad:[469,470],pad_packed_sequ:351,pad_sequ:352,pairwise_dist:470,pairwisedist:282,parallel:[476,477,479,499],paramet:[325,461,486],parameterdict:283,parameterlist:284,parameters_to_vector:328,pareto:15,parti:14,particip:5,particular:472,pass:[481,491],pathwis:15,pattern:461,pca_lowrank:365,pdist:470,penalti:472,peopl:6,per:[472,486],perform:7,permut:467,person:[7,503],philosophi:6,phototour:500,pil:505,pin:[13,476],pinvers:366,pipe:484,pixel_shuffl:470,pixelshuffl:285,place:[2,467,473,474,499],plan:476,platform:13,point:[14,480],pointwis:499,poisson:[15,367],poisson_nll_loss:470,poissonnllloss:286,polygamma:368,pool:[469,470],pow:369,powerpc:7,practic:[476,481,483],precis:[1,472],prefer:1,prelu:[281,470],prepar:488,print:461,probabl:15,process:[5,6,13,472,490],processgroup:477,prod:370,profil:[2,480],project:6,promot:[1,5],promote_typ:371,propag:468,properli:479,properti:463,propos:5,protect:484,protocol:492,prune:[337,338,339,340,341,342,343,344,345],pruningcontain:334,publish:457,pull:5,python:[5,459,460,461,462,463],pytorch:[5,6,7,10,14,458,459,460,463,473,478,482,485],qat:488,qfunction:488,qmnist:500,quantiz:[469,488],quantize_per_channel:373,quantize_per_tensor:374,quasi:499,question:[5,459,479,485],queue:481,rad2deg:376,rand:377,rand_lik:378,randint:379,randint_lik:380,randn:381,randn_lik:382,random:[11,13,479,489,499],random_structur:343,random_unstructur:344,randomstructur:335,randomunstructur:336,randperm:383,rang:[384,461],rate:486,raw:485,readabl:5,real:[8,385],reason:492,reciproc:386,recommend:483,record:491,recurr:[469,479],recurs:459,reduct:499,refer:[1,459,461,462,468,492],refin:461,reflectionpad1d:293,reflectionpad2d:294,registri:15,relaxedbernoulli:15,relaxedonehotcategor:15,relu6:[292,470,488],relu:[291,470,488],remaind:387,remot:492,remov:[345,467],remove_spectral_norm:346,remove_weight_norm:347,renorm:388,repeat_interleav:389,replicationpad1d:295,replicationpad2d:296,replicationpad3d:297,report:[5,479],represent:8,reproduc:482,request:5,requires_grad:473,reshap:390,resnet:503,resnext:503,resolut:461,result_typ:391,retain:473,reus:481,review:5,rfft:392,rng:7,rnn:[287,349,350,351,352],rnnbase:288,rnncell:289,robust:5,rocm:7,roll:393,rot90:394,round:395,rpc:490,rref:[490,492],rrelu:[290,470],rsqrt:396,rule:468,run:457,runtim:[475,479,503],safeti:473,sampl:499,sampler:13,save:[148,397,457,480,483],sbd:500,sbu:500,scalar:473,scale:[1,472,480],scenario:492,schema:463,scheme:488,score:15,script:[149,459,484,485],scriptfunct:142,scriptmodul:143,searchsort:398,seed:399,segment:503,selu:[298,470],semant:[468,474,476,483,503],sequenti:299,serial:[8,483,499],set_default_dtyp:400,set_default_tensor_typ:401,set_flush_denorm:402,set_grad_en:403,set_num_interop_thread:404,set_num_thread:405,set_printopt:406,set_rng_stat:407,share:[14,466,492],shufflenet:503,shut:484,sigmoid:[300,408,470],sign:409,simd:7,simpl:[461,491],sin:410,singl:[13,472],sinh:411,slice:[461,499],slogdet:412,smart:491,smooth_l1_loss:470,smoothl1loss:301,sobolengin:375,soft_margin_loss:470,softmarginloss:302,softmax2d:304,softmax:[303,470],softmin:[305,470],softplu:[306,470],softshrink:[307,470],softsign:[308,470],solv:413,sort:414,sourc:[5,484],spars:[469,470,493],sparse_coo_tensor:415,spawn:[14,466],specif:[1,13],spectral:499,spectral_norm:353,speed:484,split:416,sqrt:417,squar:418,squeez:419,squeezenet:503,stack:420,start:5,statement:461,std:421,std_mean:422,step:486,stft:423,stl10:500,storag:494,strategi:466,stream:[11,476],studentt:15,style:13,subgraph:473,submit:5,subprocess:466,subscript:461,subsystem:468,sum:[424,469],support:[460,467,468,485],svd:425,svd_lowrank:426,svhn:500,symeig:427,syncbatchnorm:309,synchron:14,system:[14,466],tabl:458,take:[429,486],tan:430,tanh:[310,431,470],tanhshrink:[311,470],tcp:14,tenet:6,tensor:[2,8,10,432,460,463,466,467,468,478,488,495,496,498,499,505],tensorboard:497,tensordot:433,tensorpip:490,ternari:461,test:[5,478],third:14,thread:[473,475],threshold:[312,470],through:481,tip:481,tool:11,top:488,topk:434,torch:[0,1,2,3,4,7,9,11,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,326,327,328,337,338,339,340,341,342,343,344,345,346,347,349,350,351,352,353,354,355,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,463,464,465,466,469,470,471,478,485,486,488,489,493,494,495,497,498,499,505,507],torchaudio:7,torchscript:[10,459,460,461,463,475,480],torchserv:7,torchtext:7,torchvis:[7,485,500,501,502,503,504,505,506],trace:[150,435,459,485],trace_modul:151,tracer:459,train:[472,481,485],transform:[15,313,469,505],transformeddistribut:15,transformerdecod:314,transformerdecoderlay:315,transformerencod:316,transformerencoderlay:317,transit:8,transpos:436,trapz:437,triag:5,triangular_solv:438,tril:439,tril_indic:440,triplet_margin_loss:470,tripletmarginloss:318,triu:441,triu_indic:442,true_divid:443,trunc:444,tune:475,tupl:461,tutori:[5,490],type:[1,13,461,478,485,507],typic:472,ucf101:500,unbind:445,uncontroversi:6,unfold:[319,470],unifi:467,uniform:15,uniqu:446,unique_consecut:447,unscal:472,unsqueez:448,unsupport:[461,463],unus:152,upsampl:[320,470],upsample_bilinear:470,upsample_nearest:470,upsamplingbilinear2d:321,upsamplingnearest2d:322,usag:[480,484],use:[14,473,486],user:492,usp:500,util:[3,4,7,9,13,14,16,326,327,328,337,338,339,340,341,342,343,344,345,346,347,349,350,351,352,353,354,355,464,465,469,488,497,499,506],valu:[461,492],vander:449,var_mean:451,variabl:[2,14,459,461],variant:467,vector_to_paramet:354,vgg:503,video:[502,503],view:496,view_as_complex:452,view_as_r:453,vision:[469,470],vjp:473,voc:500,vonmis:15,wait:153,warn:459,weibul:15,weight:469,weight_norm:355,what:473,where:[454,457],which:14,wide:[480,503],widest:1,win:484,window:[7,484],without:484,work:[13,472,479],worker:479,workflow:488,wrapper:478,write:478,xla:7,zero:455,zeropad2d:323,zeros_lik:456}}) \ No newline at end of file +Search.setIndex({docnames:["__config__","amp","autograd","bottleneck","checkpoint","community/contribution_guide","community/governance","community/persons_of_interest","complex_numbers","cpp_extension","cpp_index","cuda","cudnn_persistent_rnn","data","distributed","distributions","dlpack","futures","generated/torch.Generator","generated/torch.abs","generated/torch.absolute","generated/torch.acos","generated/torch.acosh","generated/torch.add","generated/torch.addbmm","generated/torch.addcdiv","generated/torch.addcmul","generated/torch.addmm","generated/torch.addmv","generated/torch.addr","generated/torch.allclose","generated/torch.angle","generated/torch.arange","generated/torch.argmax","generated/torch.argmin","generated/torch.argsort","generated/torch.as_strided","generated/torch.as_tensor","generated/torch.asin","generated/torch.asinh","generated/torch.atan","generated/torch.atan2","generated/torch.atanh","generated/torch.baddbmm","generated/torch.bartlett_window","generated/torch.bernoulli","generated/torch.bincount","generated/torch.bitwise_and","generated/torch.bitwise_not","generated/torch.bitwise_or","generated/torch.bitwise_xor","generated/torch.blackman_window","generated/torch.block_diag","generated/torch.bmm","generated/torch.broadcast_tensors","generated/torch.bucketize","generated/torch.can_cast","generated/torch.cartesian_prod","generated/torch.cat","generated/torch.cdist","generated/torch.ceil","generated/torch.chain_matmul","generated/torch.cholesky","generated/torch.cholesky_inverse","generated/torch.cholesky_solve","generated/torch.chunk","generated/torch.clamp","generated/torch.combinations","generated/torch.compiled_with_cxx11_abi","generated/torch.conj","generated/torch.cos","generated/torch.cosh","generated/torch.cross","generated/torch.cummax","generated/torch.cummin","generated/torch.cumprod","generated/torch.cumsum","generated/torch.deg2rad","generated/torch.dequantize","generated/torch.det","generated/torch.diag","generated/torch.diag_embed","generated/torch.diagflat","generated/torch.diagonal","generated/torch.digamma","generated/torch.dist","generated/torch.div","generated/torch.dot","generated/torch.eig","generated/torch.einsum","generated/torch.empty","generated/torch.empty_like","generated/torch.empty_strided","generated/torch.enable_grad","generated/torch.eq","generated/torch.equal","generated/torch.erf","generated/torch.erfc","generated/torch.erfinv","generated/torch.exp","generated/torch.expm1","generated/torch.eye","generated/torch.fft","generated/torch.flatten","generated/torch.flip","generated/torch.fliplr","generated/torch.flipud","generated/torch.floor","generated/torch.floor_divide","generated/torch.fmod","generated/torch.frac","generated/torch.from_numpy","generated/torch.full","generated/torch.full_like","generated/torch.gather","generated/torch.ge","generated/torch.geqrf","generated/torch.ger","generated/torch.get_default_dtype","generated/torch.get_num_interop_threads","generated/torch.get_num_threads","generated/torch.get_rng_state","generated/torch.gt","generated/torch.hamming_window","generated/torch.hann_window","generated/torch.histc","generated/torch.ifft","generated/torch.imag","generated/torch.index_select","generated/torch.initial_seed","generated/torch.inverse","generated/torch.irfft","generated/torch.is_complex","generated/torch.is_floating_point","generated/torch.is_nonzero","generated/torch.is_storage","generated/torch.is_tensor","generated/torch.isclose","generated/torch.isfinite","generated/torch.isinf","generated/torch.isnan","generated/torch.istft","generated/torch.jit.ScriptFunction","generated/torch.jit.ScriptModule","generated/torch.jit.fork","generated/torch.jit.freeze","generated/torch.jit.ignore","generated/torch.jit.load","generated/torch.jit.save","generated/torch.jit.script","generated/torch.jit.trace","generated/torch.jit.trace_module","generated/torch.jit.unused","generated/torch.jit.wait","generated/torch.kthvalue","generated/torch.le","generated/torch.lerp","generated/torch.lgamma","generated/torch.linspace","generated/torch.load","generated/torch.lobpcg","generated/torch.log","generated/torch.log10","generated/torch.log1p","generated/torch.log2","generated/torch.logaddexp","generated/torch.logaddexp2","generated/torch.logcumsumexp","generated/torch.logdet","generated/torch.logical_and","generated/torch.logical_not","generated/torch.logical_or","generated/torch.logical_xor","generated/torch.logspace","generated/torch.logsumexp","generated/torch.lstsq","generated/torch.lt","generated/torch.lu","generated/torch.lu_solve","generated/torch.lu_unpack","generated/torch.manual_seed","generated/torch.masked_select","generated/torch.matmul","generated/torch.matrix_power","generated/torch.matrix_rank","generated/torch.max","generated/torch.mean","generated/torch.median","generated/torch.meshgrid","generated/torch.min","generated/torch.mm","generated/torch.mode","generated/torch.mul","generated/torch.multinomial","generated/torch.mv","generated/torch.mvlgamma","generated/torch.narrow","generated/torch.ne","generated/torch.neg","generated/torch.nn.AdaptiveAvgPool1d","generated/torch.nn.AdaptiveAvgPool2d","generated/torch.nn.AdaptiveAvgPool3d","generated/torch.nn.AdaptiveLogSoftmaxWithLoss","generated/torch.nn.AdaptiveMaxPool1d","generated/torch.nn.AdaptiveMaxPool2d","generated/torch.nn.AdaptiveMaxPool3d","generated/torch.nn.AlphaDropout","generated/torch.nn.AvgPool1d","generated/torch.nn.AvgPool2d","generated/torch.nn.AvgPool3d","generated/torch.nn.BCELoss","generated/torch.nn.BCEWithLogitsLoss","generated/torch.nn.BatchNorm1d","generated/torch.nn.BatchNorm2d","generated/torch.nn.BatchNorm3d","generated/torch.nn.Bilinear","generated/torch.nn.CELU","generated/torch.nn.CTCLoss","generated/torch.nn.ConstantPad1d","generated/torch.nn.ConstantPad2d","generated/torch.nn.ConstantPad3d","generated/torch.nn.Conv1d","generated/torch.nn.Conv2d","generated/torch.nn.Conv3d","generated/torch.nn.ConvTranspose1d","generated/torch.nn.ConvTranspose2d","generated/torch.nn.ConvTranspose3d","generated/torch.nn.CosineEmbeddingLoss","generated/torch.nn.CosineSimilarity","generated/torch.nn.CrossEntropyLoss","generated/torch.nn.DataParallel","generated/torch.nn.Dropout","generated/torch.nn.Dropout2d","generated/torch.nn.Dropout3d","generated/torch.nn.ELU","generated/torch.nn.Embedding","generated/torch.nn.EmbeddingBag","generated/torch.nn.Flatten","generated/torch.nn.Fold","generated/torch.nn.FractionalMaxPool2d","generated/torch.nn.GELU","generated/torch.nn.GRU","generated/torch.nn.GRUCell","generated/torch.nn.GroupNorm","generated/torch.nn.Hardshrink","generated/torch.nn.Hardsigmoid","generated/torch.nn.Hardswish","generated/torch.nn.Hardtanh","generated/torch.nn.HingeEmbeddingLoss","generated/torch.nn.Identity","generated/torch.nn.InstanceNorm1d","generated/torch.nn.InstanceNorm2d","generated/torch.nn.InstanceNorm3d","generated/torch.nn.KLDivLoss","generated/torch.nn.L1Loss","generated/torch.nn.LPPool1d","generated/torch.nn.LPPool2d","generated/torch.nn.LSTM","generated/torch.nn.LSTMCell","generated/torch.nn.LayerNorm","generated/torch.nn.LeakyReLU","generated/torch.nn.Linear","generated/torch.nn.LocalResponseNorm","generated/torch.nn.LogSigmoid","generated/torch.nn.LogSoftmax","generated/torch.nn.MSELoss","generated/torch.nn.MarginRankingLoss","generated/torch.nn.MaxPool1d","generated/torch.nn.MaxPool2d","generated/torch.nn.MaxPool3d","generated/torch.nn.MaxUnpool1d","generated/torch.nn.MaxUnpool2d","generated/torch.nn.MaxUnpool3d","generated/torch.nn.Module","generated/torch.nn.ModuleDict","generated/torch.nn.ModuleList","generated/torch.nn.MultiLabelMarginLoss","generated/torch.nn.MultiLabelSoftMarginLoss","generated/torch.nn.MultiMarginLoss","generated/torch.nn.MultiheadAttention","generated/torch.nn.NLLLoss","generated/torch.nn.PReLU","generated/torch.nn.PairwiseDistance","generated/torch.nn.ParameterDict","generated/torch.nn.ParameterList","generated/torch.nn.PixelShuffle","generated/torch.nn.PoissonNLLLoss","generated/torch.nn.RNN","generated/torch.nn.RNNBase","generated/torch.nn.RNNCell","generated/torch.nn.RReLU","generated/torch.nn.ReLU","generated/torch.nn.ReLU6","generated/torch.nn.ReflectionPad1d","generated/torch.nn.ReflectionPad2d","generated/torch.nn.ReplicationPad1d","generated/torch.nn.ReplicationPad2d","generated/torch.nn.ReplicationPad3d","generated/torch.nn.SELU","generated/torch.nn.Sequential","generated/torch.nn.Sigmoid","generated/torch.nn.SmoothL1Loss","generated/torch.nn.SoftMarginLoss","generated/torch.nn.Softmax","generated/torch.nn.Softmax2d","generated/torch.nn.Softmin","generated/torch.nn.Softplus","generated/torch.nn.Softshrink","generated/torch.nn.Softsign","generated/torch.nn.SyncBatchNorm","generated/torch.nn.Tanh","generated/torch.nn.Tanhshrink","generated/torch.nn.Threshold","generated/torch.nn.Transformer","generated/torch.nn.TransformerDecoder","generated/torch.nn.TransformerDecoderLayer","generated/torch.nn.TransformerEncoder","generated/torch.nn.TransformerEncoderLayer","generated/torch.nn.TripletMarginLoss","generated/torch.nn.Unfold","generated/torch.nn.Upsample","generated/torch.nn.UpsamplingBilinear2d","generated/torch.nn.UpsamplingNearest2d","generated/torch.nn.ZeroPad2d","generated/torch.nn.parallel.DistributedDataParallel","generated/torch.nn.parameter.Parameter","generated/torch.nn.utils.clip_grad_norm_","generated/torch.nn.utils.clip_grad_value_","generated/torch.nn.utils.parameters_to_vector","generated/torch.nn.utils.prune.BasePruningMethod","generated/torch.nn.utils.prune.CustomFromMask","generated/torch.nn.utils.prune.Identity","generated/torch.nn.utils.prune.L1Unstructured","generated/torch.nn.utils.prune.LnStructured","generated/torch.nn.utils.prune.PruningContainer","generated/torch.nn.utils.prune.RandomStructured","generated/torch.nn.utils.prune.RandomUnstructured","generated/torch.nn.utils.prune.custom_from_mask","generated/torch.nn.utils.prune.global_unstructured","generated/torch.nn.utils.prune.identity","generated/torch.nn.utils.prune.is_pruned","generated/torch.nn.utils.prune.l1_unstructured","generated/torch.nn.utils.prune.ln_structured","generated/torch.nn.utils.prune.random_structured","generated/torch.nn.utils.prune.random_unstructured","generated/torch.nn.utils.prune.remove","generated/torch.nn.utils.remove_spectral_norm","generated/torch.nn.utils.remove_weight_norm","generated/torch.nn.utils.rnn.PackedSequence","generated/torch.nn.utils.rnn.pack_padded_sequence","generated/torch.nn.utils.rnn.pack_sequence","generated/torch.nn.utils.rnn.pad_packed_sequence","generated/torch.nn.utils.rnn.pad_sequence","generated/torch.nn.utils.spectral_norm","generated/torch.nn.utils.vector_to_parameters","generated/torch.nn.utils.weight_norm","generated/torch.no_grad","generated/torch.nonzero","generated/torch.norm","generated/torch.normal","generated/torch.numel","generated/torch.ones","generated/torch.ones_like","generated/torch.orgqr","generated/torch.ormqr","generated/torch.pca_lowrank","generated/torch.pinverse","generated/torch.poisson","generated/torch.polygamma","generated/torch.pow","generated/torch.prod","generated/torch.promote_types","generated/torch.qr","generated/torch.quantize_per_channel","generated/torch.quantize_per_tensor","generated/torch.quasirandom.SobolEngine","generated/torch.rad2deg","generated/torch.rand","generated/torch.rand_like","generated/torch.randint","generated/torch.randint_like","generated/torch.randn","generated/torch.randn_like","generated/torch.randperm","generated/torch.range","generated/torch.real","generated/torch.reciprocal","generated/torch.remainder","generated/torch.renorm","generated/torch.repeat_interleave","generated/torch.reshape","generated/torch.result_type","generated/torch.rfft","generated/torch.roll","generated/torch.rot90","generated/torch.round","generated/torch.rsqrt","generated/torch.save","generated/torch.searchsorted","generated/torch.seed","generated/torch.set_default_dtype","generated/torch.set_default_tensor_type","generated/torch.set_flush_denormal","generated/torch.set_grad_enabled","generated/torch.set_num_interop_threads","generated/torch.set_num_threads","generated/torch.set_printoptions","generated/torch.set_rng_state","generated/torch.sigmoid","generated/torch.sign","generated/torch.sin","generated/torch.sinh","generated/torch.slogdet","generated/torch.solve","generated/torch.sort","generated/torch.sparse_coo_tensor","generated/torch.split","generated/torch.sqrt","generated/torch.square","generated/torch.squeeze","generated/torch.stack","generated/torch.std","generated/torch.std_mean","generated/torch.stft","generated/torch.sum","generated/torch.svd","generated/torch.svd_lowrank","generated/torch.symeig","generated/torch.t","generated/torch.take","generated/torch.tan","generated/torch.tanh","generated/torch.tensor","generated/torch.tensordot","generated/torch.topk","generated/torch.trace","generated/torch.transpose","generated/torch.trapz","generated/torch.triangular_solve","generated/torch.tril","generated/torch.tril_indices","generated/torch.triu","generated/torch.triu_indices","generated/torch.true_divide","generated/torch.trunc","generated/torch.unbind","generated/torch.unique","generated/torch.unique_consecutive","generated/torch.unsqueeze","generated/torch.vander","generated/torch.var","generated/torch.var_mean","generated/torch.view_as_complex","generated/torch.view_as_real","generated/torch.where","generated/torch.zeros","generated/torch.zeros_like","hub","index","jit","jit_builtin_functions","jit_language_reference","jit_python_reference","jit_unsupported","mobile_optimizer","model_zoo","multiprocessing","name_inference","named_tensor","nn","nn.functional","nn.init","notes/amp_examples","notes/autograd","notes/broadcasting","notes/cpu_threading_torchscript_inference","notes/cuda","notes/ddp","notes/extending","notes/faq","notes/large_scale_deployments","notes/multiprocessing","notes/randomness","notes/serialization","notes/windows","onnx","optim","packages","quantization","random","rpc","rpc/distributed_autograd","rpc/rref","sparse","storage","tensor_attributes","tensor_view","tensorboard","tensors","torch","torchvision/datasets","torchvision/index","torchvision/io","torchvision/models","torchvision/ops","torchvision/transforms","torchvision/utils","type_info"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.index":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.intersphinx":1,"sphinx.ext.todo":2,"sphinx.ext.viewcode":1,sphinx:56},filenames:["__config__.rst","amp.rst","autograd.rst","bottleneck.rst","checkpoint.rst","community/contribution_guide.rst","community/governance.rst","community/persons_of_interest.rst","complex_numbers.rst","cpp_extension.rst","cpp_index.rst","cuda.rst","cudnn_persistent_rnn.rst","data.rst","distributed.rst","distributions.rst","dlpack.rst","futures.rst","generated/torch.Generator.rst","generated/torch.abs.rst","generated/torch.absolute.rst","generated/torch.acos.rst","generated/torch.acosh.rst","generated/torch.add.rst","generated/torch.addbmm.rst","generated/torch.addcdiv.rst","generated/torch.addcmul.rst","generated/torch.addmm.rst","generated/torch.addmv.rst","generated/torch.addr.rst","generated/torch.allclose.rst","generated/torch.angle.rst","generated/torch.arange.rst","generated/torch.argmax.rst","generated/torch.argmin.rst","generated/torch.argsort.rst","generated/torch.as_strided.rst","generated/torch.as_tensor.rst","generated/torch.asin.rst","generated/torch.asinh.rst","generated/torch.atan.rst","generated/torch.atan2.rst","generated/torch.atanh.rst","generated/torch.baddbmm.rst","generated/torch.bartlett_window.rst","generated/torch.bernoulli.rst","generated/torch.bincount.rst","generated/torch.bitwise_and.rst","generated/torch.bitwise_not.rst","generated/torch.bitwise_or.rst","generated/torch.bitwise_xor.rst","generated/torch.blackman_window.rst","generated/torch.block_diag.rst","generated/torch.bmm.rst","generated/torch.broadcast_tensors.rst","generated/torch.bucketize.rst","generated/torch.can_cast.rst","generated/torch.cartesian_prod.rst","generated/torch.cat.rst","generated/torch.cdist.rst","generated/torch.ceil.rst","generated/torch.chain_matmul.rst","generated/torch.cholesky.rst","generated/torch.cholesky_inverse.rst","generated/torch.cholesky_solve.rst","generated/torch.chunk.rst","generated/torch.clamp.rst","generated/torch.combinations.rst","generated/torch.compiled_with_cxx11_abi.rst","generated/torch.conj.rst","generated/torch.cos.rst","generated/torch.cosh.rst","generated/torch.cross.rst","generated/torch.cummax.rst","generated/torch.cummin.rst","generated/torch.cumprod.rst","generated/torch.cumsum.rst","generated/torch.deg2rad.rst","generated/torch.dequantize.rst","generated/torch.det.rst","generated/torch.diag.rst","generated/torch.diag_embed.rst","generated/torch.diagflat.rst","generated/torch.diagonal.rst","generated/torch.digamma.rst","generated/torch.dist.rst","generated/torch.div.rst","generated/torch.dot.rst","generated/torch.eig.rst","generated/torch.einsum.rst","generated/torch.empty.rst","generated/torch.empty_like.rst","generated/torch.empty_strided.rst","generated/torch.enable_grad.rst","generated/torch.eq.rst","generated/torch.equal.rst","generated/torch.erf.rst","generated/torch.erfc.rst","generated/torch.erfinv.rst","generated/torch.exp.rst","generated/torch.expm1.rst","generated/torch.eye.rst","generated/torch.fft.rst","generated/torch.flatten.rst","generated/torch.flip.rst","generated/torch.fliplr.rst","generated/torch.flipud.rst","generated/torch.floor.rst","generated/torch.floor_divide.rst","generated/torch.fmod.rst","generated/torch.frac.rst","generated/torch.from_numpy.rst","generated/torch.full.rst","generated/torch.full_like.rst","generated/torch.gather.rst","generated/torch.ge.rst","generated/torch.geqrf.rst","generated/torch.ger.rst","generated/torch.get_default_dtype.rst","generated/torch.get_num_interop_threads.rst","generated/torch.get_num_threads.rst","generated/torch.get_rng_state.rst","generated/torch.gt.rst","generated/torch.hamming_window.rst","generated/torch.hann_window.rst","generated/torch.histc.rst","generated/torch.ifft.rst","generated/torch.imag.rst","generated/torch.index_select.rst","generated/torch.initial_seed.rst","generated/torch.inverse.rst","generated/torch.irfft.rst","generated/torch.is_complex.rst","generated/torch.is_floating_point.rst","generated/torch.is_nonzero.rst","generated/torch.is_storage.rst","generated/torch.is_tensor.rst","generated/torch.isclose.rst","generated/torch.isfinite.rst","generated/torch.isinf.rst","generated/torch.isnan.rst","generated/torch.istft.rst","generated/torch.jit.ScriptFunction.rst","generated/torch.jit.ScriptModule.rst","generated/torch.jit.fork.rst","generated/torch.jit.freeze.rst","generated/torch.jit.ignore.rst","generated/torch.jit.load.rst","generated/torch.jit.save.rst","generated/torch.jit.script.rst","generated/torch.jit.trace.rst","generated/torch.jit.trace_module.rst","generated/torch.jit.unused.rst","generated/torch.jit.wait.rst","generated/torch.kthvalue.rst","generated/torch.le.rst","generated/torch.lerp.rst","generated/torch.lgamma.rst","generated/torch.linspace.rst","generated/torch.load.rst","generated/torch.lobpcg.rst","generated/torch.log.rst","generated/torch.log10.rst","generated/torch.log1p.rst","generated/torch.log2.rst","generated/torch.logaddexp.rst","generated/torch.logaddexp2.rst","generated/torch.logcumsumexp.rst","generated/torch.logdet.rst","generated/torch.logical_and.rst","generated/torch.logical_not.rst","generated/torch.logical_or.rst","generated/torch.logical_xor.rst","generated/torch.logspace.rst","generated/torch.logsumexp.rst","generated/torch.lstsq.rst","generated/torch.lt.rst","generated/torch.lu.rst","generated/torch.lu_solve.rst","generated/torch.lu_unpack.rst","generated/torch.manual_seed.rst","generated/torch.masked_select.rst","generated/torch.matmul.rst","generated/torch.matrix_power.rst","generated/torch.matrix_rank.rst","generated/torch.max.rst","generated/torch.mean.rst","generated/torch.median.rst","generated/torch.meshgrid.rst","generated/torch.min.rst","generated/torch.mm.rst","generated/torch.mode.rst","generated/torch.mul.rst","generated/torch.multinomial.rst","generated/torch.mv.rst","generated/torch.mvlgamma.rst","generated/torch.narrow.rst","generated/torch.ne.rst","generated/torch.neg.rst","generated/torch.nn.AdaptiveAvgPool1d.rst","generated/torch.nn.AdaptiveAvgPool2d.rst","generated/torch.nn.AdaptiveAvgPool3d.rst","generated/torch.nn.AdaptiveLogSoftmaxWithLoss.rst","generated/torch.nn.AdaptiveMaxPool1d.rst","generated/torch.nn.AdaptiveMaxPool2d.rst","generated/torch.nn.AdaptiveMaxPool3d.rst","generated/torch.nn.AlphaDropout.rst","generated/torch.nn.AvgPool1d.rst","generated/torch.nn.AvgPool2d.rst","generated/torch.nn.AvgPool3d.rst","generated/torch.nn.BCELoss.rst","generated/torch.nn.BCEWithLogitsLoss.rst","generated/torch.nn.BatchNorm1d.rst","generated/torch.nn.BatchNorm2d.rst","generated/torch.nn.BatchNorm3d.rst","generated/torch.nn.Bilinear.rst","generated/torch.nn.CELU.rst","generated/torch.nn.CTCLoss.rst","generated/torch.nn.ConstantPad1d.rst","generated/torch.nn.ConstantPad2d.rst","generated/torch.nn.ConstantPad3d.rst","generated/torch.nn.Conv1d.rst","generated/torch.nn.Conv2d.rst","generated/torch.nn.Conv3d.rst","generated/torch.nn.ConvTranspose1d.rst","generated/torch.nn.ConvTranspose2d.rst","generated/torch.nn.ConvTranspose3d.rst","generated/torch.nn.CosineEmbeddingLoss.rst","generated/torch.nn.CosineSimilarity.rst","generated/torch.nn.CrossEntropyLoss.rst","generated/torch.nn.DataParallel.rst","generated/torch.nn.Dropout.rst","generated/torch.nn.Dropout2d.rst","generated/torch.nn.Dropout3d.rst","generated/torch.nn.ELU.rst","generated/torch.nn.Embedding.rst","generated/torch.nn.EmbeddingBag.rst","generated/torch.nn.Flatten.rst","generated/torch.nn.Fold.rst","generated/torch.nn.FractionalMaxPool2d.rst","generated/torch.nn.GELU.rst","generated/torch.nn.GRU.rst","generated/torch.nn.GRUCell.rst","generated/torch.nn.GroupNorm.rst","generated/torch.nn.Hardshrink.rst","generated/torch.nn.Hardsigmoid.rst","generated/torch.nn.Hardswish.rst","generated/torch.nn.Hardtanh.rst","generated/torch.nn.HingeEmbeddingLoss.rst","generated/torch.nn.Identity.rst","generated/torch.nn.InstanceNorm1d.rst","generated/torch.nn.InstanceNorm2d.rst","generated/torch.nn.InstanceNorm3d.rst","generated/torch.nn.KLDivLoss.rst","generated/torch.nn.L1Loss.rst","generated/torch.nn.LPPool1d.rst","generated/torch.nn.LPPool2d.rst","generated/torch.nn.LSTM.rst","generated/torch.nn.LSTMCell.rst","generated/torch.nn.LayerNorm.rst","generated/torch.nn.LeakyReLU.rst","generated/torch.nn.Linear.rst","generated/torch.nn.LocalResponseNorm.rst","generated/torch.nn.LogSigmoid.rst","generated/torch.nn.LogSoftmax.rst","generated/torch.nn.MSELoss.rst","generated/torch.nn.MarginRankingLoss.rst","generated/torch.nn.MaxPool1d.rst","generated/torch.nn.MaxPool2d.rst","generated/torch.nn.MaxPool3d.rst","generated/torch.nn.MaxUnpool1d.rst","generated/torch.nn.MaxUnpool2d.rst","generated/torch.nn.MaxUnpool3d.rst","generated/torch.nn.Module.rst","generated/torch.nn.ModuleDict.rst","generated/torch.nn.ModuleList.rst","generated/torch.nn.MultiLabelMarginLoss.rst","generated/torch.nn.MultiLabelSoftMarginLoss.rst","generated/torch.nn.MultiMarginLoss.rst","generated/torch.nn.MultiheadAttention.rst","generated/torch.nn.NLLLoss.rst","generated/torch.nn.PReLU.rst","generated/torch.nn.PairwiseDistance.rst","generated/torch.nn.ParameterDict.rst","generated/torch.nn.ParameterList.rst","generated/torch.nn.PixelShuffle.rst","generated/torch.nn.PoissonNLLLoss.rst","generated/torch.nn.RNN.rst","generated/torch.nn.RNNBase.rst","generated/torch.nn.RNNCell.rst","generated/torch.nn.RReLU.rst","generated/torch.nn.ReLU.rst","generated/torch.nn.ReLU6.rst","generated/torch.nn.ReflectionPad1d.rst","generated/torch.nn.ReflectionPad2d.rst","generated/torch.nn.ReplicationPad1d.rst","generated/torch.nn.ReplicationPad2d.rst","generated/torch.nn.ReplicationPad3d.rst","generated/torch.nn.SELU.rst","generated/torch.nn.Sequential.rst","generated/torch.nn.Sigmoid.rst","generated/torch.nn.SmoothL1Loss.rst","generated/torch.nn.SoftMarginLoss.rst","generated/torch.nn.Softmax.rst","generated/torch.nn.Softmax2d.rst","generated/torch.nn.Softmin.rst","generated/torch.nn.Softplus.rst","generated/torch.nn.Softshrink.rst","generated/torch.nn.Softsign.rst","generated/torch.nn.SyncBatchNorm.rst","generated/torch.nn.Tanh.rst","generated/torch.nn.Tanhshrink.rst","generated/torch.nn.Threshold.rst","generated/torch.nn.Transformer.rst","generated/torch.nn.TransformerDecoder.rst","generated/torch.nn.TransformerDecoderLayer.rst","generated/torch.nn.TransformerEncoder.rst","generated/torch.nn.TransformerEncoderLayer.rst","generated/torch.nn.TripletMarginLoss.rst","generated/torch.nn.Unfold.rst","generated/torch.nn.Upsample.rst","generated/torch.nn.UpsamplingBilinear2d.rst","generated/torch.nn.UpsamplingNearest2d.rst","generated/torch.nn.ZeroPad2d.rst","generated/torch.nn.parallel.DistributedDataParallel.rst","generated/torch.nn.parameter.Parameter.rst","generated/torch.nn.utils.clip_grad_norm_.rst","generated/torch.nn.utils.clip_grad_value_.rst","generated/torch.nn.utils.parameters_to_vector.rst","generated/torch.nn.utils.prune.BasePruningMethod.rst","generated/torch.nn.utils.prune.CustomFromMask.rst","generated/torch.nn.utils.prune.Identity.rst","generated/torch.nn.utils.prune.L1Unstructured.rst","generated/torch.nn.utils.prune.LnStructured.rst","generated/torch.nn.utils.prune.PruningContainer.rst","generated/torch.nn.utils.prune.RandomStructured.rst","generated/torch.nn.utils.prune.RandomUnstructured.rst","generated/torch.nn.utils.prune.custom_from_mask.rst","generated/torch.nn.utils.prune.global_unstructured.rst","generated/torch.nn.utils.prune.identity.rst","generated/torch.nn.utils.prune.is_pruned.rst","generated/torch.nn.utils.prune.l1_unstructured.rst","generated/torch.nn.utils.prune.ln_structured.rst","generated/torch.nn.utils.prune.random_structured.rst","generated/torch.nn.utils.prune.random_unstructured.rst","generated/torch.nn.utils.prune.remove.rst","generated/torch.nn.utils.remove_spectral_norm.rst","generated/torch.nn.utils.remove_weight_norm.rst","generated/torch.nn.utils.rnn.PackedSequence.rst","generated/torch.nn.utils.rnn.pack_padded_sequence.rst","generated/torch.nn.utils.rnn.pack_sequence.rst","generated/torch.nn.utils.rnn.pad_packed_sequence.rst","generated/torch.nn.utils.rnn.pad_sequence.rst","generated/torch.nn.utils.spectral_norm.rst","generated/torch.nn.utils.vector_to_parameters.rst","generated/torch.nn.utils.weight_norm.rst","generated/torch.no_grad.rst","generated/torch.nonzero.rst","generated/torch.norm.rst","generated/torch.normal.rst","generated/torch.numel.rst","generated/torch.ones.rst","generated/torch.ones_like.rst","generated/torch.orgqr.rst","generated/torch.ormqr.rst","generated/torch.pca_lowrank.rst","generated/torch.pinverse.rst","generated/torch.poisson.rst","generated/torch.polygamma.rst","generated/torch.pow.rst","generated/torch.prod.rst","generated/torch.promote_types.rst","generated/torch.qr.rst","generated/torch.quantize_per_channel.rst","generated/torch.quantize_per_tensor.rst","generated/torch.quasirandom.SobolEngine.rst","generated/torch.rad2deg.rst","generated/torch.rand.rst","generated/torch.rand_like.rst","generated/torch.randint.rst","generated/torch.randint_like.rst","generated/torch.randn.rst","generated/torch.randn_like.rst","generated/torch.randperm.rst","generated/torch.range.rst","generated/torch.real.rst","generated/torch.reciprocal.rst","generated/torch.remainder.rst","generated/torch.renorm.rst","generated/torch.repeat_interleave.rst","generated/torch.reshape.rst","generated/torch.result_type.rst","generated/torch.rfft.rst","generated/torch.roll.rst","generated/torch.rot90.rst","generated/torch.round.rst","generated/torch.rsqrt.rst","generated/torch.save.rst","generated/torch.searchsorted.rst","generated/torch.seed.rst","generated/torch.set_default_dtype.rst","generated/torch.set_default_tensor_type.rst","generated/torch.set_flush_denormal.rst","generated/torch.set_grad_enabled.rst","generated/torch.set_num_interop_threads.rst","generated/torch.set_num_threads.rst","generated/torch.set_printoptions.rst","generated/torch.set_rng_state.rst","generated/torch.sigmoid.rst","generated/torch.sign.rst","generated/torch.sin.rst","generated/torch.sinh.rst","generated/torch.slogdet.rst","generated/torch.solve.rst","generated/torch.sort.rst","generated/torch.sparse_coo_tensor.rst","generated/torch.split.rst","generated/torch.sqrt.rst","generated/torch.square.rst","generated/torch.squeeze.rst","generated/torch.stack.rst","generated/torch.std.rst","generated/torch.std_mean.rst","generated/torch.stft.rst","generated/torch.sum.rst","generated/torch.svd.rst","generated/torch.svd_lowrank.rst","generated/torch.symeig.rst","generated/torch.t.rst","generated/torch.take.rst","generated/torch.tan.rst","generated/torch.tanh.rst","generated/torch.tensor.rst","generated/torch.tensordot.rst","generated/torch.topk.rst","generated/torch.trace.rst","generated/torch.transpose.rst","generated/torch.trapz.rst","generated/torch.triangular_solve.rst","generated/torch.tril.rst","generated/torch.tril_indices.rst","generated/torch.triu.rst","generated/torch.triu_indices.rst","generated/torch.true_divide.rst","generated/torch.trunc.rst","generated/torch.unbind.rst","generated/torch.unique.rst","generated/torch.unique_consecutive.rst","generated/torch.unsqueeze.rst","generated/torch.vander.rst","generated/torch.var.rst","generated/torch.var_mean.rst","generated/torch.view_as_complex.rst","generated/torch.view_as_real.rst","generated/torch.where.rst","generated/torch.zeros.rst","generated/torch.zeros_like.rst","hub.rst","index.rst","jit.rst","jit_builtin_functions.rst","jit_language_reference.rst","jit_python_reference.rst","jit_unsupported.rst","mobile_optimizer.rst","model_zoo.rst","multiprocessing.rst","name_inference.rst","named_tensor.rst","nn.rst","nn.functional.rst","nn.init.rst","notes/amp_examples.rst","notes/autograd.rst","notes/broadcasting.rst","notes/cpu_threading_torchscript_inference.rst","notes/cuda.rst","notes/ddp.rst","notes/extending.rst","notes/faq.rst","notes/large_scale_deployments.rst","notes/multiprocessing.rst","notes/randomness.rst","notes/serialization.rst","notes/windows.rst","onnx.rst","optim.rst","packages.rst","quantization.rst","random.rst","rpc.rst","rpc/distributed_autograd.rst","rpc/rref.rst","sparse.rst","storage.rst","tensor_attributes.rst","tensor_view.rst","tensorboard.rst","tensors.rst","torch.rst","torchvision/datasets.rst","torchvision/index.rst","torchvision/io.rst","torchvision/models.rst","torchvision/ops.rst","torchvision/transforms.rst","torchvision/utils.rst","type_info.rst"],objects:{"":{PYTORCH_JIT:[459,5,1,"-"],torchvision:[501,3,0,"-"]},"torch.BoolTensor":{all:[498,1,1,""],any:[498,1,1,""]},"torch.FloatStorage":{"byte":[494,1,1,""],"char":[494,1,1,""],"double":[494,1,1,""],"float":[494,1,1,""],"int":[494,1,1,""],"long":[494,1,1,""],"new":[494,1,1,""],"short":[494,1,1,""],bfloat16:[494,1,1,""],bool:[494,1,1,""],clone:[494,1,1,""],complex_double:[494,1,1,""],complex_float:[494,1,1,""],copy_:[494,1,1,""],cpu:[494,1,1,""],cuda:[494,1,1,""],data_ptr:[494,1,1,""],device:[494,2,1,""],dtype:[494,2,1,""],element_size:[494,1,1,""],fill_:[494,1,1,""],from_buffer:[494,1,1,""],from_file:[494,1,1,""],half:[494,1,1,""],is_cuda:[494,2,1,""],is_pinned:[494,1,1,""],is_shared:[494,1,1,""],is_sparse:[494,2,1,""],pin_memory:[494,1,1,""],resize_:[494,1,1,""],share_memory_:[494,1,1,""],size:[494,1,1,""],tolist:[494,1,1,""],type:[494,1,1,""]},"torch.Generator":{device:[18,2,1,""],get_state:[18,1,1,""],initial_seed:[18,1,1,""],manual_seed:[18,1,1,""],seed:[18,1,1,""],set_state:[18,1,1,""]},"torch.Tensor":{"byte":[498,1,1,""],"char":[498,1,1,""],"double":[498,1,1,""],"float":[498,1,1,""],"int":[498,1,1,""],"long":[498,1,1,""],"short":[498,1,1,""],"var":[498,1,1,""],T:[498,2,1,""],abs:[498,1,1,""],abs_:[498,1,1,""],absolute:[498,1,1,""],absolute_:[498,1,1,""],acos:[498,1,1,""],acos_:[498,1,1,""],acosh:[498,1,1,""],acosh_:[498,1,1,""],add:[498,1,1,""],add_:[498,1,1,""],addbmm:[498,1,1,""],addbmm_:[498,1,1,""],addcdiv:[498,1,1,""],addcdiv_:[498,1,1,""],addcmul:[498,1,1,""],addcmul_:[498,1,1,""],addmm:[498,1,1,""],addmm_:[498,1,1,""],addmv:[498,1,1,""],addmv_:[498,1,1,""],addr:[498,1,1,""],addr_:[498,1,1,""],align_as:[468,1,1,""],align_to:[468,1,1,""],allclose:[498,1,1,""],angle:[498,1,1,""],apply_:[498,1,1,""],argmax:[498,1,1,""],argmin:[498,1,1,""],argsort:[498,1,1,""],as_strided:[498,1,1,""],as_subclass:[498,1,1,""],asin:[498,1,1,""],asin_:[498,1,1,""],asinh:[498,1,1,""],asinh_:[498,1,1,""],atan2:[498,1,1,""],atan2_:[498,1,1,""],atan:[498,1,1,""],atan_:[498,1,1,""],atanh:[498,1,1,""],atanh_:[498,1,1,""],backward:[2,1,1,""],baddbmm:[498,1,1,""],baddbmm_:[498,1,1,""],bernoulli:[498,1,1,""],bernoulli_:[498,1,1,""],bfloat16:[498,1,1,""],bincount:[498,1,1,""],bitwise_and:[498,1,1,""],bitwise_and_:[498,1,1,""],bitwise_not:[498,1,1,""],bitwise_not_:[498,1,1,""],bitwise_or:[498,1,1,""],bitwise_or_:[498,1,1,""],bitwise_xor:[498,1,1,""],bitwise_xor_:[498,1,1,""],bmm:[498,1,1,""],bool:[498,1,1,""],cauchy_:[498,1,1,""],ceil:[498,1,1,""],ceil_:[498,1,1,""],cholesky:[498,1,1,""],cholesky_inverse:[498,1,1,""],cholesky_solve:[498,1,1,""],chunk:[498,1,1,""],clamp:[498,1,1,""],clamp_:[498,1,1,""],clone:[498,1,1,""],conj:[498,1,1,""],contiguous:[498,1,1,""],copy_:[498,1,1,""],cos:[498,1,1,""],cos_:[498,1,1,""],cosh:[498,1,1,""],cosh_:[498,1,1,""],cpu:[498,1,1,""],cross:[498,1,1,""],cuda:[498,1,1,""],cummax:[498,1,1,""],cummin:[498,1,1,""],cumprod:[498,1,1,""],cumsum:[498,1,1,""],data_ptr:[498,1,1,""],deg2rad:[498,1,1,""],dense_dim:[498,1,1,""],dequantize:[498,1,1,""],det:[498,1,1,""],detach:[2,1,1,""],detach_:[2,1,1,""],device:[498,2,1,""],diag:[498,1,1,""],diag_embed:[498,1,1,""],diagflat:[498,1,1,""],diagonal:[498,1,1,""],digamma:[498,1,1,""],digamma_:[498,1,1,""],dim:[498,1,1,""],dist:[498,1,1,""],div:[498,1,1,""],div_:[498,1,1,""],dot:[498,1,1,""],eig:[498,1,1,""],element_size:[498,1,1,""],eq:[498,1,1,""],eq_:[498,1,1,""],equal:[498,1,1,""],erf:[498,1,1,""],erf_:[498,1,1,""],erfc:[498,1,1,""],erfc_:[498,1,1,""],erfinv:[498,1,1,""],erfinv_:[498,1,1,""],exp:[498,1,1,""],exp_:[498,1,1,""],expand:[498,1,1,""],expand_as:[498,1,1,""],expm1:[498,1,1,""],expm1_:[498,1,1,""],exponential_:[498,1,1,""],fft:[498,1,1,""],fill_:[498,1,1,""],fill_diagonal_:[498,1,1,""],flatten:[498,1,1,""],flip:[498,1,1,""],fliplr:[498,1,1,""],flipud:[498,1,1,""],floor:[498,1,1,""],floor_:[498,1,1,""],floor_divide:[498,1,1,""],floor_divide_:[498,1,1,""],fmod:[498,1,1,""],fmod_:[498,1,1,""],frac:[498,1,1,""],frac_:[498,1,1,""],gather:[498,1,1,""],ge:[498,1,1,""],ge_:[498,1,1,""],geometric_:[498,1,1,""],geqrf:[498,1,1,""],ger:[498,1,1,""],get_device:[498,1,1,""],grad:[2,2,1,""],gt:[498,1,1,""],gt_:[498,1,1,""],half:[498,1,1,""],hardshrink:[498,1,1,""],histc:[498,1,1,""],ifft:[498,1,1,""],imag:[498,2,1,""],index_add:[498,1,1,""],index_add_:[498,1,1,""],index_copy:[498,1,1,""],index_copy_:[498,1,1,""],index_fill:[498,1,1,""],index_fill_:[498,1,1,""],index_put:[498,1,1,""],index_put_:[498,1,1,""],index_select:[498,1,1,""],indices:[498,1,1,""],int_repr:[498,1,1,""],inverse:[498,1,1,""],irfft:[498,1,1,""],is_complex:[498,1,1,""],is_contiguous:[498,1,1,""],is_cuda:[498,2,1,""],is_floating_point:[498,1,1,""],is_leaf:[2,2,1,""],is_meta:[498,2,1,""],is_pinned:[498,1,1,""],is_quantized:[498,2,1,""],is_set_to:[498,1,1,""],is_shared:[498,1,1,""],is_signed:[498,1,1,""],is_sparse:[498,2,1,""],isclose:[498,1,1,""],isfinite:[498,1,1,""],isinf:[498,1,1,""],isnan:[498,1,1,""],istft:[498,1,1,""],item:[498,1,1,""],kthvalue:[498,1,1,""],le:[498,1,1,""],le_:[498,1,1,""],lerp:[498,1,1,""],lerp_:[498,1,1,""],lgamma:[498,1,1,""],lgamma_:[498,1,1,""],log10:[498,1,1,""],log10_:[498,1,1,""],log1p:[498,1,1,""],log1p_:[498,1,1,""],log2:[498,1,1,""],log2_:[498,1,1,""],log:[498,1,1,""],log_:[498,1,1,""],log_normal_:[498,1,1,""],logaddexp2:[498,1,1,""],logaddexp:[498,1,1,""],logcumsumexp:[498,1,1,""],logdet:[498,1,1,""],logical_and:[498,1,1,""],logical_and_:[498,1,1,""],logical_not:[498,1,1,""],logical_not_:[498,1,1,""],logical_or:[498,1,1,""],logical_or_:[498,1,1,""],logical_xor:[498,1,1,""],logical_xor_:[498,1,1,""],logsumexp:[498,1,1,""],lstsq:[498,1,1,""],lt:[498,1,1,""],lt_:[498,1,1,""],lu:[498,1,1,""],lu_solve:[498,1,1,""],map_:[498,1,1,""],masked_fill:[498,1,1,""],masked_fill_:[498,1,1,""],masked_scatter:[498,1,1,""],masked_scatter_:[498,1,1,""],masked_select:[498,1,1,""],matmul:[498,1,1,""],matrix_power:[498,1,1,""],max:[498,1,1,""],mean:[498,1,1,""],median:[498,1,1,""],min:[498,1,1,""],mm:[498,1,1,""],mode:[498,1,1,""],mul:[498,1,1,""],mul_:[498,1,1,""],multinomial:[498,1,1,""],mv:[498,1,1,""],mvlgamma:[498,1,1,""],mvlgamma_:[498,1,1,""],names:[468,2,1,""],narrow:[498,1,1,""],narrow_copy:[498,1,1,""],ndim:[498,2,1,""],ndimension:[498,1,1,""],ne:[498,1,1,""],ne_:[498,1,1,""],neg:[498,1,1,""],neg_:[498,1,1,""],nelement:[498,1,1,""],new_empty:[498,1,1,""],new_full:[498,1,1,""],new_ones:[498,1,1,""],new_tensor:[498,1,1,""],new_zeros:[498,1,1,""],nonzero:[498,1,1,""],norm:[498,1,1,""],normal_:[498,1,1,""],numel:[498,1,1,""],numpy:[498,1,1,""],orgqr:[498,1,1,""],ormqr:[498,1,1,""],permute:[498,1,1,""],pin_memory:[498,1,1,""],pinverse:[498,1,1,""],polygamma:[498,1,1,""],polygamma_:[498,1,1,""],pow:[498,1,1,""],pow_:[498,1,1,""],prod:[498,1,1,""],put_:[498,1,1,""],q_per_channel_axis:[498,1,1,""],q_per_channel_scales:[498,1,1,""],q_per_channel_zero_points:[498,1,1,""],q_scale:[498,1,1,""],q_zero_point:[498,1,1,""],qr:[498,1,1,""],qscheme:[498,1,1,""],rad2deg:[498,1,1,""],random_:[498,1,1,""],real:[498,2,1,""],reciprocal:[498,1,1,""],reciprocal_:[498,1,1,""],record_stream:[498,1,1,""],refine_names:[468,1,1,""],register_hook:[2,1,1,""],remainder:[498,1,1,""],remainder_:[498,1,1,""],rename:[468,1,1,""],rename_:[468,1,1,""],renorm:[498,1,1,""],renorm_:[498,1,1,""],repeat:[498,1,1,""],repeat_interleave:[498,1,1,""],requires_grad:[2,2,1,""],requires_grad_:[498,1,1,""],reshape:[498,1,1,""],reshape_as:[498,1,1,""],resize_:[498,1,1,""],resize_as_:[498,1,1,""],retain_grad:[2,1,1,""],rfft:[498,1,1,""],roll:[498,1,1,""],rot90:[498,1,1,""],round:[498,1,1,""],round_:[498,1,1,""],rsqrt:[498,1,1,""],rsqrt_:[498,1,1,""],scatter:[498,1,1,""],scatter_:[498,1,1,""],scatter_add:[498,1,1,""],scatter_add_:[498,1,1,""],select:[498,1,1,""],set_:[498,1,1,""],share_memory_:[498,1,1,""],sigmoid:[498,1,1,""],sigmoid_:[498,1,1,""],sign:[498,1,1,""],sign_:[498,1,1,""],sin:[498,1,1,""],sin_:[498,1,1,""],sinh:[498,1,1,""],sinh_:[498,1,1,""],size:[498,1,1,""],slogdet:[498,1,1,""],solve:[498,1,1,""],sort:[498,1,1,""],sparse_dim:[498,1,1,""],sparse_mask:[498,1,1,""],split:[498,1,1,""],sqrt:[498,1,1,""],sqrt_:[498,1,1,""],square:[498,1,1,""],square_:[498,1,1,""],squeeze:[498,1,1,""],squeeze_:[498,1,1,""],std:[498,1,1,""],stft:[498,1,1,""],storage:[498,1,1,""],storage_offset:[498,1,1,""],storage_type:[498,1,1,""],stride:[498,1,1,""],sub:[498,1,1,""],sub_:[498,1,1,""],sum:[498,1,1,""],sum_to_size:[498,1,1,""],svd:[498,1,1,""],symeig:[498,1,1,""],t:[498,1,1,""],t_:[498,1,1,""],take:[498,1,1,""],tan:[498,1,1,""],tan_:[498,1,1,""],tanh:[498,1,1,""],tanh_:[498,1,1,""],to:[498,1,1,""],to_mkldnn:[498,1,1,""],to_sparse:[498,1,1,""],tolist:[498,1,1,""],topk:[498,1,1,""],trace:[498,1,1,""],transpose:[498,1,1,""],transpose_:[498,1,1,""],triangular_solve:[498,1,1,""],tril:[498,1,1,""],tril_:[498,1,1,""],triu:[498,1,1,""],triu_:[498,1,1,""],true_divide:[498,1,1,""],true_divide_:[498,1,1,""],trunc:[498,1,1,""],trunc_:[498,1,1,""],type:[498,1,1,""],type_as:[498,1,1,""],unbind:[498,1,1,""],unflatten:[468,1,1,""],unfold:[498,1,1,""],uniform_:[498,1,1,""],unique:[498,1,1,""],unique_consecutive:[498,1,1,""],unsqueeze:[498,1,1,""],unsqueeze_:[498,1,1,""],values:[498,1,1,""],view:[498,1,1,""],view_as:[498,1,1,""],where:[498,1,1,""],zero_:[498,1,1,""]},"torch.__config__":{parallel_info:[0,4,1,""],show:[0,4,1,""]},"torch.autograd":{Function:[2,0,1,""],backward:[2,4,1,""],detect_anomaly:[2,0,1,""],enable_grad:[2,0,1,""],grad:[2,4,1,""],gradcheck:[2,4,1,""],gradgradcheck:[2,4,1,""],no_grad:[2,0,1,""],set_detect_anomaly:[2,0,1,""],set_grad_enabled:[2,0,1,""]},"torch.autograd.Function":{backward:[2,1,1,""],forward:[2,1,1,""]},"torch.autograd.function":{_ContextMethodMixin:[2,0,1,""]},"torch.autograd.function._ContextMethodMixin":{mark_dirty:[2,1,1,""],mark_non_differentiable:[2,1,1,""],save_for_backward:[2,1,1,""]},"torch.autograd.functional":{hessian:[2,4,1,""],hvp:[2,4,1,""],jacobian:[2,4,1,""],jvp:[2,4,1,""],vhp:[2,4,1,""],vjp:[2,4,1,""]},"torch.autograd.profiler":{emit_nvtx:[2,0,1,""],load_nvprof:[2,4,1,""],profile:[2,0,1,""]},"torch.autograd.profiler.profile":{export_chrome_trace:[2,1,1,""],key_averages:[2,1,1,""],self_cpu_time_total:[2,1,1,""],table:[2,1,1,""],total_average:[2,1,1,""]},"torch.cuda":{Event:[11,0,1,""],Stream:[11,0,1,""],amp:[1,3,0,"-"],current_blas_handle:[11,4,1,""],current_device:[11,4,1,""],current_stream:[11,4,1,""],default_stream:[11,4,1,""],device:[11,0,1,""],device_count:[11,4,1,""],device_of:[11,0,1,""],empty_cache:[11,4,1,""],get_arch_list:[11,4,1,""],get_device_capability:[11,4,1,""],get_device_name:[11,4,1,""],get_gencode_flags:[11,4,1,""],get_rng_state:[11,4,1,""],get_rng_state_all:[11,4,1,""],init:[11,4,1,""],initial_seed:[11,4,1,""],ipc_collect:[11,4,1,""],is_available:[11,4,1,""],is_initialized:[11,4,1,""],manual_seed:[11,4,1,""],manual_seed_all:[11,4,1,""],max_memory_allocated:[11,4,1,""],max_memory_cached:[11,4,1,""],max_memory_reserved:[11,4,1,""],memory_allocated:[11,4,1,""],memory_cached:[11,4,1,""],memory_reserved:[11,4,1,""],memory_snapshot:[11,4,1,""],memory_stats:[11,4,1,""],memory_summary:[11,4,1,""],reset_max_memory_allocated:[11,4,1,""],reset_max_memory_cached:[11,4,1,""],seed:[11,4,1,""],seed_all:[11,4,1,""],set_device:[11,4,1,""],set_rng_state:[11,4,1,""],set_rng_state_all:[11,4,1,""],stream:[11,4,1,""],synchronize:[11,4,1,""]},"torch.cuda.Event":{elapsed_time:[11,1,1,""],from_ipc_handle:[11,1,1,""],ipc_handle:[11,1,1,""],query:[11,1,1,""],record:[11,1,1,""],synchronize:[11,1,1,""],wait:[11,1,1,""]},"torch.cuda.Stream":{query:[11,1,1,""],record_event:[11,1,1,""],synchronize:[11,1,1,""],wait_event:[11,1,1,""],wait_stream:[11,1,1,""]},"torch.cuda.amp":{GradScaler:[1,0,1,""],autocast:[1,0,1,""],custom_bwd:[1,4,1,""],custom_fwd:[1,4,1,""]},"torch.cuda.amp.GradScaler":{get_backoff_factor:[1,1,1,""],get_growth_factor:[1,1,1,""],get_growth_interval:[1,1,1,""],get_scale:[1,1,1,""],is_enabled:[1,1,1,""],load_state_dict:[1,1,1,""],scale:[1,1,1,""],set_backoff_factor:[1,1,1,""],set_growth_factor:[1,1,1,""],set_growth_interval:[1,1,1,""],state_dict:[1,1,1,""],step:[1,1,1,""],unscale_:[1,1,1,""],update:[1,1,1,""]},"torch.cuda.comm":{broadcast:[11,4,1,""],broadcast_coalesced:[11,4,1,""],gather:[11,4,1,""],reduce_add:[11,4,1,""],scatter:[11,4,1,""]},"torch.cuda.nvtx":{mark:[11,4,1,""],range_pop:[11,4,1,""],range_push:[11,4,1,""]},"torch.distributed":{Backend:[14,0,1,""],ReduceOp:[14,0,1,""],all_gather:[14,4,1,""],all_gather_multigpu:[14,4,1,""],all_reduce:[14,4,1,""],all_reduce_multigpu:[14,4,1,""],all_to_all:[14,4,1,""],autograd:[490,3,0,"-"],barrier:[14,4,1,""],broadcast:[14,4,1,""],broadcast_multigpu:[14,4,1,""],gather:[14,4,1,""],get_backend:[14,4,1,""],get_rank:[14,4,1,""],get_world_size:[14,4,1,""],init_process_group:[14,4,1,""],irecv:[14,4,1,""],is_available:[14,4,1,""],is_initialized:[14,4,1,""],is_mpi_available:[14,4,1,""],is_nccl_available:[14,4,1,""],isend:[14,4,1,""],launch:[14,3,0,"-"],new_group:[14,4,1,""],optim:[490,3,0,"-"],recv:[14,4,1,""],reduce:[14,4,1,""],reduce_multigpu:[14,4,1,""],reduce_op:[14,0,1,""],reduce_scatter:[14,4,1,""],reduce_scatter_multigpu:[14,4,1,""],rpc:[490,3,0,"-"],scatter:[14,4,1,""],send:[14,4,1,""]},"torch.distributed.autograd":{backward:[490,4,1,""],context:[490,0,1,""],get_gradients:[490,4,1,""]},"torch.distributed.optim":{DistributedOptimizer:[490,0,1,""]},"torch.distributed.optim.DistributedOptimizer":{step:[490,1,1,""]},"torch.distributed.rpc":{BackendType:[490,0,1,""],ProcessGroupRpcBackendOptions:[490,0,1,""],RRef:[490,0,1,""],RpcBackendOptions:[490,0,1,""],TensorPipeRpcBackendOptions:[490,0,1,""],WorkerInfo:[490,0,1,""],get_worker_info:[490,4,1,""],init_rpc:[490,4,1,""],remote:[490,4,1,""],rpc_async:[490,4,1,""],rpc_sync:[490,4,1,""],shutdown:[490,4,1,""]},"torch.distributed.rpc.ProcessGroupRpcBackendOptions":{init_method:[490,1,1,""],num_send_recv_threads:[490,1,1,""],rpc_timeout:[490,1,1,""]},"torch.distributed.rpc.RRef":{confirmed_by_owner:[490,1,1,""],is_owner:[490,1,1,""],local_value:[490,1,1,""],owner:[490,1,1,""],owner_name:[490,1,1,""],remote:[490,1,1,""],rpc_async:[490,1,1,""],rpc_sync:[490,1,1,""],to_here:[490,1,1,""]},"torch.distributed.rpc.RpcBackendOptions":{init_method:[490,1,1,""],rpc_timeout:[490,1,1,""]},"torch.distributed.rpc.TensorPipeRpcBackendOptions":{init_method:[490,1,1,""],num_worker_threads:[490,1,1,""],rpc_timeout:[490,1,1,""]},"torch.distributed.rpc.WorkerInfo":{id:[490,1,1,""],name:[490,1,1,""]},"torch.distributed.rpc.functions":{async_execution:[490,4,1,""]},"torch.distributions":{constraint_registry:[15,3,0,"-"],constraints:[15,3,0,"-"],kl:[15,3,0,"-"],transforms:[15,3,0,"-"]},"torch.distributions.bernoulli":{Bernoulli:[15,0,1,""]},"torch.distributions.bernoulli.Bernoulli":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],enumerate_support:[15,1,1,""],expand:[15,1,1,""],has_enumerate_support:[15,2,1,""],log_prob:[15,1,1,""],logits:[15,2,1,""],mean:[15,1,1,""],param_shape:[15,1,1,""],probs:[15,2,1,""],sample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.beta":{Beta:[15,0,1,""]},"torch.distributions.beta.Beta":{arg_constraints:[15,2,1,""],concentration0:[15,1,1,""],concentration1:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.binomial":{Binomial:[15,0,1,""]},"torch.distributions.binomial.Binomial":{arg_constraints:[15,2,1,""],enumerate_support:[15,1,1,""],expand:[15,1,1,""],has_enumerate_support:[15,2,1,""],log_prob:[15,1,1,""],logits:[15,2,1,""],mean:[15,1,1,""],param_shape:[15,1,1,""],probs:[15,2,1,""],sample:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.categorical":{Categorical:[15,0,1,""]},"torch.distributions.categorical.Categorical":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],enumerate_support:[15,1,1,""],expand:[15,1,1,""],has_enumerate_support:[15,2,1,""],log_prob:[15,1,1,""],logits:[15,2,1,""],mean:[15,1,1,""],param_shape:[15,1,1,""],probs:[15,2,1,""],sample:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.cauchy":{Cauchy:[15,0,1,""]},"torch.distributions.cauchy.Cauchy":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.chi2":{Chi2:[15,0,1,""]},"torch.distributions.chi2.Chi2":{arg_constraints:[15,2,1,""],df:[15,1,1,""],expand:[15,1,1,""]},"torch.distributions.constraint_registry":{ConstraintRegistry:[15,0,1,""]},"torch.distributions.constraint_registry.ConstraintRegistry":{register:[15,1,1,""]},"torch.distributions.constraints":{Constraint:[15,0,1,""],cat:[15,2,1,""],dependent_property:[15,2,1,""],greater_than:[15,2,1,""],greater_than_eq:[15,2,1,""],half_open_interval:[15,2,1,""],integer_interval:[15,2,1,""],interval:[15,2,1,""],less_than:[15,2,1,""],stack:[15,2,1,""]},"torch.distributions.constraints.Constraint":{check:[15,1,1,""]},"torch.distributions.continuous_bernoulli":{ContinuousBernoulli:[15,0,1,""]},"torch.distributions.continuous_bernoulli.ContinuousBernoulli":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],logits:[15,2,1,""],mean:[15,1,1,""],param_shape:[15,1,1,""],probs:[15,2,1,""],rsample:[15,1,1,""],sample:[15,1,1,""],stddev:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.dirichlet":{Dirichlet:[15,0,1,""]},"torch.distributions.dirichlet.Dirichlet":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.distribution":{Distribution:[15,0,1,""]},"torch.distributions.distribution.Distribution":{arg_constraints:[15,1,1,""],batch_shape:[15,1,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],enumerate_support:[15,1,1,""],event_shape:[15,1,1,""],expand:[15,1,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],perplexity:[15,1,1,""],rsample:[15,1,1,""],sample:[15,1,1,""],sample_n:[15,1,1,""],stddev:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.exp_family":{ExponentialFamily:[15,0,1,""]},"torch.distributions.exp_family.ExponentialFamily":{entropy:[15,1,1,""]},"torch.distributions.exponential":{Exponential:[15,0,1,""]},"torch.distributions.exponential.Exponential":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],stddev:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.fishersnedecor":{FisherSnedecor:[15,0,1,""]},"torch.distributions.fishersnedecor.FisherSnedecor":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.gamma":{Gamma:[15,0,1,""]},"torch.distributions.gamma.Gamma":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.geometric":{Geometric:[15,0,1,""]},"torch.distributions.geometric.Geometric":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],log_prob:[15,1,1,""],logits:[15,2,1,""],mean:[15,1,1,""],probs:[15,2,1,""],sample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.gumbel":{Gumbel:[15,0,1,""]},"torch.distributions.gumbel.Gumbel":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],stddev:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.half_cauchy":{HalfCauchy:[15,0,1,""]},"torch.distributions.half_cauchy.HalfCauchy":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],scale:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.half_normal":{HalfNormal:[15,0,1,""]},"torch.distributions.half_normal.HalfNormal":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],scale:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.independent":{Independent:[15,0,1,""]},"torch.distributions.independent.Independent":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],enumerate_support:[15,1,1,""],expand:[15,1,1,""],has_enumerate_support:[15,1,1,""],has_rsample:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],sample:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.kl":{kl_divergence:[15,4,1,""],register_kl:[15,4,1,""]},"torch.distributions.laplace":{Laplace:[15,0,1,""]},"torch.distributions.laplace.Laplace":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],stddev:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.log_normal":{LogNormal:[15,0,1,""]},"torch.distributions.log_normal.LogNormal":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],loc:[15,1,1,""],mean:[15,1,1,""],scale:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.lowrank_multivariate_normal":{LowRankMultivariateNormal:[15,0,1,""]},"torch.distributions.lowrank_multivariate_normal.LowRankMultivariateNormal":{arg_constraints:[15,2,1,""],covariance_matrix:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],precision_matrix:[15,2,1,""],rsample:[15,1,1,""],scale_tril:[15,2,1,""],support:[15,2,1,""],variance:[15,2,1,""]},"torch.distributions.mixture_same_family":{MixtureSameFamily:[15,0,1,""]},"torch.distributions.mixture_same_family.MixtureSameFamily":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],component_distribution:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],mixture_distribution:[15,1,1,""],sample:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.multinomial":{Multinomial:[15,0,1,""]},"torch.distributions.multinomial.Multinomial":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],log_prob:[15,1,1,""],logits:[15,1,1,""],mean:[15,1,1,""],param_shape:[15,1,1,""],probs:[15,1,1,""],sample:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.multivariate_normal":{MultivariateNormal:[15,0,1,""]},"torch.distributions.multivariate_normal.MultivariateNormal":{arg_constraints:[15,2,1,""],covariance_matrix:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],precision_matrix:[15,2,1,""],rsample:[15,1,1,""],scale_tril:[15,2,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.negative_binomial":{NegativeBinomial:[15,0,1,""]},"torch.distributions.negative_binomial.NegativeBinomial":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],log_prob:[15,1,1,""],logits:[15,2,1,""],mean:[15,1,1,""],param_shape:[15,1,1,""],probs:[15,2,1,""],sample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.normal":{Normal:[15,0,1,""]},"torch.distributions.normal.Normal":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],sample:[15,1,1,""],stddev:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.one_hot_categorical":{OneHotCategorical:[15,0,1,""]},"torch.distributions.one_hot_categorical.OneHotCategorical":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],enumerate_support:[15,1,1,""],expand:[15,1,1,""],has_enumerate_support:[15,2,1,""],log_prob:[15,1,1,""],logits:[15,1,1,""],mean:[15,1,1,""],param_shape:[15,1,1,""],probs:[15,1,1,""],sample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.pareto":{Pareto:[15,0,1,""]},"torch.distributions.pareto.Pareto":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],mean:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.poisson":{Poisson:[15,0,1,""]},"torch.distributions.poisson.Poisson":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],sample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.relaxed_bernoulli":{LogitRelaxedBernoulli:[15,0,1,""],RelaxedBernoulli:[15,0,1,""]},"torch.distributions.relaxed_bernoulli.LogitRelaxedBernoulli":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],log_prob:[15,1,1,""],logits:[15,2,1,""],param_shape:[15,1,1,""],probs:[15,2,1,""],rsample:[15,1,1,""],support:[15,2,1,""]},"torch.distributions.relaxed_bernoulli.RelaxedBernoulli":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],logits:[15,1,1,""],probs:[15,1,1,""],support:[15,2,1,""],temperature:[15,1,1,""]},"torch.distributions.relaxed_categorical":{RelaxedOneHotCategorical:[15,0,1,""]},"torch.distributions.relaxed_categorical.RelaxedOneHotCategorical":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],logits:[15,1,1,""],probs:[15,1,1,""],support:[15,2,1,""],temperature:[15,1,1,""]},"torch.distributions.studentT":{StudentT:[15,0,1,""]},"torch.distributions.studentT.StudentT":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.distributions.transformed_distribution":{TransformedDistribution:[15,0,1,""]},"torch.distributions.transformed_distribution.TransformedDistribution":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,1,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],rsample:[15,1,1,""],sample:[15,1,1,""],support:[15,1,1,""]},"torch.distributions.transforms":{AbsTransform:[15,0,1,""],AffineTransform:[15,0,1,""],CatTransform:[15,0,1,""],ComposeTransform:[15,0,1,""],ExpTransform:[15,0,1,""],LowerCholeskyTransform:[15,0,1,""],PowerTransform:[15,0,1,""],SigmoidTransform:[15,0,1,""],SoftmaxTransform:[15,0,1,""],StackTransform:[15,0,1,""],StickBreakingTransform:[15,0,1,""],TanhTransform:[15,0,1,""],Transform:[15,0,1,""]},"torch.distributions.transforms.Transform":{inv:[15,1,1,""],log_abs_det_jacobian:[15,1,1,""],sign:[15,1,1,""]},"torch.distributions.uniform":{Uniform:[15,0,1,""]},"torch.distributions.uniform.Uniform":{arg_constraints:[15,2,1,""],cdf:[15,1,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],icdf:[15,1,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],rsample:[15,1,1,""],stddev:[15,1,1,""],support:[15,1,1,""],variance:[15,1,1,""]},"torch.distributions.von_mises":{VonMises:[15,0,1,""]},"torch.distributions.von_mises.VonMises":{arg_constraints:[15,2,1,""],expand:[15,1,1,""],has_rsample:[15,2,1,""],log_prob:[15,1,1,""],mean:[15,1,1,""],sample:[15,1,1,""],support:[15,2,1,""],variance:[15,2,1,""]},"torch.distributions.weibull":{Weibull:[15,0,1,""]},"torch.distributions.weibull.Weibull":{arg_constraints:[15,2,1,""],entropy:[15,1,1,""],expand:[15,1,1,""],mean:[15,1,1,""],support:[15,2,1,""],variance:[15,1,1,""]},"torch.futures":{Future:[17,0,1,""],collect_all:[17,4,1,""],wait_all:[17,4,1,""]},"torch.futures.Future":{set_result:[17,1,1,""],then:[17,1,1,""],wait:[17,1,1,""]},"torch.hub":{download_url_to_file:[457,4,1,""],get_dir:[457,4,1,""],help:[457,4,1,""],list:[457,4,1,""],load:[457,4,1,""],load_state_dict_from_url:[457,4,1,""],set_dir:[457,4,1,""]},"torch.jit":{"export":[459,4,1,""],ScriptFunction:[142,0,1,""],ScriptModule:[143,0,1,""],fork:[144,4,1,""],freeze:[145,4,1,""],ignore:[146,4,1,""],is_scripting:[461,4,1,""],load:[147,4,1,""],save:[148,4,1,""],script:[149,4,1,""],supported_ops:[460,3,0,"-"],trace:[150,4,1,""],trace_module:[151,4,1,""],unsupported_tensor_ops:[463,3,0,"-"],unused:[152,4,1,""],wait:[153,4,1,""]},"torch.jit.ScriptFunction":{get_debug_state:[142,1,1,""],save:[142,1,1,""],save_to_buffer:[142,1,1,""]},"torch.jit.ScriptModule":{"double":[143,1,1,""],"float":[143,1,1,""],add_module:[143,1,1,""],apply:[143,1,1,""],bfloat16:[143,1,1,""],buffers:[143,1,1,""],children:[143,1,1,""],code:[143,1,1,""],code_with_constants:[143,1,1,""],cpu:[143,1,1,""],cuda:[143,1,1,""],eval:[143,1,1,""],extra_repr:[143,1,1,""],graph:[143,1,1,""],half:[143,1,1,""],inlined_graph:[143,1,1,""],load_state_dict:[143,1,1,""],modules:[143,1,1,""],named_buffers:[143,1,1,""],named_children:[143,1,1,""],named_modules:[143,1,1,""],named_parameters:[143,1,1,""],parameters:[143,1,1,""],register_backward_hook:[143,1,1,""],register_buffer:[143,1,1,""],register_forward_hook:[143,1,1,""],register_forward_pre_hook:[143,1,1,""],register_parameter:[143,1,1,""],requires_grad_:[143,1,1,""],save:[143,1,1,""],state_dict:[143,1,1,""],to:[143,1,1,""],train:[143,1,1,""],type:[143,1,1,""],zero_grad:[143,1,1,""]},"torch.multiprocessing":{SpawnContext:[466,0,1,""],get_all_sharing_strategies:[466,4,1,""],get_sharing_strategy:[466,4,1,""],set_sharing_strategy:[466,4,1,""],spawn:[466,4,1,""]},"torch.multiprocessing.SpawnContext":{join:[466,1,1,""]},"torch.nn":{AdaptiveAvgPool1d:[199,0,1,""],AdaptiveAvgPool2d:[200,0,1,""],AdaptiveAvgPool3d:[201,0,1,""],AdaptiveLogSoftmaxWithLoss:[202,0,1,""],AdaptiveMaxPool1d:[203,0,1,""],AdaptiveMaxPool2d:[204,0,1,""],AdaptiveMaxPool3d:[205,0,1,""],AlphaDropout:[206,0,1,""],AvgPool1d:[207,0,1,""],AvgPool2d:[208,0,1,""],AvgPool3d:[209,0,1,""],BCELoss:[210,0,1,""],BCEWithLogitsLoss:[211,0,1,""],BatchNorm1d:[212,0,1,""],BatchNorm2d:[213,0,1,""],BatchNorm3d:[214,0,1,""],Bilinear:[215,0,1,""],CELU:[216,0,1,""],CTCLoss:[217,0,1,""],ConstantPad1d:[218,0,1,""],ConstantPad2d:[219,0,1,""],ConstantPad3d:[220,0,1,""],Conv1d:[221,0,1,""],Conv2d:[222,0,1,""],Conv3d:[223,0,1,""],ConvTranspose1d:[224,0,1,""],ConvTranspose2d:[225,0,1,""],ConvTranspose3d:[226,0,1,""],CosineEmbeddingLoss:[227,0,1,""],CosineSimilarity:[228,0,1,""],CrossEntropyLoss:[229,0,1,""],DataParallel:[230,0,1,""],Dropout2d:[232,0,1,""],Dropout3d:[233,0,1,""],Dropout:[231,0,1,""],ELU:[234,0,1,""],Embedding:[235,0,1,""],EmbeddingBag:[236,0,1,""],Flatten:[237,0,1,""],Fold:[238,0,1,""],FractionalMaxPool2d:[239,0,1,""],GELU:[240,0,1,""],GRU:[241,0,1,""],GRUCell:[242,0,1,""],GroupNorm:[243,0,1,""],Hardshrink:[244,0,1,""],Hardsigmoid:[245,0,1,""],Hardswish:[246,0,1,""],Hardtanh:[247,0,1,""],HingeEmbeddingLoss:[248,0,1,""],Identity:[249,0,1,""],InstanceNorm1d:[250,0,1,""],InstanceNorm2d:[251,0,1,""],InstanceNorm3d:[252,0,1,""],KLDivLoss:[253,0,1,""],L1Loss:[254,0,1,""],LPPool1d:[255,0,1,""],LPPool2d:[256,0,1,""],LSTM:[257,0,1,""],LSTMCell:[258,0,1,""],LayerNorm:[259,0,1,""],LeakyReLU:[260,0,1,""],Linear:[261,0,1,""],LocalResponseNorm:[262,0,1,""],LogSigmoid:[263,0,1,""],LogSoftmax:[264,0,1,""],MSELoss:[265,0,1,""],MarginRankingLoss:[266,0,1,""],MaxPool1d:[267,0,1,""],MaxPool2d:[268,0,1,""],MaxPool3d:[269,0,1,""],MaxUnpool1d:[270,0,1,""],MaxUnpool2d:[271,0,1,""],MaxUnpool3d:[272,0,1,""],Module:[273,0,1,""],ModuleDict:[274,0,1,""],ModuleList:[275,0,1,""],MultiLabelMarginLoss:[276,0,1,""],MultiLabelSoftMarginLoss:[277,0,1,""],MultiMarginLoss:[278,0,1,""],MultiheadAttention:[279,0,1,""],NLLLoss:[280,0,1,""],PReLU:[281,0,1,""],PairwiseDistance:[282,0,1,""],ParameterDict:[283,0,1,""],ParameterList:[284,0,1,""],PixelShuffle:[285,0,1,""],PoissonNLLLoss:[286,0,1,""],RNN:[287,0,1,""],RNNBase:[288,0,1,""],RNNCell:[289,0,1,""],RReLU:[290,0,1,""],ReLU6:[292,0,1,""],ReLU:[291,0,1,""],ReflectionPad1d:[293,0,1,""],ReflectionPad2d:[294,0,1,""],ReplicationPad1d:[295,0,1,""],ReplicationPad2d:[296,0,1,""],ReplicationPad3d:[297,0,1,""],SELU:[298,0,1,""],Sequential:[299,0,1,""],Sigmoid:[300,0,1,""],SmoothL1Loss:[301,0,1,""],SoftMarginLoss:[302,0,1,""],Softmax2d:[304,0,1,""],Softmax:[303,0,1,""],Softmin:[305,0,1,""],Softplus:[306,0,1,""],Softshrink:[307,0,1,""],Softsign:[308,0,1,""],SyncBatchNorm:[309,0,1,""],Tanh:[310,0,1,""],Tanhshrink:[311,0,1,""],Threshold:[312,0,1,""],Transformer:[313,0,1,""],TransformerDecoder:[314,0,1,""],TransformerDecoderLayer:[315,0,1,""],TransformerEncoder:[316,0,1,""],TransformerEncoderLayer:[317,0,1,""],TripletMarginLoss:[318,0,1,""],Unfold:[319,0,1,""],Upsample:[320,0,1,""],UpsamplingBilinear2d:[321,0,1,""],UpsamplingNearest2d:[322,0,1,""],ZeroPad2d:[323,0,1,""],intrinsic:[488,3,0,"-"],qat:[488,3,0,"-"],quantized:[488,3,0,"-"]},"torch.nn.AdaptiveLogSoftmaxWithLoss":{log_prob:[202,1,1,""],predict:[202,1,1,""]},"torch.nn.Embedding":{from_pretrained:[235,1,1,""]},"torch.nn.EmbeddingBag":{from_pretrained:[236,1,1,""]},"torch.nn.Flatten":{"double":[237,1,1,""],"float":[237,1,1,""],add_module:[237,1,1,""],apply:[237,1,1,""],bfloat16:[237,1,1,""],buffers:[237,1,1,""],children:[237,1,1,""],cpu:[237,1,1,""],cuda:[237,1,1,""],eval:[237,1,1,""],extra_repr:[237,1,1,""],half:[237,1,1,""],load_state_dict:[237,1,1,""],modules:[237,1,1,""],named_buffers:[237,1,1,""],named_children:[237,1,1,""],named_modules:[237,1,1,""],named_parameters:[237,1,1,""],parameters:[237,1,1,""],register_backward_hook:[237,1,1,""],register_buffer:[237,1,1,""],register_forward_hook:[237,1,1,""],register_forward_pre_hook:[237,1,1,""],register_parameter:[237,1,1,""],requires_grad_:[237,1,1,""],state_dict:[237,1,1,""],to:[237,1,1,""],train:[237,1,1,""],type:[237,1,1,""],zero_grad:[237,1,1,""]},"torch.nn.Module":{"double":[273,1,1,""],"float":[273,1,1,""],add_module:[273,1,1,""],apply:[273,1,1,""],bfloat16:[273,1,1,""],buffers:[273,1,1,""],children:[273,1,1,""],cpu:[273,1,1,""],cuda:[273,1,1,""],dump_patches:[273,2,1,""],eval:[273,1,1,""],extra_repr:[273,1,1,""],half:[273,1,1,""],load_state_dict:[273,1,1,""],modules:[273,1,1,""],named_buffers:[273,1,1,""],named_children:[273,1,1,""],named_modules:[273,1,1,""],named_parameters:[273,1,1,""],parameters:[273,1,1,""],register_backward_hook:[273,1,1,""],register_buffer:[273,1,1,""],register_forward_hook:[273,1,1,""],register_forward_pre_hook:[273,1,1,""],register_parameter:[273,1,1,""],requires_grad_:[273,1,1,""],state_dict:[273,1,1,""],to:[273,1,1,""],train:[273,1,1,""],type:[273,1,1,""],zero_grad:[273,1,1,""]},"torch.nn.ModuleDict":{clear:[274,1,1,""],items:[274,1,1,""],keys:[274,1,1,""],pop:[274,1,1,""],update:[274,1,1,""],values:[274,1,1,""]},"torch.nn.ModuleList":{append:[275,1,1,""],extend:[275,1,1,""],insert:[275,1,1,""]},"torch.nn.MultiheadAttention":{forward:[279,1,1,""]},"torch.nn.ParameterDict":{clear:[283,1,1,""],items:[283,1,1,""],keys:[283,1,1,""],pop:[283,1,1,""],update:[283,1,1,""],values:[283,1,1,""]},"torch.nn.ParameterList":{append:[284,1,1,""],extend:[284,1,1,""]},"torch.nn.RNNBase":{flatten_parameters:[288,1,1,""]},"torch.nn.SyncBatchNorm":{convert_sync_batchnorm:[309,1,1,""]},"torch.nn.Transformer":{forward:[313,1,1,""],generate_square_subsequent_mask:[313,1,1,""]},"torch.nn.TransformerDecoder":{forward:[314,1,1,""]},"torch.nn.TransformerDecoderLayer":{forward:[315,1,1,""]},"torch.nn.TransformerEncoder":{forward:[316,1,1,""]},"torch.nn.TransformerEncoderLayer":{forward:[317,1,1,""]},"torch.nn.functional":{adaptive_avg_pool1d:[470,4,1,""],adaptive_avg_pool2d:[470,4,1,""],adaptive_avg_pool3d:[470,4,1,""],adaptive_max_pool1d:[470,4,1,""],adaptive_max_pool2d:[470,4,1,""],adaptive_max_pool3d:[470,4,1,""],affine_grid:[470,4,1,""],alpha_dropout:[470,4,1,""],avg_pool1d:[470,4,1,""],avg_pool2d:[470,4,1,""],avg_pool3d:[470,4,1,""],batch_norm:[470,4,1,""],bilinear:[470,4,1,""],binary_cross_entropy:[470,4,1,""],binary_cross_entropy_with_logits:[470,4,1,""],celu:[470,4,1,""],conv1d:[470,4,1,""],conv2d:[470,4,1,""],conv3d:[470,4,1,""],conv_transpose1d:[470,4,1,""],conv_transpose2d:[470,4,1,""],conv_transpose3d:[470,4,1,""],cosine_embedding_loss:[470,4,1,""],cosine_similarity:[470,4,1,""],cross_entropy:[470,4,1,""],ctc_loss:[470,4,1,""],dropout2d:[470,4,1,""],dropout3d:[470,4,1,""],dropout:[470,4,1,""],elu:[470,4,1,""],elu_:[470,4,1,""],embedding:[470,4,1,""],embedding_bag:[470,4,1,""],feature_alpha_dropout:[470,4,1,""],fold:[470,4,1,""],gelu:[470,4,1,""],glu:[470,4,1,""],grid_sample:[470,4,1,""],gumbel_softmax:[470,4,1,""],hardshrink:[470,4,1,""],hardsigmoid:[470,4,1,""],hardswish:[470,4,1,""],hardtanh:[470,4,1,""],hardtanh_:[470,4,1,""],hinge_embedding_loss:[470,4,1,""],instance_norm:[470,4,1,""],interpolate:[470,4,1,""],kl_div:[470,4,1,""],l1_loss:[470,4,1,""],layer_norm:[470,4,1,""],leaky_relu:[470,4,1,""],leaky_relu_:[470,4,1,""],linear:[470,4,1,""],local_response_norm:[470,4,1,""],log_softmax:[470,4,1,""],logsigmoid:[470,4,1,""],lp_pool1d:[470,4,1,""],lp_pool2d:[470,4,1,""],margin_ranking_loss:[470,4,1,""],max_pool1d:[470,4,1,""],max_pool2d:[470,4,1,""],max_pool3d:[470,4,1,""],max_unpool1d:[470,4,1,""],max_unpool2d:[470,4,1,""],max_unpool3d:[470,4,1,""],mse_loss:[470,4,1,""],multi_margin_loss:[470,4,1,""],multilabel_margin_loss:[470,4,1,""],multilabel_soft_margin_loss:[470,4,1,""],nll_loss:[470,4,1,""],normalize:[470,4,1,""],one_hot:[470,4,1,""],pad:[470,4,1,""],pairwise_distance:[470,4,1,""],pdist:[470,4,1,""],pixel_shuffle:[470,4,1,""],poisson_nll_loss:[470,4,1,""],prelu:[470,4,1,""],relu6:[470,4,1,""],relu:[470,4,1,""],relu_:[470,4,1,""],rrelu:[470,4,1,""],rrelu_:[470,4,1,""],selu:[470,4,1,""],sigmoid:[470,4,1,""],smooth_l1_loss:[470,4,1,""],soft_margin_loss:[470,4,1,""],softmax:[470,4,1,""],softmin:[470,4,1,""],softplus:[470,4,1,""],softshrink:[470,4,1,""],softsign:[470,4,1,""],tanh:[470,4,1,""],tanhshrink:[470,4,1,""],threshold:[470,4,1,""],threshold_:[470,4,1,""],triplet_margin_loss:[470,4,1,""],unfold:[470,4,1,""],upsample:[470,4,1,""],upsample_bilinear:[470,4,1,""],upsample_nearest:[470,4,1,""]},"torch.nn.init":{calculate_gain:[471,4,1,""],constant_:[471,4,1,""],dirac_:[471,4,1,""],eye_:[471,4,1,""],kaiming_normal_:[471,4,1,""],kaiming_uniform_:[471,4,1,""],normal_:[471,4,1,""],ones_:[471,4,1,""],orthogonal_:[471,4,1,""],sparse_:[471,4,1,""],uniform_:[471,4,1,""],xavier_normal_:[471,4,1,""],xavier_uniform_:[471,4,1,""],zeros_:[471,4,1,""]},"torch.nn.intrinsic":{ConvBn1d:[488,0,1,""],ConvBn2d:[488,0,1,""],ConvBnReLU1d:[488,0,1,""],ConvBnReLU2d:[488,0,1,""],ConvReLU1d:[488,0,1,""],ConvReLU2d:[488,0,1,""],ConvReLU3d:[488,0,1,""],LinearReLU:[488,0,1,""],qat:[488,3,0,"-"],quantized:[488,3,0,"-"]},"torch.nn.intrinsic.qat":{ConvBn2d:[488,0,1,""],ConvBnReLU2d:[488,0,1,""],ConvReLU2d:[488,0,1,""],LinearReLU:[488,0,1,""]},"torch.nn.intrinsic.quantized":{ConvReLU2d:[488,0,1,""],ConvReLU3d:[488,0,1,""],LinearReLU:[488,0,1,""]},"torch.nn.parallel":{DistributedDataParallel:[324,0,1,""],data_parallel:[470,4,1,""]},"torch.nn.parallel.DistributedDataParallel":{no_sync:[324,1,1,""]},"torch.nn.parameter":{Parameter:[325,0,1,""]},"torch.nn.qat":{Conv2d:[488,0,1,""],Linear:[488,0,1,""]},"torch.nn.qat.Conv2d":{from_float:[488,1,1,""]},"torch.nn.qat.Linear":{from_float:[488,1,1,""]},"torch.nn.quantized":{BatchNorm2d:[488,0,1,""],BatchNorm3d:[488,0,1,""],Conv1d:[488,0,1,""],Conv2d:[488,0,1,""],Conv3d:[488,0,1,""],DeQuantize:[488,0,1,""],ELU:[488,0,1,""],FloatFunctional:[488,0,1,""],GroupNorm:[488,0,1,""],Hardswish:[488,0,1,""],InstanceNorm1d:[488,0,1,""],InstanceNorm2d:[488,0,1,""],InstanceNorm3d:[488,0,1,""],LayerNorm:[488,0,1,""],Linear:[488,0,1,""],QFunctional:[488,0,1,""],Quantize:[488,0,1,""],ReLU6:[488,0,1,""],ReLU:[488,0,1,""],dynamic:[488,3,0,"-"],functional:[488,3,0,"-"]},"torch.nn.quantized.Conv1d":{from_float:[488,1,1,""]},"torch.nn.quantized.Conv2d":{from_float:[488,1,1,""]},"torch.nn.quantized.Conv3d":{from_float:[488,1,1,""]},"torch.nn.quantized.Linear":{from_float:[488,1,1,""]},"torch.nn.quantized.dynamic":{LSTM:[488,0,1,""],Linear:[488,0,1,""]},"torch.nn.quantized.dynamic.Linear":{from_float:[488,1,1,""]},"torch.nn.quantized.functional":{adaptive_avg_pool2d:[488,4,1,""],avg_pool2d:[488,4,1,""],conv1d:[488,4,1,""],conv2d:[488,4,1,""],conv3d:[488,4,1,""],hardswish:[488,4,1,""],interpolate:[488,4,1,""],linear:[488,4,1,""],max_pool2d:[488,4,1,""],relu:[488,4,1,""],upsample:[488,4,1,""],upsample_bilinear:[488,4,1,""],upsample_nearest:[488,4,1,""]},"torch.nn.utils":{clip_grad_norm_:[326,4,1,""],clip_grad_value_:[327,4,1,""],parameters_to_vector:[328,4,1,""],remove_spectral_norm:[346,4,1,""],remove_weight_norm:[347,4,1,""],spectral_norm:[353,4,1,""],vector_to_parameters:[354,4,1,""],weight_norm:[355,4,1,""]},"torch.nn.utils.prune":{BasePruningMethod:[329,0,1,""],CustomFromMask:[330,0,1,""],Identity:[331,0,1,""],L1Unstructured:[332,0,1,""],LnStructured:[333,0,1,""],PruningContainer:[334,0,1,""],RandomStructured:[335,0,1,""],RandomUnstructured:[336,0,1,""],custom_from_mask:[337,4,1,""],global_unstructured:[338,4,1,""],identity:[339,4,1,""],is_pruned:[340,4,1,""],l1_unstructured:[341,4,1,""],ln_structured:[342,4,1,""],random_structured:[343,4,1,""],random_unstructured:[344,4,1,""],remove:[345,4,1,""]},"torch.nn.utils.prune.BasePruningMethod":{apply:[329,1,1,""],apply_mask:[329,1,1,""],compute_mask:[329,1,1,""],prune:[329,1,1,""],remove:[329,1,1,""]},"torch.nn.utils.prune.CustomFromMask":{apply:[330,1,1,""],apply_mask:[330,1,1,""],prune:[330,1,1,""],remove:[330,1,1,""]},"torch.nn.utils.prune.Identity":{apply:[331,1,1,""],apply_mask:[331,1,1,""],prune:[331,1,1,""],remove:[331,1,1,""]},"torch.nn.utils.prune.L1Unstructured":{apply:[332,1,1,""],apply_mask:[332,1,1,""],prune:[332,1,1,""],remove:[332,1,1,""]},"torch.nn.utils.prune.LnStructured":{apply:[333,1,1,""],apply_mask:[333,1,1,""],compute_mask:[333,1,1,""],prune:[333,1,1,""],remove:[333,1,1,""]},"torch.nn.utils.prune.PruningContainer":{add_pruning_method:[334,1,1,""],apply:[334,1,1,""],apply_mask:[334,1,1,""],compute_mask:[334,1,1,""],prune:[334,1,1,""],remove:[334,1,1,""]},"torch.nn.utils.prune.RandomStructured":{apply:[335,1,1,""],apply_mask:[335,1,1,""],compute_mask:[335,1,1,""],prune:[335,1,1,""],remove:[335,1,1,""]},"torch.nn.utils.prune.RandomUnstructured":{apply:[336,1,1,""],apply_mask:[336,1,1,""],prune:[336,1,1,""],remove:[336,1,1,""]},"torch.nn.utils.rnn":{PackedSequence:[348,0,1,""],pack_padded_sequence:[349,4,1,""],pack_sequence:[350,4,1,""],pad_packed_sequence:[351,4,1,""],pad_sequence:[352,4,1,""]},"torch.nn.utils.rnn.PackedSequence":{batch_sizes:[348,1,1,""],count:[348,1,1,""],data:[348,1,1,""],index:[348,1,1,""],is_cuda:[348,1,1,""],is_pinned:[348,1,1,""],sorted_indices:[348,1,1,""],to:[348,1,1,""],unsorted_indices:[348,1,1,""]},"torch.onnx":{"export":[485,4,1,""],export_to_pretty_string:[485,4,1,""],is_in_onnx_export:[485,4,1,""],register_custom_op_symbolic:[485,4,1,""],select_model_mode_for_export:[485,4,1,""]},"torch.onnx.operators":{shape_as_tensor:[485,4,1,""]},"torch.optim":{ASGD:[486,0,1,""],Adadelta:[486,0,1,""],Adagrad:[486,0,1,""],Adam:[486,0,1,""],AdamW:[486,0,1,""],Adamax:[486,0,1,""],LBFGS:[486,0,1,""],Optimizer:[486,0,1,""],RMSprop:[486,0,1,""],Rprop:[486,0,1,""],SGD:[486,0,1,""],SparseAdam:[486,0,1,""]},"torch.optim.ASGD":{step:[486,1,1,""]},"torch.optim.Adadelta":{step:[486,1,1,""]},"torch.optim.Adagrad":{step:[486,1,1,""]},"torch.optim.Adam":{step:[486,1,1,""]},"torch.optim.AdamW":{step:[486,1,1,""]},"torch.optim.Adamax":{step:[486,1,1,""]},"torch.optim.LBFGS":{step:[486,1,1,""]},"torch.optim.Optimizer":{add_param_group:[486,1,1,""],load_state_dict:[486,1,1,""],state_dict:[486,1,1,""],step:[486,1,1,""],zero_grad:[486,1,1,""]},"torch.optim.RMSprop":{step:[486,1,1,""]},"torch.optim.Rprop":{step:[486,1,1,""]},"torch.optim.SGD":{step:[486,1,1,""]},"torch.optim.SparseAdam":{step:[486,1,1,""]},"torch.optim.lr_scheduler":{CosineAnnealingLR:[486,0,1,""],CosineAnnealingWarmRestarts:[486,0,1,""],CyclicLR:[486,0,1,""],ExponentialLR:[486,0,1,""],LambdaLR:[486,0,1,""],MultiStepLR:[486,0,1,""],MultiplicativeLR:[486,0,1,""],OneCycleLR:[486,0,1,""],ReduceLROnPlateau:[486,0,1,""],StepLR:[486,0,1,""]},"torch.optim.lr_scheduler.CosineAnnealingWarmRestarts":{step:[486,1,1,""]},"torch.optim.lr_scheduler.CyclicLR":{get_lr:[486,1,1,""]},"torch.optim.lr_scheduler.LambdaLR":{load_state_dict:[486,1,1,""],state_dict:[486,1,1,""]},"torch.optim.lr_scheduler.MultiplicativeLR":{load_state_dict:[486,1,1,""],state_dict:[486,1,1,""]},"torch.quantization":{DeQuantStub:[488,0,1,""],FakeQuantize:[488,0,1,""],HistogramObserver:[488,0,1,""],MinMaxObserver:[488,0,1,""],MovingAverageMinMaxObserver:[488,0,1,""],MovingAveragePerChannelMinMaxObserver:[488,0,1,""],NoopObserver:[488,0,1,""],ObserverBase:[488,0,1,""],PerChannelMinMaxObserver:[488,0,1,""],QConfig:[488,0,1,""],QConfigDynamic:[488,0,1,""],QuantStub:[488,0,1,""],QuantWrapper:[488,0,1,""],RecordingObserver:[488,0,1,""],add_observer_:[488,4,1,""],add_quant_dequant:[488,4,1,""],convert:[488,4,1,""],default_eval_fn:[488,4,1,""],fuse_modules:[488,4,1,""],get_observer_dict:[488,4,1,""],prepare:[488,4,1,""],prepare_qat:[488,4,1,""],propagate_qconfig_:[488,4,1,""],quantize:[488,4,1,""],quantize_dynamic:[488,4,1,""],quantize_qat:[488,4,1,""],swap_module:[488,4,1,""]},"torch.quantization.ObserverBase":{with_args:[488,1,1,""]},"torch.quasirandom":{SobolEngine:[375,0,1,""]},"torch.quasirandom.SobolEngine":{draw:[375,1,1,""],fast_forward:[375,1,1,""],reset:[375,1,1,""]},"torch.random":{fork_rng:[489,4,1,""],get_rng_state:[489,4,1,""],initial_seed:[489,4,1,""],manual_seed:[489,4,1,""],seed:[489,4,1,""],set_rng_state:[489,4,1,""]},"torch.sparse":{FloatTensor:[493,0,1,""],addmm:[493,4,1,""],mm:[493,4,1,""],sum:[493,4,1,""]},"torch.sparse.FloatTensor":{_indices:[493,1,1,""],_nnz:[493,1,1,""],_values:[493,1,1,""],add:[493,1,1,""],add_:[493,1,1,""],clone:[493,1,1,""],coalesce:[493,1,1,""],dim:[493,1,1,""],div:[493,1,1,""],div_:[493,1,1,""],get_device:[493,1,1,""],hspmm:[493,1,1,""],is_coalesced:[493,1,1,""],mm:[493,1,1,""],mul:[493,1,1,""],mul_:[493,1,1,""],narrow_copy:[493,1,1,""],resizeAs_:[493,1,1,""],size:[493,1,1,""],spadd:[493,1,1,""],spmm:[493,1,1,""],sspaddmm:[493,1,1,""],sspmm:[493,1,1,""],sub:[493,1,1,""],sub_:[493,1,1,""],t_:[493,1,1,""],to_dense:[493,1,1,""],transpose:[493,1,1,""],transpose_:[493,1,1,""],zero_:[493,1,1,""]},"torch.torch":{default_generator:[499,2,1,""],device:[495,0,1,""],dtype:[495,0,1,""],finfo:[507,0,1,""],iinfo:[507,0,1,""],layout:[495,0,1,""],memory_format:[495,0,1,""]},"torch.utils":{data:[13,3,0,"-"],model_zoo:[465,3,0,"-"]},"torch.utils.checkpoint":{checkpoint:[4,4,1,""],checkpoint_sequential:[4,4,1,""]},"torch.utils.cpp_extension":{BuildExtension:[9,4,1,""],CUDAExtension:[9,4,1,""],CppExtension:[9,4,1,""],check_compiler_abi_compatibility:[9,4,1,""],include_paths:[9,4,1,""],is_ninja_available:[9,4,1,""],load:[9,4,1,""],load_inline:[9,4,1,""],verify_ninja_availability:[9,4,1,""]},"torch.utils.data":{BatchSampler:[13,0,1,""],ChainDataset:[13,0,1,""],ConcatDataset:[13,0,1,""],DataLoader:[13,0,1,""],Dataset:[13,0,1,""],IterableDataset:[13,0,1,""],RandomSampler:[13,0,1,""],Sampler:[13,0,1,""],SequentialSampler:[13,0,1,""],Subset:[13,0,1,""],SubsetRandomSampler:[13,0,1,""],TensorDataset:[13,0,1,""],WeightedRandomSampler:[13,0,1,""],get_worker_info:[13,4,1,""],random_split:[13,4,1,""]},"torch.utils.data.distributed":{DistributedSampler:[13,0,1,""]},"torch.utils.dlpack":{from_dlpack:[16,4,1,""],to_dlpack:[16,4,1,""]},"torch.utils.mobile_optimizer":{optimize_for_mobile:[464,4,1,""]},"torch.utils.model_zoo":{load_url:[465,4,1,""]},"torchvision.datasets":{CIFAR100:[500,0,1,""],CIFAR10:[500,0,1,""],CelebA:[500,0,1,""],Cityscapes:[500,0,1,""],CocoCaptions:[500,0,1,""],CocoDetection:[500,0,1,""],DatasetFolder:[500,0,1,""],EMNIST:[500,0,1,""],FakeData:[500,0,1,""],FashionMNIST:[500,0,1,""],Flickr30k:[500,0,1,""],Flickr8k:[500,0,1,""],HMDB51:[500,0,1,""],ImageFolder:[500,0,1,""],ImageNet:[500,0,1,""],KMNIST:[500,0,1,""],Kinetics400:[500,0,1,""],LSUN:[500,0,1,""],MNIST:[500,0,1,""],PhotoTour:[500,0,1,""],QMNIST:[500,0,1,""],SBDataset:[500,0,1,""],SBU:[500,0,1,""],STL10:[500,0,1,""],SVHN:[500,0,1,""],UCF101:[500,0,1,""],USPS:[500,0,1,""],VOCDetection:[500,0,1,""],VOCSegmentation:[500,0,1,""]},"torchvision.datasets.CIFAR10":{__getitem__:[500,1,1,""]},"torchvision.datasets.Cityscapes":{__getitem__:[500,1,1,""]},"torchvision.datasets.CocoCaptions":{__getitem__:[500,1,1,""]},"torchvision.datasets.CocoDetection":{__getitem__:[500,1,1,""]},"torchvision.datasets.DatasetFolder":{__getitem__:[500,1,1,""]},"torchvision.datasets.Flickr30k":{__getitem__:[500,1,1,""]},"torchvision.datasets.Flickr8k":{__getitem__:[500,1,1,""]},"torchvision.datasets.ImageFolder":{__getitem__:[500,1,1,""]},"torchvision.datasets.LSUN":{__getitem__:[500,1,1,""]},"torchvision.datasets.PhotoTour":{__getitem__:[500,1,1,""]},"torchvision.datasets.SBU":{__getitem__:[500,1,1,""]},"torchvision.datasets.STL10":{__getitem__:[500,1,1,""]},"torchvision.datasets.SVHN":{__getitem__:[500,1,1,""]},"torchvision.datasets.USPS":{__getitem__:[500,1,1,""]},"torchvision.datasets.VOCDetection":{__getitem__:[500,1,1,""]},"torchvision.datasets.VOCSegmentation":{__getitem__:[500,1,1,""]},"torchvision.io":{read_video:[502,4,1,""],read_video_timestamps:[502,4,1,""],write_video:[502,4,1,""]},"torchvision.models":{alexnet:[503,4,1,""],densenet121:[503,4,1,""],densenet161:[503,4,1,""],densenet169:[503,4,1,""],densenet201:[503,4,1,""],googlenet:[503,4,1,""],inception_v3:[503,4,1,""],mnasnet0_5:[503,4,1,""],mnasnet0_75:[503,4,1,""],mnasnet1_0:[503,4,1,""],mnasnet1_3:[503,4,1,""],mobilenet_v2:[503,4,1,""],resnet101:[503,4,1,""],resnet152:[503,4,1,""],resnet18:[503,4,1,""],resnet34:[503,4,1,""],resnet50:[503,4,1,""],resnext101_32x8d:[503,4,1,""],resnext50_32x4d:[503,4,1,""],shufflenet_v2_x0_5:[503,4,1,""],shufflenet_v2_x1_0:[503,4,1,""],shufflenet_v2_x1_5:[503,4,1,""],shufflenet_v2_x2_0:[503,4,1,""],squeezenet1_0:[503,4,1,""],squeezenet1_1:[503,4,1,""],vgg11:[503,4,1,""],vgg11_bn:[503,4,1,""],vgg13:[503,4,1,""],vgg13_bn:[503,4,1,""],vgg16:[503,4,1,""],vgg16_bn:[503,4,1,""],vgg19:[503,4,1,""],vgg19_bn:[503,4,1,""],wide_resnet101_2:[503,4,1,""],wide_resnet50_2:[503,4,1,""]},"torchvision.models.detection":{fasterrcnn_resnet50_fpn:[503,4,1,""],keypointrcnn_resnet50_fpn:[503,4,1,""],maskrcnn_resnet50_fpn:[503,4,1,""]},"torchvision.models.segmentation":{deeplabv3_resnet101:[503,4,1,""],deeplabv3_resnet50:[503,4,1,""],fcn_resnet101:[503,4,1,""],fcn_resnet50:[503,4,1,""]},"torchvision.models.video":{mc3_18:[503,4,1,""],r2plus1d_18:[503,4,1,""],r3d_18:[503,4,1,""]},"torchvision.ops":{DeformConv2d:[504,0,1,""],FeaturePyramidNetwork:[504,0,1,""],MultiScaleRoIAlign:[504,0,1,""],PSRoIAlign:[504,0,1,""],PSRoIPool:[504,0,1,""],RoIAlign:[504,0,1,""],RoIPool:[504,0,1,""],deform_conv2d:[504,4,1,""],nms:[504,4,1,""],ps_roi_align:[504,4,1,""],ps_roi_pool:[504,4,1,""],roi_align:[504,4,1,""],roi_pool:[504,4,1,""]},"torchvision.transforms":{CenterCrop:[505,0,1,""],ColorJitter:[505,0,1,""],Compose:[505,0,1,""],FiveCrop:[505,0,1,""],Grayscale:[505,0,1,""],Lambda:[505,0,1,""],LinearTransformation:[505,0,1,""],Normalize:[505,0,1,""],Pad:[505,0,1,""],RandomAffine:[505,0,1,""],RandomApply:[505,0,1,""],RandomChoice:[505,0,1,""],RandomCrop:[505,0,1,""],RandomErasing:[505,0,1,""],RandomGrayscale:[505,0,1,""],RandomHorizontalFlip:[505,0,1,""],RandomOrder:[505,0,1,""],RandomPerspective:[505,0,1,""],RandomResizedCrop:[505,0,1,""],RandomRotation:[505,0,1,""],RandomSizedCrop:[505,0,1,""],RandomVerticalFlip:[505,0,1,""],Resize:[505,0,1,""],Scale:[505,0,1,""],TenCrop:[505,0,1,""],ToPILImage:[505,0,1,""],ToTensor:[505,0,1,""],functional:[505,3,0,"-"]},"torchvision.transforms.Normalize":{__call__:[505,1,1,""]},"torchvision.transforms.ToPILImage":{__call__:[505,1,1,""]},"torchvision.transforms.ToTensor":{__call__:[505,1,1,""]},"torchvision.transforms.functional":{adjust_brightness:[505,4,1,""],adjust_contrast:[505,4,1,""],adjust_gamma:[505,4,1,""],adjust_hue:[505,4,1,""],adjust_saturation:[505,4,1,""],affine:[505,4,1,""],center_crop:[505,4,1,""],convert_image_dtype:[505,4,1,""],crop:[505,4,1,""],erase:[505,4,1,""],five_crop:[505,4,1,""],hflip:[505,4,1,""],normalize:[505,4,1,""],pad:[505,4,1,""],perspective:[505,4,1,""],pil_to_tensor:[505,4,1,""],resize:[505,4,1,""],resized_crop:[505,4,1,""],rotate:[505,4,1,""],ten_crop:[505,4,1,""],to_grayscale:[505,4,1,""],to_pil_image:[505,4,1,""],to_tensor:[505,4,1,""],vflip:[505,4,1,""]},"torchvision.utils":{make_grid:[506,4,1,""],save_image:[506,4,1,""]},torch:{"var":[450,4,1,""],BoolTensor:[498,0,1,""],FloatStorage:[494,0,1,""],Generator:[18,0,1,""],Tensor:[498,0,1,""],__config__:[0,3,0,"-"],abs:[19,4,1,""],absolute:[20,4,1,""],acos:[21,4,1,""],acosh:[22,4,1,""],add:[23,4,1,""],addbmm:[24,4,1,""],addcdiv:[25,4,1,""],addcmul:[26,4,1,""],addmm:[27,4,1,""],addmv:[28,4,1,""],addr:[29,4,1,""],allclose:[30,4,1,""],angle:[31,4,1,""],arange:[32,4,1,""],argmax:[33,4,1,""],argmin:[34,4,1,""],argsort:[35,4,1,""],as_strided:[36,4,1,""],as_tensor:[37,4,1,""],asin:[38,4,1,""],asinh:[39,4,1,""],atan2:[41,4,1,""],atan:[40,4,1,""],atanh:[42,4,1,""],autograd:[2,3,0,"-"],baddbmm:[43,4,1,""],bartlett_window:[44,4,1,""],bernoulli:[45,4,1,""],bincount:[46,4,1,""],bitwise_and:[47,4,1,""],bitwise_not:[48,4,1,""],bitwise_or:[49,4,1,""],bitwise_xor:[50,4,1,""],blackman_window:[51,4,1,""],block_diag:[52,4,1,""],bmm:[53,4,1,""],broadcast_tensors:[54,4,1,""],bucketize:[55,4,1,""],can_cast:[56,4,1,""],cartesian_prod:[57,4,1,""],cat:[58,4,1,""],cdist:[59,4,1,""],ceil:[60,4,1,""],chain_matmul:[61,4,1,""],cholesky:[62,4,1,""],cholesky_inverse:[63,4,1,""],cholesky_solve:[64,4,1,""],chunk:[65,4,1,""],clamp:[66,4,1,""],combinations:[67,4,1,""],compiled_with_cxx11_abi:[68,4,1,""],conj:[69,4,1,""],cos:[70,4,1,""],cosh:[71,4,1,""],cross:[72,4,1,""],cuda:[11,3,0,"-"],cummax:[73,4,1,""],cummin:[74,4,1,""],cumprod:[75,4,1,""],cumsum:[76,4,1,""],deg2rad:[77,4,1,""],dequantize:[78,4,1,""],det:[79,4,1,""],diag:[80,4,1,""],diag_embed:[81,4,1,""],diagflat:[82,4,1,""],diagonal:[83,4,1,""],digamma:[84,4,1,""],dist:[85,4,1,""],distributed:[14,3,0,"-"],distributions:[15,3,0,"-"],div:[86,4,1,""],dot:[87,4,1,""],eig:[88,4,1,""],einsum:[89,4,1,""],empty:[90,4,1,""],empty_like:[91,4,1,""],empty_strided:[92,4,1,""],enable_grad:[93,0,1,""],eq:[94,4,1,""],equal:[95,4,1,""],erf:[96,4,1,""],erfc:[97,4,1,""],erfinv:[98,4,1,""],exp:[99,4,1,""],expm1:[100,4,1,""],eye:[101,4,1,""],fft:[102,4,1,""],flatten:[103,4,1,""],flip:[104,4,1,""],fliplr:[105,4,1,""],flipud:[106,4,1,""],floor:[107,4,1,""],floor_divide:[108,4,1,""],fmod:[109,4,1,""],frac:[110,4,1,""],from_numpy:[111,4,1,""],full:[112,4,1,""],full_like:[113,4,1,""],futures:[17,3,0,"-"],gather:[114,4,1,""],ge:[115,4,1,""],geqrf:[116,4,1,""],ger:[117,4,1,""],get_default_dtype:[118,4,1,""],get_num_interop_threads:[119,4,1,""],get_num_threads:[120,4,1,""],get_rng_state:[121,4,1,""],gt:[122,4,1,""],hamming_window:[123,4,1,""],hann_window:[124,4,1,""],histc:[125,4,1,""],hub:[457,3,0,"-"],ifft:[126,4,1,""],imag:[127,4,1,""],index_select:[128,4,1,""],initial_seed:[129,4,1,""],inverse:[130,4,1,""],irfft:[131,4,1,""],is_complex:[132,4,1,""],is_floating_point:[133,4,1,""],is_nonzero:[134,4,1,""],is_storage:[135,4,1,""],is_tensor:[136,4,1,""],isclose:[137,4,1,""],isfinite:[138,4,1,""],isinf:[139,4,1,""],isnan:[140,4,1,""],istft:[141,4,1,""],jit:[459,3,0,"-"],kthvalue:[154,4,1,""],le:[155,4,1,""],lerp:[156,4,1,""],lgamma:[157,4,1,""],linspace:[158,4,1,""],load:[159,4,1,""],lobpcg:[160,4,1,""],log10:[162,4,1,""],log1p:[163,4,1,""],log2:[164,4,1,""],log:[161,4,1,""],logaddexp2:[166,4,1,""],logaddexp:[165,4,1,""],logcumsumexp:[167,4,1,""],logdet:[168,4,1,""],logical_and:[169,4,1,""],logical_not:[170,4,1,""],logical_or:[171,4,1,""],logical_xor:[172,4,1,""],logspace:[173,4,1,""],logsumexp:[174,4,1,""],lstsq:[175,4,1,""],lt:[176,4,1,""],lu:[177,4,1,""],lu_solve:[178,4,1,""],lu_unpack:[179,4,1,""],manual_seed:[180,4,1,""],masked_select:[181,4,1,""],matmul:[182,4,1,""],matrix_power:[183,4,1,""],matrix_rank:[184,4,1,""],max:[185,4,1,""],mean:[186,4,1,""],median:[187,4,1,""],meshgrid:[188,4,1,""],min:[189,4,1,""],mm:[190,4,1,""],mode:[191,4,1,""],mul:[192,4,1,""],multinomial:[193,4,1,""],multiprocessing:[466,3,0,"-"],mv:[194,4,1,""],mvlgamma:[195,4,1,""],narrow:[196,4,1,""],ne:[197,4,1,""],neg:[198,4,1,""],no_grad:[356,0,1,""],nonzero:[357,4,1,""],norm:[358,4,1,""],normal:[359,4,1,""],numel:[360,4,1,""],ones:[361,4,1,""],ones_like:[362,4,1,""],onnx:[485,3,0,"-"],optim:[486,3,0,"-"],orgqr:[363,4,1,""],ormqr:[364,4,1,""],pca_lowrank:[365,4,1,""],pinverse:[366,4,1,""],poisson:[367,4,1,""],polygamma:[368,4,1,""],pow:[369,4,1,""],prod:[370,4,1,""],promote_types:[371,4,1,""],qr:[372,4,1,""],quantization:[488,3,0,"-"],quantize_per_channel:[373,4,1,""],quantize_per_tensor:[374,4,1,""],rad2deg:[376,4,1,""],rand:[377,4,1,""],rand_like:[378,4,1,""],randint:[379,4,1,""],randint_like:[380,4,1,""],randn:[381,4,1,""],randn_like:[382,4,1,""],random:[489,3,0,"-"],randperm:[383,4,1,""],range:[384,4,1,""],real:[385,4,1,""],reciprocal:[386,4,1,""],remainder:[387,4,1,""],renorm:[388,4,1,""],repeat_interleave:[389,4,1,""],reshape:[390,4,1,""],result_type:[391,4,1,""],rfft:[392,4,1,""],roll:[393,4,1,""],rot90:[394,4,1,""],round:[395,4,1,""],rsqrt:[396,4,1,""],save:[397,4,1,""],searchsorted:[398,4,1,""],seed:[399,4,1,""],set_default_dtype:[400,4,1,""],set_default_tensor_type:[401,4,1,""],set_flush_denormal:[402,4,1,""],set_grad_enabled:[403,0,1,""],set_num_interop_threads:[404,4,1,""],set_num_threads:[405,4,1,""],set_printoptions:[406,4,1,""],set_rng_state:[407,4,1,""],sigmoid:[408,4,1,""],sign:[409,4,1,""],sin:[410,4,1,""],sinh:[411,4,1,""],slogdet:[412,4,1,""],solve:[413,4,1,""],sort:[414,4,1,""],sparse_coo_tensor:[415,4,1,""],split:[416,4,1,""],sqrt:[417,4,1,""],square:[418,4,1,""],squeeze:[419,4,1,""],stack:[420,4,1,""],std:[421,4,1,""],std_mean:[422,4,1,""],stft:[423,4,1,""],sum:[424,4,1,""],svd:[425,4,1,""],svd_lowrank:[426,4,1,""],symeig:[427,4,1,""],t:[428,4,1,""],take:[429,4,1,""],tan:[430,4,1,""],tanh:[431,4,1,""],tensor:[432,4,1,""],tensordot:[433,4,1,""],topk:[434,4,1,""],trace:[435,4,1,""],transpose:[436,4,1,""],trapz:[437,4,1,""],triangular_solve:[438,4,1,""],tril:[439,4,1,""],tril_indices:[440,4,1,""],triu:[441,4,1,""],triu_indices:[442,4,1,""],true_divide:[443,4,1,""],trunc:[444,4,1,""],unbind:[445,4,1,""],unique:[446,4,1,""],unique_consecutive:[447,4,1,""],unsqueeze:[448,4,1,""],vander:[449,4,1,""],var_mean:[451,4,1,""],view_as_complex:[452,4,1,""],view_as_real:[453,4,1,""],where:[454,4,1,""],zeros:[455,4,1,""],zeros_like:[456,4,1,""]},torchvision:{get_image_backend:[501,4,1,""],set_image_backend:[501,4,1,""],set_video_backend:[501,4,1,""]}},objnames:{"0":["py","class","Python class"],"1":["py","method","Python method"],"2":["py","attribute","Python attribute"],"3":["py","module","Python module"],"4":["py","function","Python function"],"5":["std","envvar","environment variable"]},objtypes:{"0":"py:class","1":"py:method","2":"py:attribute","3":"py:module","4":"py:function","5":"std:envvar"},terms:{"00000e":[90,178,413],"0000e":[92,165,173,366,498],"0303j":8,"041m":2,"048m":2,"0545e":498,"0633j":[127,385,498],"0705e":92,"0949e":498,"10k":500,"10x7":[200,204],"1239e":92,"1269e":165,"13x12":239,"1421j":8,"1428e":91,"148m":2,"1548e":366,"1681j":8,"16x112x112":503,"17m1129830":160,"1918j":8,"1921e":[130,366],"1cycl":486,"1e4":486,"1e6":486,"1hr":5,"1mb":11,"1st":[15,474],"1x1":503,"20l":[143,237,273],"224x224":503,"2352e":366,"2gb":[457,485],"2nd":[15,281,304,470,474,498],"2x2":473,"2x3":[319,493],"3121e":366,"3136j":453,"32x4d":503,"32x8d":503,"3487j":8,"3493e":91,"3553j":[127,385,498],"3839j":453,"3842e":62,"3rd":[474,486,498,501],"3x4":319,"4064e":91,"427l":500,"483m":2,"4842e":[92,498],"4901e":366,"4th":[474,500],"4us":2,"50k":500,"50x":503,"5390e":366,"5751e":91,"5765e":498,"5772j":452,"5874j":8,"5955e":91,"5c106cde":[457,465],"5mb":503,"5x2":493,"5x7":[200,204],"5x7x9":[201,205],"60k":500,"60s":490,"6391e":366,"640l":500,"6503e":425,"6531e":425,"6623j":452,"6699j":453,"727m":2,"7497j":452,"7567e":366,"7896j":[127,385,498],"7981j":8,"7x7":[200,204],"7x7x7":[201,205],"7x9x8":[201,205],"8000e":91,"8119j":[127,385,498],"816u":2,"8182e":498,"88131e":402,"8b3f7e2e7a0f2aba0e629e23d89f07c7fc0e6a5":485,"9073e":[130,319],"9120j":452,"9407e":366,"9451j":453,"9683e":92,"9802e":[179,366],"\u2102":473,"\u211d":473,"abstract":[13,15,329,477,488,490],"boolean":[2,11,15,47,48,49,50,67,137,138,139,140,160,181,212,213,214,235,236,243,250,251,252,259,309,427,434,461,462,470,478,486,495,498,500,505],"break":[2,5,15,406,462,483,486],"byte":[11,15,142,159,279,461,462,467,486,494,498],"case":[1,2,3,8,9,10,11,13,14,32,44,46,66,79,89,130,131,134,143,150,159,160,165,168,175,177,193,202,207,208,209,210,211,221,222,223,225,226,227,229,232,233,236,237,238,241,244,245,246,247,248,253,254,255,256,257,260,265,267,268,269,273,280,281,287,290,301,307,312,319,324,357,390,398,412,415,426,443,454,457,466,467,468,470,471,472,473,474,475,476,478,479,481,483,485,486,488,489,490,491,492,493,496,498,500,504,505,507],"catch":459,"char":[467,494,498],"ciss\u00e9":202,"class":[1,2,10,11,13,14,15,17,18,93,142,143,144,145,146,148,149,150,151,152,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,329,330,331,332,333,334,335,336,348,356,375,403,460,462,466,468,470,472,478,479,481,482,483,485,486,488,490,491,493,494,495,497,498,500,503,504,505,507],"const":[480,485],"default":[1,4,8,9,11,14,30,32,37,44,51,53,55,59,62,63,64,72,75,76,81,82,83,90,91,92,101,102,112,113,118,123,124,126,131,137,141,143,145,149,150,151,158,159,160,173,177,184,185,187,191,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,221,222,223,224,225,226,227,228,229,230,231,234,235,236,237,238,239,241,242,243,244,247,248,250,251,252,253,254,255,256,257,258,259,260,261,262,265,266,267,268,269,270,271,272,273,276,277,278,279,280,281,282,286,287,289,290,291,292,298,301,302,306,307,309,312,313,315,317,318,319,320,324,325,329,330,331,332,333,334,335,336,349,350,352,353,355,357,358,361,362,365,366,370,375,377,378,379,380,381,382,383,384,389,392,397,398,400,401,406,415,423,424,425,426,427,432,437,438,440,442,443,446,447,449,455,456,457,459,464,465,466,470,471,472,473,475,476,477,478,479,484,485,486,488,489,490,493,494,497,498,499,500,502,503,504,505,506,507],"enum":[14,485,490],"export":[2,10,11,14,16,144,146,149,152,349,350,459,461,478,490,503],"final":[14,15,24,27,28,43,57,67,159,241,257,287,459,461,462,467,478,488,491,492,503,505,506],"float":[1,2,8,13,15,25,30,32,44,45,51,56,85,94,109,115,118,122,123,124,133,137,138,139,140,143,150,151,155,156,158,160,165,173,176,184,193,197,202,206,216,218,219,220,227,228,231,232,233,234,235,236,237,243,244,247,248,250,251,252,255,256,259,260,262,266,273,278,281,282,286,288,290,293,294,295,296,307,309,312,313,318,320,321,322,326,327,332,333,335,336,338,341,342,343,344,351,352,353,358,359,366,369,373,374,384,387,388,400,401,402,406,437,443,459,460,461,462,466,467,469,470,472,478,479,482,485,486,488,490,494,495,498,502,504,505,506,507],"function":[1,4,5,8,9,10,11,13,17,18,30,36,44,51,53,59,61,81,83,84,87,89,93,96,97,98,102,116,117,123,124,126,130,131,136,141,142,143,144,146,148,149,150,152,157,159,160,163,165,173,177,182,185,187,189,190,191,194,195,206,210,216,217,218,219,220,227,231,234,237,240,241,242,244,245,246,247,248,255,256,257,258,260,263,264,266,273,278,281,287,290,291,292,293,294,295,296,297,300,303,305,306,307,308,309,310,311,313,315,317,318,319,321,323,324,338,348,349,352,356,359,362,363,364,365,366,368,372,375,384,387,392,403,413,423,425,427,437,446,447,452,453,456,457,458,462,465,466,468,471,474,476,477,478,479,480,482,486,489,490,491,492,495,498,499,500,501,502,503],"herv\u00e9":202,"import":[2,5,6,9,11,13,14,17,52,141,144,145,146,147,148,149,150,151,152,273,324,350,351,352,358,459,461,462,466,472,473,475,476,477,478,479,480,481,482,485,486,488,490,491,492,495,497,498,500,503,505],"int":[1,11,13,14,15,18,33,34,35,36,44,46,51,56,58,65,67,72,73,74,75,76,80,81,82,83,90,92,101,102,103,112,114,119,120,123,124,125,126,128,131,141,143,144,154,158,160,167,173,174,180,183,185,186,187,189,191,193,195,196,200,201,202,204,205,207,208,209,215,217,218,219,220,221,222,223,224,225,226,228,229,230,235,236,237,238,242,243,250,251,252,255,256,258,259,261,262,264,268,269,270,271,272,273,275,278,280,281,284,285,288,289,293,294,295,296,297,303,305,306,309,313,318,319,320,321,322,323,324,326,327,332,333,335,336,338,341,342,343,344,351,353,355,358,359,360,361,365,368,370,373,374,375,377,379,380,381,383,388,389,390,391,392,393,394,404,405,414,416,419,420,421,422,423,424,426,433,434,436,437,439,440,441,442,443,445,446,447,448,449,450,451,455,459,460,461,462,466,467,470,484,485,486,488,489,490,493,494,495,498,500,502,503,504,505,506,507],"j\u00e9gou":202,"long":[2,5,6,13,112,129,191,217,229,257,258,280,371,440,442,446,466,467,468,470,474,478,479,481,485,488,489,494,495,498],"new":[1,2,4,6,11,13,14,15,17,21,22,23,37,38,39,40,41,42,55,60,70,71,77,81,86,99,100,105,106,107,127,128,137,138,139,140,143,149,161,162,163,164,181,192,196,198,212,213,214,237,241,250,251,252,273,274,279,283,309,329,333,334,335,337,338,339,341,342,343,344,352,376,385,386,390,395,396,397,398,400,401,408,409,410,411,417,418,420,429,430,431,444,448,452,453,457,459,461,464,466,467,468,470,473,476,478,480,481,483,484,486,488,492,494,496,498,504],"return":[0,1,2,4,8,9,11,13,14,15,16,17,18,21,22,23,32,33,34,35,36,37,38,39,40,41,42,44,45,46,51,52,55,57,60,61,62,63,64,65,66,67,68,70,71,72,73,74,75,76,77,78,80,81,82,83,85,86,88,90,91,92,93,94,99,100,101,102,105,106,107,108,111,112,113,115,116,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,143,144,145,146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,162,163,164,167,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,191,192,193,196,197,198,202,203,204,205,210,211,227,228,229,230,236,237,239,248,253,254,264,265,266,267,268,269,273,274,275,276,277,278,280,283,284,286,301,302,303,304,305,309,318,324,326,328,329,330,331,332,333,334,335,336,337,339,340,341,342,343,344,348,349,350,351,352,353,355,356,357,358,359,360,361,362,363,365,366,367,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,388,389,390,391,392,395,396,398,399,402,408,409,410,411,412,413,414,415,417,418,419,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,444,445,446,447,448,449,450,451,452,453,454,455,456,457,459,462,464,465,466,468,470,471,472,473,475,476,478,480,484,485,486,488,489,490,491,493,494,495,496,498,499,500,502,503,504,505,507],"short":[141,217,257,258,406,423,461,467,470,474,488,490,494,495,498,505],"static":[2,459,460,461,480,485,488,490,494],"super":[13,144,145,149,150,151,152,273,274,275,283,284,285,459,461,462,478,485,486],"switch":[8,13,397,466,470,473,483,503],"throw":[17,134,177,351,490,498],"transient":492,"true":[1,2,4,9,11,13,14,15,25,30,37,44,46,47,49,50,51,55,56,62,63,64,67,86,88,93,94,95,102,114,115,122,123,124,126,131,132,133,134,135,136,137,138,139,140,141,143,146,150,151,152,154,155,160,169,170,171,172,174,176,177,179,181,184,185,186,187,189,191,193,197,202,203,204,205,206,207,208,209,210,211,212,213,214,215,217,221,222,223,224,225,226,227,229,231,232,233,235,236,237,239,241,242,243,248,250,251,252,253,254,255,256,257,258,259,261,265,266,267,268,269,270,271,272,273,276,277,278,279,280,282,286,287,288,289,301,302,309,313,318,320,321,324,325,340,348,349,350,351,352,353,355,356,357,364,365,370,372,375,392,397,398,402,403,406,414,421,422,423,424,425,427,432,434,438,443,446,447,449,450,451,454,457,460,461,465,466,467,468,470,472,473,474,476,477,478,479,480,482,485,486,488,489,490,491,493,494,495,496,497,498,499,500,503,504,505,506],"try":[3,5,14,46,146,150,217,221,222,223,224,225,226,320,324,457,459,462,470,473,478,479,481,485,486,490,498,505],"var":[2,212,213,214,243,250,251,252,259,309,460,467,498],"void":[18,480],"while":[1,6,13,14,15,41,143,144,150,151,202,237,250,251,252,273,279,313,324,337,338,339,341,342,343,344,358,372,462,468,470,472,473,476,479,481,486,488,490,492,496,497,498,505],AND:[47,169],Abs:485,And:[73,74,154,185,187,189,217,473,484,488,505],But:[2,5,150,473,478,479,496,498],Doing:10,For:[1,2,3,4,5,6,8,9,10,11,13,14,15,24,25,26,27,28,29,43,47,48,49,50,53,75,76,102,114,126,131,143,148,149,150,151,160,167,174,182,183,185,187,189,190,202,206,210,211,218,219,220,221,222,223,224,225,226,230,236,237,238,241,257,273,276,277,278,286,287,293,294,295,296,297,306,319,323,324,348,349,350,352,392,415,419,452,453,457,459,463,467,468,470,472,473,474,475,476,478,479,481,485,486,488,490,491,492,493,494,495,496,497,498,500,503,505],Going:503,Has:[248,266,278,320,373,374,420,470,488],IDs:489,Its:[143,237,273,477,486],NFS:14,NMS:504,NOT:[14,48,170,329,330,331,332,333,334,335,336,345,485,492,493],Not:[459,461,462,478,488],One:[9,14,52,320,379,380,459,468,470,474,475,478,480,482,486,492,500,503],Ops:[3,476,498],PRs:[5,6],RHS:178,Such:[9,13,425,427,449],That:[175,464,478,479,490,505],The:[1,2,4,6,8,9,10,11,13,14,15,16,17,18,22,23,25,26,27,28,30,41,42,44,45,46,47,48,49,50,51,56,57,63,67,80,81,82,83,85,86,88,89,90,92,94,96,97,98,102,109,111,115,122,123,124,125,126,127,128,131,141,143,144,146,147,148,149,150,151,155,156,158,159,160,173,174,175,176,177,178,180,181,182,184,185,187,189,192,193,196,197,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,217,221,222,223,224,225,226,227,229,230,235,236,237,238,239,241,242,243,247,248,250,251,252,253,254,256,257,258,259,261,264,265,266,268,269,273,276,278,280,286,287,289,290,301,309,312,313,318,319,320,324,326,327,328,329,330,331,332,333,334,335,336,339,345,351,353,355,357,358,359,365,366,369,372,375,377,379,381,385,387,389,392,393,397,400,401,406,407,415,419,425,426,427,429,432,433,434,436,437,439,440,441,442,448,449,452,454,457,459,460,461,462,463,464,465,466,467,468,470,471,472,473,474,475,476,477,478,479,480,481,483,484,485,486,488,489,490,491,492,494,495,497,498,499,500,501,502,503,504,505,506,507],Then:[2,238,319,474,477,478,483,485,486,490,491,505],There:[2,5,6,14,89,230,457,459,461,468,473,476,478,479,480,481,482,483,484,485,488,490,492,498,499],These:[1,9,10,13,14,15,141,143,202,459,460,461,467,468,469,472,477,478,485,490,491,493,495,499,500,503,505],Use:[2,11,13,14,86,102,126,131,152,230,303,309,324,392,467,468,470,481,488,490,491,498,505],Used:[13,18,400,488,495],Useful:[11,203,204,205,239,267,268,269,495,498],Uses:[11,462],Using:[2,13,15,136,150,232,233,285,324,459,478,481,485,486,490],WITH:485,Will:[7,14,415,461,468,488,505],With:[13,15,151,212,213,214,222,223,225,226,235,250,251,252,259,309,320,462,470,476,478,485,486,488,490],Yes:485,__and__:460,__array_function__:478,__background__:503,__bool__:460,__bytes__:462,__call__:505,__config__:[458,475],__constants__:[459,461],__del__:462,__dict__:486,__file__:[457,484],__float__:460,__format__:462,__getitem__:[13,500],__hash__:462,__hex__:460,__iand__:460,__ilshift__:460,__init__:[2,13,15,144,145,149,150,151,152,273,274,275,283,284,459,461,478,479,485,505],__int__:460,__ior__:460,__irshift__:460,__iter__:[13,462],__ixor__:460,__len__:[13,460,500],__lshift__:460,__main__:[13,474,477,481,484,491],__matmul__:1,__name__:[13,477,478,481,484,491],__new__:[461,462],__oct__:460,__or__:460,__pow__:1,__r:462,__rdiv__:1,__repr__:478,__rpow__:1,__rshift__:460,__rtruediv__:1,__slots__:462,__str__:460,__torch__:460,__xor__:460,_audio_channel:500,_audio_sampl:500,_back:[220,297,470],_bottom:[219,220,294,296,297,323,470],_call:15,_caller:489,_cat:15,_channel:[221,222,223,224,225,226,243,470,488],_class:202,_compilation_unit:[150,151],_contextmethodmixin:2,_dependentproperti:15,_devices_kw:489,_dim:235,_direct:[241,287],_ext:484,_extra_fil:[142,143,147,148,480],_factor:[285,320,321,322],_featur:[202,215,261,470,488],_fft:423,_force_outplac:[150,151],_fork:475,_formatt:406,_forward_cl:2,_frames_up:149,_front:[220,297,470],_glibcxx_use_cxx11_abi:68,_greaterthan:15,_greaterthaneq:15,_growth_track:1,_halfopeninterv:15,_if_scalar_type_a:485,_in:471,_index:280,_indic:[415,493],_instanc:15,_integerinterv:15,_interv:15,_invers:15,_key_padding_mask:313,_layer:[241,287],_left:[218,219,220,293,294,295,296,297,323,470],_length:[44,51,123,124,141,217,423],_lessthan:15,_like:498,_load_from_state_dict:273,_log_api_usage_onc:480,_mask:[313,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,345],_metadata:[273,478],_mode:471,_module_class:[150,151],_nn:460,_nnz:493,_onnx_master_opset:485,_onnx_stable_opset:485,_orig:[329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,345],_out:471,_overrid:478,_pad:[224,225,226],_precomputed_metadata:500,_random_sampl:[239,460],_rcb:149,_resnet18:457,_retain_param_nam:485,_right:[218,219,220,293,294,295,296,297,323,470],_run_process:491,_safe_foo:9,_sampl:193,_scalar:485,_set_rpc_timeout:490,_shape:259,_size:[207,208,209,221,222,223,224,225,226,238,241,242,255,256,257,258,267,268,269,270,271,272,287,289,319],_slope:[260,470,471],_stack:15,_stacklevel:[460,470],_sync_param:477,_tensor:498,_tensor_str:406,_top:[219,220,294,296,297,323,470],_use_new_zipfile_seri:[397,483],_valu:[202,327,415,478,493],_video_height:500,_video_min_dimens:500,_video_width:500,_wait:475,_weight:[235,236],_with_arg:488,a3c:481,a_big:[425,427],a_dict:461,a_float32:1,a_i:318,a_l:179,a_lu:[177,178,179],a_tupl:461,a_u:179,abbrevi:11,abc:348,abi:[9,10],abil:[6,397,480,483],abl:[5,148,313,366,459,467,478,485,488,490],abnorm:[466,481],about:[2,6,11,13,348,457,459,461,473,475,478,479,480,481,485,490,491,492,496,498,504,505],abov:[2,10,14,15,44,51,80,81,82,83,123,124,160,210,238,306,319,359,379,380,406,423,437,439,440,441,442,457,459,461,473,474,475,476,478,482,485,486,491,492,500,505],abridg:479,abruptli:466,abs:[15,20,59,62,130,160,291,313,319,355,358,365,460,467,468,470,485,486,498,503],abs_:[460,467,498],absent:477,absolut:[2,6,8,9,19,30,137,254,301,332,333,335,336,338,341,342,343,344,412,460,470,485,498,505],absolute_:[460,498],abstransform:15,acc:503,acceler:[5,212,213,214,309,486],accept:[2,5,6,14,111,143,145,229,237,273,280,334,348,349,468,478,485,486,488,490,495,498],access:[2,6,13,14,143,144,150,202,237,273,349,459,460,462,464,466,468,473,476,479,480,490,495,496,498,507],accident:5,accimag:501,accommod:[270,271,272],accompani:5,accomplish:5,accord:[2,45,54,181,193,202,236,329,330,331,332,333,334,335,336,416,468,471,484,485,486,492,500,503,504],accordingli:[473,490,498,500,503,505],accordinli:490,account:[3,324,475],accumul:[1,2,24,324,459,460,473,477,479,490,491,498],accumulategrad:[2,473],accur:[11,163,375,476,485,491],accuraci:[1,472,488,497,503],achiev:[13,14,15,217,280,470,480,485,490,492],ack:492,acknowledg:492,aco:[1,460,467,485,498],acos_:[460,467,498],acosh:[460,467,498],acosh_:[460,467,498],acquaint:5,acquir:492,across:[2,11,13,14,33,34,148,150,229,230,238,262,281,309,319,324,334,338,372,459,467,470,473,476,477,479,480,481,482,488,490,491,494,498,500],act:[15,211,274,275,284,329,330,331,332,333,334,335,336,337,339,341,342,343,344,345,488,505],action:[6,15,473,476,492,500,503],activ:[2,4,5,11,206,232,233,243,259,274,290,313,315,317,464,466,478,488,490],activation_post_process:488,active_byt:11,actual:[2,150,224,225,226,339,457,461,467,473,476,477,478,481,484,485,486,488],actual_input_1:485,acycl:473,adadelta:486,adagrad:[235,486,490],adam:[6,7,15,486],adamax:486,adamw:486,adapt:[199,200,201,202,203,204,205,231,375,470,486,488,504],adaptive_avg_pool1d:[460,478,485],adaptive_avg_pool2d:[460,478,485,488],adaptive_avg_pool3d:[460,478,485],adaptive_max_pool1d:[460,478,485],adaptive_max_pool1d_with_indic:[460,478],adaptive_max_pool2d:[460,485],adaptive_max_pool2d_with_indic:460,adaptive_max_pool3d:[460,485],adaptive_max_pool3d_with_indic:460,adaptiveavgpool1d:470,adaptiveavgpool2d:[470,488],adaptiveavgpool3d:470,adaptivelogsoftmaxwithloss:463,adaptivemaxpool1d:470,adaptivemaxpool2d:[200,470],adaptivemaxpool3d:[201,470],add:[1,2,5,8,10,11,17,24,25,26,29,143,149,202,217,221,222,223,224,225,226,237,273,275,279,280,284,286,324,329,330,331,332,333,334,335,336,457,459,460,461,467,470,472,474,475,478,480,485,486,488,490,491,492,493,495,496,498,503,504],add_:[2,460,467,474,493,498],add_argu:[14,476],add_bias_kv:279,add_graph:497,add_imag:497,add_modul:[143,237,273],add_observer_:488,add_param_group:486,add_pruning_method:334,add_quant_dequ:488,add_relu:488,add_scalar:[488,497],add_zero_attn:[279,460],addbmm:[1,43,460,498],addbmm_:[460,498],addcdiv:[1,460,498],addcdiv_:[460,498],addcmul:[1,460,498],addcmul_:[460,498],added:[5,9,17,23,24,25,26,27,28,29,43,143,207,208,209,212,213,214,221,222,223,224,225,226,237,238,243,250,251,252,259,267,268,269,270,271,272,273,279,286,299,309,313,319,324,325,334,459,461,470,480,485,486,488,493,498,504],adder:2,addglobalcallback:480,adding:[13,14,32,165,211,280,337,338,339,341,342,343,344,457,459,461,468,472,478,485,486,488,498],addit:[1,2,5,6,9,10,11,15,141,143,145,202,210,211,212,213,214,215,216,224,225,226,234,236,237,240,244,245,246,247,250,251,252,253,254,260,261,262,263,264,265,270,271,272,273,281,286,290,291,292,298,300,301,302,303,305,306,307,308,309,310,311,312,313,324,425,446,447,452,459,461,467,468,470,475,476,478,480,481,482,484,486,488,490,491,492,493,496,498],addition:[2,13,14,15,145,202,250,251,252,479,482,498,499,505],addmm:[1,460,467,485,493,498],addmm_:[1,460,467,498],addmv:[1,460,467,498],addmv_:[460,467,498],addr:[1,460,498],addr_:[460,498],address:[2,13,14,466,490,491,498,503],adequ:488,adher:6,adjac:[32,52,232,233,384],adjust:[14,247,475,505],adjust_bright:505,adjust_contrast:505,adjust_gamma:505,adjust_hu:505,adjust_satur:505,admit:476,adopt:[6,488],advanc:[4,10,313,315,317,357,468,473,476,481,485,496],advantag:[14,211,479,490],adventur:485,adversari:353,advic:5,advis:[32,36,481,498],advisori:5,aeroplan:503,affect:[1,2,5,11,93,118,143,237,273,320,356,403,470,472,488,494],affin:[15,212,213,214,243,250,251,252,259,309,470,473,488,498,505],affine_grid:460,affine_grid_gener:460,affinetransform:15,aforement:481,afram:502,after:[1,2,5,9,11,13,14,89,134,143,182,230,237,273,276,324,329,333,335,457,461,466,470,471,472,476,477,479,480,481,483,486,488,490,491,492,495,498,504,505],afterward:[2,235],again:[1,4,13,14,193,500],against:[2,3,14,32,150,151,488,505],agent:490,aggreg:[14,236,338,470,503],aggress:[2,141,473],agnost:[468,470],agre:492,ahead:[5,488],aid:[5,473],aidan:[313,315,317],ail:7,ailzhang:7,aim:[5,468],airplan:503,aka:[2,482,495],akin:480,alban:7,alband:7,alex:7,alexandr:449,alfredo:7,algebra:7,algorithm:[5,12,15,18,46,61,141,160,217,221,222,223,224,225,226,238,241,257,287,319,320,365,425,426,470,488,490,498],alia:[15,20,348,498],alias:[461,478],alican:7,alicanb:7,align:[209,217,253,268,269,320,467,470,486,488,504],align_a:[460,467,468],align_corn:[320,321,460,470,488],align_tensor:460,align_to:[460,467,468],aliv:[479,481,490,491,492],all:[1,2,4,5,6,8,9,10,11,13,14,15,17,18,24,30,33,34,45,52,57,58,66,67,89,141,143,147,148,149,150,159,177,185,186,187,188,189,195,202,209,211,215,217,219,220,221,222,223,224,225,226,230,235,236,237,238,241,242,243,248,253,254,257,258,261,265,269,270,271,272,273,274,275,276,277,278,279,280,281,283,284,287,289,293,294,295,296,297,301,309,313,315,317,318,319,323,324,326,334,338,348,352,357,359,370,415,419,420,421,422,423,424,425,427,439,440,441,442,445,447,450,451,452,457,459,460,461,464,466,467,468,470,472,473,475,476,477,478,479,481,482,484,485,486,488,489,490,491,492,493,494,495,497,498,500,503,504,505,506],all_gath:14,all_gather_multigpu:14,all_reduc:14,all_reduce_multigpu:14,all_to_al:14,allclos:[2,372,427,460,485,498],alloc:[2,3,8,11,15,90,92,432,466,473,476,477,495,498],allocated_byt:11,allow:[1,2,5,6,8,9,10,13,14,15,56,67,146,152,165,230,273,276,279,313,324,327,357,457,461,467,468,472,473,474,475,476,477,478,480,481,485,486,488,490,495,496,498,500],allow_unreach:2,allow_unus:[2,460],allreduc:477,almost:[126,131,484,500],alon:461,along:[1,9,11,13,14,15,24,35,65,104,114,128,154,196,203,204,205,228,239,264,267,268,269,303,305,333,335,342,343,352,357,388,389,393,414,416,420,434,437,445,457,461,470,474,478,479,480,486,488,498],alongsid:[143,237,273],alpha:[15,23,24,27,28,29,43,123,206,216,234,262,298,460,470,478,485,486,488,493,498],alpha_dropout:460,alpha_dropout_:460,alpha_f:485,alphabet:[89,470,490,500],alphadropout:470,alreadi:[1,2,8,11,13,14,37,143,159,237,273,324,348,445,446,457,459,465,467,468,472,478,481,485,486,488,491,492,494,496,498,500],also:[1,2,4,5,6,8,9,10,11,13,14,15,17,44,51,75,76,93,118,123,124,143,144,145,150,188,202,210,212,213,214,221,222,223,224,225,226,229,236,237,238,241,257,273,280,287,299,301,309,319,324,337,339,341,342,343,344,356,366,381,397,401,419,425,446,447,454,457,459,461,464,466,467,468,470,471,472,473,475,476,477,478,479,480,481,482,484,485,486,488,490,491,493,496,498,499,500,505],alter:472,altern:[2,13,147,159,299,362,456,457,462,470,472,484,488],although:[5,15,224,225,226,281,472,478],alwai:[1,2,11,13,14,44,51,59,80,123,124,148,150,175,210,230,235,250,251,252,306,324,348,366,372,398,432,443,446,466,474,475,476,477,478,480,485,489,490,492,493,495,498,506],amazonaw:[457,465,484],ambigu:[15,134,224,225,226,238,270,271,272,320],among:[11,13,14,15,230,359,485],amount:[2,3,5,11,141,221,222,223,224,225,226,238,262,276,319,332,333,335,336,338,340,341,342,343,344,345,468,473,475,476,479,490,505,506],amp:[458,472],amplitud:486,amsgrad:486,an_error:461,anaconda:484,analog:[30,425,443,486],analysi:[365,462],analyt:[2,15],analyz:[477,478],ancestor:492,anchor:[318,460,470],andrea:160,andrew:160,angl:[15,41,77,260,376,460,498,505],ani:[1,2,3,4,5,6,8,11,13,14,15,17,32,54,57,58,142,143,145,148,149,150,199,200,201,203,204,205,206,210,211,215,216,230,231,234,237,238,240,244,245,246,247,248,249,253,254,260,261,263,264,265,273,281,286,290,291,292,298,299,300,301,302,303,305,306,307,308,309,310,311,312,313,319,324,329,330,331,332,333,334,335,336,339,349,350,352,384,397,404,406,459,460,461,464,466,467,468,470,472,473,475,476,478,480,481,482,483,485,486,488,490,491,492,498,505],anm:89,ann_fil:500,anneal:486,anneal_strategi:486,annfil:500,annot:[2,459,461,462,490,500],annotation_path:500,anoth:[2,5,11,13,14,274,283,459,461,472,475,476,478,481,484,485,491,492,498,499,504],another_forward:459,another_input:324,answer:[5,6,211,340,488],anticip:4,anymor:[2,14,324,498],anyon:6,anystr:461,anyth:[4,5,14,149,459,488],anywher:472,aoa:484,apart:8,apaszk:[6,7],api:[6,8,11,14,17,148,149,457,458,464,466,467,473,476,477,485,490,491,493,498,500,501],aplli:505,appear:[1,3,14,15,89,105,106,159,191,325,389,425,427,459,467,468,478,486],append:[2,14,17,83,182,242,258,275,284,289,324,461,473,475,481,484,485,498,503],appl:503,appli:[1,2,4,15,81,83,143,160,199,200,201,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,221,222,223,224,225,226,227,229,234,237,239,240,241,243,244,245,246,247,248,250,251,252,253,254,255,256,257,259,260,261,262,263,264,265,266,267,268,269,273,276,277,278,280,281,286,287,290,291,292,298,300,301,302,303,304,305,306,307,308,309,310,311,313,318,321,322,324,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,348,349,353,355,358,369,373,374,423,446,447,448,459,466,468,470,472,473,478,485,486,488,490,491,498,504,505],applic:[11,14,15,230,315,317,324,473,475,476,477,478,480,482,488,490,491,492,498,505],apply_:[463,498],apply_mask:[329,330,331,332,333,334,335,336],apprear:89,appreci:5,approach:[14,59,397,459,466,473,488,490],appropri:[1,5,14,15,150,177,229,273,280,462,468,490,491,492,503],approv:6,approx:426,approxim:[1,2,160,202,286,306,365,426,470,477,478,486],apr:141,arang:[8,13,14,29,54,104,105,106,117,154,156,157,293,294,295,296,320,321,322,358,359,369,384,390,394,416,424,433,434,435,460,470,485,498],arbitrari:[2,14,102,159,230,235,254,265,301,319,348,392,425,470,473,480,485,498,499,505],arbitrarili:[144,470],arccosin:21,architectur:[313,402,501,503],architecutr:11,archiv:480,arcsin:38,arctang:[40,41],area:[5,6,470,505],aren:[1,467,491],arg0:2,arg1:[2,14],arg2:14,arg3:14,arg:[1,2,3,4,9,14,15,17,66,143,144,177,188,210,211,227,229,237,241,248,249,253,254,257,265,266,273,276,277,278,280,286,287,299,301,302,309,318,324,329,334,348,446,447,457,460,462,466,468,470,473,476,477,478,481,483,485,488,490,491,492,494,498,500,505],arg_constraint:15,arg_nam:460,argmax:[185,202,460,485,498],argmin:[189,460,485,498],argpars:[14,476],argsort:[460,498,504],argument:[1,2,3,4,9,11,13,14,15,17,18,22,23,24,27,28,29,32,39,42,43,53,77,80,81,82,83,86,90,92,94,108,112,115,122,126,131,138,139,143,144,150,151,155,159,160,165,166,176,182,193,197,212,213,214,217,221,222,223,224,225,226,229,236,237,238,247,249,250,251,252,270,271,272,273,274,280,281,283,309,319,321,322,329,333,334,338,342,348,361,376,377,379,381,384,403,426,427,433,438,439,440,441,442,443,446,455,457,460,461,463,466,467,468,470,472,474,476,477,478,479,480,485,486,488,489,490,494,495,498,500,506,507],argumentpars:[14,476],ari:485,aris:15,arithmet:[61,391,392,462,467,468,488,495],arm:[464,488],armand:202,around:[2,5,6,8,11,14,17,459,466,476,490,498,504,505],arr:485,arrai:[13,37,46,105,106,111,159,175,238,241,242,257,258,389,406,449,459,462,470,485,488,494,498,500],arrang:[52,500],array_lik:[37,415,432,498],arriv:[490,492],arrow:492,art:375,articul:6,artifact:480,artifici:2,arxiv:[15,290,291,313,355,365,426,488,503,505],as_strid:[92,460,488,496,498],as_strided_:460,as_subclass:[463,498],as_tensor:[432,460,478,498],as_tupl:[357,454],asap:466,ascend:[35,414,427,437,446],ascent:15,ascii:[11,159],asd932_:500,asgd:486,ashish:[313,315,317],asin:[1,460,467,485,498],asin_:[460,467,498],asinh:[460,467,498],asinh_:[460,467,498],ask:[14,458],aspect:[5,478,505],assembl:[8,13],assert:[13,15,144,145,461,462,485],assert_allclos:459,assert_int_or_pair:460,assign:[1,2,5,13,14,202,229,273,280,325,459,462,472,478,479,485,488,491,492,496,500],assign_x:461,assist:477,associ:[2,11,89,143,159,217,237,273,459,467,468,470,482,485,490,491,495,498],assp:141,assum:[1,8,13,14,15,150,184,217,266,320,324,352,365,426,438,459,461,467,470,473,478,480,485,486,490,491,492,503,505],assumpt:[217,473,477,490,491,505],ast_1:[228,470],ast_2:[228,470],astensor:505,astyp:485,asuhan:7,asymmetr:[469,488],async:[2,14,462,480,494,498],async_add:490,async_add_chain:490,async_execut:490,async_op:14,asyncexecutionclass:490,asynchron:[3,17,143,144,153,237,273,462,475,477,490,494,498],atan2:[1,460,467,498],atan2_:[460,467,498],atan:[460,467,485,498],atan_:[460,467,498],atanh:[460,467,498],atanh_:[460,467,498],aten:[193,459,475,484],aten_thread:475,atol:[2,30,137,459,460,478,498],atom:[462,482],atomicadd:482,attach:[17,457,459,461,467,478,488,491,498],attempt:[2,9,145,148,177,459,467,468,472,476,484,490],attend:[279,313],attent:[5,279,313,315,317,484,496],attn:[315,317],attn_mask:[279,460],attn_output:279,attn_output_weight:279,attr1:485,attr1_f:485,attr2:485,attr2_i:485,attr:[253,309,324,358,470,485,500],attribut:[1,2,8,13,14,142,143,144,145,148,149,160,230,237,273,313,324,325,349,458,460,462,472,473,476,478,485,488,490,498,500,507],attributeerror:478,audio:[500,502],audio_fp:502,aug_add_x:461,augment:[10,462,505],author:472,auto:[14,210,211],autocastmodel:1,autoencod:15,autograd:[1,3,4,5,15,32,44,51,90,91,92,101,112,113,123,124,131,143,158,173,237,273,324,361,362,377,378,379,380,381,382,383,384,405,415,432,455,456,458,460,463,470,477,479,480,485,498],autograd_context_id:491,autograd_hook:477,autograd_message_id:491,autograd_tensor:2,autom:[459,485],automat:[9,11,14,150,188,324,325,406,457,458,461,465,467,468,473,474,476,478,481,485,488,490,498],aux_logit:503,aux_loss:503,auxiliari:[457,480,503],avail:[2,9,10,11,13,14,53,102,126,131,177,313,320,365,392,423,426,457,461,466,470,476,478,484,485,488,490,500,505],averag:[2,14,143,199,200,201,207,208,209,210,211,212,213,214,227,229,236,237,248,253,254,255,256,265,266,273,276,277,278,280,286,301,302,309,318,324,470,477,486,488],averaging_const:488,avg:[2,505],avg_pool1d:[460,485],avg_pool2d:[460,485,488],avg_pool3d:[460,485,488],avgpool1d:470,avgpool2d:[470,488],avgpool3d:470,avi:500,avmgithub:7,avoid:[1,2,6,13,15,18,32,131,159,228,254,265,282,286,301,319,392,423,432,446,468,470,473,475,476,479,482,485,488,490,491,496,497,498,505],avx2:488,awai:[468,470],await:[462,490],awar:[5,468,473,488,491,498,503],axbc:348,axes:485,axi:[104,114,373,389,393,394,460,485,488,498,505],b_float32:1,b_hf:257,b_hg:257,b_hh:[241,242,257,258,287,289,460],b_hi:257,b_hn:241,b_ho:257,b_hr:241,b_hz:241,b_if:257,b_ig:257,b_ih:[241,242,257,258,287,289,460],b_ii:257,b_in:241,b_io:257,b_ir:241,b_iz:241,back:[1,159,457,459,478,481,485,490,493,505],backbon:503,backcompat:474,backend:[2,9,46,102,126,131,217,221,222,223,224,225,226,324,392,459,460,461,464,470,475,476,482,485,488,498,501],backend_str:14,backendtyp:490,background:[46,217,221,222,223,224,225,226,470,481,490,498,500,503],backoff:1,backoff_factor:1,backpack:503,backprop:366,backpropag:[2,15,479,486],backward:[1,2,4,6,15,79,88,93,143,168,210,211,217,229,230,237,241,254,257,265,273,280,286,287,318,324,325,356,366,412,425,427,460,468,470,471,472,477,478,479,480,481,482,486,488,490,493,498],bad:466,baddbmm:[1,460,485,498],baddbmm_:[460,498],bag:[236,470],bai:7,balanc:[18,500],ball:503,balnta:318,banana:503,band:[14,505],bandwidth:[14,488,490],bao:7,bar:[5,144,147,148,457,459,461,465,485,503],bare:9,barrier:14,bartlett:44,bartlett_window:[460,463],base:[2,5,6,9,10,11,13,15,156,162,164,166,173,230,273,276,277,278,313,315,317,324,329,333,335,369,375,397,403,425,426,440,442,460,470,473,475,477,478,483,485,486,488,490,491,496,498,500,504,505],base_distribut:15,base_lr:486,base_momentum:486,base_se:13,basebal:503,basedistribut:15,basep:15,basepruningmethod:[334,340],baseq:15,basi:[15,160,480,486,488,490],basic:[2,5,160,324,462,469,486,488,491,496],bat:503,batch1:[24,43,460,498],batch2:[24,43,460,498],batch:[15,24,43,53,59,62,64,79,81,83,89,102,126,130,131,160,168,177,178,182,183,210,211,212,213,214,217,221,222,227,229,230,232,233,235,236,238,241,242,243,248,250,251,252,253,254,257,258,259,265,266,276,277,278,279,280,286,287,289,301,302,309,313,314,315,316,317,318,319,324,348,349,351,352,365,366,372,392,412,413,419,423,425,426,427,438,439,441,467,468,470,472,476,479,481,482,485,486,488,500,503,504,505,506],batch_first:[241,257,287,288,349,351,352,460,479],batch_ndx:13,batch_norm:460,batch_norm_backward_elemt:460,batch_norm_backward_reduc:460,batch_norm_elemt:460,batch_norm_gather_stat:460,batch_norm_gather_stats_with_count:460,batch_norm_stat:460,batch_norm_update_stat:460,batch_per_it:472,batch_sampl:13,batch_shap:15,batch_siz:[13,15,348,350,351,460,479,497,500,504],batch_sz:504,batchmean:[253,470],batchnorm1d:[309,470,488],batchnorm2d:[230,464,470],batchnorm3d:[309,470],batchnorm:[143,237,273,309,324,464,485,488],batchsampl:13,batchsiz:[253,470],batchwis:282,bbox:500,bceloss:[1,211,470],bcewithlogit:1,bcewithlogitsloss:[1,470],bckenstler:486,bddppq:7,beam:459,bear:503,becaus:[1,2,3,4,5,13,15,141,147,159,212,213,214,221,222,223,224,225,226,230,309,325,398,423,459,463,466,467,468,473,474,476,477,479,480,482,485,486,488,490,492,498,503],becom:[1,2,5,6,13,15,126,221,222,223,224,225,226,241,257,278,287,470,473,477,485,486,488,490,498],bed:503,bedroom_train:500,been:[1,2,8,11,14,15,93,144,145,159,241,247,257,287,329,333,335,375,466,467,468,470,472,475,481,484,486,490,492,503,504],befor:[1,2,5,11,13,14,15,75,76,105,106,143,230,236,237,238,273,275,309,319,353,355,370,393,398,404,405,423,424,438,443,446,459,461,466,470,472,473,476,477,478,480,484,485,486,488,490,491,492,493,497,498,504],beforehand:5,begin:[1,5,11,13,14,32,44,66,89,175,209,210,211,227,241,242,244,245,246,247,248,253,254,257,258,260,265,268,269,280,281,290,301,307,312,324,406,423,446,454,470,472,473,478,480,485,486,488,498],behav:[9,10,150,461,488,498],behavior:[2,5,9,14,25,36,54,57,67,86,92,131,143,148,150,159,182,230,237,253,273,309,320,324,357,390,457,459,462,463,467,470,473,474,476,485,486,488,490,496,498,503,504,505],behaviour:[2,30,470],behind:[491,500],being:[2,6,13,15,101,137,143,145,210,211,227,229,235,236,237,239,241,248,253,254,257,265,266,273,276,277,278,280,286,287,301,302,318,324,329,330,331,332,333,334,335,336,372,423,438,459,467,468,470,472,478,479,481,482,485,488,490,491,498,505],belair:7,believ:1,belong:[4,11,14,15,55,476,486,505],below:[1,2,9,13,14,15,80,81,82,83,131,143,151,184,224,225,226,229,237,270,271,272,273,280,301,320,357,439,440,441,442,459,461,463,466,467,470,472,473,476,477,478,481,484,485,488,490,491,492,496,505],ben:239,bench:503,benchmark:[460,476,482],benefit:[5,14,466,486],benefiti:14,bengio:471,bernoulli:[206,231,232,233,241,257,460,467,470,498,499],bernoulli_:[460,467,498,499],bert:313,besid:[14,477],bessel:[421,422,450,451],best:[1,2,5,10,13,14,15,58,150,151,458,459,461,466,472,473,478,479,486,490],beta:[2,8,24,27,28,29,43,123,212,213,214,243,250,251,252,259,262,306,309,460,464,470,485,486,488,490,493,495,498],better:[5,6,11,13,136,150,273,303,375,398,470,472,475,484,485,488,497],between:[1,2,5,11,14,15,27,28,29,32,41,53,59,125,141,143,158,173,210,211,217,221,222,223,224,225,226,228,232,233,237,238,254,265,267,268,269,273,276,277,278,282,302,303,318,319,324,329,330,331,332,333,334,335,336,338,341,342,343,344,367,379,380,384,420,423,437,459,461,462,466,470,472,473,475,476,481,482,486,488,490,492,494,498,500,503,504,505],bewar:5,beyond:[6,393,479,486,492],bfg:486,bfloat16:[2,143,237,273,463,467,494,495,498],bfloat16tensor:[495,498],bia:[6,143,202,215,221,222,223,224,225,226,237,241,242,257,258,259,261,273,279,287,288,289,337,339,341,353,355,460,464,470,478,488,497,504],bias:[212,213,214,241,242,243,250,251,252,257,258,259,287,289,309,421,422,450,451],bias_:488,bias_defin:460,bias_g:460,bias_hh:[242,258,289],bias_hh_l:[241,257,287],bias_ih:[242,258,289],bias_ih_l:[241,257,287],bias_k:460,bias_mask:[337,339],bias_v:460,bicub:[320,470,505],bicycl:503,bidirect:[241,257,287,288,460,485],big:[5,415],bij:89,biject:15,biject_to:15,bik:89,bilenear:488,bilinear:[1,89,320,321,460,488,505],bin:[46,125,460,488,498,504],binari:[1,10,15,45,181,210,211,279,337,338,339,340,341,342,343,344,462,467,468,470,480,485,498,500,503],binary16:[495,498],binary_cross_entropi:460,binary_cross_entropy_with_logit:460,binaryio:506,bincount:[460,482,498],bind:[9,11,458,462,485,501],binomi:460,bird:503,bit:[5,18,399,484,488,489,495,498,507],bitshift:485,bitwidth:[469,488],bitwis:[14,47,48,49,50,462],bitwise_and:[460,498],bitwise_and_:[460,498],bitwise_not:[460,467,498],bitwise_not_:[460,467,498],bitwise_or:[460,498],bitwise_or_:[460,498],bitwise_xor:[460,498],bitwise_xor_:[460,498],bivari:15,bjk:89,bl_flip:505,bla:475,black:505,blacklist:464,blackman:51,blackman_window:[460,463],blank:[217,460,462,470],blob:[480,485,497],block0:[459,485],block1:459,block:[5,11,13,14,17,52,160,221,222,223,224,225,226,238,276,319,459,461,466,469,470,473,477,485,490,503],block_diag:460,blog:5,blogpost:496,blow:479,blue:500,bmatrix:473,bmm:[1,178,179,460,467,498],bn1:488,bnmodul:488,bnrelu2d:488,bnrelu3d:488,board:6,boat:503,bodi:[149,459,461,462],boil:5,book:503,bool:[1,2,4,9,11,13,14,15,30,32,33,34,35,44,47,48,49,50,51,53,55,56,62,63,64,88,90,91,92,95,101,102,111,112,113,114,123,124,126,131,132,133,134,137,138,139,141,143,150,151,154,158,160,169,170,171,172,173,174,177,179,184,185,186,187,189,191,193,202,203,204,205,206,207,208,209,210,211,215,216,217,221,222,223,224,225,226,227,229,231,232,233,234,235,236,237,239,242,243,247,248,250,251,252,253,254,255,256,258,259,260,261,265,266,267,268,269,273,276,277,278,280,282,286,288,289,290,291,292,298,301,302,309,312,318,320,324,325,349,350,351,352,358,361,362,365,370,372,375,377,378,379,380,381,382,383,384,392,398,402,403,414,415,421,422,423,424,425,432,434,438,443,446,447,449,450,451,455,456,457,459,460,461,463,465,466,467,468,470,485,486,488,489,490,494,495,498,500,503,504,505,506],bool_tensor:495,booltensor:[94,115,122,140,155,176,181,197,279,313,454,495,498],bootcamp:5,bootstrap:484,bor:14,border:[470,505],both:[2,8,11,13,14,15,43,88,109,125,138,141,143,154,182,207,208,212,213,214,218,221,222,223,224,225,226,237,238,243,250,251,252,257,258,259,267,268,269,273,309,319,320,324,387,423,427,443,459,461,467,468,469,470,474,478,482,485,486,488,490,492,493,498,500,502,503,505],bottl:503,bottleneck:[458,503],bottom:[2,470,505],bound:[3,10,55,66,290,383,398,462,470,471,483,486,498,500,504],boundari:[55,218,219,220,293,294,295,296,297,320,323,398,460,470,486,488,490,500],bowen:7,bowenbao:7,bowl:503,box:[468,477,500,503,504,505],bozkurt:7,bparam:160,bptt:479,br_flip:505,bracket:491,brain:[495,498],branch:[5,457,461,503],brand:14,bregman:15,breviti:[2,485],brief:[14,324,466,490],bright:[500,505],brightness_factor:505,bring:[470,490],broadcast:[11,14,15,23,24,25,26,27,28,29,41,43,53,54,85,86,87,94,108,109,115,117,122,155,156,176,181,182,185,189,190,192,194,197,279,324,369,387,389,433,454,458,467,468,477,485,498],broadcast_buff:324,broadcast_coalesc:11,broadcast_multigpu:14,broadcast_tensor:460,broadcast_warn:474,broader:[6,480,499],broccoli:503,broken:[5,11,13],brokenpipeerror:484,bucket0:477,bucket1:477,bucket:[202,324,398,460,477],bucket_cap_mb:[324,477],buf:[143,237,273],buffer:[2,3,11,13,143,147,148,154,159,230,237,273,324,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,345,397,414,434,461,473,477,478],buffer_s:11,bug:[1,6,177,472,481],bugfix:5,build:[2,9,10,14,15,313,459,469,470,473,488,491,505],build_directori:9,build_ext:9,buildextens:9,built:[5,14,68,473,475,481,486],builtin:[159,459,461,462,490,492],bulk:13,bump:273,bundl:480,bus:503,bvar:160,bwd:1,bxor:14,byclass:500,bymerg:500,bypass:476,byte_arrai:159,bytecod:13,bytesio:[147,148,159,397],bytesliter:462,bytetensor:[11,18,94,121,279,313,407,489,495,498],bz2:500,c10:480,c10_log_api_usage_onc:480,c10d:[14,477],c655:160,c676:160,c99:484,c_0:[257,258],c_1:258,c_float32:1,c_j:[207,208,209,267,268,269],c_n:257,c_t:257,cach:[11,15,102,126,131,325,392,466,479,498,503],cache_s:15,caffe2:[485,497],cake:503,calcul:[2,4,13,53,59,79,81,93,141,165,166,168,207,208,209,212,213,214,217,224,225,226,238,243,250,251,252,259,309,319,320,324,334,353,356,358,366,403,412,421,422,427,440,442,450,451,470,473,474,477,484,486,488],calculate_gain:[463,471],calculate_qparam:488,calib_data:488,calibr:[1,472,488],call:[1,2,9,10,11,13,14,15,116,134,143,144,146,148,149,159,160,206,212,213,214,230,231,232,233,237,238,270,271,272,273,280,281,309,319,324,334,337,338,339,341,342,343,344,353,355,356,363,364,368,381,404,405,423,433,457,459,462,466,468,470,472,475,476,477,478,479,480,481,484,485,486,488,490,491,492,495,496,498,503,506,507],callabl:[2,13,15,17,143,144,149,150,159,160,237,273,457,459,461,462,486,488,490,498,500],callback:[17,480,490],calle:[490,492],caller:[473,476,490,492],camera:480,can:[2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,25,37,45,46,58,64,88,89,90,94,102,115,122,126,130,131,141,143,144,145,148,149,150,151,154,155,159,176,177,179,188,197,200,201,202,204,205,206,207,208,209,210,211,212,213,214,216,217,221,222,223,224,225,226,229,230,231,234,235,237,239,241,247,253,254,256,257,260,264,265,267,268,269,270,271,272,273,274,275,278,280,283,284,286,287,288,289,290,291,292,298,299,301,306,309,312,313,320,324,326,348,349,358,361,369,377,381,390,392,397,403,404,406,413,414,415,419,423,425,427,432,434,438,448,455,457,459,460,461,464,466,467,468,470,472,473,474,475,476,477,478,480,481,482,483,484,485,486,488,490,491,492,493,495,496,497,498,499,500,502,503,505,507],can_cast:460,cancel:141,candid:2,cannot:[1,2,13,15,17,141,146,193,217,320,425,426,457,459,460,461,462,463,468,470,477,478,484,485,490,492,493,494,495,498,505],cap:500,capabl:[10,11,14,375,476,480,490,499],capac:476,capacit:15,captur:[2,10,11,144,459,462,476,478,485],car:503,card:484,cardin:15,care:[5,9,15,425,427,466,473,475,476,477,478,479,481,493],carefulli:485,carlo:15,carri:[1,474,488,498],carrier:15,carrot:503,cartesian:[15,57],cartesian_prod:460,cast:[1,2,56,75,76,143,237,273,358,370,415,424,443,459,470,472,485,494,495,498,505],cast_input:[1,472],castabl:86,cat:[1,15,291,459,460,467,485,488,493,498,500,503],categor:[5,462,470,490],categori:[15,193,463,495,500,503],cattransform:15,cauchi:[473,498,499],cauchy_:[460,467,498,499],caught:466,caus:[1,2,4,9,13,14,149,150,423,459,466,470,474,476,479,481,484,485,488,492,498],caveat:[466,476],cb_fut:17,cdf:15,cdist:1,cdot:[195,210,211,228,246,253,276,277,278,280,423,470],cdoubl:[2,8,495,498],ceil:[13,207,208,209,255,256,267,268,269,460,467,470,485,488,498,504],ceil_:[460,467,498],ceil_mod:[207,208,209,255,256,267,268,269,460,470,488],celeba:501,celebfac:500,cell:[242,257,258,289,503],cellparamsbas:460,celu:[460,485],celu_:460,center:[141,365,423,460,470,486,488,498,504,505],center_crop:505,center_flip:505,centercrop:[503,505],central:[480,505],cerr:480,certain:[11,13,14,81,141,143,147,159,237,259,273,279,319,357,468,470,474,480,485,490,491,493],certainli:131,cfloat:[2,8,127,385,453,495,498],ch_axi:488,chain:[2,13,15,17,61,236,473,498,505],chain_cb_fut:17,chain_matmul:[1,460],chainabl:486,chaindataset:13,chair:503,challeng:[5,491],chanan:[6,7],chanc:[5,15],chang:[1,2,5,8,11,14,15,17,81,118,128,143,148,149,235,237,253,273,320,324,357,419,423,436,459,464,466,467,468,470,472,473,474,475,476,478,484,485,486,488,490,492,493,494,496,498,503,505],channel:[6,13,141,212,213,214,221,222,223,224,225,226,231,232,233,238,243,250,251,252,259,262,281,304,309,319,320,321,322,333,334,335,342,343,355,373,468,469,470,471,485,488,498,500,502,503,504,505],channel_shuffl:460,channels_last:[143,237,273,324,495],chao:160,charact:[406,459,468,470,490],characterist:426,chartensor:[495,498],cheap:[15,202],cheaper:13,check:[1,3,8,9,11,13,14,15,30,102,126,131,136,138,139,140,141,150,151,177,324,340,350,392,398,457,461,462,467,468,472,478,479,480,485,486,490,498,500],check_compiler_abi_compat:9,check_hash:[457,465],check_input:[150,151,459],check_model:485,check_reduct:324,check_sparse_nnz:2,check_toler:[150,151],check_trac:[150,151],check_undefined_grad:2,checker:[150,151,485],checkout:485,checkpoint:[1,2,159,324,457,458,465,492],checkpoint_sequenti:4,cher:7,cherniavskii:7,child:[13,143,237,273,334,466,484,488,492],children:[143,237,273,466,488,492],chintala:[6,7],choic:[150,274,283,475,485,505],choleski:[15,63,64,160,460,498],cholesky_invers:[460,498],cholesky_solv:[460,498],choos:[2,10,53,210,471,472,475],chose:472,chosen:[1,81,154,406,414,434,472,485,488,505],chr:460,christian:7,chrome:2,chunk:[4,11,13,14,58,230,324,416,459,460,467,490,496,498],chunk_siz:11,church_outdoor_train:500,cifar100:500,cifar10:500,cifar:501,circleci:5,circular:[15,221,222,223,470],circumst:[46,217,221,222,223,224,225,226,470,498],circumv:4,cityscap:501,claim:5,clamp:[210,460,464,467,470,485,488,498],clamp_:[460,467,498],clamp_max:[460,485],clamp_max_:460,clamp_min:[460,485],clamp_min_:460,class_async_add:490,class_i:500,class_index:[13,500],class_x:500,classat_1_1_tensor:10,classif:[211,217,229,276,278,280,302,470,471,500,501],classifi:[473,485,486],classmethod:[11,235,236,309,329,330,331,332,333,334,335,336,462,488,490],classvar:461,claus:479,clean:[11,14,457,466],cleaner:473,clear:[274,283,457,476,486],click:499,client:490,clip:[1,326,327,500,503],clip_grad_norm_:[1,472],clip_grad_value_:472,clip_valu:327,clock:503,clockwis:505,clone:[2,10,13,36,54,92,145,432,438,460,466,470,488,493,494,495,498],cloned_coeffici:438,close:[10,11,55,137,398,478,490,497],closest:[59,395,470],closur:1,clr:[61,486],cls:[490,498],cluster:[202,497],clutter:497,cmake:484,cmake_gener:484,cmake_include_path:484,cmdclass:9,cmyk:505,cnn:[301,473,488,504],coalesc:[11,460,477,493,498],coars:500,coco:[501,503],coco_instance_category_nam:503,coco_person_keypoint_nam:503,coco_util:503,cococapt:500,cocodetect:500,code:[2,3,6,8,9,10,13,14,15,143,145,146,148,149,150,151,152,159,288,324,405,457,461,468,473,474,477,478,479,480,481,482,484,485,486,489,490,491,492,493,495,496,498,503],code_with_const:143,codebas:6,codec:159,codomain:15,coeffici:[123,438,486],coexist:468,cohes:6,col2im:[238,460],col:[440,442,460,500],col_offset:460,col_offsets_hh:460,col_offsets_ih:460,colesburi:[6,7],collaps:467,collat:13,collate_wrapp:13,collect:[2,5,13,17,59,90,361,377,381,455,460,461,486,488,490,492,500],collect_al:17,collector:488,colon:490,color:[252,500,505],colorjitt:505,column:[2,88,101,105,106,160,175,193,221,222,223,224,225,226,319,365,425,440,442,449,470,471,498,504,505],columns_prun:343,com:[5,6,14,313,457,465,484,485,488],combin:[1,11,13,17,211,229,238,319,334,459,460,461,470,472,476,485,488,490],combinations_with_replac:67,come:[5,13,15,159,232,233,464,480,490,492,500],comm:[11,477],comma:[14,89],command:[2,3,14,484,491],comment:[5,462,478],commit:[5,6,457,482],committ:6,common:[13,32,159,212,213,214,217,309,397,468,476,478,479,481,488,496,500,501,505],commonli:[14,15,463,472,486,488,495],commun:[5,6,458,477,490,491],comp:15,compact:[478,488],compani:6,compar:[2,4,9,13,30,32,89,94,115,122,137,155,176,185,189,197,273,478,484,488,490],comparison:[94,115,122,150,151,155,176,197,462,478],compat:[9,13,15,146,152,390,461,466,467,472,478,494,498,500],compil:[9,10,11,145,146,149,150,151,152,459,461,462,463,472,475,480,484],compilationunit:[150,151],complementari:[97,505],complet:[5,11,13,14,17,144,149,153,372,461,462,466,470,472,473,476,482,490,491,498,505],complex128:[8,111,132,400,495,498],complex32:498,complex64:[8,111,132,400,495,498],complex:[1,2,5,88,102,126,127,131,132,138,139,140,143,237,273,375,385,392,400,423,452,453,458,462,481,494,495,498,505],complex_doubl:494,complex_double_tensor:495,complex_float:494,complex_float_tensor:495,complex_tensor:8,complic:[3,468,474,490,492],compon:[5,10,14,15,102,314,316,365,452,453,462,477,480,505],component_distribut:15,compos:[15,62,64,130,199,200,201,203,204,205,207,208,209,221,222,223,224,225,226,239,255,256,262,267,268,269,318,321,322,459,467,470,485,488,497,503,505],composetransform:15,composit:[15,459,482],compound:462,comprehens:[462,468,476],compris:4,comput:[1,4,5,8,11,13,14,15,19,31,37,47,48,49,50,59,61,62,63,67,69,84,85,87,88,89,93,94,96,97,98,102,109,110,115,116,122,125,126,131,143,144,149,155,157,160,169,170,171,172,174,175,176,177,184,195,197,202,206,207,208,209,212,213,214,228,231,235,236,237,241,243,250,251,252,255,256,257,259,264,267,268,269,270,271,272,273,280,282,286,287,303,305,309,324,326,329,330,331,332,333,334,335,336,337,349,355,356,363,368,372,387,388,392,403,423,425,426,427,433,443,459,467,468,469,470,472,473,475,476,478,479,482,485,486,488,490,493,498,501,503,504,505,506],compute_mask:[329,330,331,332,333,334,335,336],compute_mod:59,compute_uv:[425,460,498],compute_z:475,concat:[279,485],concatdataset:13,concaten:[2,9,11,13,58,217,221,222,223,224,225,226,236,326,420,462,470],concentr:15,concentrarion:15,concentration0:15,concentration1:15,concept:[5,485,495],conceptu:[2,473,492],concern:[13,466],concis:490,concret:[15,320,459,470,478,481,488,503],concurr:[475,476,490,491],cond:485,conda:[159,397,484,485],condit:[2,12,30,141,150,241,257,287,350,454,459,460,461,462,473,478,485,498],condition:[2,403],condsid:470,conduct:[6,324,365,426,490],confer:6,confid:5,config:484,configur:[0,5,13,14,102,126,131,324,348,392,402,476,477,484,488,490,503],confirm:[5,459,478,485,490,492],confirmed_by_own:490,conform:348,conj:[8,460,498],conjuct:324,conjug:[69,88,131,160,392,423,486],conjunct:[13,324,470],connect:[14,221,222,223,224,225,226,466,473,488,490,503],connectionist:[217,470],conquer:425,consecut:[1,14,446,447,468,498,505],consensu:5,consequ:476,consid:[2,30,64,80,81,82,83,137,140,143,184,237,238,253,273,276,319,325,329,330,331,332,333,334,335,336,427,439,440,441,442,457,459,470,472,474,478,479,486,488,491,492,495,498,500],consider:[5,41,141,236,475],consist:[13,15,62,372,425,427,459,468,485,486,488,501],constant:[2,13,141,143,145,150,160,218,219,220,236,238,319,366,460,470,472,478,485,486,488,505],constant_:471,constant_pad_nd:460,constantpad2d:470,constantpadnd:485,constmap:143,constrain:[15,306],constraint:[2,324,348],constraint_registri:15,constraintregistri:15,construct:[2,10,13,15,80,116,143,149,150,151,159,221,222,223,237,273,324,348,365,415,426,432,459,473,477,481,488,490,492,493,495,498,503],construct_transform:15,constructor:[9,13,202,278,299,321,322,324,459,462,476,477,488,490,493,495,498,503,507],consum:[13,16,89,466,481],consumpt:[2,356,497],contain:[1,2,4,8,9,10,11,13,14,15,18,24,43,44,45,51,53,55,88,94,102,109,115,122,123,124,126,127,128,131,138,139,140,143,147,148,150,151,155,159,175,176,177,181,185,187,189,193,197,202,211,229,230,235,236,237,238,241,242,243,248,253,257,258,266,273,274,275,280,283,284,287,289,299,302,309,319,324,329,330,331,332,333,334,335,336,337,339,341,342,343,344,345,346,347,348,349,350,351,353,355,357,365,367,385,387,392,397,398,412,413,423,425,427,440,442,446,447,459,461,462,468,470,472,473,477,478,479,480,485,486,488,490,492,494,495,498,499,500,502,503,504,505],containu:150,content:[2,5,147,148,419,436,457,465,466,486,490,496,498],contenti:6,context:[1,11,93,324,356,403,462,466,472,476,478,480,481,485,489,490,492,499],context_id:[324,460,490,491],contigu:[2,8,103,130,237,276,324,390,413,425,427,460,468,470,494,496,498],contiguous_format:[90,324,495,498],continu:[2,13,15,216,217,253,366,462,485,488,498,499],continuous_bernoulli:15,continuum:484,contract:[433,468],contrail:500,contrari:[5,475],contrast:[15,486,503,505],contrast_factor:505,contribut:[2,6,229,280,437,458,470],contributor:[5,6],control:[1,2,9,13,35,44,51,80,81,82,83,102,123,124,126,131,149,150,177,202,221,222,223,224,225,226,238,260,267,268,269,319,324,392,402,414,423,425,427,434,439,440,441,442,459,473,475,476,477,481,485,488,492,505],conv1:[149,273,299,459,488,497],conv1d:[1,224,460],conv2:[149,273,299,459],conv2d:[1,149,150,151,225,232,237,273,274,280,299,319,342,459,460,464,485,497],conv3d:[1,226,233,460],conv4:[143,237,273],conv5:[143,237,273],conv:[150,151,221,222,223,224,225,226,274,280,471,485,488],conv_bn_fus:464,conv_fus:488,conv_tbc:460,conv_transpose1d:[1,460],conv_transpose2d:[1,460],conv_transpose3d:[1,460],convbnmodul:488,conveni:[1,5,9,457,461,472,476,478,480,489],convent:[2,89,212,213,214,250,251,252,273,309,397,437,457,465,473,485,498],conver:488,converg:[160,472,486],converged_count:160,convers:[5,56,134,348,462,473,485,488,498,501],convert:[2,13,37,57,67,77,143,237,273,309,328,354,373,374,376,459,460,461,478,485,488,498,505],convert_image_dtyp:505,convert_sync_batchnorm:309,convmodul:488,convolut:[1,221,222,223,224,225,226,232,233,285,290,318,319,460,464,471,475,488,504],convolv:[221,222,223,224,225,226,470,488],convtranspos:353,convtranspose1d:470,convtranspose2d:470,convtranspose3d:470,coo:[415,493,495,498],cooldown:486,coordin:[5,15,41,415,440,442,493,498,504,505],cope:481,copi:[5,8,11,13,14,37,143,149,160,230,237,238,273,319,348,390,432,459,460,466,474,476,478,481,485,488,490,494,495,496,498],copy_:[2,320,459,460,467,476,488,494,498],copysign:460,copyslic:473,core:[5,11,475,477,485],corner:[52,320,470,488,505],coroutin:462,corpor:[5,6],correct:[3,5,14,15,128,131,150,151,230,253,324,348,405,421,422,450,451,459,461,467,468,494,498,505],correctli:[4,13,14,150,324,459,461,468,470,472,473,478,481,485,490,498],correl:[2,15,221,222,223,224,225,226,232,233],correspond:[1,2,5,11,13,14,15,37,63,88,137,143,151,160,185,189,192,193,230,235,237,273,279,313,324,337,338,339,341,342,343,344,353,367,392,393,398,448,457,459,460,467,468,470,472,477,478,480,485,486,488,490,491,494,498,503,504,505],correspondingli:464,corrupt:[1,230,481,500],cos:[21,51,123,124,227,228,460,467,485,486,498],cos_:[460,467,498],cosh:[1,22,460,467,498],cosh_:[460,467,498],cosin:[22,70,71,227,228,470,486],cosine_embedding_loss:[1,460],cosine_similar:[1,460],cosineannealinglr:486,cosineannealingwarmrestart:486,cosineembeddingloss:470,cost:[2,3,46,61,217,221,222,223,224,225,226,470,491,498],cotang:473,couch:503,could:[3,5,11,13,15,141,159,253,366,446,461,466,473,476,477,484,486,490,491,492,496],couldn:[484,485],count:[2,11,15,46,348,446,447,460,490,492],count_include_pad:[207,208,209,460,470,488],counter:[2,11,230,466,473,505],counterpart:[464,488,499],coupl:[480,482,491],cours:[3,457,477,478,486,490],courtesi:15,cov_diag:15,cov_factor:15,covari:[15,212,213,214,309,365,505],covariance_matrix:15,covector:473,cover:[463,468,478,480,488,490,500],coverag:[5,458,459,463,468],cow:503,cpp:[5,6,9,14,193,477],cpp_autograd:10,cpp_c10d_extens:14,cpp_extens:[14,458,478],cpp_frontend:10,cpp_sourc:9,cppdoc:[5,10],cppextens:9,cprofil:3,cpu:[1,2,3,8,9,11,14,18,32,37,44,51,90,92,101,102,112,119,120,123,124,126,131,143,147,148,158,159,173,177,185,187,189,230,235,237,273,324,348,361,377,379,381,383,384,392,402,404,405,415,425,432,433,440,442,446,455,458,459,460,464,466,467,470,476,481,482,484,485,488,489,490,494,495,498,499,504],cpu_memory_usag:2,cpu_model:459,cpu_tim:2,cpu_time_tot:2,cpuhrsch:7,crack:5,crash:[466,473,490,492],creat:[1,2,4,5,9,11,13,14,15,17,18,36,52,81,92,111,141,144,153,188,193,210,227,235,236,238,254,265,266,276,277,278,301,302,309,318,319,324,348,415,432,462,464,466,472,473,476,477,478,481,485,488,490,491,492,494,496,498,499,500,504,507],create_extens:484,create_graph:[2,460,472,498],creation:[2,11,13,324,329,459,462,466,476,488,490,492,498,500],creator:[473,490,492],crelu:291,criteria:160,criterion:[160,210,211,227,229,253,254,265,266,276,277,278,301,302,318,470,479,486,504],critic:[353,475,488],crop:[503,504,505],cross:[1,5,15,210,221,222,223,224,225,226,460,470,476,484,498],cross_entropi:[1,460],crossentropyloss:[280,470],crucial:10,csr:236,csrc:[484,485],ctc_loss:[217,460,482],ctcloss:470,ctx:[2,472,478],cube:[201,205,375],cubla:[8,11],cublashandle_t:11,cuda0:[476,498],cuda1:495,cuda2:476,cuda92:484,cuda:[2,3,4,9,13,14,18,32,37,44,46,51,53,90,92,101,102,112,123,124,126,131,143,158,159,173,177,191,217,221,222,223,224,225,226,230,235,237,273,309,324,361,377,379,381,383,384,392,415,432,433,440,442,446,455,458,460,467,470,472,478,482,485,486,488,489,490,494,495,498,499,503],cuda_extens:9,cuda_hom:9,cuda_launch_block:476,cuda_memory_usag:2,cuda_prefix:484,cuda_runtim:9,cuda_sourc:9,cuda_tim:2,cuda_time_tot:2,cuda_visible_devic:[11,476],cudaev:2,cudaeventsynchron:11,cudaextens:9,cudamalloc:11,cudart:[9,484],cudastreamsynchron:11,cudastreamwaitev:11,cudnn:[12,46,217,221,222,223,224,225,226,241,257,287,288,460,470,498,503],cudnn_affine_grid_gener:460,cudnn_batch_norm:460,cudnn_convolut:460,cudnn_convolution_transpos:460,cudnn_en:460,cudnn_grid_sampl:460,cudnn_is_accept:460,cufft:[102,126,131,392],cufft_plan_cach:476,cuh:9,cultur:6,cummax:[460,498],cummin:[460,498],cumprod:[1,460,467,498],cumsum:[1,460,467,485,498],cumul:[15,73,74,75,76,167,212,213,214,240,309,470],cunningham:15,cup:503,cur:486,curl:484,current:[1,2,4,6,8,9,11,13,14,17,18,32,37,44,51,90,92,101,102,111,112,118,123,124,126,131,143,145,150,158,160,173,235,236,237,238,273,309,319,324,332,333,334,335,336,341,342,343,344,361,377,379,381,383,384,392,415,432,440,442,446,455,459,461,462,463,466,470,472,476,480,482,484,485,486,488,490,491,494,495,498,500,502,504],current_blas_handl:11,current_devic:[11,495],current_stream:11,custom:[1,9,10,13,14,143,235,237,273,313,329,338,462,466,467,473,480,484,486,488,498,501,505],custom_bwd:[1,472],custom_decod:313,custom_domain:485,custom_encod:313,custom_fwd:[1,472],custom_loop:485,custom_op:485,custom_opset:485,customiz:462,cut:[5,488],cutoff:[202,366],cxx11:10,cxx:9,cycl:[2,486,498],cycle_momentum:486,cyclic:[486,505],cycliclr:486,d_1:[229,280,470],d_2:[229,280,470],d_float32:1,d_k:[229,280,470],d_model:[313,314,315,316,317],daemon:466,dag:2,dai:5,damania:7,dampen:486,danger:492,dantu:7,dark:505,darker:505,dart:500,dash:[490,492],data1:500,data2:500,data:[1,2,5,8,12,14,15,32,37,44,51,55,75,76,90,91,92,101,112,113,123,124,125,132,133,150,158,159,160,173,179,215,217,230,241,243,250,251,252,257,259,261,280,287,288,320,324,325,348,349,350,351,358,361,362,365,370,373,374,375,377,378,379,380,381,382,383,384,390,398,415,424,432,440,442,448,455,456,458,459,460,462,466,470,472,473,474,476,478,480,481,483,484,486,488,490,492,493,494,495,496,497,498,499,500,504,505],data_load:[481,486,500],data_parallel:479,data_ptr:[463,467,494,496,498],data_sourc:13,data_typ:488,databas:[13,500],dataload:[13,324,476,479,484,486,497,498,500],dataparallel:[1,14,324,351,479,481],dataset:[202,211,479,480,484,486,488,497,501,503,505],dataset_it:13,datasetfold:501,datatyp:[1,143,184,237,273,485],datetim:14,datset:500,david:[7,202],dcgan:485,ddp:[309,324,477],ddp_model:[324,477],ddp_sync_bn_network:309,deactiv:505,deadlock:[14,324],deal:[5,433,466,479,505],dealloc:[466,476,479],debug:[2,3,13,14,461,473,475,480,482,484,485],debugg:146,debuginfoguard:480,decai:[281,486],decemb:375,decent:13,decid:[3,5,14,338,500],decis:[150,472],declar:[2,9,13,461,462,485],decod:[16,159,313,314,315,501,502],decoder_lay:[314,315],decompos:473,decomposit:[15,62,116,365,366,372,425,426],decompress:[457,465],deconvolut:[224,225,226,470],decor:[1,2,15,93,146,149,152,356,459,461,472,478,490],decoupl:[355,486],decreas:[11,15,232,233,349,350,437,486,495,504],dedic:476,deep:[5,6,212,213,214,309,458,471,486,488,503],deeper:503,deeplabv3_resnet101:503,deeplabv3_resnet50:503,def:[1,2,13,15,17,93,143,144,145,146,148,149,150,151,152,237,273,274,275,283,284,356,457,459,461,468,472,473,475,477,478,479,481,484,485,486,490,491,492,498,505],default_dynamic_qconfig:488,default_eval_fn:488,default_fake_qu:488,default_gener:499,default_load:500,default_mask:[329,330,331,332,333,334,335,336],default_observ:488,default_qat_qconfig:488,default_qconfig:488,default_stream:11,default_weight_fake_qu:488,default_weight_observ:488,defin:[1,2,4,9,10,13,15,89,90,92,96,97,98,112,116,137,160,188,191,230,247,255,256,290,303,305,312,324,333,335,342,343,359,361,377,379,381,406,425,427,439,440,441,442,454,455,457,459,463,466,467,470,477,484,485,486,488,490,493,498,499,500,505],define_macro:484,definit:[5,13,15,62,63,64,253,457,459,461,462,470,472,473,478,485,488,503],deform:504,deform_conv2d:504,deformconv2d:504,deg2rad:[460,467,498],deg2rad_:[460,467],degrad:[475,478],degre:[15,77,282,318,376,394,460,473,505],del:[462,466,479],delai:492,delet:[14,457,466,489,490,492],delimit:462,deliv:6,deliveri:492,delta:[15,241,248,257,471,486],delv:471,demand:[11,461,480,490],demonstr:217,denomin:[25,86,108,212,213,214,243,250,251,252,259,309,486],denorm:402,denot:[2,15,221,222,486,491,505],dens:[2,44,51,53,123,124,160,426,493,495,498,503],dense_dim:[415,460,493,498],densenet121:503,densenet161:503,densenet169:503,densenet201:503,densenet:485,densiti:15,depend:[2,3,4,13,14,15,149,150,182,210,211,221,222,223,224,225,226,227,229,236,238,248,253,254,265,266,276,277,278,280,286,301,302,318,319,320,334,365,372,375,390,438,454,457,459,461,466,470,475,476,482,485,486,488,490,493,498,503],dependent_properti:15,deploi:[5,480],deploy:458,deprec:[11,14,210,211,227,229,247,248,253,254,265,266,276,277,278,280,286,301,302,318,321,322,384,459,463,466,470,474,485,488,494,498,505],depth:[11,209,223,226,269,320,470,488,503,504,505],depthwis:[221,222,223],dequant:[460,498],dequantstub:488,deriv:[2,6,14,84,177,324,366,368,461,478,488,490,498],derivedp:15,derivedq:15,descend:[35,143,237,273,414,425,460,498],descent:[8,15,486],describ:[1,4,5,11,13,56,86,202,207,208,209,210,211,212,213,214,221,222,223,224,225,226,229,231,232,233,238,239,243,246,250,251,252,253,254,259,265,267,268,269,280,286,290,309,318,319,423,459,461,470,471,472,473,477,479,480,485,486,488,491,492,498,503,504],descript:[0,5,9,160,461,470,476,478,480,485,507],descriptor:[13,318,462,485,500],deseri:[159,457,465],design:[2,5,6,13,15,457,478,503],desir:[1,2,11,13,14,15,18,32,37,44,51,75,76,90,91,92,101,112,113,123,124,143,158,173,180,210,237,273,348,358,361,362,370,373,374,375,377,378,379,380,381,382,383,384,407,415,424,432,440,442,455,456,467,468,470,472,473,476,485,489,490,493,494,495,498,505],desmaison:7,despit:[150,151],destin:[11,14,114,143,175,237,273,490,491,494,498],destroi:[230,473,490],destruct:[490,492],destructor:[466,492],det:[15,168,412,460,485,498],detach:[2,4,217,324,432,459,460,467,470,479,496,498],detach_:[2,460,467,498],detail:[0,1,2,5,8,10,11,13,15,79,102,116,126,131,143,150,166,168,175,185,187,189,202,206,216,224,225,226,230,235,236,237,239,241,257,273,279,285,287,298,318,325,351,357,363,364,366,392,412,459,460,461,470,473,477,478,479,480,485,486,488,490,491,492,493,496,497,498,499,503,505],detect:[4,9,13,14,145,466,485,490,501,504],detect_anomali:2,detector:231,detectron2:504,determin:[2,6,8,9,11,13,15,44,51,56,61,79,86,91,113,123,124,131,168,239,282,329,330,331,332,333,334,335,336,362,366,378,380,382,412,423,456,462,468,470,476,477,482,486,488,492,495,505,506],determinist:[4,15,18,46,53,150,151,185,187,189,217,221,222,223,224,225,226,399,460,470,473,482,486,489,498],deterministicli:144,dev:6,dev_idx:14,develop:[14,461,478,480,485,488,490],deviat:[15,206,212,213,214,243,250,251,252,259,309,359,421,422,471,498,505],devic:[1,2,4,11,14,18,32,37,44,51,90,91,92,101,112,113,123,124,143,147,148,158,159,173,177,185,187,189,230,237,273,324,348,361,362,377,378,379,380,381,382,383,384,415,432,433,440,442,455,456,458,459,460,461,463,467,470,472,477,479,482,485,486,488,489,490,494,498],device_count:[11,14],device_id:[14,159,230,309,324,470,477],device_of:11,devito:7,df1:15,df2:15,dfrac:[228,353,355,470,498],dhanainm:7,dhanasekar:7,diag:[15,365,425,426,427,460,498],diag_emb:[83,425,427,460,498],diagflat:[80,460,498],diagn:15,diagnost:459,diagon:[15,52,80,81,82,89,101,435,438,439,440,441,442,460,470,478,496,498],diagonaltensor:478,diagram:492,dict:[1,11,15,143,150,151,159,230,237,238,273,274,283,299,319,457,459,460,462,465,478,485,486,488,490,491,502,503],dictat:324,dictionari:[9,11,13,15,143,147,150,151,160,235,236,237,273,274,283,461,462,470,478,485,486,488,490,500,503],did:[2,5,461],didn:[473,478,484,486],dies:466,dieterich:7,diff:[5,459],differ:[1,2,4,9,11,13,14,15,32,81,83,86,89,105,106,128,131,143,148,150,202,212,213,214,218,219,220,230,237,250,251,252,271,273,276,279,293,294,295,296,297,309,315,317,323,324,365,389,392,446,447,457,459,461,463,466,467,470,472,473,474,475,476,477,478,481,482,484,485,486,488,490,492,493,495,498,500,503],differenti:[15,216,217,324,470,473,478,479,490,498],difficult:[2,5],difficulti:[5,471],digamma:[368,460,467,498],digamma_:[460,467,498],digit:[406,457,465,480,500],dilat:[221,222,223,224,225,226,238,267,268,269,319,460,470,485,488,504],dim0:[436,460,498],dim1:[81,83,436,460,498],dim2:[81,83,460,498],dim:[2,11,15,33,34,35,58,65,72,73,74,75,76,103,104,114,128,154,167,174,185,186,187,189,191,196,202,228,230,236,237,264,279,280,281,303,305,324,329,333,335,342,343,353,355,358,370,388,389,393,394,414,416,419,420,421,422,424,433,434,437,445,446,447,448,450,451,459,460,468,470,479,485,488,493,495,498],dim_arang:485,dim_feedforward:[313,315,317],dimems:498,dimens:[2,8,11,13,15,24,33,34,35,52,58,61,62,64,65,72,73,74,75,76,79,81,82,83,89,102,126,128,130,131,154,167,168,174,178,182,185,186,187,188,189,191,195,196,208,209,210,211,212,213,214,215,216,217,222,223,225,226,228,229,230,234,235,236,238,240,244,245,246,247,248,250,251,252,253,254,256,259,260,261,262,263,264,265,268,269,279,280,281,282,286,290,291,292,298,300,301,302,303,304,305,306,307,308,309,310,311,312,313,315,317,318,319,324,329,330,331,332,333,334,335,336,349,350,352,353,355,357,358,366,370,372,373,375,388,389,390,392,393,398,406,412,413,414,415,416,419,420,421,422,423,424,425,427,428,433,434,436,437,438,439,440,441,442,445,446,447,448,450,451,452,453,460,461,470,471,474,479,488,493,495,498,505],dimension:[2,15,52,57,81,83,105,106,114,158,173,182,188,202,218,219,220,229,230,235,236,264,280,293,294,295,296,297,303,305,309,323,357,375,415,432,470,471,474,494,495,498,499],dims_i:485,dims_oth:460,dims_self:460,dine:503,diningt:503,dir:[457,485,500],dirac:471,dirac_:[463,471],direct:[5,6,8,14,105,106,143,237,241,253,257,273,287,355,365,375,394,473,478,482,488,505],directli:[1,5,6,9,10,13,14,15,116,143,237,273,303,349,363,364,459,461,470,476,477,480,481,485,488,490,493],directori:[9,14,457,465,480,483,497,500,503],dirnam:457,dirti:473,disabl:[1,93,150,151,324,356,402,403,406,461,472,475,476,489],disable_cuda:476,disable_jit_exampl:459,disadvantag:459,disallow:[490,495],disambigu:165,disappear:467,discard:[141,457,461,473,504],disconnect:2,discourag:[2,11,473],discov:[14,490],discrep:375,discret:[15,102,126,131,253,392,470,498,499],discrimin:353,discuss:[6,15,490,492,503],disjoint:459,disk:[2,13,397],dispatch:[14,146,478,485],displai:[11,457,462,465,470,485,503,506],displaystyl:195,dissimilar:[227,248],dist:[1,14,15,413,425,460,477,492,498],dist_autograd:[324,490,491],dist_autograd_simpl:491,dist_optim:[324,490,491],distanc:[59,141,196,227,248,253,282,318,423,437,486,500,504],distinct:[79,168,412,425,427,478,490,491],distort:505,distortion_scal:505,distribut:[8,13,17,45,193,202,206,230,231,232,233,240,253,286,290,309,324,359,367,375,377,378,379,380,381,382,458,460,468,471,472,476,488,492,493,498,499],distributed_test:14,distributeddataparallel:[1,13,14,230,309,481],distributedoptim:[324,490,491],distributedsampl:13,distutil:9,div:[25,108,202,443,460,467,485,493,495,498],div_:[460,467,493,498],div_factor:486,div_valu:202,dive:477,diverg:[150,151,253,470,485],divid:[1,4,11,86,102,148,210,211,217,227,229,248,253,254,265,266,276,277,278,280,286,301,302,318,392,425,470],dividend:[109,387,443],divis:[13,25,65,86,108,109,148,221,222,223,224,225,226,228,254,265,282,301,387,416,443,470,472,488],divisor:[109,208,209,238,319,387,443,470,488,498],divisor_overrid:[208,209,460,470,488],divmod:460,dlibenzi:7,dll:484,dlpack:458,dltensor:16,dmytro:[6,7],dnn:475,do_constant_fold:485,doc:[2,3,10,153,314,315,316,317,462,466,473,478,485,488],doc_str:485,docstr:[9,457],document:[11,13,14,33,34,35,56,86,116,143,202,235,236,237,273,333,342,363,364,371,391,457,461,466,467,468,469,472,478,479,485,488,496,499,506],doe:[1,2,3,4,5,6,9,11,14,15,53,87,89,117,128,131,142,148,150,156,177,181,182,185,187,189,190,194,212,213,214,221,222,223,224,225,226,229,235,236,238,241,242,250,251,252,257,258,267,268,269,274,280,283,287,289,309,319,331,362,456,457,459,461,463,464,466,467,468,470,472,474,475,476,477,478,481,485,488,490,492,493,495,498,501,505],doesn:[1,2,4,5,8,11,13,14,79,147,159,168,230,253,303,324,325,338,412,459,462,467,470,474,478,480,481,484,485,486,488,491],dog:[500,503],doi:160,doing:[5,10,13,136,150,470,478,484,488],domain:[6,15,22,42,485],domin:488,don:[1,2,3,5,8,14,181,185,189,250,251,252,320,324,359,457,459,462,466,467,468,470,473,478,479,481,484,485,486,488,490,491,498,505],done:[10,13,14,15,17,150,177,184,212,213,214,230,250,251,252,309,419,464,466,475,477,479,482,485,488,490,492,498,505],donot_use_mm_for_euclid_dist:59,donut:503,dot:[1,2,73,74,75,76,102,126,182,210,211,238,248,253,254,265,279,280,392,423,452,453,460,467,498,505],doubl:[2,56,79,143,168,169,170,171,172,236,237,273,366,412,425,467,470,478,488,494,495,498],double_tensor:495,doubler:[2,93,356],doubletensor:[23,24,25,26,27,28,29,43,66,192,401,432,495,498],down:[2,5,11,13,15,106,108,470,480,481,488,490,492],download:[465,484,497,500,503],download_url_to_fil:457,downsampl:[225,320,470],downstream:1,doxygen:5,dp_m:479,dp_model:472,dpotri:63,dpython:[56,505],dqm:488,draw:[13,45,193,375,498],drawn:[13,193,359,375,379,380,471,498,499],drier:503,drive:[6,14,473],driven:6,driver:490,drop:[13,146,206,459,468,473,481,500],drop_last:13,dropout2d:460,dropout3d:460,dropout:[4,143,206,232,233,237,241,257,273,279,287,288,313,315,317,460,464,468,485],dropout_:[460,464],dropout_p:460,dropout_st:460,dset:500,dst1:11,dst2:11,dst:[14,457],dst_name:491,dst_rank:491,dst_tensor:14,dst_type:[143,237,273],dtype:[1,8,11,12,13,14,32,37,44,45,46,47,48,49,50,51,56,75,76,86,90,91,92,101,111,112,113,118,123,124,127,138,139,143,158,169,170,171,172,173,177,193,211,217,229,237,238,241,257,273,280,287,293,294,295,296,319,320,321,322,338,348,358,361,362,370,371,373,374,375,377,378,379,380,381,382,383,384,385,391,400,401,402,415,424,432,440,442,443,446,452,453,455,456,459,460,461,463,468,470,476,478,485,493,494,498,500,505,507],dtype_filt:488,dtype_input:488,duck:478,due:[2,3,4,5,15,131,177,313,366,426,459,470,473,476,482,490,492,498],duersch:160,duerschetal2018:160,dummi:[13,478,504],dummy_add:478,dummy_input1:485,dummy_input2:485,dummy_input:485,dump:484,dump_alias_db:145,dump_patch:273,duplic:[13,44,51,67,123,124,143,237,273,415,446,447,479,493,498],dure:[1,2,4,9,11,14,148,150,159,206,212,213,214,230,231,250,251,252,309,315,317,324,440,442,464,467,470,472,473,475,476,477,480,485,488,490,492,493,498,503],dynam:[1,9,10,13,147,150,159,461,462,471,485,486],dynamic_ax:485,dynamic_threshold:486,dzhulgakov:[6,7],e_float16:1,each:[1,2,4,9,11,13,14,15,16,23,24,32,43,46,53,55,59,60,62,65,66,73,74,77,86,88,89,94,96,97,98,102,105,106,107,110,115,122,126,131,137,138,139,140,143,150,151,154,155,159,160,174,175,176,177,183,185,186,187,188,189,191,192,193,197,202,207,210,211,215,217,221,222,223,224,225,226,227,229,230,231,232,233,235,236,237,238,241,242,243,248,250,251,252,253,254,255,256,257,258,259,261,265,266,273,276,277,278,279,280,281,286,287,289,301,302,304,309,312,318,319,324,348,349,351,357,359,367,369,370,376,384,388,389,392,393,395,396,398,406,416,421,422,423,424,425,427,437,446,447,449,450,451,457,461,467,468,470,471,472,473,474,475,476,477,478,479,480,481,482,485,486,488,490,491,492,493,495,498,500,502,503,504,505,506],eager:[405,488],eagerli:11,earli:[232,233],earlier:[1,2,479,480,485],earliest:477,eas:[2,475,478],easi:[13,459,479,480,481,485,488,490,491],easier:[5,13,36,299,459,461,468,474,478],easili:[5,8,14,280,470,486,489,490,492],ecosystem:480,edg:[2,470,488,491,505],edgeitem:406,edit:496,edouard:202,edu:217,edward:[6,7],effect:[1,2,5,9,13,143,202,217,224,225,226,231,232,233,237,273,320,325,334,356,403,457,459,464,470,472,473,476,486,488,494,498,505],effici:[2,8,13,15,61,152,160,202,232,233,236,285,464,473,477,478,488,490,491,493,495,496,498,499,503],effort:490,eig:[8,460,498],eigenpair:160,eigenproblem:160,eigensolv:160,eigenvalu:[88,160,184,365,427],eigenvector:[88,160,427,460,498],eight:[457,465],einstein:89,einsum:[460,485],either:[2,9,13,14,15,58,109,140,141,143,159,188,200,201,204,205,208,209,210,211,222,223,225,226,227,229,237,248,253,254,256,265,266,268,269,273,276,277,278,280,286,287,289,301,302,318,320,321,322,324,340,369,371,387,423,454,457,459,461,463,468,470,471,474,476,478,479,480,481,485,486,488,490,491,492,496,498,502,507],elaps:11,elapsed_tim:[11,476],elapsed_time_m:476,elast:490,eleg:481,elem:460,element:[2,11,13,14,15,19,21,22,23,25,26,30,31,33,34,36,38,39,40,41,42,45,52,54,60,66,67,69,70,71,73,74,75,76,77,80,82,83,86,88,92,94,95,96,97,98,99,100,107,109,110,114,115,122,125,134,137,138,139,140,141,154,155,161,162,164,167,169,170,171,172,175,176,177,185,186,187,189,192,193,195,197,198,206,207,210,211,212,213,214,216,217,221,222,223,224,225,226,227,229,231,232,233,234,236,238,241,242,244,245,246,247,248,253,254,257,258,259,260,263,265,266,267,268,269,274,276,277,278,279,280,281,283,285,286,287,289,290,291,292,298,300,301,302,303,305,306,308,309,310,311,312,313,318,319,348,349,351,352,357,359,360,366,367,369,370,372,376,386,387,389,390,393,395,396,406,408,409,410,411,414,415,417,418,421,422,424,429,430,431,434,435,437,438,439,440,441,442,444,446,447,450,451,454,470,471,474,475,488,493,494,495,496,498,499,500,504,505],element_s:[460,467,494,498],elementari:116,elementwis:[11,30,250,251,252,307,449,470],elementwise_affin:[259,488],eleph:503,elf:479,elif:461,elig:492,elimin:[14,446,447,498],ell:[210,211,248,253,254,265,280],ell_c:211,ellips:89,ellipsi:[89,462,468],ellipsis_idx:460,elman:[287,289],els:[5,9,13,14,15,46,149,152,241,257,287,459,461,462,463,466,470,476,478,494,498,500,505],elsewher:[101,457],elu:[460,485],elu_:[460,470],embed:[10,202,227,236,248,279,460,475,485,488,490,497],embed_dim:279,embed_dim_to_check:460,embedding_bag:[460,482],embedding_dim:[235,236,470],embedding_matrix:470,embedding_renorm_:460,embedding_sum:236,embeddingbag:470,emerg:484,emit:[2,9,150,489,500],emit_nvtx:[2,3],emnist:501,empir:290,emploi:486,employe:6,empti:[1,14,45,46,58,88,91,92,156,169,170,171,172,195,210,211,229,236,280,324,362,415,427,432,456,459,460,461,463,464,467,468,470,471,474,476,485,493,498,499,500],empty_cach:[11,476],empty_lik:[460,463,467,485],empty_meta:460,empty_quant:460,empty_strid:[460,463],emptydatastructur:461,emul:[462,478,488],enabl:[1,2,12,13,14,93,241,257,287,288,324,329,330,331,332,333,334,335,336,402,403,406,464,472,474,475,476,480,484,485,486,489,490,491,498,499],enable_grad:[2,356,403,463,499],enable_onnx_check:485,enable_tim:[11,476],enablerecordfunct:480,encapsul:[17,490],encod:[14,159,210,211,313,314,315,316,317,459,462,478,491],encoder_lay:[316,317],encount:[14,235,459,463,470,475],encourag:6,end:[1,5,6,11,13,14,32,44,66,83,125,141,156,158,160,173,175,196,209,210,211,227,241,242,244,245,246,247,248,253,254,257,258,260,265,268,269,275,280,281,284,290,301,307,312,384,406,446,447,454,459,460,461,466,470,472,473,477,479,484,486,488,490,498,502],end_dim:[103,237,460,498],end_ev:[11,476],end_pt:502,endl:480,endpoint:505,enforc:[143,237,273,496],enforce_sort:[349,350,351],engin:[2,8,10,375,473,477,478,488,490,491,498],enhanc:505,enough:[149,193,415,461,466,473,478,486,495,505],enqueu:[11,476,491],ensur:[1,2,3,5,6,13,14,206,276,277,279,313,324,405,457,459,461,465,466,472,473,476,478,481,482,485,488,491,498,503],ensure_tensor:478,enter:[1,14],entir:[4,5,9,13,232,233,250,251,252,259,333,335,355,470,478,479,480,483,488,490,492,505],entiti:500,entranc:5,entri:[1,2,14,15,83,89,105,106,128,279,333,334,342,415,459,462,473,477,478,486,488,493,497,500],entropi:[1,15,210,277,470],entrypoint:466,entrypoint_nam:457,enumer:[13,15,143,237,273,275,284,460,461,472,476,484,486],enumerate_support:15,env:[14,15,490],envelop:141,environ:[5,9,10,15,150,457,459,473,475,476,484,490,503],environment:11,epoch:[1,13,472,486],eps:[2,184,212,213,214,228,243,250,251,252,259,282,286,309,318,353,460,470,478,486,488,507],epsilon:[32,184,212,213,214,228,243,250,251,252,259,309,353,460,470,486],epub:160,eq_:[460,498],equal:[1,11,14,15,30,44,51,60,61,66,82,94,107,123,124,125,134,137,158,177,178,199,200,201,203,204,205,210,211,217,222,223,225,226,230,238,239,241,257,278,286,287,319,349,352,416,423,454,460,462,467,468,470,474,488,498],equal_nan:[30,137,460,498],equat:[8,64,89,123,210,413,438,460,473,505],equival:[4,13,15,57,59,67,81,91,92,105,106,113,131,142,143,148,150,151,202,212,213,214,221,222,223,224,225,226,235,236,237,243,250,251,252,259,273,309,319,321,362,375,378,382,387,392,428,432,443,447,456,459,461,470,473,485,488,495,498,503],eras:505,erf:[98,460,467,485,498],erf_:[460,467,498],erfc:[460,467,498],erfc_:[460,467,498],erfinv:[1,460,467,498],erfinv_:[460,467,498],errno:484,error:[1,2,4,5,9,11,13,15,17,32,96,97,98,146,159,177,193,195,210,211,240,254,265,301,419,423,459,461,466,467,468,470,472,473,476,478,482,485,488,490,498,503,505],especi:[6,8,13,14,36,54,92,461,470,473,485,490,498],essenti:[13,14,468,484],estim:[1,13,15,131,141,212,213,214,243,250,251,252,259,309,421,422,437,450,451,486],eta:486,eta_:486,eta_min:486,eta_t:486,etaminu:486,etapli:486,etc:[2,8,13,14,15,141,143,237,273,389,461,478,479,481,485,486,488,490,499],eth0:14,eth1:14,eth2:14,eth3:14,ethernet:14,euclidean:[59,470],eval:[143,145,150,212,213,214,237,250,251,252,273,309,464,485,503],evalu:[3,15,143,202,206,212,213,214,231,237,243,250,251,252,259,273,286,290,309,375,462,470,473,478,482,486,488,500,503],even:[2,13,14,131,134,230,356,425,452,459,470,476,478,479,481,482,492,495,498],event:[2,15,150,151,165,466,476],event_dim:15,event_nam:480,event_shap:15,eventlist:2,eventu:[2,5],ever:459,everi:[1,2,13,14,15,143,206,231,232,233,237,273,303,305,324,353,355,356,447,470,472,473,476,477,478,485,486,488,490,491,492,494,498,500,503],everyon:5,everyth:[5,13,15,459,466],everywher:[423,470],evid:5,evolv:[477,485],exact:[2,33,34,35,185,187,189,225,324,471,477,481,483,493,504],exactli:[2,9,14,15,89,141,143,236,237,238,273,467,470,473,476,477,478,485,500,504,505],examin:485,exampl:[1,2,4,5,9,11,13,14,15,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,45,46,47,48,49,50,52,53,54,55,56,57,58,59,60,61,62,63,64,66,67,69,70,71,72,73,74,75,76,77,79,80,81,82,83,84,85,86,87,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,114,115,117,118,122,125,126,127,128,130,131,134,137,138,139,140,141,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,161,162,163,164,165,167,168,169,170,171,172,173,174,175,176,177,178,179,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,249,250,251,252,254,255,256,257,258,259,260,261,262,263,264,265,267,268,269,270,271,272,273,274,275,276,279,280,281,282,283,284,285,286,287,289,290,291,292,293,294,295,296,297,298,299,300,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,337,338,339,340,341,342,343,344,345,346,347,350,351,352,353,355,356,357,358,359,360,361,362,366,367,368,369,370,371,372,373,374,375,376,377,379,381,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,400,401,402,403,408,409,410,411,412,413,414,415,416,417,418,419,421,422,424,425,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,461,462,465,467,468,470,471,473,474,475,476,478,479,480,481,484,486,488,490,492,493,495,496,497,498,499,500,503,504,505,506],example_forward_input:[150,151],example_input:[150,151],example_method2_input:151,example_output:485,example_weight:[150,151],exce:165,except:[2,4,5,11,14,15,22,42,58,147,152,154,159,174,185,186,187,189,191,241,257,287,320,348,353,370,389,421,422,424,437,443,450,451,459,461,462,463,466,470,476,478,484,485,490,492,493,495,498,503,505],exchang:[14,81],exclud:[325,439,440,441,442,470,491,500],exclus:[13,14,15,379,380,383,473],execut:[1,2,3,4,5,9,10,11,13,14,17,144,150,151,159,230,324,404,459,461,462,464,472,473,474,475,479,480,481,482,484,485,488,490,491],exist:[2,5,6,9,13,14,15,36,145,150,160,274,283,366,457,459,466,467,474,478,480,485,490,492,496,498,500],exit:[1,2,3,324,466,481,485,492],exp:[1,2,15,167,174,211,216,229,234,263,264,277,286,298,300,302,303,305,306,310,369,423,460,467,470,485,498],exp_:[460,467,498],exp_add:2,exp_famili:15,exp_rang:486,exp_reduc:2,expand:[2,6,15,36,188,457,460,467,468,474,485,488,496,498,505],expand_a:[130,460,478,485,496,498],expans:505,expect:[2,5,13,14,128,141,150,151,185,187,189,212,213,214,229,241,242,243,250,251,252,253,257,258,259,280,287,289,303,309,313,315,317,320,349,428,452,463,470,473,477,479,486,497,500,503,504,505],expens:[3,13,15,480,490,498],experi:[8,324,478,497,503],experiment:[14,17,324,459,461,467,468,482,484,485],expert:6,explain:[10,457,472,476],explan:[473,478],explicilti:461,explicit:[1,116,136,433,462,467,470,472,476,478,485,488,496],explicitli:[1,11,14,81,83,459,461,462,470,476,478,480,485,486,488,489,490,493],explitili:461,explod:301,explor:457,expm1:[1,460,467,498],expm1_:[460,467,498],expon:[15,202,262,369,460,470,495,498],exponenti:[99,100,165,166,167,174,216,498,499],exponential_:[460,467,498,499],exponential_average_factor:460,exponentiallr:486,export_chrome_trac:2,export_param:485,export_raw_ir:485,export_to_pretty_str:485,expos:[1,2,14,17,476,480,490],express:[8,89,102,126,423,462,464,473,478,498],exptransform:15,ext:[457,465,500],ext_modul:9,extend:[2,15,275,284,458,480,481,485],extens:[9,14,15,159,397,472,490,500,506],extension_kernel:9,extent:475,extern:[150,475,484],external_data_format:485,extra:[5,14,143,147,148,159,237,273,280,425,427,468,473,475,477,478,479,480,500,504],extra_block:504,extra_cflag:9,extra_compile_arg:[9,484],extra_cuda_cflag:9,extra_fil:[147,148],extra_include_path:9,extra_ldflag:9,extra_repr:[143,237,273,478],extract:[235,238,319,470,490],extrafilesmap:[142,143,147,148,480],extrafpnblock:504,extrem:3,extrema:470,extrud:479,eye:[15,63,130,184,372,460,463,478],eye_:[463,471],eyes:5,ezyang:[6,7,496],f_add:488,f_float16:1,f_float32:1,f_t:257,fab:460,face:478,facebook:6,facil:[159,466],facilit:[15,81,457,459,482],fact:[2,44,51,123,124,459,478,491,498],factor:[1,15,27,28,29,43,62,63,64,175,177,178,179,231,262,285,363,364,372,413,470,471,472,486,488,504,505],factori:[2,8,15,460,468,476,488],fail:[2,5,11,15,131,147,148,159,160,177,463,466,481,484,485,490],failur:[2,6,14,15,143,150,151,237,273,466,490,492],fake:[488,500],fake_quant_en:488,fake_quantize_per_channel_affin:460,fake_quantize_per_tensor_affin:460,fakedata:501,fakequant:488,fall:[5,159,301,470,485],fallback:[9,14,472,485],fals:[1,2,4,9,11,13,14,15,30,32,33,34,35,44,47,49,50,51,53,55,56,62,63,64,67,88,90,91,92,94,95,101,102,112,113,114,115,122,123,124,126,131,134,137,138,139,140,141,143,146,150,151,152,154,155,158,169,170,171,172,173,174,176,177,181,184,185,186,187,189,191,193,197,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,227,229,231,232,233,234,235,236,237,239,241,242,243,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,265,266,267,268,269,273,276,277,278,279,280,282,286,287,288,289,290,291,292,298,301,302,309,312,313,318,320,324,340,349,350,351,352,356,357,358,361,362,364,370,372,375,377,378,379,380,381,382,383,384,392,397,398,402,403,406,414,415,421,422,423,424,425,427,432,434,438,449,450,451,454,455,456,457,459,460,461,464,465,466,468,470,472,473,479,482,483,485,486,488,489,490,494,496,497,498,499,500,503,504,505,506],famili:15,familiar:[10,11,459,473,491,492],fan:471,fan_in:471,fan_out:471,fang:7,faq:[13,230,351,458],far:470,fashion:[5,14,165,338,459,498,501],fashionmnist:500,fast:[5,13,250,251,252,301,375,475,476,478,486,490,495,496,504],fast_forward:375,faster:[1,2,8,13,53,89,160,288,303,324,464,470,476,488,501],faster_rcnn:503,fasterrcnn_resnet50_fpn:503,fastest:[324,357],fatal:[466,481],favor:[11,247,321,322,384,470,488,505],fbgemm:488,fbgemm_linear_fp16_weight:460,fbgemm_linear_fp16_weight_fp32_activ:460,fbgemm_linear_int8_weight:460,fbgemm_linear_int8_weight_fp32_activ:460,fbgemm_linear_quantize_weight:460,fbgemm_pack_gemm_matrix_fp16:460,fbgemm_pack_quantized_matrix:460,fcn:[503,504],fcn_resnet101:503,fcn_resnet50:503,fcntl:14,feat0:504,feat1:504,feat2:504,feat3:504,featmap_nam:504,featur:[6,8,10,14,149,199,200,201,202,203,204,205,226,231,232,233,239,241,242,257,258,279,287,289,304,313,315,317,318,324,365,458,459,461,462,468,470,478,479,485,488,490,504],feature_alpha_dropout:460,feature_alpha_dropout_:460,feature_dropout:460,feature_dropout_:460,featurealphadropout:470,featuredropout:485,featurepyramidnetwork:504,fedyunin:7,feed:[459,479],feedback:5,feedforward:[313,315,317,471],feel:5,feng:7,fep:160,fetch:[13,329,330,331,332,333,334,335,336,490],few:[1,2,5,457,473,479,484,496,498,499],fewer:[15,154,174,185,186,187,189,191,370,398,421,422,424,450,451,474,493,498,503],ffi:484,ffmpeg:501,fft:[8,126,131,392,460,476,498],fft_size:141,field:[2,5,14,143,202,210,211,227,229,237,248,253,254,265,266,273,276,277,278,280,286,301,302,318,348,470,477,481,485,486,491,502,503],figur:[5,475,477,485,492],file:[1,2,5,6,8,9,11,13,147,148,159,397,457,459,462,463,465,467,468,480,483,484,485,491,494,500,502,506],file_nam:[457,465],filenam:[9,142,147,148,457,460,465,494,502,506],fileno:485,filesystem:14,filesytem:457,fill:[14,46,81,90,92,112,113,177,236,313,361,362,377,378,379,380,381,382,455,456,468,470,471,476,498,505],fill_:[143,156,237,273,388,460,467,494,498],fill_diagonal_:[460,498],fill_row_zero:459,fill_valu:[112,113,217,460,476,498],fillcolor:505,filter:[141,221,222,223,224,225,226,423,470,488,498,505],final_div_factor:486,financi:6,find:[2,5,6,9,14,154,160,224,225,226,365,398,426,457,464,466,468,475,476,477,478,479,481,485,490,495],find_unused_paramet:[324,477],fine:[9,14,150,324,457,466,473,478,486,488,500,505],finetun:[143,237,273,473],finish:[14,17,476,477,484,490,492],finit:[2,3,15,137,138,193,210,478],fire:[477,480,503],first:[1,2,3,4,5,6,9,11,13,14,15,23,24,27,29,30,36,41,43,47,49,50,53,54,55,72,81,83,88,92,94,103,115,122,137,147,155,159,175,176,182,185,187,189,190,192,193,197,202,208,209,215,222,223,225,226,235,236,237,241,256,257,266,268,269,287,324,338,348,365,393,394,398,415,433,436,440,442,447,449,457,459,461,465,466,467,470,472,473,476,478,479,481,483,484,485,486,488,491,492,493,498,500,504,505],fisher:15,fit:[2,141,389,486,490,498],five:1,five_crop:505,fivecrop:505,fix:[13,15,89,235,236,459,470,472,479,481,482,484,485,500,503],flag:[2,9,11,14,44,51,53,62,123,124,179,324,392,403,459,466,470,473,476,485,498,505],flat:[389,485],flat_img:468,flatten:[33,34,82,319,389,393,446,447,460,467,468,471,485,488,498,505],flatten_paramet:288,flexibl:478,flickr30k:500,flickr8k:500,flickr:501,flip:[105,106,460,498,505],fliplr:[460,498],flipud:[460,498],float16:[12,111,133,143,237,241,257,273,287,472,488,495,498,507],float16_dynamic_qconfig:488,float32:[13,111,118,133,211,320,321,322,371,375,391,400,401,415,452,470,472,485,488,495,498,505,507],float64:[1,8,111,118,133,143,237,273,373,400,401,402,415,432,452,495,498,505,507],float_tensor:495,floatstorag:494,floattensor:[1,2,14,23,24,25,26,27,28,29,43,66,118,192,235,236,276,279,313,401,493,495,498,503,505],floor:[148,207,208,209,255,256,267,268,269,423,460,467,470,485,488,498],floor_:[460,467,498],floor_divid:[25,86,460,485,498],floor_divide_:[460,498],flow:[1,150,459,470,473,478,485,488,492],flush:[1,2,11,148,397,402],fly:[13,329,330,331,332,333,334,335,336,473,500],fmassa:7,fmod:[387,460,498],fmod_:[460,498],focu:486,focus:461,fold:[319,426,460,464,485,488,500],fold_param:[238,319],folder:[5,9,13,457,500],folk:5,follow:[1,2,5,6,8,10,11,12,13,14,15,55,86,88,89,96,97,102,126,131,143,160,182,185,189,202,211,217,236,237,238,241,257,273,287,319,324,358,365,392,398,415,423,437,457,459,460,461,462,463,464,465,466,467,468,470,471,472,473,474,475,476,479,481,484,485,488,490,491,492,493,495,496,498,500,503,505,507],followup:492,foo:[9,144,147,148,149,150,457,459,461,485,488],foo_build:488,foo_forward:485,foo_instance1:488,foo_instance2:488,foo_namespac:485,foomodel:485,foomodul:485,foral:498,forc:[1,2,9,11,144,153,457,459,472,476],force_reload:457,force_stop:160,forev:[466,477],forg:[484,485],forget:[257,461],forgotten:484,fork:[13,153,324,475,479,480,481,484,489,490,492,503],fork_rng:489,forkid:492,forkingpickl:484,forkserv:[324,466,481],form:[2,5,6,8,13,15,62,81,88,200,201,204,205,217,239,241,257,287,319,320,364,433,459,462,470,473,478,482,485,486,488],formal:[55,398,468],format:[2,12,90,91,113,131,143,217,236,237,241,257,273,287,324,349,351,362,378,380,382,392,397,415,456,457,459,462,478,483,488,491,493,495,498,500,502,503,504,505,506],formul:[216,234,244,264,306,307,470],formula:[2,15,44,51,89,123,124,156,286,374,470,473,478,486,488],forth:[449,457,486,505],fortun:479,forum:[5,6,479,481],forward:[1,2,4,9,143,144,145,146,148,149,150,151,152,206,210,230,231,232,233,236,237,241,257,270,271,272,273,274,275,279,280,283,284,287,313,314,315,316,317,324,329,330,331,332,333,334,335,336,345,353,355,375,425,459,461,464,466,468,470,471,472,473,475,476,477,478,479,480,482,485,488,490,493],forward_hook:488,forward_pre_hook:340,found:[1,10,55,72,73,74,154,185,187,189,191,206,216,298,398,459,472,478,481,485,488,497,503],four:[478,490,492,505],fourier:[102,126,131,141,392,423],fp16:324,fp32:[78,324,488],fparam:160,fpn:[503,504],fps:502,frac:[15,25,32,44,51,84,86,96,97,102,108,123,124,126,195,202,207,208,209,210,211,212,213,214,215,221,222,223,224,225,226,229,231,238,241,242,243,250,251,252,255,256,257,258,259,261,262,263,264,267,268,269,276,277,278,280,287,289,290,300,301,302,303,305,306,308,309,310,319,368,384,386,392,396,408,423,443,460,467,470,471,473,486,488,498,505],frac_:[460,467,498],fraction:[13,110,224,225,226,239,332,333,335,336,338,341,342,343,344,471,502,505],fractional_max_pool2d:460,fractional_max_pool2d_with_indic:460,fractional_max_pool3d:460,fractional_max_pool3d_with_indic:460,fragment:11,frame:[141,423,479,500,502,503],frame_r:500,frames_per_clip:500,framework:[5,6,15,17,324,406,458,485,486,491,492],francisco:7,frank:15,free:[2,5,14,15,144,150,160,464,471,473,479,481,484],freed:[2,11,466,476,490,498],freedom:[15,473],freez:[143,235,236,237,273,473],freeze_bn:488,freeze_modul:464,freeze_support:484,frequenc:[46,131,202,235,236,423,470,486],frequent:[8,202,458],fresh:457,frexp:460,friendli:485,frisbe:503,fritz:7,fritzo:7,fro:[333,342,358,498],frobeniu:358,frobenius_norm:[460,485],from:[1,2,4,5,6,9,10,11,13,14,15,17,18,32,37,44,45,51,52,55,56,77,111,123,124,141,143,144,146,147,148,159,160,178,179,193,196,202,206,212,213,214,215,221,222,223,224,225,226,227,230,231,232,233,235,236,237,238,241,242,243,250,251,252,257,258,259,261,273,274,275,279,283,284,287,289,290,309,314,315,319,324,325,329,330,331,332,333,334,335,336,338,340,345,346,347,348,349,350,351,352,355,359,363,364,365,367,375,376,377,378,379,380,381,382,383,384,389,390,391,394,397,398,406,415,423,425,426,432,438,440,442,446,447,449,454,459,460,461,463,464,465,466,468,469,470,471,476,477,478,479,480,481,486,488,490,491,492,493,495,497,498,499,500,502,503,504,505,506],from_buff:494,from_dlpack:16,from_fil:[460,494],from_float:488,from_ipc_handl:11,from_numpi:498,from_pretrain:[235,236],front:[160,276,468,498],frontend:10,frozen:[145,462,473,484,486,503],frozen_modul:145,full:[10,13,14,15,44,51,113,123,124,131,160,175,211,217,221,222,223,224,225,226,286,313,392,406,425,426,457,459,460,461,463,468,470,472,478,485,488,490,491,496,500],full_lik:[156,460,463,485],fulli:[13,14,270,271,272,473,478,488],func:[2,144,150,151,153,472,478,490,492],func_dict:478,func_nam:490,func_output:2,functional_modul:488,functioneventavg:2,functool:[478,488],functor:15,fundament:[5,461,490],further:[2,6,9,14,116,202,363,364,481,482,492,497],furthermor:[9,231,467,468,482,488],fuse:[464,467,488,505],fuse_known_modul:488,fuse_modul:488,fused_m:488,fuser_func:488,fusion:[150,151,464,488],fut0:17,fut1:[17,490],fut2:490,fut:[17,144,475,490],fut_list:17,futur:[2,11,25,86,144,148,153,458,459,460,461,462,464,468,470,475,478,485,486,488,490,493,498],fvar:160,fwd:1,fwd_output:472,g_cpu:18,g_cpu_oth:18,g_cuda:18,g_float16:1,g_float32:1,g_t:257,gain:[6,471,505],galleri:5,gamma:[84,157,195,212,213,214,243,250,251,252,259,309,460,486,505],gamma_:195,gan:[143,237,273,353],ganem:15,gap:[32,384],garbag:[13,492],gate:[241,242,257,470],gather:[11,14,460,478,479,480,485,498],gather_list:14,gaussian:[15,240,470],gcc:10,gcd:460,gchanan:[6,7],ge_:[460,498],gelu:[1,313,315,317,460,485],gemm:[475,485],gen_non_contig_grad_output:2,gencod:11,gener:[2,5,9,13,14,15,45,116,121,123,129,131,160,180,185,187,189,193,238,313,319,320,329,330,331,332,333,334,335,336,353,359,365,367,375,379,380,399,407,426,433,449,459,460,461,462,463,464,467,470,471,473,476,478,479,480,482,484,485,486,488,489,490,491,493,495,498,500,501,503],generate_square_subsequent_mask:313,gentl:459,geometr:[449,470,488,498,499],geometri:[102,126,131,392,476],geometric_:[460,498,499],georg:7,geq:[114,115,175,229,260,280,281,290,368,470,471],geqrf:[363,364,460,498],ger:[460,498],gesdd:425,gesvd:425,get:[2,8,9,11,13,14,17,18,24,55,80,118,143,150,235,236,237,255,256,270,271,272,273,324,325,349,353,388,398,457,459,466,467,473,476,478,479,480,485,486,488,490,492,496,498,500,501,504],get_all_sharing_strategi:466,get_arch_list:11,get_backend:14,get_backoff_factor:1,get_context:481,get_debug_st:142,get_default_dtyp:[32,384,495,507],get_default_qat_qconfig:488,get_default_qconfig:488,get_devic:[460,467,493,495,498],get_device_cap:11,get_device_nam:11,get_dir:[457,465],get_gencode_flag:11,get_gradi:[460,490,491],get_growth_factor:1,get_growth_interv:1,get_ignored_funct:478,get_image_backend:501,get_info:[177,498],get_input:485,get_lr:486,get_num_interop_thread:475,get_num_thread:475,get_observer_dict:488,get_overridable_funct:478,get_rank:14,get_rng_stat:[11,489],get_rng_state_al:11,get_scal:[1,472],get_sharing_strategi:466,get_stat:18,get_testing_overrid:478,get_worker_info:[13,490],get_world_s:14,getattr:[460,490],getenv:480,getsourc:480,gil:[13,14,473,476,490],gimelshein:7,giraff:503,girshick:301,github:[5,6,14,313,457,463,478,485,486,488],give:[1,2,3,5,8,13,89,253,278,319,320,357,372,457,459,466,468,473,476,478,485,486,500,505],given:[1,2,5,6,9,11,13,14,15,17,19,31,32,35,45,48,54,57,58,64,65,67,69,72,78,80,89,104,131,143,147,150,151,154,156,160,167,169,170,171,172,174,175,185,186,187,189,191,195,202,210,211,217,227,229,230,235,236,237,239,241,248,253,257,266,270,271,272,273,275,277,278,279,280,284,287,301,304,318,320,321,322,324,348,353,355,358,359,364,367,370,373,374,384,389,393,414,415,416,419,424,426,429,433,434,436,445,450,451,457,459,465,466,470,471,472,473,475,477,478,480,485,486,488,490,491,493,498,500,505,506],glass:503,global:[4,13,14,15,32,44,51,90,92,101,112,123,124,144,150,158,173,334,338,361,377,379,381,384,455,459,462,472,478,480,481,490,491,492,503],globalcontext:484,gloo:[14,324,477,490],gloo_socket_ifnam:14,glorot:471,glove:503,glu:[460,485],gmm:15,goal:492,goe:[206,479],going:[2,5,14,466,473,475,480,484,497,498],gomez:[313,315,317],good:[5,9,18,281,457,466,478,480],got:478,govern:[5,458],gpu1:[143,237,273],gpu:[1,2,3,5,11,12,13,143,159,175,185,187,189,202,230,237,241,257,273,287,288,309,324,348,425,458,459,476,482,484,486,490,494,498,499,503,504],gpu_model:459,gpudirect:14,grace:490,grad0:477,grad1:477,grad:[1,2,4,8,15,93,324,403,459,460,467,468,472,473,477,481,486,490,491,493,498],grad_bia:478,grad_fn:[2,473,493,498],grad_input:[143,237,273,478,484],grad_loss:468,grad_norm:472,grad_out:460,grad_output:[2,143,237,273,460,473,478,484],grad_param:472,grad_tensor:[2,460],grad_vari:2,grad_weight:478,gradcheck:[2,131,478],gradgradcheck:[2,478],gradient:[4,8,13,14,15,93,114,143,160,185,187,189,210,217,224,225,226,229,230,235,236,237,255,256,273,280,301,324,325,326,327,356,403,425,427,459,460,468,470,473,477,478,479,486,490,491,493,498],gradscal:[1,472],graham:239,grai:505,grain:[14,473,488,505],grangier:202,grant:6,granular:472,graph:[2,4,15,37,143,144,145,149,150,324,464,469,477,478,485,488,490,491,492,497,498],graphexecutorst:142,graphic:484,graphroot:2,graphtask:473,grave:[202,217],grayscal:[497,505],great:5,greater:[3,60,61,195,210,318,353,470,473,485,488,504],greater_than:15,greater_than_eq:15,greaterthan:15,greaterthaneq:15,greatli:9,greedili:468,greg:[6,7],gregori:7,grep:479,grid:[188,460,470,497,504,506],grid_i:188,grid_sampl:460,grid_sampler_2d:460,grid_sampler_3d:460,grid_x:188,griffin:141,gross:[6,7],ground:[5,503],group:[2,6,13,221,222,223,224,225,226,243,309,324,447,457,460,466,470,471,477,485,486,488,497,498,504],group_by_input_shap:2,group_nam:14,group_norm:[1,460,485],grow:[5,493],growth:1,growth_factor:1,growth_interv:1,gru:[242,460],gru_cel:460,grucel:488,gt_:[460,498],gtcoars:500,gtfine:500,guanheng:7,guarante:[2,4,13,14,15,230,475,482,490,492,504],guard:481,guess:13,guid:[2,13,149,458],guidanc:[5,10],guidelin:[6,338,503],gumbel:470,gumbel_softmax:460,gunnar:[365,426],h_0:[241,257,258,287],h_1:258,h_i:304,h_n:[241,257,287],h_t:[241,257,287],hack:5,had:[5,150],hadamard:[241,242,257,258],haidar:7,hair:503,half:[1,2,15,131,143,221,222,223,224,225,226,237,239,273,392,423,467,470,486,494,495,498],half_cauchi:15,half_norm:15,half_open_interv:15,halfopeninterv:15,halftensor:[495,498],halko:[365,426],ham:[59,123,470],hamiltonian:15,hamming_window:[460,463],hand:[2,3,85,89,206,438,459,461,485],handbag:503,handi:476,handl:[1,2,4,8,9,11,13,14,143,230,237,273,324,329,330,331,332,333,334,335,336,426,457,466,468,470,476,478,479,481,485,488,490,492,498,500],handled_funct:478,handler:[334,480],hang:[324,477],hann:124,hann_window:[123,423,460,463],happen:[2,5,6,14,15,309,324,466,477,478,479,481,484,485,486,488,496,498],happi:5,hard:[2,5,160,244,459,460,461,470,473,485],harden:490,harder:[221,222,223,224,225,226,238,267,268,269,319],hardshrink:[460,498],hardsigmoid:[460,488],hardsigmoid_:460,hardswish:460,hardswish_:460,hardtanh:[460,464,485,488],hardtanh_:[460,470],hardwar:488,has:[1,2,4,5,6,8,10,11,12,13,14,15,17,18,33,34,37,45,59,62,81,83,93,109,128,141,143,145,147,148,149,150,154,159,168,174,175,177,185,186,187,188,189,191,210,211,212,213,214,221,222,223,224,225,226,229,230,231,236,237,238,239,241,243,250,251,252,253,257,259,267,268,269,273,277,278,280,281,287,303,309,319,320,324,329,333,335,338,348,349,356,357,358,359,370,387,389,397,398,403,412,419,421,422,424,450,451,459,461,466,467,468,470,472,473,474,475,476,477,478,480,481,484,485,486,488,489,490,491,492,493,494,495,498,499,500,503,505],has_bias:460,has_enumerate_support:15,has_nam:467,has_rsampl:15,hasattr:[460,478],hash:[457,460,465],hash_prefix:457,hasn:486,hat:[212,213,214,250,251,252,309],have:[1,2,4,5,6,8,11,13,14,15,18,44,45,51,58,59,72,79,95,102,114,123,124,128,142,143,144,145,147,149,150,151,154,159,168,170,174,175,185,186,187,188,189,191,193,202,206,210,221,222,223,224,225,226,229,230,235,236,237,239,247,250,251,252,259,266,273,276,277,278,279,280,324,325,326,327,351,356,358,370,375,412,421,422,423,424,427,432,443,450,451,452,457,459,460,461,463,466,467,468,470,471,472,473,474,476,477,478,479,480,481,482,484,485,486,488,489,490,491,492,493,495,496,497,498,500,503,504,505],hdr:7,head:[202,279,313,315,317,504],head_1:279,head_bia:202,head_h:279,head_i:279,header:[2,9,484],health:6,healthi:[5,6],heard:491,heart:13,heavi:[2,14,473,484],heavili:[3,475,478,486],hei:5,height:[208,209,222,223,225,226,256,268,269,280,304,320,468,470,485,488,500,504,505],held:[11,17,472],hello:461,help:[1,2,3,5,6,8,11,13,14,143,232,233,237,273,457,467,468,472,473,474,476,477,485,490,491,499],helper:[1,4,14,309,457,461,476,477,485,488,490],henc:[45,270,271,272,320,415,476,477,485,490,492,500],here:[1,2,5,6,10,13,14,15,149,212,213,214,250,251,252,281,299,309,324,375,425,457,459,461,463,467,468,470,472,476,478,479,480,484,485,486,496,498,500,503,506],hessian:[2,471],heurist:[9,13,504],hex:460,hflip:505,hidden:[4,241,242,257,258,287,289,325,476],hidden_s:[241,242,257,258,287,288,289,460],hierarch:497,hierarchi:[462,488],high:[3,5,10,15,217,379,380,460,466,488,490,498],higher:[5,11,14,125,229,266,280,426,478,480,488,490,495,498,504],highest:[202,379,380],highli:[6,202,324,457,485],highlight:488,hing:[276,278],hinge_embedding_loss:[1,460],hingeembeddingloss:470,hint:[459,461],hinton:486,his:486,histc:[460,498],histogram:[125,488,497],histogramobserv:488,histor:[11,25,475],histori:[2,478,479,486,491],history_s:486,hit:[4,457],hmc:15,hmdb51:501,hogwild:473,hold:[2,17,160,238,274,275,283,284,319,334,348,415,474,478,479,480,481,486,490,491,492,495,498,505],holist:5,holomorph:[8,473],hong:7,hood:[2,466,477,481,492],hook:[2,143,230,237,273,324,329,330,331,332,333,334,335,336,345,353,355,477,480,488,498],hop:[141,423],hop_length:[141,423,460,498],hope:473,horizont:505,hors:503,host:[13,14,143,237,273,324,476,491,494,498],hot:[15,470,503],houseroad:7,how:[2,4,5,6,10,13,14,102,126,131,148,159,238,273,319,320,324,348,392,459,461,465,466,467,468,469,470,472,475,477,478,479,481,485,488,490,491,492,503,505],howev:[1,3,4,5,6,8,10,11,13,14,15,81,83,126,144,148,159,160,177,210,224,225,226,230,235,236,324,348,366,461,472,473,476,478,481,482,483,484,485,490,492,493,498,500],hpp:477,hspmm:[460,493],hsv:505,html:[2,3,5,10,486,488],http:[2,3,5,10,14,15,89,160,217,290,291,313,355,365,457,462,465,484,485,486,488,497,503,505],hub:[458,465],hub_dir:[457,465],hubconf:457,huber:301,hue:505,hue_factor:505,huge:426,human:[0,11,471,485],hundr:[1,472,480],hurt:477,hvp:2,hxw:460,hybrid:493,hydrant:503,hyper:461,hyperbol:[22,39,42,71,411,431],i_0:433,i_d:433,i_n:433,i_t:257,icdf:15,icml_2006:217,idea:[5,202,480,491],ideal:[150,468],idempot:492,ident:[2,9,13,14,15,81,126,131,160,183,206,231,454,462,470,471,473,482,488,493,498,500],identifi:[5,14,159,309,462,466,473,474,480,490,491,492],identity_transform:15,idiom:484,ids:[309,470],idx:[13,143,202,237,273,460,468],ieee:141,iff:15,ifft:[102,131,460,498],ifs:462,ignor:[5,11,33,34,102,125,126,149,152,210,211,227,229,236,248,253,254,265,266,276,277,278,279,280,286,301,302,313,318,358,406,423,425,459,468,470,478,485,486,488,498],ignore_index:[229,280,460,470],ilia:7,ill:470,illia:[313,315,317],illustr:478,im2col:[319,460,485],imag:[13,200,204,205,221,222,223,224,225,226,229,238,239,251,280,285,304,319,321,322,460,470,473,496,497,498,500,501,503,504,506],image_s:[500,504],image_set:500,imagefold:501,imagenet:[14,471,501,503],imagenet_data:500,imagenet_root:500,imagin:490,imaginari:[8,88,102,126,127,138,139,140,423,452,453,462,473,498],imagnumb:462,imbalanc:202,img:[468,500,503,505],img_height:505,img_width:505,immedi:[5,6,143,144,237,273,490,492],impact:[482,488,496],imped:472,imper:14,implement:[2,4,11,13,14,15,25,36,143,147,148,159,160,185,187,189,202,217,230,237,255,256,273,285,291,306,315,317,324,338,351,353,355,366,368,372,375,397,425,426,433,446,461,462,466,470,472,473,475,478,479,480,481,482,484,485,486,488,490,491,493,496,498,500,501,503,504],impli:[466,490],implic:[150,490],implicit:[207,208,209,221,222,223,224,225,226,238,267,268,269,319,460,462,470,485,488,496],implicit_cast:485,implicitcasttyp:485,implicitli:[5,89,150,151,159,207,208,209,267,268,269,459,461],implicitly_compiled_method:459,imported_funct:472,importerror:484,impos:[466,472],imposs:472,improb:13,improv:[1,2,6,12,14,231,241,257,287,472,477,478,485,486,488,490,503],in1:[215,470],in1_featur:215,in2:[215,470],in2_featur:215,in_channel:[221,222,223,224,225,226,488,504],in_channels_list:504,in_featur:[143,202,237,261,273,353,355,488],in_height:504,in_proj_bia:460,in_proj_weight:460,in_width:504,inaccur:13,inaccuraci:2,inact:11,inactive_split:11,inactive_split_byt:11,inc:461,incas:498,incept:[485,505],inception_v3:503,incid:[490,492],includ:[1,2,3,4,5,6,9,10,13,14,143,207,208,209,217,230,237,270,271,272,273,349,350,352,439,440,441,442,457,459,461,464,466,470,475,476,479,480,482,488,490,492,498,499,500,501,503],include_last_offset:[236,460,470],include_path:9,inclus:[15,125,379,380,420,498],incom:[1,215,261,466,470,488],incompat:[6,9,474],incomplet:[13,463],inconsist:[32,478],incorpor:488,incorrect:[3,36,54,92,150,159,423,459,470,476,498],increas:[1,2,5,11,15,46,55,202,211,217,221,222,223,224,225,226,285,398,449,460,470,473,475,476,486,498,504,505],increment:[2,145,230,459,461,473],incur:[1,4,61,481],inde:[459,492],indent:462,independ:[2,6,11,13,14,231,232,233,355,459,470,472,488,498],index:[10,11,13,15,55,73,74,89,114,128,151,154,167,174,177,181,185,187,189,191,193,202,217,229,235,236,253,274,275,280,283,284,319,333,335,342,343,348,357,392,398,415,423,429,448,458,459,460,466,467,468,470,473,476,477,485,486,488,492,493,495,496,498,500,504],index_add:[460,498],index_add_:[460,482,498],index_copi:[460,485,498],index_copy_:[460,498],index_fil:[460,467,485,498],index_fill_:[460,467,498],index_put:[1,460,485,498],index_put_:[460,498],index_select:[460,482,485,498],indexerror:[333,335],indic:[1,2,11,13,14,15,33,34,35,55,62,73,74,89,102,114,128,143,146,152,154,159,167,174,177,179,184,185,187,189,191,193,202,203,204,205,235,236,239,267,268,269,270,271,272,276,278,357,392,398,414,415,429,434,439,440,441,442,446,447,454,459,460,467,468,470,478,485,486,490,493,496,498,504],individu:[5,6,13,62,130,143,183,217,237,273,309,324,467,472,478,480,482,488,490,498,502],induc:470,ineffici:488,inf:[1,15,22,42,55,85,98,137,138,139,168,264,303,313,326,333,342,358,398,412,472],infer:[2,8,10,32,37,89,356,384,390,400,401,415,432,458,459,461,467,470,485,486,488,493,498,503,504],inferencesess:485,infin:[138,210,326,486],infiniband:[14,324,490],infinit:[13,139,160,210,217,470,490],influenc:6,info:[11,14,177,458,502],inform:[2,3,5,13,14,131,141,143,151,237,273,279,313,315,317,348,371,391,459,475,478,480,485,490,495,497,498,500,503,505],infrastructur:6,infti:[59,141,210,255,256,470],ingredi:[250,251,252],inher:467,inherit:[340,459,461,478,481],init:[11,14,143,237,273,281,458,463,480],init_method:[14,324,490],init_process_group:[14,324,477,490],init_rpc:[490,491],init_scal:1,init_weight:[143,237,273],initi:[1,2,3,11,13,18,37,118,129,143,159,160,215,217,224,225,226,230,235,236,237,241,242,243,250,251,252,257,258,259,261,273,281,287,289,324,400,401,415,432,461,470,471,476,477,478,480,484,485,486,488,489,490,491,498,503],initial_accumulator_valu:486,initial_lr:486,initial_se:[11,13,18,489],inject:480,inlin:[9,143,145,150,475],inline_extens:9,inlined_graph:143,inner:[87,485,490],innermost:[15,398],inp:[2,13,319],inp_unf:319,inplac:[143,206,216,231,232,233,234,237,247,260,273,290,291,292,298,312,460,470,478,485,488,505],inplace_assign:485,inplaceindexedassign:485,input1:[215,228,241,242,282,287,289,460,470,472,484,485],input2:[64,215,228,241,242,282,287,289,363,364,460,470,472,484,485,498],input3:[364,460,498],input:[2,4,6,8,10,11,12,13,14,15,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,55,57,59,60,62,63,64,65,66,67,69,70,71,72,73,74,75,76,77,79,80,81,82,83,84,85,86,87,88,91,94,95,96,97,98,99,100,102,103,104,105,106,107,108,109,110,113,114,115,116,117,122,123,124,125,126,127,128,130,131,132,133,134,137,140,141,143,144,145,149,150,151,154,155,156,157,160,161,162,163,164,165,166,167,168,169,170,171,172,174,175,176,178,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,276,277,278,279,280,281,285,286,287,289,290,291,292,293,294,295,296,297,298,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,329,330,331,332,333,334,335,336,337,339,341,342,343,344,348,349,350,352,356,357,358,360,362,363,364,365,366,367,368,369,370,372,373,374,376,378,380,382,384,385,386,387,388,389,390,391,392,393,394,395,396,408,409,410,411,412,413,414,417,418,419,421,422,423,424,425,426,427,428,429,430,431,434,435,436,437,438,439,441,443,444,445,446,447,448,449,450,451,452,453,456,459,460,461,462,463,464,468,470,471,473,475,476,477,478,479,480,485,486,488,490,491,493,495,496,498,500,503,504,505],input_1:485,input_2:485,input_3x3:320,input_data:485,input_featur:478,input_g:460,input_length:[217,460,470,479],input_list:14,input_nam:485,input_on:[238,319],input_s:[241,242,257,258,287,288,289],input_scal:460,input_split:14,input_tensor_list:14,input_tupl:459,input_var:[4,230],ins:459,insecur:159,insensit:249,insert:[15,17,274,275,283,398,406,420,448,459,464,488],insert_fold_prepack_op:464,insid:[2,5,459,461,464,472,476,480],insight:5,inspect:[1,2,143,149,472,478,480,495],inspir:[478,486],inst:500,instal:[2,9,10,14,102,126,131,392,457,459,485,490,497,500,503],instanc:[1,13,15,150,160,235,236,238,250,251,252,259,314,316,319,334,348,353,415,459,461,462,464,466,468,470,472,477,478,479,488,490,491,492,498,500,501],instance_norm:[460,485],instancenorm1d:470,instancenorm2d:470,instancenorm3d:470,instancenorm:[243,488],instantan:11,instanti:[2,14,93,236,348,356,457,459,461,470,478,488,490],instead:[2,4,6,9,13,14,15,55,86,116,126,136,146,175,207,208,209,210,211,212,213,214,227,229,230,232,233,248,253,254,255,256,265,266,267,268,269,276,277,278,280,286,287,301,302,303,309,318,324,392,398,425,459,461,468,470,472,473,477,478,479,481,484,485,486,488,491,493,498,505,506],instruct:[3,8,459,485],instrument:480,insuffici:11,int16:[111,170,495,498,507],int32:[55,111,177,217,371,398,488,495,498,505,507],int64:[14,32,46,55,91,111,348,383,384,398,470,476,485,495,498,504,505,507],int64tensor:503,int8:[47,48,49,50,111,169,170,171,172,488,495,498,507],int_:[96,97],int_a:437,int_b:437,int_repr:[373,374,460,488,498],int_tensor:495,int_zerodim:495,intact:490,integ:[11,13,14,15,23,24,25,26,27,28,29,32,43,44,51,60,66,86,90,107,108,109,112,123,124,148,160,192,202,217,221,222,223,259,348,359,361,365,373,374,377,379,380,381,383,387,395,416,426,433,443,444,455,461,462,467,470,478,485,486,488,495,498,505,507],integer_interv:15,integergreaterthan:15,integr:[13,25,45,47,48,49,50,86,112,143,237,273,375,437,480,485,486,495,498],intel:[484,501],intel_openmp:484,intend:470,intens:[486,505],intent:5,intention:490,inter:[119,404,475,477,490],interact:[2,6,10,11,13,462,485],interchang:[15,461,486],interconnect:14,interest:[5,6,458,488,500,504],interfac:[10,478,480,485,486,497],interfer:[1,485],interleav:486,intermedi:[4,236,313,315,317,459,470,473,479,485],intermediari:[9,15],intern:[1,6,11,13,15,36,79,143,168,212,213,214,309,366,412,415,462,472,473,475,476,485,490,491,492,493,496,500,503],internet:[5,500],interop:404,interperet:160,interpol:[156,320,321,322,482,485,488,504,505],interpolation_mod:460,interpret:[11,13,14,15,119,143,146,149,150,253,404,461,466,470,475,476,488,493,496,502],interprocess:11,interrupt:466,intersect:504,interv:[1,15,32,377,378,437,505],intervent:[1,490],intra:[475,477],intraop:405,introduc:[15,160,241,257,287,393,457,474,477,482,485,490,498],introduct:[14,324,459,462,467,474,490],inttensor:[177,178,495,498],intuit:485,inv:[15,63],inv_scal:472,invalid:[193,472,473],invari:[15,348,415,492,493,505],invers:[8,15,22,39,42,58,63,64,98,102,126,131,141,183,224,225,226,235,236,238,270,271,272,319,351,366,392,460,470,486,498],inverse_indic:[446,447],invert:[15,64,79,126,131,168,183,270,271,272,412,503],invest:6,investig:5,invis:476,invoc:[4,144,150,459,478,480,485,488,490,492],invok:[1,10,14,17,143,144,230,237,273,324,459,462,464,472,475,477,478,480,486,491],involv:[5,6,8,13,467,476,477,479,482,490,491,492],invstd:460,iotamudelta:7,iou:[503,504],iou_threshold:504,iparam:160,ipc:11,ipc_collect:11,ipc_handl:11,ipp:501,irecv:14,irfft:[392,460,498],irrelev:[2,462],irrespect:[130,175,413,425,427,476],is_accept:460,is_avail:[11,14,102,126,131,392,476],is_coalesc:[460,493],is_complet:14,is_complex:[460,495,498],is_contigu:[460,467,496,498],is_cuda:[348,467,494,498],is_distribut:[13,460],is_en:1,is_floating_point:[460,467,495,498],is_in_onnx_export:485,is_initi:[11,14],is_leaf:[2,460,467,498],is_meta:498,is_mpi_avail:14,is_nccl_avail:14,is_ninja_avail:9,is_nonzero:460,is_own:490,is_pin:[13,348,460,467,494,498],is_python_modul:9,is_quant:498,is_same_s:460,is_script:461,is_set_to:[460,498],is_shar:[463,467,494,498],is_sign:[460,467,498],is_spars:[467,494,498],is_tensor:467,is_train:[2,403,499],is_valid_fil:500,is_vulkan_avail:460,isclos:[460,498],isend:14,isfinit:[460,498],isinf:[460,498],isinst:[15,136,460,478],isn:[5,13,141,476,478],isnan:[460,485,498],isol:466,issu:[1,4,6,8,9,14,177,324,463,466,467,468,470,472,473,478,481,484],issubclass:478,istep:160,istft:[460,498],itch:5,item:[13,274,283,406,457,459,460,461,467,488,490,498,500,504],iter:[1,2,5,11,14,15,143,160,237,273,274,275,283,284,324,325,326,327,328,329,330,331,332,333,334,335,336,338,353,354,365,426,460,462,466,468,472,473,474,477,478,486,489,497,504],iter_end:13,iter_start:13,iterabledataset:[13,480],iters_to_accumul:472,itertool:[15,57,67],its:[1,2,3,5,6,9,10,11,13,14,15,33,34,35,63,64,80,83,143,148,182,210,212,213,214,221,222,223,224,225,226,230,237,250,251,252,273,274,283,309,324,325,334,337,338,339,340,341,342,343,344,349,355,401,403,426,452,459,461,464,466,470,472,473,474,476,477,478,479,484,485,486,488,490,491,492,493,495,496,498,500,503,505],itself:[4,5,143,149,150,237,273,303,324,329,330,331,332,333,334,335,336,345,459,466,470,485,488,490,496],ivalu:480,ivar:160,jacobian:[2,15,131,473],jakob:[313,315,317],jang:15,javadoc:458,jax:473,jed:160,jit:[8,9,119,142,143,404,405,458,461,463,464,468,475,480,485,490],jitter:505,job:[14,324,480,486],joel:[365,426],johann:7,johnson:7,join:[5,14,17,457,462,466,473,477,481],jointli:[15,279],jone:[313,315,317],joulin:202,journal:375,jpeg:480,json:[480,500],juggl:4,jump:[495,498],junji:7,just:[2,5,9,15,150,151,232,233,324,439,440,441,442,457,459,466,472,473,476,478,480,485,488,490,491,496,498],jvp:2,k_0:433,k_proj_weight:460,kaiming_normal_:[463,471],kaiming_uniform_:471,kaiser:[313,315,317],karl:7,karuppasami:7,kdim:279,keep:[2,5,13,159,212,213,214,235,250,251,252,282,309,334,388,457,459,466,468,470,473,476,477,479,481,485,486,490,491,492,504,505],keep_initializers_as_input:485,keep_intermedi:9,keep_var:[143,237,273],keepdim:[33,34,154,174,185,186,187,189,191,282,358,370,421,422,424,450,451,460,467,470,485,498],kei:[2,13,14,143,151,159,237,273,274,279,283,313,314,315,316,317,341,460,461,478,480,485,486,488,490,491,494,498],kept:[212,213,214,250,251,252,309,466,470,488,504],kernel:[3,8,9,11,207,208,209,221,222,223,224,225,226,238,239,255,256,267,268,269,270,271,272,319,464,470,478,482,485,488,504],kernel_height:504,kernel_s:[207,208,209,221,222,223,224,225,226,238,239,255,256,267,268,269,270,271,272,319,460,470,488,497,504],kernel_shap:485,kernel_width:504,kesheng:160,key_averag:2,key_padding_mask:[279,460],keyboard:503,keypoint:501,keypoint_rcnn:503,keypointrcnn_resnet50_fpn:503,keyword:[1,2,18,22,23,39,42,77,86,108,143,144,150,151,159,165,166,230,237,247,249,273,329,334,338,362,376,438,443,456,457,462,468,478,485,486,490],kick:[477,490,491],kickoff:491,kill:[466,479],kind:[14,325,371,478,481,495],kinet:[501,503],kinetics400:500,kite:503,kl_div:[1,460],kl_diverg:15,kl_normal_norm:15,kl_version1:15,kl_version2:15,kldivloss:470,kmnist:501,knife:503,know:[2,4,5,148,459,472,473,485,491,492,498],knowledg:492,known:[5,14,150,151,159,221,222,223,224,225,226,238,301,319,366,459,460,463,466,471,475,482,485,490,492,505],knuth:5,knyazev2001:160,knyazev:160,kostmo:7,kth:154,kthvalu:[460,467,498],kullback:[15,253,470],kuzushiji:500,kw_i:279,kwarg:[1,2,4,9,143,144,146,177,237,241,249,257,273,287,329,334,338,348,397,446,447,457,462,470,478,483,485,488,490,494,498,500,503,505,506],l1_loss:[1,460],l1loss:470,l1unstructur:338,l2norm:488,l423:485,l_1:[210,211,248,253,254,265,280],l_c:211,l_n:[210,211,248,253,254,265,280],l_p:470,label:[5,13,202,211,217,227,248,266,276,277,349,470,477,481,486,497,500,503],labori:478,lack:8,lambd:[244,307,460,470,486,498,505],lambda1:486,lambda2:486,lambda:[2,13,15,17,59,159,244,307,462,470,478,486,490,498,505],lambdalr:486,landmark:500,langl:15,languag:[9,149,202,313,458,470,479,485],lapack:[8,63,116,363,364,372,425],laptop:503,lara:7,larg:[1,5,11,13,18,202,238,319,372,458,466,468,470,475,479,485,486,488,490,493,495,498,500,503,505],large_model:485,large_pool:11,larger:[1,2,6,46,66,202,230,235,236,266,320,324,470,479,480,485,498,503,505],largest:[1,46,107,160,434,460,461,470,488,498,507],last:[2,4,8,13,44,51,55,65,81,102,103,123,124,134,141,154,187,191,202,215,221,222,223,224,225,226,236,237,241,257,259,261,280,286,287,314,315,319,325,357,358,392,393,398,414,416,423,425,433,434,437,452,453,461,467,470,473,486,503,505],last_epoch:486,late:472,latenc:475,later:[2,5,159,229,267,268,269,280,324,459,475,476,477,478,483,488,491,492],latest:[5,14,15,334,457,485,490],latin1:159,latter:[8,143,237,273,481,488],launch:[3,13,324,473,475,476,490],launcher:14,law:[202,505],layer:[1,14,207,208,209,211,212,213,214,215,221,222,223,224,225,226,232,233,241,242,243,250,251,252,257,258,259,261,267,268,269,279,280,287,289,309,313,314,315,316,317,470,471,473,478,479,480,486,488,503],layer_count:485,layer_norm:[1,460,485],layernorm:[243,250,251,252,470],layout:[11,32,44,51,90,91,92,101,112,113,123,124,158,173,361,362,377,378,379,380,381,382,383,384,415,440,442,455,456,457,459,460,461,463,493,498],lazi:486,lazili:[11,459],lbfg:486,lbrace:[439,440,441,442],lceil:[32,60],ldexp:460,ldot:[15,188,259,267,268,269],le_:[460,498],lead:[2,5,86,102,392,419,468,475,477,482,484,498,505],leadership:6,leaf:[2,432,472,488,498],leak:[2,466],leaki:[290,470,471],leaky_relu:[460,471,485],leaky_relu_:[460,470],leakyrelu:[274,470],learn:[1,5,10,15,215,227,232,233,235,236,248,261,281,318,458,469,471,488,490,492,500,503],learnabl:[212,213,214,215,221,222,223,224,225,226,235,236,241,242,243,250,251,252,257,258,259,261,281,287,289,309,470,488],learned_0:485,learned_14:485,learned_15:485,learned_1:485,learned_2:485,learned_3:485,learned_:485,least:[15,46,81,83,102,105,106,126,131,141,160,175,182,202,349,392,457,468,471,474,479,492,494,498,503],leav:[2,146,152,419,459,461,473,498,500],left:[32,44,51,52,55,60,84,89,105,107,108,110,123,124,141,146,165,166,193,195,202,207,208,209,210,211,221,222,223,224,225,226,229,238,253,254,255,256,262,263,264,265,267,268,269,276,277,278,282,283,318,319,320,321,322,327,364,384,398,423,433,449,459,460,470,478,485,486,488,498,505],left_ankl:503,left_ear:503,left_elbow:503,left_ey:503,left_hip:503,left_kne:503,left_should:503,left_wrist:503,lefteye_i:500,lefteye_x:500,leftimg8bit:500,leftmouth_i:500,leftmouth_x:500,legaci:[470,495,504],legitim:281,leibler:[15,253,470],lemma:15,len:[13,14,145,174,186,230,333,335,351,415,416,421,422,424,449,450,451,459,460,470,485,486,493,500,503],length:[2,11,13,14,15,67,88,128,141,150,196,211,217,221,230,236,238,241,255,257,279,287,313,319,348,349,350,351,352,375,423,460,468,470,474,479,488,498,503,505],lens_unpack:351,leq:[30,44,45,66,137,155,217,229,276,278,280,423,470],lerp:[460,498],lerp_:[460,498],less:[2,5,11,13,14,15,89,107,160,177,202,286,301,307,351,440,442,457,478,481,488,501,503],less_than:15,lesser:[475,488],let:[2,5,13,15,467,468,473,476,477,478,481,484,491,492,497,498],letter:[89,500],level:[5,10,13,116,230,324,459,462,466,471,475,478,490,498,503],leverag:490,lexic:462,lexicograph:357,lfloor:[60,107,108,110,202,207,208,209,221,222,223,224,225,226,238,255,256,267,268,269,319,320,321,322,384,392,423,470],lgamma:[460,498],lgamma_:[460,498],lib64:9,lib:[159,397,484],libenzi:7,librari:[3,6,8,9,10,11,13,177,387,458,475,477,478,479,480,481,482,484,485,488,490,501],library_root:10,libtorch:10,libx264:502,lie:[303,305,470],lies:500,life:498,lifetim:[5,490],lift:468,light:[503,504],lighter:505,like:[1,2,3,4,5,6,8,9,10,11,13,14,15,36,44,51,89,90,123,124,130,147,148,150,159,202,210,238,241,250,251,252,257,274,275,283,284,287,319,324,325,348,361,377,381,397,413,455,457,459,461,466,467,468,470,472,476,479,480,481,484,485,488,490,491,495,498,505],likelihood:[15,202,280,286,470],likewis:504,lim:[15,141],lim_:210,limit:[13,217,235,338,466,468,473,477,488,490,491],limits_:167,line:[2,3,14,143,148,237,273,406,459,462,470,474,478,484,485],line_search_fn:486,linear:[1,2,7,11,64,143,145,149,156,178,210,216,237,240,247,273,275,287,289,291,306,309,320,337,338,339,340,341,343,344,345,346,347,353,355,365,413,460,461,464,471,473,476,477,478,479,485,486,498,503],linear_relu:488,linearfunct:478,linearli:[320,470,479,488],lineartransform:505,liner:290,linewidth:406,link:[9,10,15,221,222,223,224,225,226,238,267,268,269,319,468,470,480,485],linker:9,linspac:[8,46,460,463],linux:[10,14,457],list:[1,2,4,5,6,9,10,11,13,14,15,17,37,54,57,65,67,78,89,90,104,112,131,143,145,150,151,186,188,230,235,237,259,273,275,284,309,324,325,329,330,331,332,333,334,335,336,345,348,349,350,351,352,358,361,377,381,394,415,416,421,422,424,432,433,446,447,455,457,459,460,462,463,464,467,468,470,478,484,485,486,488,490,491,493,494,495,496,498,499,500,502,503,504,505,506],listconstruct:[459,485],listloopmodel:485,liter:[460,462,468],literatur:[221,222,223],littl:[478,492],live:[143,237,273,459,479,486,490,492],llion:[313,315,317],lmbda:486,load:[1,2,8,9,10,148,150,273,324,397,459,464,465,468,480,483,484,485,486,488,500,501,503],load_inlin:9,load_nvprof:2,load_state_dict:[1,143,159,237,273,457,483,486],load_state_dict_from_url:[457,465],load_url:[465,503],loadabl:457,loadann:500,loaded_weight:498,loader:[13,500],loaiza:15,loc:[15,159],local:[1,14,93,160,232,233,238,262,319,324,356,403,457,461,466,470,472,477,479,490,491,492,500],local_process_rank:14,local_rank:[14,309],local_response_norm:460,local_valu:490,localhost:[490,491],localresponsenorm:470,locat:[2,9,11,15,36,54,55,73,74,92,94,115,122,138,139,140,154,155,159,176,185,187,189,191,193,197,230,238,304,319,324,398,457,459,465,470,485,486,492,493,498,500,503,505],lock:[5,13,14,15,473,476,481,491],log10:[1,460,467,498],log10_:[460,467,498],log1p:[1,460,467,485,498],log1p_:[460,467,498],log2:[1,460,467,485,498],log2_:[460,467,498],log:[1,9,13,15,99,100,157,163,165,167,168,174,195,202,210,211,229,253,263,264,277,280,286,302,303,306,412,460,467,470,485,497,498,499],log_2:166,log_:[161,162,163,164,460,467,498],log_abs_det_jacobian:15,log_input:[286,460,470],log_norm:15,log_normal_:[460,467,498,499],log_pob:202,log_prob:[15,202,217,460,470],log_sigmoid:[460,485],log_softmax:[1,217,460,468,485],log_target:[253,460,470],logabsdet:412,logaddexp2:[460,498],logaddexp:[166,460,498],logarithm:[84,157,161,162,163,164,165,166,167,173,217,470],logcumsumexp:[460,498],logdet:[412,460,485,498],logdir:497,logic:[4,13,47,48,49,50,169,170,171,172,371,391,462,478],logical_and:[460,498],logical_and_:[460,498],logical_not:[460,467,498],logical_not_:[460,467,498],logical_or:[460,498],logical_or_:[460,498],logical_xor:[460,498],logical_xor_:[460,498],logist:[15,302],logit:[15,211,460,470],logsoftmax:[229,280,303,470],logspac:[8,460,463],logsumexp:[165,460,467,485,498],long_tensor:495,long_zerodim:495,longer:[2,25,86,490,492],longest:[217,349,351,352,479],longtensor:[33,34,35,73,74,114,128,154,185,187,189,191,193,235,236,276,357,383,414,415,429,434,454,470,493,495,498],look:[3,5,6,10,14,15,202,285,340,366,459,461,467,470,472,473,480,481,484,485,490,491],lookup:[15,235,459,462,470,475,485,491],loop:[11,150,459,460,475,479,485,488,505],loop_and_list:485,loop_count:485,loop_in_traced_fn:459,loop_rang:485,loopmodel2:485,loopmodel:485,loos:480,lorentz:15,lose:468,loss0:472,loss1:472,loss:[1,2,8,15,141,202,210,211,217,227,229,248,253,254,265,266,276,277,278,280,286,301,302,318,324,349,468,473,477,479,486,488,490,491,497,500,503],loss_fn:[1,472,477,481,486],loss_func:[324,490],lost:[1,131,221,222,223,224,225,226,230,270,271,272,372,503],lot:[5,466,481,489,491,497],low:[5,15,116,217,365,375,379,380,426,460,466,498],lower:[2,11,14,15,52,55,62,63,64,66,89,125,193,202,290,371,388,398,427,438,439,440,459,460,469,470,471,473,482,485,486,488,504],lower_bound:15,lower_choleski:15,lower_triangular:15,lowercas:14,lowercholeski:15,lowercholeskytransform:15,lowest:[61,332,333,341,342,379,380],lowrank_multivariate_norm:15,lp_pool1d:460,lp_pool2d:460,lppool1d:470,lppool2d:470,lr_decai:486,lr_lambda:486,lr_schedul:486,lrelu:274,lrn:262,lru:[102,126,131,392,476],lstm:[4,258,460,485],lstm_cell:460,lstmcell:488,lstsq:[460,498],lsun:501,lt_:[460,498],lu_data:[178,179,460,498],lu_pivot:[178,179,460,498],lu_solv:[460,498],lu_unpack:177,lukasz:[313,315,317],lvert:[30,137,318,470],machin:[14,306,324,480,489,490,491],machineri:478,maco:[14,466],macro:9,maddison:15,made:[2,6,315,317,461,484,486,505],mae:254,magic:[460,462],magma:[63,177,425,484],magma_2:484,magma_hom:484,magnitud:[1,355,372,471,472],mai:[1,2,3,5,9,11,13,14,15,36,46,54,89,92,109,141,143,144,148,150,159,160,165,202,217,221,222,223,224,225,226,229,237,273,280,315,317,324,372,387,390,423,459,461,464,468,470,472,474,475,476,478,479,482,484,485,486,490,492,493,494,498,499,505],main:[13,14,15,80,81,82,83,439,440,441,442,459,466,468,470,472,473,477,478,483,484,490,491,497,498],mainli:[15,217,470,488],maintain:[1,5,14,15,206,348,470,472,505],major:[2,5,11,253,470,485,493],make:[2,3,4,9,10,11,13,14,15,46,62,63,64,81,93,143,148,160,210,217,221,222,223,224,225,226,237,273,299,324,338,356,400,427,434,457,459,461,466,467,468,470,472,473,474,476,477,478,479,481,482,484,485,486,488,490,491,492,495,498,500,505,506],make_dict:459,make_grid:[497,506],malici:159,manag:[1,2,5,15,18,93,324,356,403,462,479,480,485,489,490,491,498,499],mandat:478,mandatorili:13,mani:[1,2,5,6,8,9,13,14,18,36,143,217,237,273,439,440,441,442,459,461,467,471,473,474,475,478,480,482,488,492,495,498,499,501],manipul:[472,479,488],manner:[2,4,468,474,498],manoj:7,mantissa:498,manual:[1,13,14,145,210,211,229,277,278,280,348,459,466,470,472,476,478,479,482,484,485],manual_se:[11,13,18,460,467,482,489],manual_seed_al:11,map:[9,15,22,42,147,148,159,224,225,226,232,233,238,270,271,272,274,279,283,374,446,447,462,468,470,477,478,484,485,488,490,491,492,494,504,505],map_:[463,498],map_loc:[147,159,324,457,465],margin:[227,248,266,276,278,318,460,470],margin_ranking_loss:[1,460],marginrankingloss:470,mark:[2,11,17,324,459,461,473,477,478,491,498],mark_dirti:[2,478],mark_non_differenti:[2,478],marker:11,market:[5,6],marten:471,martinsson:[365,426],mask:[181,206,217,279,313,314,315,316,317,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,460,467,468,470,498,504],mask_rcnn:503,masked_fil:[460,467,485,498],masked_fill_:[460,467,468,498],masked_scatt:[460,485,498],masked_scatter_:[460,498],masked_select:[460,467,485,498],maskrcnn_resnet50_fpn:503,mass:15,massa:7,master:[5,313,457,485,490],master_addr:[14,490,491],master_port:[14,490,491],mat1:[27,190,460,493,498],mat2:[27,53,190,460,493,498],mat:[28,194,364,375,460,493,498,500],match:[1,2,11,14,15,143,159,181,185,189,236,237,273,320,359,373,433,459,467,470,474,478,485,486,488,490,495,498,500,505],math:[13,99,100,253,365,426,459,461,470],mathbb:280,mathbf:[15,353,355],mathbin:[24,27,28,43,53],mathcal:[215,221,222,223,224,225,226,235,236,241,242,257,258,261,287,289,290,309,381,471],mathemat:[2,8,131,210,212,213,214,250,251,252,309,392,470,499],mathrm:[15,45,96,97,98,212,213,214,243,250,251,252,259,286,309],matmul:[1,8,53,62,130,190,319,365,366,372,413,425,427,460,467,498],matric:[15,24,27,43,53,61,62,64,79,81,116,160,168,175,177,183,190,365,372,406,412,413,425,426,427,438,439,441,460,467,470,493,498],matrix:[15,24,27,28,29,43,45,52,53,59,61,62,63,64,79,80,81,83,88,89,116,117,130,160,168,175,177,179,182,183,184,190,193,194,235,236,319,353,358,363,364,365,366,372,412,413,415,425,426,427,433,435,438,439,440,441,442,449,467,468,470,471,473,475,488,493,498,505],matrix_pow:[460,498],matrix_rank:460,matter:[2,3,6,81,147,148,150,473],max:[2,13,14,33,46,59,62,66,73,125,130,149,175,184,187,203,204,205,216,217,227,228,234,236,239,248,255,256,260,262,266,267,268,269,270,271,272,276,277,278,281,291,292,298,318,319,326,351,459,460,470,474,479,485,486,488,498,505,506,507],max_:[267,268,269,353],max_ev:486,max_indic:[185,187],max_it:486,max_job:9,max_lr:486,max_memory_alloc:[11,476],max_memory_cach:11,max_memory_reserv:[11,476],max_momentum:486,max_norm:[1,235,236,326,460,470,472],max_pool1d:460,max_pool1d_with_indic:460,max_pool2d:[460,488],max_pool2d_with_indic:460,max_pool3d:460,max_pool3d_with_indic:460,max_siz:476,max_unpool1d:460,max_unpool2d:460,max_unpool3d:460,max_val:[247,460,470],max_valu:[247,460],maxim:[66,185,270,271,272,486],maximum:[11,15,33,73,74,125,160,185,247,327,375,388,470,472,476,486,488,504,505],maxnorm:[388,460,498],maxpool1d:[270,470,485],maxpool2d:[271,274,470,485,488],maxpool3d:[272,470,485],maxpool:[239,485],maxunpool1d:[203,267,470],maxunpool2d:[204,239,268,470],maxunpool3d:[205,269,470],mayb:5,mc3:503,mc3_18:503,mean:[1,2,4,5,10,11,13,14,15,43,148,193,200,201,202,204,205,206,210,211,212,213,214,215,216,217,227,229,231,234,236,240,241,243,244,245,246,247,248,250,251,252,253,254,257,259,260,261,263,264,265,266,276,277,278,280,281,286,287,290,291,292,298,300,301,302,303,305,306,307,308,309,310,311,312,318,324,359,381,382,422,426,451,459,460,461,466,467,468,470,471,472,477,478,479,484,485,486,488,490,491,492,498,503,505],mean_di:460,mean_dy_xmu:460,mean_vector:505,meant:[348,472,490],meantim:[210,211,227,229,248,253,254,265,266,276,277,278,280,286,301,302,318,470],measur:[11,15,210,211,227,248,253,254,265,266,318,470,476,480,486],mechan:[14,458,466,478,480,488,490,491],median:[15,460,467,498],medium:5,meet:476,megabyt:324,meiyu:160,member:[5,6,13,14,143,237,273,459,461,479],membership:[6,462],memo:[143,237,273],memoiz:15,memori:[2,4,8,15,16,36,54,89,90,91,92,111,113,143,152,236,237,257,258,273,313,314,315,348,356,362,378,380,382,432,456,459,464,466,468,470,473,481,486,488,490,494,495,496,498,503],memory_alloc:[11,476],memory_cach:11,memory_effici:[152,503],memory_format:[90,91,113,143,237,273,324,362,378,380,382,456,460,498],memory_key_padding_mask:[313,314,315],memory_mask:[313,314,315],memory_reserv:[11,476],memory_snapshot:[11,476],memory_stat:[11,476],memory_summari:11,mendoza:7,mention:[457,461,468,476,478,496,504],mere:5,merg:[5,6,13,274,283],meshgrid:460,messag:[5,11,457,459,460,462,479,485,486,490,492],messmer:7,met:160,meta:[490,498],metaclass:462,metadata:[159,397,478,490,491,502],metadatatensor:478,meter:503,meth:[13,159],method2:151,method:[1,5,9,10,11,13,14,15,17,33,34,35,102,126,131,143,144,145,146,148,149,150,151,152,159,160,184,202,210,235,237,273,274,275,283,284,324,329,331,334,337,338,339,341,342,343,344,345,351,353,366,392,423,425,457,459,462,464,466,467,468,470,471,472,476,478,479,481,485,486,488,490,492,493,495,498,499,500,503],metric:[11,486,497],michael:7,microwav:503,middl:485,might:[2,3,6,9,10,15,88,150,151,221,222,223,224,225,226,324,325,457,459,473,475,477,478,480,485,490,491,492,496,498,500,505],mileston:486,millisecond:11,mimick:8,min:[13,14,34,66,74,125,193,216,234,260,262,281,292,298,365,372,425,439,440,441,442,460,467,470,485,486,488,490,498,505,506,507],min_indic:[189,460],min_lr:486,min_siz:503,min_val:[247,460,470],min_valu:247,min_x:175,mind:[235,473,485],minfunc:486,ming:160,mingzh:7,mingzhe09088:7,mini:[13,212,213,214,235,236,243,248,250,251,252,259,266,276,278,309,318,470,488,503,506],minibatch:[13,177,202,210,211,227,229,248,253,254,265,266,276,277,278,280,286,301,302,318,320,470,488],minim:[1,2,5,8,66,189,457,472,481,486,488],minimum:[9,34,46,74,125,189,217,247,415,486,488,495,503],ministri:478,minkowski:[59,470],minlength:[46,460,498],minmax:488,minmaxobserv:488,minor:[6,11],minu:100,minut:[5,14],miopen_batch_norm:460,miopen_convolut:460,miopen_convolution_transpos:460,miopen_depthwise_convolut:460,miopen_rnn:460,mirror:498,misalign:467,mise:15,mismatch:[1,131,461,472,477,478,479,505],miss:[143,227,237,250,251,252,273,484,485],missing_kei:[143,237,273],mistak:479,mix:[9,15,324,458,475,485],mixtur:[1,15],mixture_distribut:15,mixture_same_famili:15,mkl:[102,126,131,392,475,484],mkl_2018:484,mkl_2020:484,mkl_fft:484,mkl_num_thread:475,mkl_thread:475,mkldnn:498,mkldnn_adaptive_avg_pool2d:460,mkldnn_convolut:460,mkldnn_convolution_backward_weight:460,mkldnn_cpu_runtim:475,mkldnn_linear:460,mkldnn_max_pool2d:460,mkldnn_reorder_conv2d_weight:460,mmap:466,mnasnet0_5:503,mnasnet0_75:503,mnasnet1_0:503,mnasnet1_3:503,mnist:[497,501],mnist_train:497,mnt:14,mobil:[464,488,503],mobile_optim:458,mobilenet_v2:[485,503],mobilenetv2:503,mobilenetv3:[246,470],mobileoptimizertyp:464,mod:[144,145,151,461,488],mode:[2,3,13,14,15,131,143,145,150,152,212,213,214,236,237,243,250,251,252,253,259,273,288,309,320,321,356,402,403,460,464,467,470,471,473,477,479,485,486,488,490,498,500,503,505],model0:472,model1:472,model:[1,2,3,4,11,14,15,143,145,146,150,152,159,202,230,237,252,273,279,299,309,313,315,317,324,325,328,338,354,397,459,461,462,464,465,470,473,475,476,477,481,482,485,486,490,491,497,501,504,505],model_dir:[457,465],model_zoo:[458,503],moder:4,modf:460,modif:[2,10,111,488,498],modifi:[1,2,13,141,143,144,145,235,237,273,313,315,317,324,326,327,337,338,339,341,342,343,344,459,467,470,472,473,476,478,485,486,488,490,496,498],modified_tensor:145,modl:15,modul:[1,2,4,9,14,143,144,145,146,147,148,149,150,151,152,159,202,206,212,213,214,215,221,222,223,224,225,226,230,231,232,233,235,236,237,243,250,251,252,259,261,274,275,279,283,284,288,299,303,309,313,324,325,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,351,353,355,397,457,458,462,464,466,468,469,470,472,473,475,476,477,479,480,481,484,485,488,490,498,499,503,504,505],modular:[1,472],module_kwarg:470,moduledict:461,modules_to_fus:488,modulo:15,modulu:392,momemtum:[250,251,252,309],moment:[2,464,466,485,486,488,490],momentum:[212,213,214,250,251,252,309,460,470,473,486,488],monitor:[11,102,126,131,392,476,486],monoton:[15,55,398],mont:15,moor:366,more:[1,2,3,6,8,9,10,11,13,14,15,36,52,54,55,61,62,64,79,82,92,102,126,130,131,134,136,151,160,163,166,168,178,202,206,211,216,217,235,236,279,285,286,298,309,325,357,358,366,371,372,391,392,398,412,413,425,427,438,457,459,461,465,466,467,468,469,470,471,473,475,476,478,479,480,485,486,488,490,491,492,493,495,496,497,498,499,500,503,504,505],more_img:468,moreov:[131,490,498],most:[2,3,5,10,11,13,14,15,134,191,202,457,459,461,463,466,468,470,473,476,478,481,486,488,491,492,493,495,498],mostli:[5,15,473],motiv:[5,491],motorbik:503,motorcycl:503,mountain:500,mous:503,moustapha:202,move:[4,143,147,159,212,213,214,237,273,309,461,465,466,468,470,476,479,481,486,488,490,494,498],movement:496,movingaverageminmaxobserv:488,movingaverageperchannelminmaxobserv:488,mpi:14,mro:462,mrshenli:7,mse_loss:[1,460],mseloss:[301,470,477],msg:11,msys2:484,much:[1,2,3,5,6,10,13,160,236,338,459,476,486,490,491,498,505],mul:[2,459,460,467,478,485,488,491,493,495,498],mul_:[8,460,467,493,498],mul_scalar:488,mulbackward0:2,mulconst:478,mult:13,multi:[3,11,143,211,230,237,241,257,273,276,277,278,287,313,315,320,324,459,475,476,485,490,495,498,499,504],multi_head_attention_forward:460,multi_margin_loss:[1,460],multicast:14,multidimension:250,multihead:279,multihead_attn:279,multiheadattent:[313,315,317],multilabel_margin_loss:[1,460],multilabel_soft_margin_loss:460,multilabelmarginloss:470,multilabelsoftmarginloss:470,multilay:[241,257],multilinear:89,multimarginloss:470,multinomi:[460,485,498],multipi:210,multipl:[1,11,13,14,15,17,24,26,27,59,89,143,151,182,190,210,211,224,225,226,227,229,236,237,238,248,253,254,262,265,266,273,276,277,278,280,286,301,302,318,319,324,329,330,331,332,333,334,335,336,433,438,457,461,466,467,468,470,473,475,476,477,480,481,484,486,488,490,491,492,493,500,504,505],multiplex:490,multipli:[1,23,24,25,26,27,28,29,43,53,89,126,131,182,190,192,194,221,222,223,226,241,257,320,321,322,364,423,467,470,486,488,493,503,505],multiplicand:192,multiplicativelr:486,multiprocess:[13,14,230,324,458,468,477,491,500],multiprocessing_context:13,multiscaleroialign:504,multisteplr:486,multithread:476,multivari:[15,195],multivariate_norm:15,must:[1,2,9,11,13,14,15,17,23,24,25,26,27,28,29,41,43,45,47,48,49,50,53,55,58,66,72,81,83,85,86,94,102,105,106,109,114,115,117,122,143,148,150,155,156,160,176,178,181,182,185,189,192,193,195,197,211,217,221,222,223,224,225,226,230,236,237,238,273,276,307,324,338,348,365,369,387,392,393,398,405,423,426,433,440,442,452,454,459,460,461,466,467,468,470,471,472,474,477,478,481,482,485,486,488,490,491,492,494,498,505],mutabl:[150,459],mutat:[145,488,498,505],mute:457,mutex:473,mutual:[13,14],mvlgamma:[460,498],mvlgamma_:[460,498],mvn:15,my_add:491,my_api:480,my_const:459,my_constraint:15,my_dict:[459,461],my_factori:15,my_int:[459,461],my_lib:484,my_lib_add_backward_cuda:484,my_lib_add_forward_cuda:484,my_list:461,my_lstm:479,my_model:[324,459],my_modul:459,my_module_inst:459,my_paramet:461,my_qconfig:488,my_registri:15,my_script_add:490,my_script_modul:[459,461],my_scripted_model:459,my_segmentation_transform:505,my_submodul:461,my_transform:15,my_variable_nam:461,myconstraint:15,myconstraintclass:15,mycpuorg:7,myfloat32func:472,myfunc:2,myiterabledataset:13,mymm:472,mymodel:[472,481,488],mymodul:[145,146,148,149,152,274,275,283,284,459,461,479],mymodule2:145,mypi:[136,461],myrotationtransform:505,myscriptmodul:459,mytransform:15,n_0:470,n_1:[102,126,188,392],n_2:188,n_class:202,n_d:[102,126,392],n_epoch:13,n_fft:[141,423,460,498],n_frame:141,n_i:[102,126,131,207,208,209,221,222,223,267,268,269,318,392],n_iter:497,n_k:[188,470],n_power_iter:353,n_t:241,naiv:13,name:[2,9,11,14,15,143,147,148,151,159,237,273,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,353,355,397,401,449,457,458,459,460,462,463,465,466,471,477,478,480,485,488,490,491,494,497,500,501,504,507],named_buff:[143,237,273],named_children:[143,237,273],named_flat_img:468,named_img:468,named_modul:[143,237,273],named_paramet:[143,145,237,273],named_tensor:468,namedshap:468,namedtupl:[13,73,74,88,116,143,154,175,185,187,189,191,202,237,273,365,372,412,413,414,425,427,434,438,459,461],namespac:[1,459,462,478,485,488],nan:[1,2,15,22,30,38,42,55,137,138,139,140,161,163,168,396,398,412,417,425,427,472],narrow:[460,467,485,496,498],narrow_copi:[460,493,498],natalia:7,nathan:[365,426],nativ:[1,148,459,466,490,501,504],native_batch_norm:460,native_group_norm:460,native_layer_norm:460,native_norm:460,natur:[2,3,5,8,15,161,163,202],nbatch:[210,211],nccl2:324,nccl:324,nccl_blocking_wait:14,nccl_debug:14,nccl_debug_subsi:14,nccl_socket_ifnam:14,nchannel:281,ncrop:505,ndarrai:[37,111,415,432,485,498,505],ndata:478,ndim:[467,498],ndimens:[463,467,498],ne_:[460,498],nearest:[108,320,322,470,488,505],nearli:[2,365,481,490,498],necessari:[1,2,9,13,18,128,149,349,350,459,468,473,474,476,477,484,488,490,491,492,495,498],necessarili:[14,15,88,185,187,189,229,280,366,476,478,485],need:[1,2,5,6,10,11,13,14,15,36,54,61,81,83,92,131,181,185,189,193,270,271,272,279,313,315,317,324,329,333,335,359,420,425,427,459,461,464,466,468,470,473,475,476,478,479,480,481,482,484,485,486,488,490,491,492,493,494,495,498,500],need_weight:[279,460],needs_input_grad:[2,478],needsinput:480,neeraj:7,neerajprad:7,neg:[9,11,13,15,46,138,168,183,193,202,211,260,276,280,286,318,433,437,439,440,441,442,448,459,460,467,470,471,473,482,485,498,505],neg_:[460,467,498],negat:473,negative_binomi:15,negative_slop:[260,460,470,471],neglig:[2,485],negoti:[6,490],neighbor:[141,320,322,423,488,504],neighborhood:[238,319],neighbour:[262,470,488],neither:[13,14,490],nelement:[277,302,463,498],nep:478,neq:[197,276,278,486],nest:[1,2,11,144,150,273,490,498],nesterov:486,net:[1,10,143,150,151,230,237,273,324,338,461,472,473,476,486,497],netlifi:5,network:[1,2,5,10,15,143,150,151,206,212,213,214,217,230,231,232,233,237,273,280,285,290,298,309,313,315,317,351,353,459,461,470,471,472,473,476,485,486,488,490,491,492,504,505],neural:[5,10,206,217,231,273,280,285,298,313,315,317,459,461,471,476,486,503],neurip:15,neuron:231,never:[2,4,5,14,59,141,159,324,348,473,490,498],nevertheless:492,new_:[476,498],new_data:485,new_empti:[460,498],new_factor:1,new_ful:[460,476,498],new_group:[14,309],new_interv:1,new_lr:486,new_on:[463,498],new_scal:1,new_stat:[11,18,407,489],new_strategi:466,new_tensor:[463,476,498],new_zero:[460,498],newer:[475,476],newli:[5,373,374,473],newtyp:461,next:[1,2,13,14,15,145,241,242,253,258,287,289,466,470,472,475,481,485,490,491,495,497,498,500],next_stat:15,nfs:14,ngimel:7,nhead:[313,314,315,316,317],nhwc:495,nice:[2,221,222,223,224,225,226,238,267,268,269,319,468],nichola:15,niederreit:375,nielsen:15,niki:[313,315,317],ninja:[9,484],nist:500,niter:[160,365,426],nll:280,nll_loss2d:460,nll_loss:[1,460,485],nllloss:[229,253,303,470],nlp:[250,251,252],nms:504,nn_func:478,nn_module_inst:459,nnode:14,nnq:488,nnz:[2,415,493,498],no_grad:[2,4,93,143,237,273,463,485,499],no_sync:324,noam:[313,315,317],noarch:484,nock:15,node:[14,217,230,324,464,476,485,490,491,492],node_rank:14,nois:[460,482],nola:141,nomin:461,non:[1,2,4,8,9,11,14,15,18,32,46,53,55,58,62,130,143,144,150,151,160,170,177,182,193,207,208,209,222,223,225,226,229,237,241,256,257,267,268,269,270,271,272,273,276,278,279,280,287,289,313,324,357,398,399,415,433,446,459,461,463,466,471,474,476,478,479,488,489,490,492,495,496,498,504,505],non_block:[143,237,273,348,460,476,494,498],non_leaf_module_list:488,noncontigu:2,nondet_tol:2,nondetermin:[2,482],nondeterminist:[46,217,221,222,223,224,225,226,470,482,498],nondetermnist:482,none:[1,2,9,11,13,14,15,17,19,20,21,22,23,24,25,26,27,28,29,31,32,33,34,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,55,58,60,62,63,64,66,69,70,71,72,73,74,75,76,77,80,84,86,88,90,91,92,94,96,97,98,99,100,101,107,108,109,110,112,113,114,115,116,117,122,123,124,125,128,130,131,141,142,143,145,147,149,150,151,154,155,156,157,158,159,160,161,162,163,164,165,166,167,169,170,171,172,173,174,175,176,177,178,181,182,184,185,186,187,189,190,191,192,193,194,197,198,200,201,204,205,207,208,209,210,211,212,213,214,217,227,229,230,235,236,237,239,247,248,253,254,255,256,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,283,284,286,288,301,302,303,305,309,313,314,315,316,317,318,320,321,322,324,329,330,331,332,333,334,335,336,351,352,353,355,357,358,359,361,362,365,367,368,369,370,372,375,376,377,378,379,380,381,382,383,384,386,387,388,389,393,395,396,398,406,408,409,410,411,413,414,415,417,418,419,420,421,423,424,425,426,427,430,431,432,434,439,440,441,442,444,446,447,449,450,455,456,457,459,460,461,464,465,466,467,468,470,471,476,478,481,485,486,488,489,490,493,494,498,500,502,503,504,505,506],nonexist:461,nonfinit:137,nonlinear:[210,227,248,287,289,471],nonlinearli:5,nonloc:462,nonmask:334,nonneg:[15,365,426],nonnegative_integ:15,nonzero:[2,141,169,171,172,177,454,460,485,498],noopobserv:488,noordhui:7,noplot:5,nor:[13,14,324,371],noreturn:461,norm:[1,59,85,175,178,179,235,236,265,282,314,316,318,326,332,333,338,341,342,353,355,388,460,463,470,472,485,486,488,498],norm_except_dim:460,norm_typ:[235,236,255,256,326,460,470],normal:[1,2,88,102,126,131,141,143,146,165,206,212,213,214,232,233,243,250,251,252,259,262,298,309,314,316,324,326,327,338,346,347,353,355,381,382,388,392,423,457,459,460,463,467,471,476,486,488,490,497,498,499,503,505,506],normal_:[460,467,471,476,498,499],normalized_shap:[259,460,470,488],nose:503,nose_i:500,nose_x:500,notabl:505,notat:[406,462,498],note:[2,8,9,10,11,13,14,15,16,17,32,41,46,61,81,131,136,160,210,211,217,221,222,223,224,225,226,227,229,235,236,248,253,254,265,266,274,276,277,278,279,280,283,286,301,302,313,318,324,375,457,458,459,460,462,466,470,473,474,475,477,478,480,481,485,486,488,491,492,493,496,498,500,502,503,505],notebook:[5,506],noth:[5,9,11,459,461,492],notic:[14,131,210,320,425,459,473,486],notifi:[6,492],notimpl:[462,478],notimplementederror:15,notion:[13,212,213,214,250,251,252,309],now:[2,4,11,118,131,145,150,288,320,338,459,467,468,472,474,476,477,478,485,486,491,492,498,503],nproc:[466,477,491],nproc_per_nod:14,nrow:506,nsdf3:500,nthread:500,nuanc:5,nuc:[333,342,358],nuclear:358,nuclear_norm:460,num:[193,241,243,287],num_alloc_retri:11,num_channel:[243,468,488],num_class:[460,470,500,503],num_decoder_lay:313,num_direct:[241,257,287],num_embed:[235,236,470],num_encoder_lay:313,num_featur:[143,212,213,214,237,250,251,252,273,309,470,488],num_gpus_you_hav:14,num_group:[243,460,488],num_head:[279,460],num_keypoint:503,num_lay:[241,257,287,288,314,316,460,485],num_lin:500,num_oom:11,num_output_channel:505,num_paramet:281,num_proc:472,num_process:481,num_replica:13,num_sampl:[13,193,460,498],num_send_recv_thread:490,num_work:[13,484,500],num_worker_thread:490,number:[1,2,3,4,5,9,13,14,15,18,23,24,25,26,27,28,29,32,43,45,46,53,54,57,65,66,67,86,88,89,90,94,101,102,109,112,113,115,119,120,121,122,125,126,128,129,131,155,158,160,165,173,176,180,192,193,195,197,199,200,201,202,203,204,205,207,208,209,210,211,215,216,217,221,222,223,224,225,226,227,229,230,234,235,238,239,240,241,242,243,244,245,246,247,248,253,254,257,258,259,260,261,263,264,265,266,267,268,269,273,276,277,278,279,280,281,286,287,289,290,291,292,298,300,301,302,303,305,306,307,308,310,311,312,313,314,315,316,317,318,319,324,332,333,335,336,338,341,342,343,344,348,349,350,352,353,357,359,360,361,365,367,369,375,377,378,379,381,382,387,389,390,391,392,393,394,399,400,402,404,405,406,407,415,420,423,426,433,440,442,446,447,449,452,453,455,458,460,461,462,463,466,470,471,474,476,478,482,485,486,488,489,490,491,493,494,495,498,499,500,502,503,504,505,506,507],numel:[134,460,467,498],numer:[1,13,15,25,55,86,108,131,150,151,174,184,211,212,213,214,243,250,251,252,259,303,306,309,353,398,462,470,478,485,486,498,507],numpi:[13,30,37,111,389,406,415,432,463,474,478,479,484,485,495,496,497,498,500,505,507],nvcc:[9,11],nvidia:[2,14,476,479,484,499],nvlink:490,nvprof:[2,3],nvtx:[2,3],nvvp:2,o_ort:485,o_t:257,obermey:7,obj:[11,135,136,149,397,484],object:[1,2,11,13,14,15,16,17,18,135,136,143,147,148,149,150,151,159,160,180,230,232,233,237,250,251,252,273,309,340,349,350,397,457,461,462,464,465,466,473,475,476,478,479,480,481,484,485,486,489,490,492,494,495,498,500,501,504,505,506,507],obscur:9,observ:[1,210,211,212,213,214,227,229,248,250,251,252,253,254,265,266,276,277,278,280,286,301,302,309,318,324,470,472,480],observer_en:488,observer_kwarg:488,observer_non_leaf_module_list:488,observerbas:488,obtain:[2,13,14,15,184,217,280,365,426,466,467,470,473,475,488,498,503],obviou:[479,492,493],obvious:5,occas:[2,5,473],occasion:493,occupi:[11,262,470,476,507],occur:[1,8,11,13,141,144,217,461,468,470,472,476,479,485,490,492,496,498],occurr:[185,187,189,348,446,447],oct:460,octob:11,odd:15,odict_kei:341,odot:257,off:[2,5,11,44,51,123,124,141,150,211,403,470,475,477,480,488,490,491],offer:[14,476],offici:[6,14,202,503],offlin:[148,505],offset:[36,81,82,83,236,373,374,440,442,460,470,488,498,500,504,505],offset_group:504,often:[1,2,3,5,9,13,14,15,131,150,191,235,250,251,252,253,470,479,480,485,486,490,498],old:[362,397,456,459,473,483,484,486],older:476,omagma:484,omega:423,omega_1:[102,126,392],omega_d:[102,126,392],omega_i:[102,126],omit:[4,9,14,89,286,484,485,490,505,506],omkl:484,omp:475,omp_num_thread:475,onc:[1,2,5,10,13,14,16,89,143,145,159,230,237,273,404,459,464,466,472,473,475,476,478,480,485,486,497],one:[1,2,3,4,5,8,9,10,11,13,14,15,17,36,46,54,55,82,89,92,102,126,132,133,134,145,158,173,182,193,202,207,210,211,212,213,214,217,221,224,225,226,229,236,239,250,251,252,254,255,256,265,277,309,320,324,325,328,338,349,354,355,357,358,372,373,374,398,406,419,423,436,448,459,464,466,467,468,470,473,474,475,476,477,478,480,481,482,484,485,486,488,490,492,494,495,497,498,500,501,502,503,504,505],one_hot:460,one_hot_categor:15,onecyclelr:486,ones:[2,13,14,15,17,36,45,54,92,101,141,149,159,211,238,243,259,277,278,280,319,329,330,331,332,333,334,335,336,338,339,352,362,388,454,460,463,467,468,470,473,474,476,478,485,486,490,492,495,498,503],ones_:471,ones_lik:[460,476,485],onesid:[131,141,392,423,460,498],onfunctionent:480,onfunctionexit:480,ongo:490,onli:[1,2,3,4,5,6,8,11,13,14,15,16,17,44,45,51,53,88,90,92,102,123,124,126,127,131,137,143,144,145,149,150,151,159,202,224,225,226,230,235,236,237,238,253,273,276,278,281,288,309,319,320,324,348,349,350,358,366,385,392,402,404,419,423,425,427,432,440,442,446,447,452,453,460,461,464,466,467,468,470,471,472,473,476,477,478,479,480,481,483,484,485,486,488,490,491,492,493,495,496,498,503,505],onlin:486,only_input:2,onnx:[349,350,458,468,503],onnx_model:485,onnxruntim:485,onto:[11,147,148,159,466,479],oom:479,opaqu:14,open:[2,6,15,147,159,459,466,484,490],openbla:484,opencv:10,openmp:[475,484],oper:[1,3,4,5,6,8,10,11,13,15,17,32,36,44,46,51,54,58,61,73,74,75,76,90,91,92,101,102,112,113,120,123,124,126,131,143,148,149,150,151,158,167,173,206,211,216,217,221,222,223,224,225,226,230,231,232,233,234,236,237,238,239,247,248,249,254,260,265,270,271,272,273,290,291,292,298,301,312,319,324,351,358,361,362,369,370,377,378,379,380,381,382,383,384,391,392,415,419,424,425,427,432,454,455,456,458,459,462,470,472,474,475,476,477,479,481,482,486,489,490,491,493,495,496,498,501,502,504,505],operand:[89,462,478,482,495],operatiton:488,operator_export_typ:485,operatorexporttyp:485,operatornam:[110,210,211,217,248,253,254,265,409],opinion:5,opnam:485,opportun:[459,491],oppos:505,ops:[1,2,14,150,151,463,464,467,468,475,476,478,485,488,496,498,499,501],opset:485,opset_vers:[485,503],opt:[149,159,397,459],opt_einsum:89,optim:[1,2,5,8,9,10,14,15,89,143,149,150,151,160,212,213,214,235,237,250,251,252,273,276,277,278,302,309,324,365,458,459,461,464,468,471,473,475,477,479,481,485,488],optimiz:[459,485],optimization_blacklist:464,optimize_for_mobil:464,optimizer0:472,optimizer1:472,optimizer2:472,optimizer_class:490,optimizer_param:324,optimum:486,option:[1,2,4,9,11,13,14,15,18,19,21,22,23,24,25,26,27,28,29,30,31,32,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,55,58,60,62,63,64,66,67,69,70,71,72,73,74,75,76,77,80,81,82,83,85,86,88,90,91,92,94,96,97,98,99,100,101,102,107,108,109,112,113,114,115,116,117,122,123,124,125,126,128,130,131,137,141,143,145,150,151,154,155,156,157,158,159,160,161,162,163,164,165,166,167,169,170,171,172,173,174,175,176,177,178,181,182,184,185,186,187,189,190,191,192,193,194,197,198,202,206,208,209,210,211,212,216,217,221,222,223,224,225,226,227,228,229,232,233,234,235,236,237,238,239,247,248,250,253,254,255,256,259,260,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,280,282,283,284,286,290,291,292,298,301,302,303,305,309,312,313,314,315,316,317,318,319,320,321,322,324,325,329,330,331,332,333,334,335,336,346,347,348,349,350,351,352,353,355,357,358,359,361,362,365,367,368,369,370,372,375,376,377,378,379,380,381,382,383,384,386,387,388,389,392,395,396,398,406,408,409,410,411,413,414,415,417,418,419,420,421,423,424,425,426,427,430,431,432,434,438,439,440,441,442,443,444,446,447,449,450,455,456,457,459,460,463,464,465,470,471,478,479,480,482,485,488,490,493,495,498,500,502,503,504,505,506],orang:503,ord:[358,460],order:[2,4,5,14,15,17,35,52,61,81,88,104,105,106,193,202,217,230,274,283,299,324,334,348,349,350,351,358,368,398,413,414,425,427,434,437,440,442,446,449,457,459,460,462,466,467,468,470,473,474,476,477,478,482,485,486,488,490,491,492,495,498,503,504,505],ordereddict:[274,283,299,338,460,504],ordin:[495,498],ordinari:[11,472],ordinarili:[1,472],org:[2,3,5,10,15,160,290,291,313,355,365,457,462,484,488,497,503,505],organ:[5,6,477,480],orgqr:[460,498],origin:[2,8,13,56,61,128,130,131,141,147,149,150,151,181,202,206,230,309,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,348,351,353,355,393,413,414,416,425,427,434,446,447,459,466,468,476,478,479,480,481,485,486,488,494,498,504,505],ormqr:[460,498],orphan:[241,257,287],ort:485,ort_sess:485,ortho:160,ortho_bparam:160,ortho_fparam:160,ortho_iparam:160,orthogon:[160,363,364,372,471],orthogonal_:[463,471],orthonorm:[425,427],ossci:484,ostmo:7,other:[1,2,3,5,6,9,10,11,13,15,23,30,32,37,41,47,49,50,52,55,72,81,85,86,93,94,95,108,109,115,122,128,137,149,155,165,166,167,169,171,172,174,176,182,185,188,189,192,197,221,222,223,224,225,226,230,238,273,274,283,319,324,338,356,358,384,387,398,403,415,419,432,436,439,441,452,459,460,461,462,463,466,467,468,470,472,473,474,475,476,477,478,479,481,482,483,485,486,488,490,491,492,498,503,505,506],other_help:461,otherwis:[1,2,5,6,8,9,13,14,23,24,25,26,27,28,29,32,37,43,55,66,88,95,138,139,143,144,154,159,160,174,185,186,187,189,191,192,195,208,209,232,233,237,241,244,245,246,247,257,260,273,277,278,280,281,287,288,290,301,307,312,324,348,352,356,365,370,372,375,384,390,398,400,421,422,423,424,425,427,446,447,450,451,454,461,464,467,470,472,478,481,485,486,488,490,492,494,495,496,498,500,503],otim:[29,470],our:[2,5,210,478,481,485,491,493],out:[1,2,5,6,8,10,11,19,20,21,22,23,24,25,26,27,28,29,31,32,34,38,39,40,41,42,43,45,46,47,48,49,50,53,55,58,60,62,63,64,66,69,70,71,72,73,74,75,76,77,80,84,86,88,90,94,96,97,98,99,100,101,107,108,109,110,112,113,114,115,116,117,122,125,128,130,149,154,155,156,157,158,161,162,163,164,165,166,167,169,170,171,172,173,174,175,176,177,178,181,182,185,186,187,189,190,191,192,193,194,197,198,207,208,209,215,218,219,220,221,222,223,224,225,226,231,232,233,241,242,255,256,261,267,268,269,270,271,272,285,287,289,293,294,295,296,297,313,314,315,316,317,319,320,321,322,323,332,333,334,335,357,358,359,361,362,367,368,369,372,375,376,377,379,381,383,384,386,387,388,395,396,398,408,409,410,411,413,414,417,418,419,420,421,425,427,430,431,432,434,436,439,441,443,444,450,454,455,456,457,459,460,466,468,470,473,474,477,478,481,485,488,490,491,492,493,495,498,504,505],out_channel:[221,222,223,224,225,226,488,504],out_dim:[460,468],out_featur:[143,215,237,261,273,353,355,488],out_h:504,out_height:504,out_int32:[55,398,460],out_j:223,out_ort:485,out_padh:470,out_padt:470,out_padw:470,out_proj_bia:460,out_proj_weight:460,out_unf:319,out_w:504,out_width:504,outdim:460,outer:[29,89,117,503],outlier:301,outlin:491,outmost:490,output0:472,output1:[202,241,287,472,485],output2:[202,241,287],output:[1,2,3,4,5,11,13,14,15,17,19,21,22,23,24,25,26,27,28,29,31,32,33,34,36,38,39,40,41,42,43,45,46,47,48,49,50,53,55,58,59,60,62,63,64,66,69,70,71,72,73,74,75,76,77,80,81,83,86,88,89,90,91,92,94,96,97,98,99,100,101,107,108,109,112,113,114,115,116,117,122,125,128,130,131,141,143,145,149,150,151,154,155,156,157,158,161,162,163,164,165,166,167,169,170,171,172,173,174,176,177,178,181,182,185,186,187,188,189,190,191,192,193,194,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,276,277,278,279,280,281,282,285,286,287,289,290,291,292,293,294,295,296,297,298,300,301,302,303,304,305,306,307,308,309,310,311,312,313,318,319,320,321,322,323,324,349,351,352,353,355,357,358,359,361,362,368,369,370,375,376,377,378,379,380,381,382,383,384,386,387,388,389,392,395,396,398,406,408,409,410,411,413,414,417,418,419,420,421,422,424,425,427,430,431,434,438,439,441,443,444,446,447,449,450,451,455,456,459,460,464,467,468,470,472,473,475,477,478,479,484,485,486,488,491,493,495,496,497,498,500,503,504,505],output_2d:262,output_4d:262,output_devic:[14,230,309,324,470],output_featur:478,output_nam:485,output_nr:460,output_pad:[224,225,226,460,470],output_ratio:[239,460],output_s:[199,200,201,203,204,205,225,238,239,270,271,272,319,460,470,488,504,505],output_scal:460,output_split:14,output_tensor_list:14,output_zero_point:460,outsid:[1,4,6,13,22,42,461,470,476,479,486,505],outstand:490,oven:503,over:[2,6,13,14,15,58,73,74,75,76,89,143,150,159,167,186,188,199,200,201,203,204,205,206,207,208,209,210,211,212,213,214,217,221,222,223,224,225,226,227,229,236,237,238,239,243,248,250,251,252,253,254,255,256,259,262,265,266,267,268,269,273,276,277,278,280,286,301,302,304,309,318,319,326,355,388,421,422,424,433,466,467,468,470,472,474,475,477,478,481,485,486,488,490,491,493,498,499,500,504,505,506],overal:[6,14,473,475,481,505],overall_end:13,overall_start:13,overestim:[365,426],overflow:[1,75,76,370,424,440,442,470,505],overhead:[1,2,3,14,475,476,477,480,488,491,498],overheard:500,overlap:[2,13,141,238,319,324,476,495,504],overload:461,overparameter:15,overrid:[9,14,15,210,211,227,229,248,253,254,265,266,276,277,278,280,286,301,302,318,329,397,406,470,485,486,490],overridden:[2,9,478],override_dict:478,overriden:478,overshoot:470,oversubscript:475,overview:[10,14,324,466,473,490],overwhelm:5,overwrit:[13,274,283,473],overwritten:488,overwrritten:488,owen:375,own:[1,5,6,14,15,143,159,221,222,223,224,225,226,237,273,472,473,476,485,488,490,492],owner:[457,478,490,491],owner_nam:490,ownerrref:[490,492],ownership:[5,6],p1d:470,p2d:470,p3d:470,p_c:211,p_i:318,p_tensor:498,pace:5,pack:[179,230,241,257,287,348,349,350,351,460,464,479,484,488],pack_padded_sequ:[241,257,287,348,351,479],pack_sequ:[257,287,351],packag:[5,11,15,17,324,457,478,486,490,499,501,502],packagesnotfounderror:484,packed_hh:460,packed_ih:460,packed_input:479,packed_output:479,packed_weight:460,packedsequ:[12,241,257,287,349,350,351],pad:[13,141,207,208,209,217,218,219,220,221,222,223,224,225,226,235,238,267,268,269,270,271,272,276,277,279,293,294,295,296,297,319,323,349,351,352,423,460,479,482,485,488,497,504,505,506],pad_if_need:505,pad_mod:[423,498],pad_packed_sequ:479,pad_valu:506,padd:488,padded_input:479,padding_idx:[235,460,470],padding_input:479,padding_mod:[221,222,223,224,225,226,460,470,488,505],padding_valu:[351,352],padh:[470,488],padt:470,padw:[470,488],page:[1,5,13,160,313,315,317,476,477],pai:[484,496],pair:[32,59,88,274,279,283,384,423,461,467,470,486,490,491,492,493],pairwis:[15,248,282,318],pairwise_dist:460,pairwisedist:470,paper:[5,15,202,206,212,213,214,216,231,232,233,239,243,246,250,251,252,259,285,290,298,301,309,313,315,317,318,470,486,503,504],parallel:[0,1,13,14,119,120,144,230,279,309,324,404,405,458,470,472,473,475,481,484,490,492,505],parallel_info:[0,475],parallelli:500,param1:15,param2:15,param:[1,2,15,143,153,237,273,283,284,324,460,471,472,473,477,486,488,503],param_byt:486,param_group:486,param_shap:15,paramet:[1,2,4,9,11,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,88,89,90,91,92,94,96,97,98,99,100,101,102,103,104,105,106,107,108,109,112,113,114,115,116,117,122,123,124,125,126,127,128,130,131,132,133,134,135,136,137,140,141,142,143,144,145,147,148,149,150,151,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,241,242,243,244,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,301,302,303,305,306,307,309,312,313,314,315,316,317,318,319,320,321,322,323,324,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,349,350,351,352,353,354,355,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,400,401,402,403,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,427,428,429,430,431,432,433,434,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,459,463,464,465,466,468,470,471,472,473,477,478,480,481,483,485,488,489,490,491,493,494,498,500,501,502,503,504,505,506],parameter:[15,498],parameteriz:15,parameters_to_prun:338,parameters_to_vector:338,parameterserver2:490,parametr:[15,331,478],params_rref:490,paramter:488,parent:[466,484,488,492],parenthes:462,parenthesi:[2,93,356],park:503,parmar:[313,315,317],pars:[2,14],parse_arg:[14,476,485],parser:[14,476],part:[1,3,4,5,6,9,10,14,15,88,102,126,131,138,139,140,143,148,150,151,237,273,324,423,439,440,441,442,457,459,461,464,465,472,473,478,479,485,486,488,490,491,492,493,500],parti:[6,457,459,476,501],partial:[15,83,178,270,271,272,334,462,468,470,473,485,488,492],particip:[13,14,324,491],particular:[1,5,13,143,230,237,273,438,459,461,476,479,480,482,485,498,500],particularli:[13,229,230,280,459],partit:[202,491,492],partli:6,partner:5,pascal:[500,503],pass:[1,2,4,5,9,13,14,15,17,55,83,88,143,150,151,159,202,203,204,205,230,235,236,237,239,253,273,278,299,314,315,316,317,324,329,334,348,351,397,398,425,432,457,459,462,464,466,467,468,470,471,472,473,475,476,477,478,480,483,485,486,488,490,492,493,498,500,503,504,505],past:[14,479,503],paszk:[6,7],patch:[5,238,319],path:[2,3,9,14,288,457,461,473,478,482,483,500,502,506],path_importer_cach:457,path_to_hub_dir:457,pathlib:506,pathlik:[159,397],patienc:486,pattern:[14,230,351,459,473,476,478,479,488],paus:490,pca:365,pct_start:486,pdb:[146,149,152,459,461],pdf:[217,290,488,505],pdist:[1,282,460],peak:[11,486],peer:[5,14,476],penalti:[1,486,488],pend:490,penros:366,peopl:5,pep:[459,461],per:[1,9,11,13,14,89,160,210,211,212,213,214,227,229,230,236,243,248,250,251,252,253,254,259,265,266,276,277,278,280,286,301,302,309,313,314,315,316,317,318,324,355,359,365,373,406,426,468,469,470,475,477,480,482,488,491,498,502,503],per_channel_affin:[373,488],per_channel_symmetr:488,per_index_weight:236,per_sample_weight:[236,460,470],per_tensor_affin:[374,488],per_tensor_symmetr:488,per_work:13,percentag:486,perchannelminmaxobserv:488,perfectli:[482,504],perform:[1,2,4,8,12,13,14,15,24,25,26,27,28,29,37,43,46,53,75,76,86,143,148,150,165,190,194,217,221,222,223,224,225,226,236,237,241,253,257,273,281,287,324,348,358,365,370,391,398,424,425,426,443,459,466,467,468,469,470,471,472,473,475,476,477,478,482,486,488,490,491,492,493,494,495,496,498,502,504,505],perhap:501,period:[11,44,51,123,124,460,481,486],perman:[329,330,331,332,333,334,335,336,345,492],permiss:478,permit:493,permut:[13,89,383,460,468,485,496,498],perplex:15,persist:[4,5,12,143,237,241,257,273,287,484],person:[5,6,458,500,501],perspect:[477,491,505],perturb:[2,131],pervas:15,peter:7,peterjc123:[7,484],phase:[2,484],phenomenon:479,phi:[240,470],phone:503,photo:500,phototour:501,phy:375,physic:[462,475],pic:505,pick:[490,505],pickl:[13,159,273,397,466],pickle_load_arg:159,pickle_modul:[159,397],pickle_protocol:397,pid:479,piec:[5,491],pieter:7,pietern:7,pil:[500,501],pil_to_tensor:505,pillow:505,pin:[90,92,143,237,273,348,432,494,498],pin_memori:[13,90,92,432,459,460,476,494,498],pinvers:[460,498],pip:[484,497],pipe:490,pipelin:505,pivot:[177,178,179,498],pixel:[222,232,233,280,285,320,470,488,500,504,505,506],pixel_shuffl:[285,460,485],pixelshuffl:470,pixelwis:503,pizza:503,pkg:484,place:[1,5,8,11,13,14,18,36,54,92,143,193,206,216,230,231,232,233,234,237,247,260,273,289,290,291,292,298,312,324,326,327,337,338,339,341,342,343,344,393,433,459,461,468,470,472,476,480,485,488,490,491,494,496,498,505],placehold:[249,488],plai:14,plain:[9,211,274,283],plan:[2,5,14,102,126,131,324,392],plane:[81,199,200,201,203,204,205,207,208,209,221,222,223,224,225,226,239,255,256,259,262,267,268,269,355,394,470,473,488,500],plant:503,platform:[9,372,464,482,488,503],pleas:[1,2,3,5,6,8,10,14,15,36,46,54,92,217,221,222,223,224,225,226,253,324,366,463,467,468,469,470,472,473,478,484,485,486,488,490,491,496,498,500],plenti:479,plot:[475,497],plu:[2,505],plume:500,pmf:15,png:500,point:[1,2,5,6,8,11,13,18,32,44,45,51,109,118,123,124,131,133,141,143,150,151,156,158,160,165,173,207,208,209,221,222,223,224,225,226,237,238,267,268,269,273,319,324,366,373,374,375,384,387,400,401,406,437,443,459,461,462,469,470,472,473,477,482,486,488,490,491,495,498,500,502,504,505,507],pointer:[11,288,477,480,490,492,498],pointwis:[15,165,166,467,474],poisson:[286,460,470],poisson_nll_loss:[1,460],poissonnllloss:470,polar:15,poli:500,polici:[15,486],policy_network:15,polosukhin:[313,315,317],polyfil:459,polygamma:[460,498],polygamma_:[460,498],polygon:500,polymorph:461,pool:[11,199,200,201,203,204,205,207,208,209,239,255,256,267,268,269,270,271,272,274,475,478,481,482,488,490,504],pooled_w:504,poor:472,pop:[11,274,283],popul:[2,15,498],popular:501,popularli:505,port:14,portion:[110,230,324,329,330,331,332,333,334,335,336,427,470,486],pos_weight:[211,460,470],pose:491,posit:[2,13,15,44,46,51,62,63,64,123,124,143,144,160,211,221,222,223,228,230,236,237,273,279,306,313,318,393,439,440,441,442,448,457,460,467,468,470,478,485,488,498,504,505,507],position:[467,468],positive_definit:15,positive_integ:15,positivedefinit:15,possess:6,possibl:[6,9,10,13,15,143,150,159,211,217,237,273,390,416,459,461,466,467,470,471,473,475,477,478,481,484,488,490,492,495,498,500],post:[5,479,484,488,503,505],postprocess:503,pot:503,potenti:[14,46,217,221,222,223,224,225,226,324,461,466,470,473,485,496,498],potential_energi:15,pottedpl:503,pow:[1,2,460,467,472,485,498],pow_:[460,467,498],pow_adder_reduc:2,pow_reduc:2,powbackward0:2,power:[183,255,256,353,369,388,449,462,470,486,505],powertransform:15,practic:[13,15,458,459,466,468,478,503],pradhan:7,pre:[2,10,143,237,273,329,330,331,332,333,334,335,336,337,457,459,464,475,485,486,488,498,500,503],preced:[462,475,486],precis:[2,9,15,207,208,209,211,221,222,223,267,268,269,324,372,406,458,469,470,476,485,488,495,498,503],precision_matrix:15,precompil:480,precondit:160,precondition:160,pred:[324,490],predict:[202,211,503],predict_net:485,preemptiv:[324,488],preexist:2,prefer:[6,13,131,160,280,398,459],prefix:[143,237,273,457,488,493],prelu:[1,274,460,485],prepack:464,prepar:[462,485],prepare_for_backward:477,prepare_qat:488,prepend:[9,13,143,182,237,273,474],preprocess:[10,143,498,503],prerequisit:477,presenc:6,present:[6,14,143,177,202,237,273,348,457,465,466,467,468,473,478,491,495,500,502,503,504],preserv:[2,13,105,106,145,148,274,283,320,398,459,464,467,470,471,476,485,488,490,495,498,505],preserve_format:[91,113,362,378,380,382,456,495,498],preserve_rng_st:4,preserved_attr:145,pressur:[2,473],pretrain:[235,236,457,473,485,503],pretrained_backbon:503,pretti:[143,406,459],prevent:[1,5,11,13,14,75,76,141,231,279,301,370,424,440,442,466,470,472,477,479,492,493],previou:[14,148,241,257,287,324,329,330,331,332,333,334,335,336,375,423,464,473,484,492,498],previous:[2,147,459,474,476,489,490,498],prim:[459,485],primari:[6,462],primarili:[15,17,488,498],primit:[14,459,461,462,475,490],princip:365,print:[2,13,17,143,145,147,149,177,215,237,249,261,273,285,337,338,339,340,343,406,457,459,460,470,475,476,478,485,486,488,490,498,500,504],printable_graph:485,printer:459,printout:11,prior:[5,6,338,474,486,488],prioriti:[5,11,461],pritam:7,pritamdamania87:7,privat:478,pro:484,prob:[15,460],probabilist:[365,426],probabl:[13,45,165,193,202,206,217,231,232,233,241,253,257,280,287,466,470,478,484,485,498,505],problem:[5,14,150,160,175,229,280,466,470,479,481,482,484,492],problemat:[5,459],proce:[472,476,490],procedur:[150,151,160,490,500],proceed:[11,491,492],process:[1,2,8,9,11,14,15,148,160,210,211,227,229,235,236,248,253,254,265,266,270,271,272,276,277,278,280,286,301,302,309,313,315,317,318,324,457,459,466,467,468,470,473,475,476,477,478,480,481,482,484,488,492,493,494,500,503],process_group:[309,324,490],process_id:309,processcontext:466,processgroup:14,processgroupag:490,processgroupgloo:[477,490],processgroupmpi:477,processgroupnccl:477,processgrouprpcbackendopt:490,prod:[1,237,238,319,460,467,485,498],prod_:[102,126,131,222,223,225,226,392],prod_d:[238,319],produc:[1,5,9,11,13,18,116,149,150,151,185,187,189,217,221,222,223,224,225,226,324,375,459,461,466,467,470,472,474,476,480,484,488,493,496],producer_info:480,product:[2,10,14,15,24,27,28,29,43,53,57,61,72,75,87,89,117,182,190,194,241,242,257,258,370,433,459,467,470,480,498,505],prof:2,profil:[3,406,490],profile_memori:2,program:[2,3,11,13,14,459,461,462,473,476,479,480,481,484],programm:461,progress:[11,449,457,465,486,503],project:[5,89,365,457,483],promot:[56,86,108,232,233,371,391,495],promote_typ:460,prompt:484,prone:[466,481],propag:[2,15,466,467,478,480,485,488,493,498],propagate_qconfig_:488,proper:[13,221,222,223,224,225,226,461,473,476,484],properli:[5,13,274,275,283,284,324,425,427,478,481,490,491,495],properti:[2,13,15,143,206,303,325,348,470,476,486,490,495,507],proport:[255,256,505],proportion:[320,470,488],propos:[6,7,486,491],protect:473,proto:485,protobuf:485,protocol:[13,397,478,484,490],prototyp:[468,490,495],prove:466,proven:[5,231,324],provid:[1,2,5,6,8,9,10,11,13,14,15,17,52,55,58,63,64,89,112,141,147,149,150,224,225,226,229,241,242,257,258,270,271,272,279,280,287,289,313,324,329,365,391,398,415,440,442,457,459,461,464,466,467,468,470,476,477,478,485,486,488,490,491,492,493,494,495,498,499,502,503,504,505,507],proxi:490,prune:[329,330,331,332,333,334,335,336],pruned_tensor:[329,330,331,332,333,334,335,336],pruning_method:338,pruning_typ:[334,338],ps_roi_align:504,ps_roi_pool:504,pseudo:[18,366],pseudoinvers:15,pseudorandom:[45,193,359,365,367,379,426,482],psi:[84,368],psroialign:504,psroipool:504,pth:[457,459,465],pts:502,pts_unit:502,publish:5,puhrsch:7,pull:[6,10],purchas:6,pure:[10,144,459],purpos:[14,182,217,406,491,498],push:[5,6,11],put:[5,13,159,243,457,466,476,481,486,491,492,498,500],put_:[460,498],pyav:501,pybind11:[9,10,461],pybind:9,pyc:480,pycapsul:16,pyramid:504,python3:[159,397],python:[1,2,3,6,9,10,11,13,14,57,58,67,86,92,129,143,144,145,146,148,149,150,159,174,186,230,274,275,283,284,324,358,390,393,400,421,422,424,433,443,450,451,457,458,466,468,470,473,474,475,476,477,478,479,480,481,484,485,488,489,490,491,492,493,498,501,505],python_only_fn:149,pytorch:[0,2,3,8,9,11,13,15,36,56,68,112,132,133,134,135,136,148,210,217,313,324,348,397,457,461,465,468,469,474,475,476,479,480,481,483,484,486,488,490,491,495,496,497,498,500,503,504,507],pytorch_jit:459,q_add:488,q_filter:488,q_input:488,q_per_channel_axi:[460,488,498],q_per_channel_scal:[460,488,498],q_per_channel_zero_point:[460,488,498],q_proj_weight:460,q_scale:[460,488,498],q_zero_point:[460,488,498],qconfig:488,qconfig_dict:488,qconfig_spec:488,qconfigdynam:488,qint32:[373,374,488],qint8:[373,374,488],qmnist:501,qnnpack:488,qparams_dict:488,qscheme:[460,488,498],qtensor:[460,498],quad:[210,211,253,254,265,280],quadrant:41,quadrat:479,qualiti:[5,500],quant:488,quant_max:[460,488],quant_min:[460,488],quantiti:[332,333,335,336,338,341,342,343,344,486],quantiz:[2,8,78,373,374,458,485,495,498],quantization_schem:[373,374],quantize_dynam:488,quantize_dynamic_jit:488,quantize_jit:488,quantize_per_channel:[460,488],quantize_per_tensor:[460,488],quantize_qat:488,quantized_batch_norm:460,quantized_gru:460,quantized_gru_cel:460,quantized_input:488,quantized_lstm:460,quantized_lstm_cel:460,quantized_max_pool2d:460,quantized_rnn_relu_cel:460,quantized_rnn_tanh_cel:460,quantstub:488,quantwrapp:488,quasi:375,quasirandom:375,quennevil:7,queri:[11,279,460,476],question:458,queu:[11,476,498],queue:[5,466],queue_2:466,quick:[2,5],quickli:5,quint8:[373,374,488],quit:[5,478,479,490],qw_i:279,r2plus1d_18:503,r3d:503,r3d_18:503,r_t:241,race:473,racket:503,rad2deg:[460,467,498],rad2deg_:[460,467],radian:[15,31,41,77,376,460],rais:[1,2,4,5,9,15,146,147,152,159,183,333,335,338,348,462,466,473,476,478,479,490,498,505],raise_except:2,ram:159,rand:[1,2,15,130,145,149,150,151,152,162,164,313,314,315,316,317,324,367,378,459,460,461,463,467,468,470,485,490,491,496,498,499,503,504],rand_lik:[460,463,499],randint:[46,191,217,460,463,468,470,493,498,499,503,505],randint_lik:[460,463,499],randn:[2,8,15,21,22,23,24,25,26,27,28,33,34,35,36,38,39,40,41,42,43,53,58,60,61,62,63,64,66,70,71,72,73,74,75,76,79,80,81,82,83,85,86,89,102,107,126,127,128,130,131,149,161,163,167,168,174,177,178,179,181,182,183,185,186,187,189,190,191,192,194,198,199,200,201,203,204,205,206,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,225,226,228,229,231,232,233,234,238,239,240,241,242,243,244,245,246,247,249,250,251,252,254,255,256,257,258,259,260,261,262,263,264,265,267,268,269,272,280,281,282,283,284,285,286,287,289,290,291,292,297,298,300,303,304,305,306,307,308,309,310,311,312,318,319,323,360,366,369,370,372,382,385,386,392,395,396,408,410,411,412,413,414,417,418,421,422,424,425,427,428,430,431,433,436,437,438,439,441,444,450,451,452,453,454,460,461,463,467,468,470,473,474,475,476,477,478,485,488,493,495,498,499],randn_lik:[460,463,485,499],random:[15,18,45,121,129,160,180,206,217,241,257,290,329,335,336,343,344,359,365,375,377,378,379,380,381,382,383,399,407,426,457,458,460,470,482,485,497,498,500,503,504,505],random_:[210,211,229,280,460,467,470,498,499],random_devic:18,random_offset:500,random_sampl:460,random_split:13,random_tensor:491,random_unstructur:[340,345],randomaffin:505,randomappli:505,randomchoic:505,randomcrop:[500,505],randomeras:505,randomgrayscal:505,randomhorizontalflip:505,randomli:[2,13,206,231,232,233,290,335,470,480,488,500,505],randomord:505,randomperspect:505,randomresizedcrop:505,randomrot:505,randomsampl:13,randomsizedcrop:505,randomverticalflip:505,randperm:[460,463,499],rang:[1,2,11,13,14,15,22,42,45,66,98,103,125,165,202,229,237,239,242,247,258,264,275,280,284,289,303,304,305,327,448,459,460,470,473,475,479,481,485,486,488,495,497,498,499,500,503,505,506],range_pop:11,range_push:11,rangl:15,rank:[13,14,15,175,184,266,309,324,365,366,425,426,477,481,490,491],rao:7,rapidli:479,rare:[1,5,472,488],rate:[1,15,232,233,367,480,502,503],rather:[2,4,9,116,406,459,468,470,474,478,485,488,490,497,498,506],ratio:[15,239,504,505],ravel:334,raw:229,rbrace:[439,440,441,442],rceil:[32,60],rcond:[366,460],rdinat:[415,493],reach:[5,6,13,160,481,486,490],reachabl:14,read:[13,14,36,147,159,432,467,468,473,474,476,480,485,486,490,498,502],read_video:502,read_video_timestamp:502,readabl:[0,11,13,485],readi:[5,9,17,44,51,123,124,324,459,477,490,491],readlin:[147,159],readthedoc:89,real:[13,15,23,24,25,26,27,28,29,43,66,88,102,126,131,138,139,140,192,282,285,392,423,425,427,452,453,457,460,473,490,492,496,498,505],real_vector:15,realiti:3,realli:[2,5,425,427,473],realloc:128,realvector:15,rearrang:[285,468,470],reason:[13,14,150,151,185,187,189,210,397,459,461,470,473,477,483,485,488,490,495],rebas:5,rebuild:5,rebuilt:5,recal:[211,478,503],receiv:[2,5,11,13,14,15,17,324,466,472,481,490,491,492],recent:[1,2,5,134,461],recip:329,reciproc:[1,396,460,467,485,498],reciprocal_:[460,467,498],recogn:[13,490],recognit:[500,503],recommend:[1,2,13,14,15,18,136,144,160,202,230,324,397,432,446,457,459,466,468,470,471,472,473,475,476,478,481,485,488,498],recomput:[4,355,470,486],recompute_scale_factor:470,reconstruct:[11,210,211],record:[2,11,32,44,51,90,91,92,101,112,113,123,124,143,150,158,173,230,237,273,361,362,377,378,379,380,381,382,383,384,415,432,455,456,459,461,472,473,476,485,488,490,498],record_ev:11,record_shap:2,record_stream:[463,498],recordfunct:480,recordfunctioncallback:480,recordingobserv:488,recov:[126,131,179,324,348,472,479],recoveri:479,recreat:[2,473],rectangl:505,rectangular:179,rectifi:[290,291,470,471,488],recurr:[14,150,217,230,241,242,257,287,351,476,486],recurs:[15,143,149,237,273,461,486],recv1:491,recv2:491,recv:[14,491],redirect:9,redistribut:484,reduc:[1,2,11,14,24,33,34,174,185,186,187,189,191,210,211,212,213,214,227,229,236,248,253,254,265,266,276,277,278,280,286,301,302,309,318,324,356,370,372,421,422,424,425,450,451,460,466,467,470,475,477,484,486,488,490,493,498],reduce_add:11,reduce_multigpu:14,reduce_op:14,reduce_rang:488,reduce_scatt:14,reduce_scatter_multigpu:14,reducelronplateau:486,reduceop:14,reducesum:485,reduct:[1,14,165,210,211,217,227,229,236,248,253,254,265,266,276,277,278,280,286,301,302,318,324,460,467,470,477,488],redund:[14,131,392,423],redundantli:472,reevalu:486,refactor:[5,483,484],refcount:[466,481],refer:[2,11,13,14,15,17,36,54,92,144,149,153,160,217,279,324,365,375,426,457,460,466,467,469,470,472,473,477,478,479,481,488,490,491,495,496,498,499,501,503,504],referenc:[438,461,473,490],refin:468,refine_nam:[460,467,468],reflect:[111,141,221,222,223,293,294,423,459,470,479,496,498,505],reflection_pad1d:460,reflection_pad2d:460,reflection_pad:485,reflectionpad2d:470,reflector:116,refriger:503,regard:[224,225,226,235,236,459,470,492],regardless:[1,13,446,472,490],region:[1,15,239,247,427,459,466,470,472,476,488,504,505],regist:[2,10,14,15,143,159,237,273,274,275,283,284,324,325,466,477,478,480,485,490,498],register_backend:[14,490],register_backward_hook:[143,237,273],register_buff:[143,237,273,459,461,478],register_custom_op_symbol:485,register_forward_hook:[143,237,273],register_forward_pre_hook:[143,230,237,273],register_hook:[2,143,237,273,463,467,498],register_kl:15,register_packag:159,register_paramet:[143,237,273,478],registr:324,regress:[5,210,253,482,503],regular:[2,3,8,14,217,231,232,233,273,274,275,283,284,468,470,478,480,485,486,488],regularli:[5,485],reimplement:[143,237,273],reinforc:15,reiniti:457,reinterpret:[15,498],reinterpreted_batch_ndim:15,rel:[2,6,9,15,30,137,318,470,475,476,480,486],relat:[5,6,13,14,238,319,324,365,490],relationship:2,relative_path_to_checkpoint:457,relative_to:484,relax:[15,150,151],relaxed_bernoulli:15,relaxed_categor:15,releas:[5,11,14,25,86,253,397,457,461,466,470,475,476,482,483,484,485,490],relev:[6,462,472,473,498],reli:[6,13,230,473,475,477,482,496],reliabl:490,reload:457,relu1:[299,488],relu2:299,relu6:460,relu:[149,273,287,289,299,306,313,315,317,459,460,464,468,471,485],relu_:[460,470,488],rem:484,remain:[1,2,15,175,329,330,331,332,333,334,335,336,345,390,466,472,479,500],remaind:[109,460,498],remainder_:[460,498],remap:[147,159,457,465],rememb:[479,481],remot:[13,14,324,490,491,503],remov:[2,6,14,141,143,145,182,237,273,274,283,324,329,330,331,332,333,334,335,336,341,342,343,344,346,347,419,437,445,464,470,492,498,504],removablehandl:[143,237,273],remove_dropout:464,renam:[460,467,468],rename_:[460,467,468],rename_map:468,renamed_img:468,render:5,rendezv:[477,490],renorm:[1,235,236,460,470,498],renorm_:[460,498],rep:485,repackag:479,reparameter:[15,329,330,331,332,333,334,335,336,345,346,347,355],reparametr:[15,329,330,331,332,333,334,335,336,339,470],reparametriz:15,repeat:[15,177,365,389,426,460,470,485,498,504,505],repeat_interleav:[460,482,498],repeatedli:[102,126,131,392,476,493],repetit:389,repl:2,replac:[2,9,13,14,146,152,193,312,337,338,339,341,342,343,344,355,459,460,464,473,480,481,484,485,488,498],replic:[13,148,221,222,223,230,238,295,296,297,319,324,470],replica:[13,14,230,324,477],replication_pad1d:460,replication_pad2d:460,replication_pad3d:460,replication_pad:485,replicationpad2d:470,repo:[5,457,484,486,503],repo_nam:457,repo_own:457,report:[2,3,6,472,476,503],repositori:[6,457,478,481],repr:406,repres:[2,8,11,13,15,16,89,102,125,137,138,139,140,142,150,151,202,217,241,287,319,328,329,332,333,334,335,336,338,341,342,343,344,348,354,364,365,413,423,427,437,446,447,452,453,459,461,473,478,480,485,486,488,490,493,495,500,507],represent:[1,143,237,273,279,459,478,485,488,493,498,504,507],reproduc:[5,13,46,217,221,222,223,224,225,226,457,458,470,486,498],requant:488,request:[6,11,14,160,472,473,475,476,490,491,492],requir:[1,2,4,6,9,10,11,13,14,15,105,106,131,143,160,236,237,273,313,314,315,316,317,324,325,329,425,457,459,463,464,466,468,470,472,473,475,476,477,478,479,480,481,485,486,488,490,491,492,498,500,503],require_grad:2,requires_grad:[2,15,32,37,44,51,90,91,92,93,101,112,113,123,124,143,158,173,210,211,229,235,236,237,254,265,273,280,286,318,324,325,356,361,362,377,378,379,380,381,382,383,384,403,415,432,455,456,460,463,467,468,470,478,485,490,491,493,498,499],requires_grad_:[2,143,217,237,273,432,460,467,470,493,498],rerr:160,rerun:4,res1:485,res2:485,res:[53,485],resampl:505,rescal:[210,211,229,277,278,280,303,305,353,470,505],research:[5,457],resembl:10,reserv:[11,462],reserved_byt:11,reset:[2,11,241,288,365,375,426,485,489],reset_max_memory_alloc:11,reset_max_memory_cach:11,reset_peak_memory_stat:11,reset_peak_stat:11,reshap:[10,238,293,294,295,296,319,353,358,416,433,460,468,485,493,496,498,505],reshape_a:[460,485,496,498],reshuffl:13,resid:[14,159,324,476,498],residu:[160,175,503],resili:[486,490],resiz:[111,320,467,470,488,494,498,503,505],resize_:[2,154,459,460,461,467,488,494,498],resize_as_:[2,460,467,498],resizeas_:493,resized_crop:505,resnet101:503,resnet152:503,resnet18:[457,459,461,465,473,503],resnet34:503,resnet3d:503,resnet50:[457,497,503],resnet:[457,459,461,485,497],resnext101_32x8d:503,resnext50_32x4d:503,resolut:[285,462,470],resolv:[5,6,15,224,225,226,238,461,462,484],resourc:[9,13,466],respect:[1,2,14,15,27,28,29,42,81,83,92,143,160,210,217,224,225,226,230,237,241,257,273,274,283,287,318,320,329,333,335,372,413,425,433,468,472,486,488,494,498,500,504,505],respond:5,respons:[3,5,6,14,15,17,262,324,470,473,476,478,490],rest:[5,13,468,488,490,493],restart:[466,486],restor:[4,18,393,483],restrict:[13,253,461,462,468,488],restructur:5,result:[2,3,5,9,11,13,14,15,17,23,24,25,26,27,28,36,43,46,54,57,66,67,73,74,75,76,79,86,89,92,102,126,131,144,145,150,151,153,154,156,167,168,174,185,186,187,189,191,192,230,232,233,238,241,257,287,319,356,357,359,365,366,369,370,375,391,392,398,412,421,422,423,424,426,429,436,439,441,450,451,459,460,461,467,468,470,471,472,473,474,475,476,477,478,479,482,485,486,490,491,493,495,497,498,503,504,505],result_avg:505,result_typ:460,resum:[486,490,492],ret:[478,490],ret_fut:490,retain:[2,33,34,37,145,154,174,185,186,187,189,191,358,370,397,421,422,424,439,440,441,442,450,451,466,481,483,498],retain_grad:[2,460,498],retain_graph:[2,460,472,473,490,498],rethink:503,retri:[11,492],retriev:[2,4,13,235,238,319,349,470,480,490,491,492],return_count:[446,447,460,498],return_indic:[203,204,205,239,267,268,269,270,271,272,460,470,488],return_invers:[446,447,460,498],return_typ:[73,74,154,185,187,189,191,412,434,438],reus:[2,14,473,488,498,505],reveal:[477,493],revers:[1,15,104,324,329,330,331,332,333,334,335,336,345,449,460,461,473,477,498,505],revert:[6,306,470,492],review:6,reward:15,rewrit:[464,473],rfc:491,rfft:[131,460,498],rfloor:[60,107,108,110,202,207,208,209,221,222,223,224,225,226,238,255,256,267,268,269,319,320,321,322,384,392,423,470],rgb:[251,252,497,503,505],rgba:505,rho:486,riba:318,richard:15,riemann:473,right:[1,5,14,15,32,44,51,52,55,60,84,85,89,105,107,108,110,123,124,141,159,165,166,193,195,202,207,208,209,210,211,221,222,223,224,225,226,229,238,253,254,255,256,262,263,264,265,267,268,269,276,277,278,282,283,288,318,319,320,321,322,327,384,398,423,433,438,449,457,460,466,467,468,470,478,485,486,488,492,505],right_ankl:503,right_ear:503,right_elbow:503,right_ey:503,right_hip:503,right_kne:503,right_should:503,right_wrist:503,righteye_i:500,righteye_x:500,rightmost:15,rightmouth_i:500,rightmouth_x:500,risk:5,riski:5,rmsprop:486,rng:[4,11,13,399,479,482,489],rnn:[241,242,257,258,289,325,348,460,463,479,485,488],rnn_relu:460,rnn_relu_cel:460,rnn_tanh:460,rnn_tanh_cel:460,rnncell:488,robin:14,robust:[160,466,501],roi:504,roi_align:504,roi_pool:504,roi_width:504,roialign:504,roipool:504,roll:[460,498],roof:2,root:[396,417,460,473,486,490,491,493,500],ross:301,rot90:[460,498],rotat:[15,394,473,505],rotation_transform:505,rough:5,roughli:[13,131,477,503],round:[13,14,32,108,372,460,467,470,482,485,488,498],round_:[460,467,498],roundtrip:5,routin:[63,425],row:[13,59,88,101,105,106,154,174,175,185,186,187,189,191,193,357,370,388,421,422,424,440,442,449,450,451,460,470,493,498,506],row_limit:2,rowmajor:[2,324],rpc:[17,324,458,491,492],rpc_async:[17,490,492],rpc_backend_opt:490,rpc_sync:[490,491,492],rpc_timeout:490,rpcagent:490,rpcbackendopt:490,rpn:503,rprop:486,rref1:[490,491],rref2:[490,491],rref:[324,491],rrefid:492,rrelu:[460,485],rrelu_:[460,470],rrelu_with_nois:460,rrelu_with_noise_:460,rsampl:15,rsqrt:[1,460,467,485,498],rsqrt_:[460,467,498],rst:5,rsub:[460,485],rtol:[2,30,137,459,460,498],rule:[2,14,15,55,56,86,108,185,189,212,213,214,250,251,252,309,329,330,331,332,333,334,335,336,398,437,459,461,467,473,474,478,495,498],run:[1,2,3,4,5,10,13,14,17,89,102,126,131,143,144,145,147,150,151,159,185,187,189,212,213,214,230,237,250,251,252,273,309,392,405,440,442,459,464,466,472,473,475,476,477,478,479,480,481,482,484,485,486,488,489,490,491,492,497,499],run_arg:488,run_fn:[2,4,488],run_model:479,run_process:491,runnabl:497,running_mean:[143,212,213,214,237,250,251,252,273,309,460,470],running_var:[143,212,213,214,237,250,251,252,273,309,460,470],runtim:[2,4,9,14,467,468,478,481,485,488],runtimeerror:[1,2,9,134,193,459,461,467,472,474,479,484,485,495,498,505],runtimewarn:15,rv0:459,rv1:459,rvert:[30,137],rvert_p:[318,470],s1064827500366124:160,s1064827500370883:160,s_min:217,s_n:217,sacrif:503,safe:[1,11,324,459,472,473,480,490],safest:[9,493],safeti:[459,468],sai:[5,459,472,479,485,491,492,498,500],said:2,sam:[6,7],same:[1,2,5,9,10,11,13,14,15,17,24,37,43,45,46,53,54,55,58,72,81,83,89,91,95,102,109,111,113,114,126,127,128,131,141,143,148,149,150,151,154,174,181,185,186,187,189,191,196,200,201,204,205,206,208,209,210,211,212,213,214,215,216,218,219,220,222,223,224,225,226,228,229,231,232,233,234,236,238,240,243,244,245,246,247,248,250,251,252,253,254,256,259,260,261,262,263,264,265,268,269,270,271,272,276,277,279,280,281,282,286,290,291,292,293,294,295,296,297,298,300,301,302,303,304,305,306,307,308,309,310,311,312,313,319,320,323,324,329,330,331,332,333,334,335,336,348,352,359,362,367,369,370,372,378,380,382,385,387,389,390,392,393,398,420,421,422,424,429,437,446,447,448,450,451,456,457,459,461,466,467,468,470,472,473,474,475,476,477,478,479,480,481,485,488,490,491,492,493,494,495,496,498,500,503,504,505,506],sampl:[13,15,18,45,151,158,173,177,193,206,210,211,215,221,222,223,224,225,226,227,229,231,232,233,235,236,248,250,251,252,253,254,261,265,266,276,277,278,280,286,290,301,302,309,318,359,365,367,375,379,437,470,471,472,480,482,486,488,498,500,504,505],sample_input_cpu:459,sample_input_gpu:459,sample_n:15,sample_shap:15,sampler:488,sampling_ratio:504,samplingprob:480,sandwich:503,sane:406,satisfi:[2,12,15,30,55,131,202,217,238,241,257,287,338,372,398,423,486,495,498,504],satur:[470,505],saturation_factor:505,save:[2,4,5,8,10,14,142,143,146,147,150,152,159,237,273,324,459,460,465,468,473,478,481,482,485,486,488,498,500,502,506],save_for_backward:[2,472,478],save_imag:506,save_invstd:460,save_mean:460,save_to_buff:142,saved_tensor:[2,472,473,478],saved_weight:498,sax:471,sbd:501,sbdataset:500,sbu:501,sbucaptionedphotodataset:500,scalar1:460,scalar2:460,scalar:[2,15,23,25,26,37,55,86,108,156,182,188,192,202,210,211,217,229,230,248,253,254,259,266,276,277,278,280,286,301,302,318,357,361,362,369,371,398,415,432,443,446,447,455,456,460,461,470,471,478,485,486,488,490,493,495,497,498],scalar_tensor:[460,485],scalartensor:478,scale:[5,13,15,27,28,29,43,206,231,235,236,259,298,320,321,322,373,374,458,460,468,470,471,473,479,486,488,498,500,503,504,505,506],scale_channel:468,scale_each:506,scale_factor:[320,321,322,470,488],scale_fn:486,scale_grad_by_freq:[235,236,460,470],scale_hh:460,scale_ih:460,scale_mod:486,scale_tril:15,scaled_grad_param:472,scaler:[1,472],scales_d:460,scales_h:460,scales_w:460,scatter:[11,14,230,460,479,485,490,498],scatter_:[460,498],scatter_add:[460,485,498],scatter_add_:[460,482,498],scatter_list:14,scenario:[1,13,476,485,490],schedul:[480,486],schema:[459,460],scheme:498,schmidtm:486,sci:160,sci_mod:406,scientif:406,scipi:[59,470,500,503],scissor:503,scope:[5,309,338,459,461,479,485,492],score:[229,503,504],scrambl:375,scratch:[5,473],script:[1,3,13,14,144,145,146,148,150,152,324,457,461,464,475,480,490,503],script_add:490,script_bar:144,script_method:[459,485],script_modul:464,scriptabl:152,scripted_fn:459,scripted_modul:[145,149],scriptfuncion:149,scriptfunct:[147,149,150],scriptmodul:[142,145,147,148,149,150,151,459,461,464,485],scrutini:5,search:[5,8,55,246,398,459,467,468,470,488,503],searchsort:460,seat:6,sebastian:7,sec:502,second:[2,4,9,23,24,27,29,30,33,34,35,41,43,47,49,50,53,72,81,83,88,94,115,122,137,155,159,165,166,176,182,185,189,190,192,197,202,208,209,215,222,223,225,226,235,236,241,256,257,262,266,268,269,287,338,394,415,436,440,442,449,461,470,473,479,482,483,484,490,493,502,505],secondli:210,section:[2,5,13,15,230,272,351,459,461,462,466,468,473,477,478,481,488,491,498],see:[1,2,3,4,5,6,9,10,11,13,14,15,32,33,34,35,37,44,46,51,53,79,90,92,101,102,108,112,116,123,124,126,131,143,145,149,150,151,153,154,158,160,166,168,173,174,177,185,186,187,189,190,191,202,210,211,217,221,222,223,224,225,226,227,229,230,235,236,237,241,248,253,254,257,265,266,270,271,272,273,276,277,278,279,280,286,287,290,301,302,314,315,316,317,318,320,324,325,333,342,351,353,355,357,361,363,364,366,370,371,377,379,381,383,384,390,391,392,397,412,415,421,422,423,424,432,440,442,450,451,454,455,457,459,460,461,462,465,466,467,468,470,472,473,476,478,479,480,481,482,484,485,488,490,491,493,495,496,498,499,503,504,505,506],seed:[11,13,18,129,180,365,375,426,460,479,482,489,500],seed_al:11,seek:[147,159],seem:[5,485,505],seen:[2,15,58,224,225,226,459,486,498],segfault:466,segment:[4,11,500,501,505],select:[10,11,12,13,15,46,61,160,217,221,222,223,224,225,226,241,257,287,343,344,454,459,460,466,467,468,470,475,476,485,488,496,498,500,503,504,505],select_model_mode_for_export:485,self:[1,2,13,127,142,143,144,145,146,148,149,150,151,152,202,206,237,273,274,275,283,284,298,315,317,333,335,348,369,385,459,460,461,467,468,472,473,474,475,478,479,485,486,488,490,494,498,505],self_cpu_memory_usag:2,self_cpu_time_tot:2,self_cuda_memory_usag:2,selu:[206,460,485],selu_:460,semant:[6,11,33,34,35,54,145,148,447,458,461,485,500,501,505],semi:[227,248,471],semidefinit:64,send1:491,send2:491,send:[5,11,13,14,466,477,481,484,490,491,492,499],sender:[14,492],sens:[3,15,338,446,447],sensit:[301,485,491,504],sent:[11,14,438,466,481,490,491,492],separ:[1,2,9,13,14,89,116,148,241,243,250,251,252,257,259,281,287,359,457,460,470,472,475,486,491,497,506],seq:[2,58,67,188,241,257,287,351,445,498],seq_len:[241,257,287],seq_unpack:351,sequenc:[2,11,13,15,55,57,58,61,78,90,116,150,188,202,217,221,230,236,241,257,279,287,313,314,315,316,317,334,348,349,350,351,352,359,361,375,377,381,398,420,423,455,459,470,476,479,485,486,488,490,498,505],sequenceat:485,sequenceinsert:485,sequenti:[4,13,143,237,273,309,338,466,485,488],sequentialsampl:13,seri:[217,250],serial:[10,13,148,159,457,458,460,465,468,473,476,480,481,488,490,491],serializ:[459,485],seriou:[466,483],serv:[1,5,10,14,490,491],server:[5,13,490],servic:477,sess:485,set:[0,1,2,4,6,9,11,13,14,15,17,18,32,46,52,55,67,90,92,102,112,118,126,131,143,147,149,150,151,158,159,160,173,177,180,184,202,206,210,211,212,213,214,215,217,221,222,223,224,225,226,227,229,230,231,232,233,235,237,241,243,248,250,251,252,253,254,255,256,257,259,261,265,266,270,271,272,273,276,277,278,279,280,286,287,301,302,309,318,324,372,375,384,392,399,400,401,403,404,405,406,407,432,439,440,441,442,457,459,461,462,464,465,466,470,471,472,474,475,476,477,478,479,480,481,482,484,485,486,488,489,490,498,500,503,504,505],set_:[2,460,498],set_backoff_factor:1,set_default_dtyp:118,set_default_tensor_typ:[32,37,44,51,90,92,101,112,118,123,124,158,173,361,377,379,381,383,384,415,432,440,442,455],set_detect_anomali:2,set_devic:[11,14,324,495],set_dir:457,set_epoch:13,set_grad_en:[2,93,499],set_growth_factor:1,set_growth_interv:1,set_image_backend:501,set_num_interop_thread:475,set_num_thread:475,set_result:[17,490],set_rng_stat:[11,489],set_rng_state_al:11,set_sharing_strategi:466,set_start_method:481,set_stat:18,set_trac:[146,149,152,459],set_train:485,set_video_backend:501,setapiusagehandl:480,setapiusagelogg:480,setexportmoduleextrafileshook:480,setup:[9,324,475,490,491],setuptool:9,sever:[10,14,89,199,200,201,202,203,204,205,207,208,209,210,221,222,223,224,225,226,239,255,256,262,267,268,269,270,271,272,321,322,459,470,472,475,476,480,486,488,490,505],sgd:[1,13,235,324,472,473,477,486,490,491],sgdr:486,sgn:[110,409],sha256:[457,465],shadow:505,shall:273,shallow:[230,318],shamelessli:406,shao:160,shape:[2,8,11,15,23,25,26,36,41,45,46,58,59,83,85,86,88,89,90,92,94,102,109,112,115,122,126,128,131,150,151,155,156,175,176,181,185,189,192,193,197,202,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,228,229,231,232,233,234,235,236,237,238,240,241,242,243,244,245,246,247,248,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,276,277,279,280,281,282,285,286,287,289,290,291,292,293,294,295,296,297,298,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,333,335,359,361,369,377,379,380,381,387,389,390,392,393,415,419,423,425,427,429,437,446,447,454,455,459,460,467,468,470,473,474,478,479,485,488,490,493,498,500,503,504,505,506],shape_as_tensor:485,shard:[5,13],share:[2,5,9,11,13,15,16,111,127,196,230,359,385,419,436,448,460,473,475,481,484,485,490,494,496,498],share_memori:481,share_memory_:[463,466,494,498],shared_memori:466,sharedfil:14,shazeer:[313,315,317],shceme:488,shear:505,sheep:503,shell:9,shen:7,shi:285,shift:[206,212,213,214,309,393,460,462,470,498,504,505,506],ship:[475,490],shippabl:5,shm_open:466,shorter:[141,485,490],shortest:349,shorttensor:[495,498],should:[1,2,3,4,5,6,9,10,11,13,14,15,23,24,27,28,29,32,43,44,45,46,51,66,72,89,90,91,92,101,102,112,113,123,124,126,131,141,143,146,149,150,151,152,158,159,165,173,179,192,202,210,211,215,227,229,230,232,233,236,237,241,257,266,273,280,281,287,318,320,324,329,330,331,332,333,334,335,336,338,341,342,343,344,348,349,350,361,362,372,373,377,378,379,380,381,382,383,384,390,415,432,438,455,456,457,459,461,465,466,468,470,472,473,475,476,477,478,479,481,482,484,485,486,488,490,492,493,496,497,498,500,503,504,505,506],shouldn:[493,496],shout:485,show:[0,3,5,13,14,457,467,475,476,477,486,490,492],showcas:[6,270,476,481],shown:[1,11,459,472,478,479],shrinkag:[244,307,470],shuffl:[13,497,500],shufflenet_v2_x0_5:503,shufflenet_v2_x1_0:503,shufflenet_v2_x1_5:503,shufflenet_v2_x2_0:503,shufflenetv2:503,shut:[13,490],shutdown:[490,491],siam:160,side:[2,9,85,89,141,207,208,209,218,219,220,221,222,223,224,225,226,238,267,268,269,293,294,295,296,297,319,323,423,438,457,459,470,472,485,486,488,490,505],sigma:[15,211,241,242,257,258,300,353,460,470,498],sigmoid:[1,15,210,211,241,242,257,258,460,467,468,471,485,498],sigmoid_:[460,467,498],sigmoidtransform:15,sign:[5,15,41,81,109,387,412,460,467,473,485,488,495,498,503],sign_:[460,467,498],signal:[8,102,126,131,141,199,200,201,203,204,205,207,208,209,221,222,223,239,255,256,262,267,268,269,321,322,392,466,470,481,488,490],signal_2d:262,signal_4d:262,signal_length:141,signal_ndim:[102,126,131,392,460,498],signal_s:[131,460,498],signatur:[2,13,143,237,273,348,423,478,488,498],signific:[2,473,476,486],significand:[495,498],significantli:[2,324],silent:[11,128,150],silli:478,sim:[45,286,367,381,470],similar:[5,13,14,15,57,67,131,143,227,228,237,238,248,250,251,252,273,318,348,359,389,447,461,466,467,470,473,475,478,485,488,491,493,498,500,504,507],similarli:[5,37,62,241,257,287,329,330,331,332,333,334,335,336,345,439,440,441,442,461,479,485,488],simon:7,simpl:[1,10,11,145,149,212,213,214,235,309,457,459,462,470,472,475,477,478,479,480,482,485,490],simplecustombatch:13,simplequeu:481,simpler:[459,478],simplest:[207,208,209,221,222,223,267,268,269,478,488,492],simplex:15,simpli:[1,2,9,13,15,136,206,231,329,330,331,332,333,334,335,336,459,461,473,488,493],simplic:491,simplifi:[17,147,264,486,491],simul:[15,488],simultan:[473,486,490],sin:[9,38,124,460,467,485,498],sin_:[460,467,498],sin_add:9,sinc:[5,11,13,14,15,61,88,131,141,143,146,148,177,210,237,270,271,272,273,320,324,338,425,427,459,460,461,464,470,472,473,478,479,480,484,485,486,488,489,490,491,493,495,496,498,505],sine:[39,410,411],singl:[2,9,14,15,17,36,44,51,54,92,123,124,134,142,143,150,151,165,200,201,204,205,208,209,211,221,222,223,225,226,229,230,237,239,243,255,256,259,268,269,273,281,285,309,324,326,327,328,354,369,390,416,446,447,457,459,461,466,468,470,473,475,476,478,481,482,485,486,488,490,491,492,494,495,498,504,505],singleton:[15,259,448,474,498],singular:[79,160,168,177,184,365,366,412,425,426],sinh:[1,39,460,467,498],sinh_:[460,467,498],sink:503,site:5,situat:[15,466,481,488,492],size:[2,5,11,13,14,15,28,29,32,36,43,44,46,51,53,54,55,62,64,65,72,75,76,79,81,89,90,91,92,95,102,112,113,114,117,123,124,126,128,130,131,141,143,154,158,160,168,173,174,175,177,178,182,184,185,186,187,188,189,191,193,194,199,200,201,202,203,204,205,207,208,209,210,211,212,213,214,215,217,218,219,220,221,222,223,224,225,226,229,230,235,236,237,238,239,243,249,250,251,252,253,254,255,256,259,261,262,265,266,267,268,269,270,271,272,273,276,277,278,279,280,285,293,294,295,296,297,309,313,319,320,321,322,323,324,338,348,349,350,351,352,353,355,357,359,361,362,365,366,367,370,371,372,373,374,375,377,378,379,380,381,382,384,392,393,398,412,413,415,416,419,420,421,422,423,424,425,426,427,432,433,438,446,447,448,450,451,452,453,455,456,459,460,467,468,470,472,473,474,476,477,478,479,480,485,486,488,490,493,494,495,498,500,503,504,505,506],size_averag:[210,211,227,229,248,253,254,265,266,276,277,278,280,286,301,302,318,460,470],sizedim:498,sizeof:494,skateboard:503,skeleton:329,skew:[2,3],ski:503,skip:[1,459,472,477,478,486],sky:500,slack:5,sleep:17,slice:[212,213,214,303,305,309,388,445,459,462,470,485,496,498],slide:[141,238,319,423,470],slightli:[6,13,365,398,426,457,503],slogdet:[460,498],slope:[260,471],slow:[2,446,481],slow_conv3d:460,slow_conv_dilated2d:460,slow_conv_dilated3d:460,slow_conv_transpose2d:460,slow_conv_transpose3d:460,slow_set_futur:17,slower:[2,3,14,53,470,478,482,503],slowli:489,small:[1,2,5,6,11,13,14,15,32,163,165,202,228,282,286,299,320,366,459,461,470,476,478,479,488],small_pool:11,smaller:[13,65,66,371,416,486,498,505],smallest:[60,154,160,371,434,493,507],smart:[478,490],smessmer:7,smi:[11,476,479],smm:460,smnt:500,smoke:500,smooth:[306,485,486],smooth_l1_loss:[1,460],smoother:457,smoothl1loss:470,snapshot:[11,476],snedecor:15,snippet:457,snow:500,snowboard:503,snowi:500,sobol:375,soboleng:375,socket:[466,490],sofa:503,soft:[307,470,503],soft_margin_loss:[1,460],softmarginloss:470,softmax:[1,15,202,264,304,460,468,485],softmaxtransform:15,softmin:[1,460],softplu:[1,460,485],softshrink:460,softshrinkag:307,softsign:460,softwar:486,sole:486,solid:[492,505],solut:[5,8,175,210,413,438,460,471,472,479,481],solv:[5,8,64,160,175,178,438,460,484,498],solver:[413,438],some:[1,2,4,5,6,9,11,14,15,46,131,141,143,148,150,202,206,210,211,217,221,222,223,224,225,226,227,229,230,231,237,248,250,251,252,253,254,265,266,273,276,277,278,280,286,301,302,318,324,325,372,425,457,459,460,461,462,464,466,467,468,470,472,473,476,478,479,480,481,482,483,484,485,486,488,490,491,492,493,498,500,503,504,505],some_dict:461,some_entry_point:149,some_fn2:459,some_fn3:459,some_fn4:459,some_fn:459,someon:[5,468],someth:[5,150,463,466,467,484,490],sometim:[2,5,131,150,238,319,466,470,479,481,495,498],somewher:[468,480],soon:[8,490,492],sophist:486,sort:[2,35,89,125,202,349,350,357,398,434,446,460,478,479,485,488,498,504],sort_bi:2,sorted_indic:[348,351],sorted_sequ:[398,460],sorted_sequence_1d:398,soumith:[6,7],sourc:[0,1,2,3,4,9,11,13,14,15,17,52,54,57,59,61,68,89,93,114,121,129,135,136,141,143,144,145,146,147,148,149,150,151,152,153,159,160,179,180,188,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,358,365,375,397,399,400,401,403,406,407,416,423,426,433,457,459,460,461,464,466,468,470,471,479,480,482,485,486,488,489,490,491,493,494,498,500,501,502,503,504,505,506],space:[13,15,150,151,158,173,202,221,222,223,224,225,226,238,253,267,268,269,319,437,470,488,504,505],spadd:493,span:[11,253,490,498],spandan:7,spandantiwari:7,spars:[2,8,53,114,134,160,235,236,303,365,415,426,458,460,463,471,486,495,496,498],sparse_:471,sparse_coo:[415,493,495,498],sparse_coo_tensor:[460,463,493,498],sparse_dim:[415,460,493,498],sparse_grad:[114,460],sparse_mask:[460,493,498],sparse_resize_:460,sparse_resize_and_clear_:460,sparseadam:[235,486],sparseaddmmbackward:493,sparsedim:498,sparsefloattensor:493,sparsetensor:[2,415,493,498],sparsiti:471,spatia:470,spatial:[59,213,238,285,304,319,320,321,322,470,488,504],spatial_scal:504,spatio:[214,309],spawn:[13,144,324,472,477,481,484,491],spawncontext:466,speak:[131,493],special:[5,8,159,230,325,357,462,468,473,478,480,488,496],specif:[2,4,5,6,9,11,14,15,18,65,126,131,141,143,150,151,160,185,187,189,237,238,259,273,329,457,459,461,463,468,473,476,481,482,483,485,486,488,490,492,498,502,504],specifi:[2,9,11,13,14,15,36,46,75,76,80,81,83,86,114,143,145,150,151,159,160,170,184,208,209,210,211,217,225,227,229,230,236,237,238,248,253,254,259,265,266,271,273,276,277,278,279,280,286,301,302,313,318,319,321,322,324,327,329,330,331,332,333,334,335,336,338,341,342,343,344,355,358,365,370,375,390,393,394,397,406,424,446,447,448,449,457,459,461,465,467,468,470,473,476,478,484,485,486,488,489,490,493,494,495,498,500,501,505,506],specifii:488,spectral:[8,346,353],spectral_norm:[230,346],speed:[5,9,102,126,131,202,392,425,475,476,477,478,479,482,488,490],spend:[3,5,160],spent:[2,3,14,475,486],sphinx:5,split:[5,13,14,58,65,230,324,459,460,467,470,485,488,490,496,498,500,503,504],split_siz:[416,460,498],split_size_or_sect:416,split_with_s:460,spmm:493,sponsorship:6,spoon:503,sport:503,spotri:63,spread:[11,476],sqrt:[96,97,102,126,131,212,213,214,215,221,222,223,224,225,226,241,242,243,250,251,252,255,256,257,258,259,261,287,289,309,392,396,460,467,471,472,485,486,493,498],sqrt_:[460,467,498],squar:[79,80,82,88,130,141,168,175,177,183,200,204,208,209,222,223,225,226,239,256,265,268,269,272,301,313,396,412,413,417,449,460,470,486,488,493,498,505],square_:[460,498],squeez:[154,174,185,186,187,189,191,370,421,422,424,450,451,460,467,485,493,496,498],squeeze_:[460,498],squeezebackward1:2,squeezenet1_0:503,squeezenet1_1:503,src:[11,14,193,313,316,317,429,460,488,498],src_key_padding_mask:[313,316,317],src_mask:[313,317],src_tensor:14,srinivasan:7,ssa:459,sse3:402,ssnl:7,sspaddmm:[460,493],sspmm:493,stabil:[1,174,211,212,213,214,243,250,251,252,259,306,309,353,470,486],stabl:[1,2,15,89,160,211,425,427,478,485,488,490],stack:[1,11,13,15,217,241,257,287,314,316,352,460,476,477,479,485,505],stacktransform:15,stage:[5,492],stagnat:486,stai:[5,230,481,488,490,498],stand:[461,492],standalon:[149,150,459],standard:[5,9,15,206,212,213,214,243,250,251,252,259,309,315,317,359,365,381,421,422,461,462,471,475,481,485,488,498,500,503,505],star:[221,222,223],start:[2,3,6,11,13,14,17,32,156,158,173,196,202,236,276,324,329,333,335,348,384,404,457,460,461,466,468,470,473,474,476,477,479,481,484,485,486,490,491,492,498,502,503],start_dim:[103,237,460,498],start_epoch:13,start_ev:476,start_method:466,start_process:466,start_pt:502,startpoint:505,startup:3,stash:[2,4,478],stat:[11,309,324],state:[1,2,4,11,13,15,18,121,143,144,150,160,237,241,242,257,258,273,287,289,325,375,407,464,472,473,476,477,481,484,486,488,489],state_dict:[1,143,237,273,341,457,465,477,481,483,485,486],stateless:488,statement:[150,462,473,478,481,485,490],stathopoulo:160,stathopoulosetal2002:160,static_async_add:490,static_k:460,static_v:460,staticmethod:[2,472,478,490],statist:[11,15,165,212,213,214,243,250,251,252,259,309,479,488],statu:[177,462,466],std:[9,18,359,447,460,467,471,480,484,485,498,503,505],std_mean:[460,467],stddev:15,stderr:[457,465,503],stdin:2,stdout:486,step:[1,3,6,9,13,14,15,24,32,46,158,160,173,239,324,348,375,384,459,460,468,470,472,476,477,479,481,482,484,488,490,491,498,500],step_between_clip:500,step_siz:486,step_size_down:486,step_size_up:486,steplr:486,steps_per_epoch:486,stft:[8,44,51,123,124,141,460,498],stick:15,stickbreakingtransform:15,still:[1,2,13,14,15,131,145,152,254,265,301,397,459,466,467,468,472,476,477,479,483,484,486,488,490,491,492],stirl:[286,470],stitch:490,stl10:501,stl10_binari:500,stmt:475,stochast:[13,15,239,486],stop:[11,15,32,160,217,348,384,459,486,490,503],storag:[2,11,36,127,128,135,147,159,181,196,230,385,419,436,457,458,463,465,466,473,476,481,490,495,496,498],storage_offset:[36,460,498],storage_typ:[463,498],storageshar:484,store:[2,4,9,14,24,53,147,148,160,165,235,337,338,339,341,342,343,344,348,457,459,468,469,477,478,479,480,485,488,490,491,492,493,498,500,505],store_tru:476,str:[2,9,11,14,142,143,144,145,160,210,211,217,221,222,223,224,225,226,227,229,236,237,248,253,254,265,266,273,274,276,277,278,280,283,286,288,289,301,302,313,318,320,329,330,331,332,333,334,335,336,337,339,341,342,343,344,345,346,347,353,355,459,460,461,462,466,468,470,486,488,490,494,498,500,502,504,505,506],straight:[210,470],strategi:[5,13,14,202,461,486],stream:[13,498,500],strict:[2,143,150,151,237,273],strictli:[6,13,143,237,273,473],stride:[2,8,32,36,44,51,90,92,101,112,113,123,124,130,158,173,175,207,208,209,221,222,223,224,225,226,238,255,256,267,268,269,270,271,272,285,319,324,361,377,379,380,381,383,384,390,413,425,427,440,442,452,455,460,462,467,470,485,488,490,495,497,498,504],strike:5,string:[0,2,9,11,14,89,143,147,148,159,210,211,217,221,222,223,227,229,236,237,248,253,254,265,266,273,274,276,277,278,280,283,286,301,302,318,338,397,401,423,457,460,461,462,465,466,468,470,478,480,485,488,490,494,495,498,500,501,506],strip:[459,470,485],strip_doc_str:485,strive:5,strong:6,strong_wolf:486,strongli:[6,232,233,457],struct:[10,480],structur:[5,6,13,150,273,334,338,365,426,461,462,476,477,478,481,483,484,485,490,498,499],stub:488,student:15,studio:484,style:[357,459,461,488],styliz:[250,251,252],sub:[17,149,150,151,185,187,189,285,313,314,316,388,459,460,467,485,488,493,495,498],sub_:[460,467,493,498],subclass:[1,2,9,13,15,148,273,325,329,334,462,472,478,490,498,500],subdir:500,subfold:9,subgradi:486,subgraph:[325,477],subject:[8,14,17,32,175,324,467,468,478,488,490],submatrix:15,submit:11,submod:144,submodul:[10,143,145,148,149,230,237,273,274,275,324,459,461,464,485,488],subpackag:503,subprocess:[13,14,479,481],subregion:1,subscript:462,subsequ:[5,9,10,143,150,221,222,223,224,225,226,237,273,490],subset:[13,14,143,149,237,273,459,461,478,485,488,503],subsetrandomsampl:13,subspac:[279,365,425,426,498],substanti:6,substitut:495,subsystem:[5,8],subtl:[5,250,251,252],subtleti:[13,230,479],subtli:486,subtract:[470,498,505],subtyp:461,succe:[14,478,484],succeed:177,success:[6,15,177,334],successfulli:[324,402,466,485,490],succinct:457,suffici:[9,15,131,457,485,488,495],suffix:498,sugar:461,suggest:[6,227,457,463,472,479],suhan:7,suit:[459,461,485,490],suitabl:[13,15,55,398,486],suitcas:503,sum:[1,2,11,13,14,15,76,89,165,166,167,174,175,193,210,211,217,226,227,229,230,236,238,248,253,254,255,256,265,266,276,277,278,280,286,301,302,303,305,318,319,338,343,344,358,415,435,460,467,470,472,473,476,477,478,485,486,490,491,493,498],sum_:[24,102,126,141,195,207,208,209,221,222,223,255,256,262,276,280,282,301,423,433],sum_i:[277,278,302],sum_j:[174,229,264,303,305,470],sum_pair:461,sum_to_s:[460,498],sumbackward0:2,sumbackward1:2,summar:[3,406],summari:[2,11,406,503],summarywrit:497,summat:[89,141,167,174],sunset:[6,7],suo:7,superclass:478,superresolut:485,supervis:[227,248],suppli:[1,4,5,9,10],support:[1,2,5,6,8,9,10,11,13,14,15,25,44,51,86,88,102,123,124,127,149,150,160,175,182,235,236,238,273,278,309,319,324,362,385,392,402,440,442,452,453,456,457,459,461,462,463,464,466,469,470,473,474,475,478,481,484,486,488,490,493,495,496,497,498,500,501,504],suppos:[13,14,141,427,473,493,504,505],suppress:[489,504],sure:[2,5,13,14,93,145,150,151,324,356,434,467,473,477,479,484,485,486,490,491,492],surfboard:503,surg:159,surpass:471,surpris:457,surrog:15,surround:[1,461,472,488],sutskev:486,svd:[8,79,168,184,365,366,412,426,460,498,505],svhn:501,svi:15,swap:[318,436,460,462,470,488,498],swap_modul:488,symbol:[484,485],symbolic_fn:485,symbolic_foo_forward:485,symbolic_help:485,symbolic_nam:485,symbolic_opset10:485,symbolic_opset9:485,symbolic_opset:485,symeig:[8,88,460,498],symmetr:[44,51,62,63,64,123,124,160,184,427,460,488,505],symmetri:[131,392,423],sync:[1,324,477],sync_bn_modul:309,sync_bn_network:309,synchron:[3,11,160,309,324,475,476,477,481,490],syntact:6,syntax:[143,459],sys:457,system:[5,9,10,11,64,147,159,178,313,315,317,324,402,413,438,462,473,475,476,480,484,490],t4d:470,t_0:486,t_max:486,t_mult:486,tabl:[2,14,235,460,470,478,490,503],tag:[2,5,14,159,457,480],tag_nam:457,take:[1,2,3,5,6,9,11,13,15,17,64,72,81,83,130,188,202,211,236,239,241,257,267,268,269,270,271,272,281,287,313,321,322,324,369,413,438,457,459,460,464,466,467,468,470,472,475,477,478,479,482,484,485,488,490,491,492,495,496,497,498,500,504],taken:[15,32,89,185,189,217,236,406,425,427,470,475,476,478,479,480,485,500,504],talk:480,tall:[478,498],tamper:159,tan:[1,40,460,467,485,498],tan_:[460,467,498],tangent:[42,430,431,473],tanh:[15,42,241,242,257,258,287,289,311,460,467,468,471,485,498],tanh_:[460,467,498],tanhshrink:460,tanhtransform:15,tape:5,tar:500,tarbal:500,target:[1,17,56,199,200,201,202,203,204,205,210,211,217,229,239,248,253,254,265,266,270,271,272,276,277,278,279,280,286,301,302,313,320,460,470,472,473,481,486,488,490,498,500,503,505],target_dict:488,target_length:[217,460,470],target_n:217,target_transform:500,target_typ:500,task:[2,5,144,153,250,251,252,475,480,484,503,505],tau:[116,363,364,460,470],tbb:475,tcp:490,tdr:484,team:[5,6],technic:[5,6,473,479],techniqu:[231,329,469,488],teddi:503,tell:[2,5,147,159,459,478,498],temperatur:[15,470],tempor:[212,214,217,309,320,470],temporari:[9,325,479],temporarili:485,temporary_fil:457,ten:[461,505],ten_crop:505,tencrop:505,tend:5,tenni:503,tensor1:[25,26,182,391,460,498],tensor2:[25,26,182,391,460,498],tensor:[1,4,5,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,122,123,124,125,126,127,128,130,131,132,133,134,136,137,138,139,140,141,143,144,145,147,148,149,150,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,202,206,207,210,211,217,218,219,220,221,222,223,224,225,226,227,229,230,231,232,233,235,236,237,238,241,242,248,253,254,257,258,264,265,266,270,271,272,273,276,277,278,280,281,285,287,289,293,294,295,296,297,302,303,304,305,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,345,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,400,401,402,403,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,458,459,461,469,470,471,472,473,474,475,476,477,479,481,482,484,485,486,490,491,493,494,497,500,501,502,503,504,506],tensor_a:[57,67],tensor_b:57,tensor_index:10,tensor_list:14,tensorboard:458,tensordataset:13,tensordot:[1,460,463],tensorflow:[15,486,497],tensorpipeag:490,tensorpiperpcbackendopt:490,term:[6,15,61,89,202,210,221,222,223,257,258,278,286,301,329,330,331,332,333,334,335,336,470,472,479,486,488,491,498],termin:[466,486,490],terminolog:[212,213,214,309],test10k:500,test50k:500,test:[2,9,14,132,133,134,135,136,459,462,466,482,488,497,500,503,505],testcod:[144,145,461],text:[5,15,19,21,22,23,24,25,26,27,28,29,30,31,32,38,39,40,41,42,43,44,45,51,53,60,66,69,70,71,86,88,107,108,110,115,122,123,124,137,141,155,156,157,167,173,174,175,176,185,189,192,193,198,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,232,233,234,235,238,240,241,242,243,244,245,246,247,248,250,251,252,253,254,255,256,257,258,259,260,261,263,264,265,266,267,268,269,270,271,272,276,277,278,279,280,281,285,286,287,289,290,291,292,293,294,295,296,297,298,300,301,302,303,305,306,307,308,309,310,311,312,319,320,321,322,323,327,367,369,372,381,384,386,396,408,409,410,411,417,423,427,430,431,443,454,470,471,486,488,498,505],texttt:[30,137,202,498],tgt:[13,313,314,315],tgt_key_padding_mask:[313,314,315],tgt_mask:[313,314,315],thalloc:484,than:[1,2,3,4,6,8,9,11,13,14,36,46,54,60,61,81,82,92,105,106,107,125,128,134,141,149,154,163,185,187,189,191,193,195,210,211,230,235,236,266,271,286,301,307,318,324,351,353,358,370,371,388,406,440,442,457,459,461,463,468,469,470,471,473,474,476,478,479,481,482,485,486,488,490,493,495,497,498,500,501,503,504,505,506],thank:[15,478],thc:484,thc_state:484,thcstate:484,thcudacheck:484,thcudatensor:484,thcudatensor_cadd:484,thcudatensor_fil:484,thcudatensor_issamesizea:484,thcudatensor_resizea:484,the_model:483,the_templ:460,thei:[1,2,4,5,6,8,11,13,14,15,17,24,27,28,29,43,66,137,138,141,143,147,154,159,175,181,185,187,189,191,193,224,225,226,237,238,273,279,288,299,319,324,325,326,348,351,443,449,459,461,463,464,466,467,468,470,472,473,476,477,478,481,484,485,486,488,490,493,498,499,500,502,503,504,505],them:[1,2,4,5,8,10,13,14,36,54,78,81,92,159,186,235,273,303,305,334,349,352,421,422,424,457,461,464,466,467,468,470,472,473,474,478,479,480,484,486,488,490,491,492,493,497,498,500],themodelclass:483,themselv:[1,2,434,488],theophil:449,therebi:[13,488],therefor:[1,2,4,13,14,15,36,44,51,123,124,126,131,150,236,319,324,366,432,470,472,479,480,485,486,492,493,498,505],theta:[15,460,470],thi:[1,2,3,4,5,6,9,10,11,13,14,15,17,22,30,33,34,35,36,42,46,53,59,61,75,76,79,81,83,87,88,89,93,102,116,117,118,123,126,130,131,136,141,143,144,146,147,148,149,150,151,152,159,160,163,165,168,177,182,185,187,189,190,191,194,202,206,210,211,212,213,214,217,221,222,223,224,225,226,227,229,230,231,232,233,235,236,237,238,239,243,248,250,251,252,253,255,256,259,267,268,269,270,271,272,273,276,280,285,288,303,306,309,315,317,318,319,320,321,322,324,325,338,348,349,350,351,352,353,355,356,362,363,364,365,366,368,370,372,375,384,389,392,400,401,403,406,412,413,419,423,424,425,427,428,446,447,448,452,453,456,457,459,460,461,462,463,464,466,467,468,470,471,472,473,475,476,477,478,479,480,481,482,483,484,485,486,488,489,490,491,492,493,494,495,497,498,499,500,503,504,505,506,507],thin:372,thing:[2,5,14,210,461,470,473,476,478,479,481,488,492,493],think:[5,459,461,492],third:[15,177,202,209,223,226,269,459,476],thnn_conv2d:460,thnn_conv_depthwise2d:460,thoma:7,those:[2,3,11,13,36,81,83,150,159,202,210,211,227,229,236,248,253,254,265,266,276,277,278,280,286,301,302,318,320,324,425,461,467,468,470,472,476,486,488,490,492],though:[2,14,459,462,468,481,482],thousand:1,thrash:14,thread:[1,2,7,11,13,14,17,93,119,120,230,356,403,404,405,458,459,472,480,481,485,490,492,499],threadlocaldebuginfo:480,three:[2,8,14,209,223,226,269,477,486,488,490,492,500],threshold:[184,306,406,460,472,485,486,503],threshold_:[460,470],threshold_mod:486,through:[1,2,4,5,6,10,13,14,15,79,144,150,151,153,168,280,314,315,316,317,412,425,427,457,461,466,467,468,470,478,479,480,484,485,488,490,491,492,496,498,499,507],throughout:[348,488],throughput:475,thrown:[11,17,195,498],thtensor:498,thtensorrandom:193,thu:[2,13,14,15,182,235,273,320,324,415,459,464,470,475,479,480,485,486,488,490,496,498],thumb:14,tie:[15,503],tile:498,time:[1,2,3,5,9,11,13,14,15,17,18,23,24,25,26,27,28,29,30,43,53,59,61,75,88,89,117,137,141,143,147,150,151,156,159,160,175,182,190,192,193,194,195,198,207,208,209,211,212,213,214,217,221,222,223,224,225,226,230,236,237,238,239,241,250,251,252,257,259,260,267,268,269,270,271,272,273,285,287,306,309,319,320,321,322,324,357,372,389,394,419,423,425,433,461,462,464,466,470,471,473,475,476,477,478,479,480,481,482,484,486,488,490,491,492,493,498,502,503,505],timedelta:14,timefram:490,timeit:475,timelin:[2,3],timeout:[13,14,466,490],timestamp:502,tini:[498,507],tip:5,tiwari:7,tl_flip:505,tmp:[2,9,457],to_dens:[460,493],to_dlpack:16,to_grayscal:505,to_her:[324,490,491,492],to_mkldnn:[460,498],to_pil_imag:505,to_spars:[460,493,498],to_tensor:505,toaster:503,todai:488,togeth:[1,13,14,15,102,126,241,257,287,324,326,423,464,472,479,480,488,490,491,492,497,505],toilet:503,token:[457,462],tol:[160,184,460],told:461,toler:[2,30,137,150,151,160,184,459,486],tolerance_chang:486,tolerance_grad:486,tolist:[494,498],too:[1,5,9,217,273,325,470,472,475,479,481,484,492,493],tool:[2,3,6,457,459,461,475,484],toothbrush:503,top:[2,13,15,210,211,248,254,265,280,320,329,333,335,434,462,466,470,478,500,501,503,504,505],top_level_method:461,topic:[6,480],topilimag:505,topk:[460,467,485,488,498],topolog:2,torch:[6,8,10,12,18,93,142,143,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,329,330,331,332,333,334,335,336,348,356,375,403,458,459,460,461,467,468,472,473,474,475,476,477,479,480,481,482,483,484,490,491,492,496,500,501,503,504,506],torch_14808_1591070686:484,torch_extens:9,torch_extensions_dir:9,torch_funct:478,torch_hom:457,torch_model_zoo:503,torch_shm_manag:466,torchaudio:[8,458],torchelast:458,torchscript:[144,145,146,149,150,152,458,462,485,490,501,504],torchserv:458,torchtext:458,torchvis:[457,458,459,461,473,497],toronto:217,total:[2,3,5,11,13,217,238,248,254,265,279,301,319,326,357,359,360,406,423,457,461,470,476,486],total_averag:2,total_count:15,total_length:[351,479],total_loss:479,total_step:486,totensor:[497,500,503,505],touch:[5,485],toward:[6,160,394],tr_flip:505,trace:[2,5,10,13,144,149,151,160,460,461,463,473,476,498],trace_modul:[150,459],trace_nam:2,traceabl:459,traceback:[2,134,461,466],traced_bar:459,traced_cpu:459,traced_fn:459,traced_foo:[150,459],traced_gpu:459,tracer:[150,485],tracerwarn:459,track:[2,4,11,212,213,214,250,251,252,309,334,466,468,476,478,479,480,491,492,498],track_running_stat:[212,213,214,250,251,252,309,488],tracker:[5,6,160],trade:[4,211,475],tradeoff:491,tradition:8,traffic:503,trail:[350,352,471,474,478,505],train2017:503,train:[1,10,11,13,14,143,146,149,150,202,206,212,213,214,229,230,231,237,243,250,251,252,259,273,280,309,324,353,457,459,460,464,470,471,473,476,477,479,482,486,488,490,492,497,500,503,505],train_batch:486,train_extra:500,train_fn:473,train_load:476,train_nov:500,trainabl:[486,503],trainable_backbone_lay:503,trainer3:490,trainer:490,training_method:146,trainingmod:485,trainload:497,trainset:497,trainval:500,tran:141,transb:485,transfer:[13,14,466,476,490],transform:[13,102,126,131,141,215,243,250,251,252,259,261,314,315,316,317,392,423,470,473,488,497,500,501,503],transform_input:503,transform_to:15,transformation_matrix:505,transformed_distribut:15,transformer_decod:314,transformer_encod:316,transformer_model:313,transformerdecoderlay:314,transformerencoderlay:316,transit:459,translat:[492,505],transmit:490,transpar:[477,490,492],transport:490,transpos:[62,130,175,224,225,226,319,351,364,372,413,425,427,428,438,460,467,470,473,485,493,496,498],transpose_:[2,460,493,498],transposed_data:13,trapezoid:437,trapz:460,travers:[324,477,478,488,491],treat:[2,15,159,169,170,171,172,188,236,259,277,278,280,303,357,423,429,461,467,470,486,490,495,498],tree:[5,273,313,492,500],tri:[1,5,143,237,273,461,466,479,498],triag:6,trial:15,triangular2:486,triangular:[15,62,63,64,372,427,438,439,440,441,442,470,486],triangular_solv:[460,498],trick:[2,15,211,470,480,503],tricki:[473,492],trickier:492,trigger:[1,2,5,6,17,406,472,477,480,490,498],tril:[460,498],tril_:[460,498],tril_indic:[460,463],trilinear:[320,470],trim:[44,51,123,124,141],tripl:470,triplet:318,triplet_loss:318,triplet_margin_loss:[1,460],tripletmarginloss:470,triu:[438,460,485,498],triu_:[460,498],triu_indic:[460,463],trivial:[61,492],tropp:[365,426],trou:[221,222,223,224,225,226,238,319],troubleshoot:5,troublesom:478,truck:503,true_divid:[25,86,460,485,498],true_divide_:[460,498],truli:485,trunc:[460,467,498],trunc_:[460,467,498],truncat:[444,479],trust:[13,159],truth:503,tseq:15,tune:[14,486,488],tup:461,tupl:[2,4,11,13,36,37,73,74,88,90,92,104,112,116,143,150,151,154,174,175,177,179,185,186,187,189,191,199,200,201,203,204,205,207,208,209,217,218,219,220,221,222,223,224,225,226,230,237,238,239,255,256,267,268,269,270,271,272,273,274,283,293,294,295,296,297,319,320,321,322,323,338,351,357,358,361,363,372,377,379,381,390,393,394,413,414,415,421,422,424,425,427,432,433,434,445,446,447,450,451,454,455,459,460,462,466,468,470,478,485,486,488,490,493,498,500,504,505,506],tuple_or_list:461,turn:[9,13,150,314,316,485,491],tutori:[6,10,14,459,478,480,485,488],tval:460,tvar:160,tvmonitor:503,twelv:495,twice:[1,2,17,472,473,479,503],two:[1,2,3,8,9,10,11,13,14,15,30,59,73,74,81,87,95,137,148,156,159,182,185,187,189,191,208,210,211,221,222,223,224,225,226,227,229,238,241,248,253,254,256,257,259,265,266,268,276,277,278,280,281,286,287,301,302,318,319,349,355,357,358,384,415,425,433,457,459,461,467,468,470,473,474,475,476,477,478,482,483,484,486,488,490,491,492,493,498,500,503,504],txhxwxc:500,txt:[147,148],type1:[371,460],type2:[371,460],type:[2,9,10,11,14,15,17,18,23,24,25,26,27,28,29,32,37,43,44,46,47,48,49,50,51,52,54,55,56,57,58,61,66,67,75,76,86,88,90,91,92,94,101,102,108,112,113,115,118,122,123,124,125,126,131,132,133,134,140,141,143,144,149,150,151,153,155,158,160,173,175,176,177,192,197,202,206,230,237,273,274,283,324,326,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,352,357,358,361,362,370,371,373,374,375,377,378,379,380,381,382,383,384,389,391,392,398,401,415,416,423,424,427,432,440,442,443,446,447,449,454,455,456,457,458,459,462,463,464,467,470,472,475,476,480,484,488,490,493,494,495,498,499,500,503,504,505],type_a:[460,467,485,498],type_p:15,type_q:15,typecheck:136,typeerror:[338,478],typic:[9,13,15,143,227,237,248,273,459,475,485,488,496,507],typing_extens:[459,461],typo:5,ubc:486,ucf101:501,udf:492,uint8:[111,338,371,373,374,391,488,495,498,502,505,507],uint8_t:498,uint8tensor:503,uint_tensor:495,ultim:[6,9],umbrella:503,unabl:[5,486],unaffect:498,unari:[462,467],unavailbl:461,unbalanc:[229,280],unbatch:102,unbias:[212,213,214,243,250,251,252,259,309,421,422,450,451,460,498],unbind:[460,467,485,496,498],unchang:[143,237,273,279,313,388,419,472,488,498,505],unclear:498,uncoalesc:[415,493],uncondition:[349,457,478],unconstrain:15,uncorrupt:1,undefin:[2,14,86,131,210,476,498],under:[1,2,3,13,56,217,388,466,470,472,473,477,481,484,488,489,492,499],underflow:[1,472],underli:[1,11,15,36,116,127,128,143,159,196,363,364,385,436,448,459,470,476,479,482,488,490,496,498],underscor:[457,468,490,493,498],understand:[5,6,299,471,473,476],understood:58,undertak:5,underwai:2,undesir:[10,46,217,221,222,223,224,225,226,470,498],undon:[329,330,331,332,333,334,335,336,345],unequ:[222,223,225,226,488],unexpect:[14,143,237,273,324,419,459,478],unexpected_kei:[143,237,273],unexpectedli:498,unflatten:[460,467,468],unflattened_img:468,unflattened_named_img:468,unfold:[238,460,485,496,498],unfortun:[2,4,6,13,324,503],unicod:462,unicodedecodeerror:159,unifi:468,unifies_names_from_input_tensor:467,uniform:[45,290,377,378,471,498,499],uniform_:[22,42,45,195,460,467,471,478,498,499],uniformli:[15,379,380,437,505],unind:489,uniniti:[90,91,92,498],union:[2,11,143,199,200,201,203,204,205,207,208,209,218,219,220,221,222,223,224,225,226,237,238,239,255,256,259,267,268,269,270,271,272,273,293,294,295,296,297,319,320,321,322,323,461,502,504,506],uniqu:[14,185,187,189,447,457,459,463,465,485,490,491,492,498],unique_consecut:[446,460,498],unit:[88,206,216,240,241,242,290,291,331,332,336,339,341,344,438,470,473,475,488,502],unit_interv:15,unitari:[102,126,131,392],unitriangular:[438,460,498],univari:15,univers:461,unix:[13,466],unknown:492,unlabel:500,unless:[1,2,3,5,14,46,143,185,187,189,237,273,324,338,473,476,486,488,498],unlik:[2,5,15,185,187,189,259,461,466,481,495,498],unlist:1,unmask:[279,313],unment:468,unmodifi:1,unnam:[467,468],unncessari:496,unnecessari:476,unnorm:[229,470],unnot:466,unoccupi:11,unord:[274,283],unpack:[179,230,241,257,287,351,462,478,479],unpack_data:179,unpack_pivot:179,unpickl:[13,159],unpool:[270,271,272],unpooled_output:272,unprun:[332,333,335,336,337,338,339,340,341,342,343,344],unreadi:477,unreduc:[210,211,253,254,265,280],unrel:[5,478],unresolv:484,unrol:[461,485],unscal:1,unscale_:[1,472],unseg:217,unsign:[488,495,498],unskip:1,unsort:[349,350],unsorted_indic:[348,351],unspecif:303,unspecifi:[14,485,498],unsqueez:[291,460,478,485,496,498],unsqueeze_:[460,498],unstabl:[1,15,79,168,366,412,470],unstructur:[334,338],unsuccess:14,unsupport:[112,459,462,468,485],unsupported_linear_op:461,untest:468,until:[5,11,14,17,160,466,470,473,476,479,490,492,498],untouch:13,untrack:150,untrain:485,untrust:159,unus:[11,146,149,249,324,459,461,476,477],unused_argument1:249,unused_argument2:249,unused_method:459,unusu:5,upcom:[14,472],updat:[1,2,6,8,212,213,214,230,235,236,241,250,251,252,274,283,309,457,459,464,472,473,477,481,484,486,488,490,491,492,498],upgrad:486,upon:[13,466,492],upper:[15,52,55,62,63,64,66,125,290,372,383,398,427,438,441,442,460,470,471,486,498,505],upper_bound:15,uppercas:14,ups:5,upsampl:[225,321,322,488],upsample_bicubic2d:460,upsample_bilinear2d:460,upsample_bilinear:488,upsample_linear1d:460,upsample_nearest1d:[460,485],upsample_nearest2d:[460,485],upsample_nearest3d:[460,485],upsample_nearest:488,upsample_r:488,upsample_trilinear3d:460,upsample_trilinear:470,upscal:285,upscale_factor:[285,460,470],upstream:484,url:[2,14,457,465,490],usag:[1,2,3,5,10,11,13,15,160,366,459,468,472,473,479,485,488,492,498,499],use:[1,2,4,5,6,8,9,10,11,13,15,17,36,59,116,128,131,136,143,146,148,149,150,151,159,160,181,193,207,208,209,217,218,219,220,230,237,241,242,253,255,256,257,258,267,268,269,270,273,280,287,288,289,293,294,295,296,297,320,323,324,349,350,355,373,389,397,398,421,422,426,432,437,446,450,451,457,459,460,461,464,466,467,468,469,470,471,472,475,476,478,479,480,481,482,483,484,485,488,490,491,495,498,499,500,503,504,505,506],use_cuda:2,use_distribut:14,use_dynam:460,use_env:14,use_external_data_format:485,use_gpu:459,use_input_stat:[460,470],use_memory_effic:152,use_memory_effici:152,use_mkldnn:475,use_mm_for_euclid_dist:59,use_mm_for_euclid_dist_if_necessari:59,use_ninja:9,use_openmp:475,use_separate_proj_weight:460,use_tbb:475,used:[1,2,3,5,8,9,10,11,12,13,14,15,17,43,44,45,51,88,102,119,120,123,124,125,126,131,143,147,149,150,151,154,159,160,202,208,209,210,211,212,213,214,222,223,224,225,226,227,229,230,232,233,235,237,241,248,250,251,252,256,257,259,262,268,269,273,280,281,286,287,289,306,309,318,324,325,326,359,392,397,399,401,403,404,405,414,421,422,423,427,434,448,450,451,457,459,460,461,463,465,468,470,471,472,473,475,476,478,480,481,483,484,485,486,488,489,490,491,492,493,495,498,499,500,501,503,504,505,506],useful:[1,2,5,11,13,15,75,76,141,165,229,238,253,280,285,351,356,370,424,426,457,459,461,468,470,473,475,478,480,485,486,488,490,491,499,504,505],user:[2,4,8,10,11,13,14,15,143,159,221,222,223,224,225,226,237,273,313,315,317,324,338,457,459,461,466,468,472,473,476,478,480,481,485,488,490,491,496,498,505],userrref:[490,492],userwarn:[474,485],uses:[1,2,3,9,11,13,14,15,18,32,37,44,51,79,90,92,101,112,123,124,149,158,159,168,173,212,213,214,217,218,219,220,243,250,251,252,259,281,293,294,295,296,297,301,309,323,324,361,375,377,379,381,383,384,412,415,425,432,440,442,455,457,459,470,472,473,475,476,477,478,479,480,484,486,488,490,491,492,495,498,500,501],using:[1,2,4,5,6,8,9,10,13,14,15,25,46,61,63,86,89,128,141,143,146,147,148,149,150,151,152,159,160,177,178,184,206,210,211,217,218,219,220,221,222,223,224,225,226,227,230,231,232,233,235,236,237,241,247,248,257,273,275,282,284,287,293,294,295,296,297,299,323,324,353,356,366,375,397,403,432,437,457,458,459,461,462,463,466,468,470,471,472,473,475,476,477,478,479,480,481,482,484,485,486,488,490,491,492,498,499,500,503,505],usp:501,usual:[1,2,5,9,13,232,233,248,250,251,252,425,459,472,475,479,480,485,488,490,498],uszkoreit:[313,315,317],utf:159,util:[1,5,11,17,143,237,241,257,273,287,329,330,331,332,333,334,335,336,348,458,472,474,475,476,478,479,480,485,486,490,500,501,503],v100:[12,241,257,287,503],v_1:282,v_2:282,v_proj_weight:460,val2017:503,val:[471,498,500],val_loss:486,valid:[2,14,15,143,221,222,223,224,225,226,333,338,342,372,459,461,468,485,486,488,490,491,500,503],validate_arg:15,valu:[1,2,4,5,6,8,9,11,13,14,15,17,19,22,23,25,26,29,32,33,34,35,42,44,45,46,51,55,59,66,73,74,79,94,114,115,122,123,124,125,127,131,134,138,139,140,141,143,144,150,153,154,155,158,159,160,163,168,173,176,177,184,185,186,187,189,191,192,193,197,202,207,208,209,210,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,234,236,237,238,243,244,247,248,250,251,252,253,255,256,259,261,264,266,267,268,269,270,271,272,273,274,278,279,280,281,282,283,286,303,304,305,306,307,309,312,313,315,317,318,319,320,324,327,348,351,352,357,358,361,362,365,366,369,374,384,385,388,389,393,398,406,412,414,415,423,425,426,434,437,439,440,441,442,444,446,447,448,454,455,456,457,459,460,462,465,466,470,471,472,473,475,476,478,479,485,486,488,490,493,495,496,498,499,500,502,503,504,505,506],valueerror:[348,351,478],vamshi:7,vander:[460,463],vandermond:449,var1:486,var2:486,var_mean:[460,467],vari:[348,486,488],variabl:[4,9,11,15,90,92,150,160,215,221,222,223,224,225,226,230,235,236,241,242,257,258,261,276,281,287,289,324,348,349,350,351,352,361,377,379,381,432,455,457,468,475,476,479,484,485,486,488,490,498,503],variabletyp:485,varianc:[15,212,213,214,250,251,252,309,381,382,450,451,470,471,482,486],variant:[1,438,480,486,488,498],variat:[15,478],varieti:491,variou:[4,6,9,13,160,466,481,483,486],vase:503,vaswani:[313,315,317],vc2017:484,vdantu:7,vdim:279,vec1:[29,460,498],vec2:[29,117,460,498],vec:[28,194,354,358,460,498],vector:[2,8,15,27,28,29,36,41,54,59,67,72,75,76,80,82,92,117,182,188,193,194,211,212,213,214,217,230,235,236,238,243,250,251,252,282,309,318,319,326,328,354,358,365,425,427,449,470,473,488,498,500,505],vehicl:6,veloc:486,verbos:[9,457,468,485,486],veri:[2,3,5,8,250,251,252,325,461,466,473,478,479,481,484,486,488,489,490,491,503],verifi:[9,457,459,465,478,485],verify_ninja_avail:9,versa:[111,266,494,498],version:[4,15,123,144,145,147,148,182,196,211,273,320,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,423,436,457,467,468,470,473,474,476,478,480,484,485,486,488,498,499,500,504,505],versu:[5,277],vert:[228,282,470],vertic:505,vertical_flip:505,vflip:505,vframe:502,vgg11:503,vgg11_bn:503,vgg13:503,vgg13_bn:503,vgg16:503,vgg16_bn:503,vgg19:503,vgg19_bn:503,vgg:485,vhp:2,via:[2,5,9,10,11,13,14,15,58,93,160,212,213,214,230,243,250,251,252,259,309,353,355,421,422,450,451,459,461,466,471,473,476,478,479,481,485,486,491,495,496,498,504],vice:[111,266,494,498],video:[285,468,500,501],video_arrai:502,video_classif:503,video_codec:502,video_fp:502,video_read:501,videoclip:500,viehmann:7,view:[2,5,6,8,13,36,54,65,83,104,105,106,236,241,257,287,319,320,321,322,326,390,393,394,416,424,429,435,452,453,458,459,460,466,468,470,474,485,488,490,492,495,498,500,505],view_a:[460,496,498],view_as_complex:[8,460],view_as_imag:496,view_as_r:[8,460,496],viewbackward:2,vincent:7,vincentqb:7,violat:6,virtual:485,vishwak:7,vishwakftw:7,visibl:[11,14,274,275,283,284,503],vision:[6,457,501,503,504],visual:[2,221,222,223,224,225,226,238,267,268,269,319,484,497],vitali:7,vitalyfedyunin:7,vjp:2,voc2012:500,voc:[501,503],vocdetect:500,vocsegment:500,vol:141,volumetr:[214,309,320,470],von:15,von_mis:15,vs2017:484,vs2017_runtim:484,vw_i:279,vychisl:375,w_hf:257,w_hg:257,w_hh:460,w_hi:257,w_hn:241,w_ho:257,w_hr:241,w_hz:241,w_if:257,w_ig:257,w_ih:460,w_ii:257,w_in:241,w_io:257,w_ir:241,w_iz:241,w_j:304,w_n:[210,211],w_y:475,w_z:475,wai:[2,4,5,6,9,13,14,15,89,210,236,250,251,252,273,315,317,324,459,461,466,467,468,470,475,478,479,481,482,483,484,485,486,488,490,491,493,496,498,500,503],wait:[2,11,14,17,144,324,460,466,475,476,477,486,490],wait_al:17,wait_ev:11,wait_stream:[11,476],walk:[10,478,491,492,496],wang:7,want:[1,2,5,11,13,14,116,150,151,239,320,325,397,432,457,470,472,473,475,476,478,483,485,486,488,493,498,503],warm:486,warmup:2,warn:[9,144,150,404,405,474,478,485,489],wasn:[159,459],wast:5,weaker:15,weight:[13,15,46,143,145,149,151,156,193,210,211,215,221,222,223,224,225,226,229,235,236,237,241,242,243,257,258,259,261,273,277,278,279,280,281,287,289,313,338,340,341,342,343,344,345,346,347,353,355,457,460,461,464,468,470,471,473,478,479,485,486,488,498,503,504],weight_decai:486,weight_fake_qu:488,weight_g:[355,460],weight_hh:[242,258,289],weight_hh_l:[241,257,287],weight_ih:[242,258,289],weight_ih_l:[241,257,287],weight_mask:[341,344],weight_norm:[347,485],weight_orig:341,weight_scal:460,weight_siz:460,weight_stride0:460,weight_u:353,weight_v:355,weight_zero_point:460,weighted_kernel_sum:151,weightedrandomsampl:13,weird:[324,503],welcom:5,well:[2,5,9,14,143,145,148,150,212,213,214,237,253,273,309,425,459,467,470,472,473,478,481,482,485,488,490,492,493,496,497,499,502,503,505],were:[1,2,11,14,17,147,159,324,326,334,351,398,429,461,470,472,478,485,493,498],weren:2,what:[1,2,4,5,6,14,15,150,151,221,222,223,224,225,226,238,267,268,269,319,329,330,331,332,333,334,335,336,457,459,461,467,478,485,486,490,491,493,500],whatev:[432,438,498],wheel:484,when:[1,2,3,4,5,6,9,11,13,14,15,17,32,46,59,62,67,79,109,112,131,137,138,139,140,143,144,149,150,151,159,160,168,175,184,185,187,189,193,202,207,208,209,210,211,212,213,214,217,221,222,223,224,225,226,227,229,230,236,237,238,243,248,250,251,252,253,254,255,256,259,265,266,267,268,269,273,276,277,278,279,280,281,286,301,302,303,304,306,309,318,319,320,321,322,324,325,329,330,331,332,333,334,335,336,351,353,356,357,358,359,365,369,387,390,403,412,419,423,425,427,428,432,433,440,442,443,446,454,457,459,461,464,466,467,468,470,473,474,475,476,477,478,479,480,481,482,483,484,485,486,488,489,490,491,492,493,495,496,498,500,503,504,505],whenev:[6,235,466,470,491,492],where:[1,2,3,5,6,8,9,10,13,14,15,44,51,55,62,64,73,74,79,80,88,94,102,114,115,122,123,124,126,130,131,137,154,155,159,160,165,168,174,176,177,178,182,184,185,186,187,188,189,191,193,195,197,202,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,228,229,234,235,236,238,240,241,242,243,244,245,246,247,248,250,251,252,253,254,255,256,257,258,260,261,262,263,264,265,266,267,268,269,270,271,272,276,277,278,279,280,281,282,285,286,287,289,290,291,292,293,294,295,296,297,298,300,301,302,303,305,306,307,308,309,310,311,312,313,318,319,320,321,322,323,324,349,350,351,352,357,366,370,372,388,389,392,412,413,414,415,421,422,423,424,425,427,434,438,439,440,441,442,446,447,450,451,452,453,459,460,462,465,466,470,471,472,473,474,476,479,485,486,488,490,492,493,495,498,500,502,503,504,505,506],wherev:[6,467],whether:[1,2,5,6,9,11,13,14,15,33,34,44,51,62,63,64,67,68,102,123,124,126,131,141,143,154,174,177,184,185,186,187,189,191,193,217,227,237,248,253,273,282,286,340,358,370,392,402,403,421,422,423,424,425,427,434,438,446,447,450,451,457,465,470,472,476,478,485,486,490,493,494,496,498,500],which:[1,2,3,4,5,6,9,10,11,13,15,17,18,22,36,42,46,55,58,61,65,80,81,82,83,88,109,114,116,128,130,134,141,144,148,149,150,159,165,181,184,188,191,193,196,200,201,202,204,205,206,208,209,212,213,214,217,222,223,225,226,230,236,241,250,251,252,253,255,256,257,259,264,268,269,270,271,272,276,278,303,305,309,324,329,330,331,332,333,334,335,336,337,338,339,341,342,343,344,345,355,365,373,387,389,390,393,406,416,419,425,437,439,440,441,442,443,446,448,457,459,461,463,464,465,466,468,470,472,473,474,475,476,477,478,479,480,482,484,485,486,488,489,490,491,492,493,494,495,497,498,500,502,503,504,505,507],whichev:470,whilst:[15,476],white:505,white_list:488,whiten:505,whitespac:462,who:[5,8,473],whole:[13,14,141,143,237,273,309,473,481,488,502,505],whose:[15,61,81,94,115,122,143,151,155,176,197,237,273,324,359,473,478,485,500],why:[5,145,485],wide:475,wide_resnet101_2:503,wide_resnet50_2:503,width:[15,125,208,209,222,223,225,226,256,268,269,280,304,320,468,470,485,488,500,504,505],wikipedia:470,wildcard:468,willing:6,win:423,win_length:[141,423,460,498],window:[13,44,51,123,124,141,207,208,209,239,255,256,267,268,269,270,271,272,423,458,460,470,498],window_length:[44,51,123,124,460],wine:503,wip:5,wire:490,wise:[14,15,19,25,26,31,41,69,94,109,115,122,155,169,170,171,172,176,185,189,195,197,216,226,234,244,245,246,247,260,263,281,290,291,292,298,300,301,306,308,310,311,387,470,475,488,496],wish:[1,472],wit:459,with_arg:488,with_cuda:[9,484],with_pytorch_error_handl:9,with_replac:[67,460],within:[2,4,6,11,13,14,15,145,217,232,233,238,309,319,324,329,330,331,332,333,334,335,336,337,339,341,342,343,344,345,398,448,459,461,475,476,480,485,488,490,491,497],without:[1,2,4,5,6,11,13,15,112,116,131,141,193,212,213,214,236,250,251,252,259,281,309,324,339,375,390,445,457,466,468,470,472,474,476,478,481,485,486,488,489,490,498,503,504,505,507],won:[1,4,143,149,237,273,324,457,470,472,473,478,485,490,499,504],woodburi:15,word:[1,2,14,55,202,221,222,223,235,236,313,324,398,461,470,479,491],word_language_model:[313,485],work:[1,2,4,5,6,8,9,10,11,14,15,90,92,149,230,288,303,324,404,432,457,459,462,466,467,468,470,473,475,476,477,478,481,484,488,490,491,493,498,499],worker0:490,worker1:[17,324,490,491],worker2:490,worker:[5,9,13,14,324,490,491,492,500],worker_id:13,worker_info:13,worker_init_fn:[13,479],worker_nam:490,workerinfo:490,workflow:[10,457,478],workground:484,workload:[13,14,480],workspac:[9,485],world:[14,309],world_siz:[14,324,477,490,491],worri:490,worst:478,worth:[13,457,496],would:[2,4,6,8,13,14,15,61,90,92,130,146,147,150,151,188,195,210,211,241,257,287,324,325,348,356,391,398,432,436,459,461,467,468,472,474,475,476,477,478,485,490,491,492,493,498],wouldn:492,wrap:[1,2,10,13,143,150,230,237,273,309,324,351,459,460,472,477,478,484,486,488,490,491,498],wrapper:[11,14,17,230,324,459,461,466,488],write:[5,6,14,36,54,92,148,397,461,468,470,473,476,479,485,486,493,498,502],write_video:502,writer:497,written:[2,230,459,461,464,477,478,485,486,494],wrong:[14,477,481,484,486],wrote:5,www:[217,486,497],x86:[402,488],x86_x64:484,x_0:[114,488],x_1:[73,74,75,76,114,215,227,228,470],x_2:[73,74,75,76,215,227,228,470],x_3:[73,74,75,76],x_clone:466,x_cpu:476,x_cpu_long:476,x_gpu:476,x_i:[66,73,74,75,76,114,163,264,282,301,303,305,318,369,470],x_j:[264,303,305,470],x_n:[210,211,248,253,254,265],x_out:488,x_t:[212,213,214,241,250,251,252,257,287,309],xavier_normal_:471,xavier_uniform_:471,xdg_cache_hom:457,xeon:475,xiaoqiang:7,xing:375,xla:458,xml:500,xnnpack:464,xor:[50,172],xuhdev:7,xxx:500,xxy:500,xxz:500,y_cpu:476,y_cpu_long:476,y_gpu:476,y_hard:470,y_i:[66,73,74,75,76,163,301,318],y_n:[210,211,248,253,254,265,280],y_soft:470,yang:[6,7,160],ycbcr:505,year:[490,500],yes:5,yet:[11,144,146,152,191,329,333,335,461,468,488,490,492,495],yf225:7,yield:[13,81,83,143,237,273,454,462],yinghai:7,you:[1,2,3,4,5,6,8,9,10,11,13,14,15,36,46,54,89,92,116,143,145,146,150,151,152,159,217,221,222,223,224,225,226,229,237,270,271,272,273,278,279,280,304,313,315,317,320,324,349,356,372,390,397,432,457,459,461,463,466,467,470,472,473,474,476,478,479,480,481,482,483,484,485,486,488,489,490,491,492,493,495,496,497,498,499,500,503,505],your:[1,2,3,5,8,9,10,11,13,14,15,143,146,150,151,152,221,222,223,224,225,226,237,273,280,324,372,398,402,446,459,461,466,467,468,472,473,474,476,478,479,480,482,484,485,486,488,489,491,493,497,498,499,503,505],your_training_script:14,yourself:481,z_t:241,zach:7,zdevito:7,zebra:503,zero:[1,2,11,15,29,45,46,62,64,79,86,101,125,130,134,141,143,160,168,169,170,171,172,177,178,193,206,207,208,209,217,221,222,223,224,225,226,228,231,232,233,235,236,237,238,241,242,243,255,256,257,258,259,267,268,269,270,271,272,273,279,282,286,287,289,307,313,319,320,323,332,333,334,335,350,357,360,366,372,373,374,412,413,415,419,425,427,432,438,456,459,460,463,466,467,468,470,471,476,484,485,488,490,493,495,498,499,504,505],zero_:[2,460,467,468,470,493,498],zero_grad:[1,2,143,237,273,472,479,481,486],zero_infin:[217,460,470],zero_point:[373,374,460,488,498],zero_point_hh:460,zero_point_ih:460,zeros_:471,zeros_lik:[460,463,476,485],zhang:7,zhangguanheng66:7,zheng:7,zhong:505,zip:[13,457,460,461,465,480,485],zipf:202,zipfil:[397,483]},titles:["torch.__config__","Automatic Mixed Precision package - torch.cuda.amp","Automatic differentiation package - torch.autograd","torch.utils.bottleneck","torch.utils.checkpoint","PyTorch Contribution Guide","PyTorch Governance","PyTorch Governance | Persons of Interest","Complex Numbers","torch.utils.cpp_extension","C++","torch.cuda","<no title>","torch.utils.data","Distributed communication package - torch.distributed","Probability distributions - torch.distributions","torch.utils.dlpack","torch.futures","Generator","torch.abs","torch.absolute","torch.acos","torch.acosh","torch.add","torch.addbmm","torch.addcdiv","torch.addcmul","torch.addmm","torch.addmv","torch.addr","torch.allclose","torch.angle","torch.arange","torch.argmax","torch.argmin","torch.argsort","torch.as_strided","torch.as_tensor","torch.asin","torch.asinh","torch.atan","torch.atan2","torch.atanh","torch.baddbmm","torch.bartlett_window","torch.bernoulli","torch.bincount","torch.bitwise_and","torch.bitwise_not","torch.bitwise_or","torch.bitwise_xor","torch.blackman_window","torch.block_diag","torch.bmm","torch.broadcast_tensors","torch.bucketize","torch.can_cast","torch.cartesian_prod","torch.cat","torch.cdist","torch.ceil","torch.chain_matmul","torch.cholesky","torch.cholesky_inverse","torch.cholesky_solve","torch.chunk","torch.clamp","torch.combinations","torch.compiled_with_cxx11_abi","torch.conj","torch.cos","torch.cosh","torch.cross","torch.cummax","torch.cummin","torch.cumprod","torch.cumsum","torch.deg2rad","torch.dequantize","torch.det","torch.diag","torch.diag_embed","torch.diagflat","torch.diagonal","torch.digamma","torch.dist","torch.div","torch.dot","torch.eig","torch.einsum","torch.empty","torch.empty_like","torch.empty_strided","enable_grad","torch.eq","torch.equal","torch.erf","torch.erfc","torch.erfinv","torch.exp","torch.expm1","torch.eye","torch.fft","torch.flatten","torch.flip","torch.fliplr","torch.flipud","torch.floor","torch.floor_divide","torch.fmod","torch.frac","torch.from_numpy","torch.full","torch.full_like","torch.gather","torch.ge","torch.geqrf","torch.ger","torch.get_default_dtype","torch.get_num_interop_threads","torch.get_num_threads","torch.get_rng_state","torch.gt","torch.hamming_window","torch.hann_window","torch.histc","torch.ifft","torch.imag","torch.index_select","torch.initial_seed","torch.inverse","torch.irfft","torch.is_complex","torch.is_floating_point","torch.is_nonzero","torch.is_storage","torch.is_tensor","torch.isclose","torch.isfinite","torch.isinf","torch.isnan","torch.istft","ScriptFunction","ScriptModule","torch.jit.fork","torch.jit.freeze","torch.jit.ignore","torch.jit.load","torch.jit.save","torch.jit.script","torch.jit.trace","torch.jit.trace_module","torch.jit.unused","torch.jit.wait","torch.kthvalue","torch.le","torch.lerp","torch.lgamma","torch.linspace","torch.load","torch.lobpcg","torch.log","torch.log10","torch.log1p","torch.log2","torch.logaddexp","torch.logaddexp2","torch.logcumsumexp","torch.logdet","torch.logical_and","torch.logical_not","torch.logical_or","torch.logical_xor","torch.logspace","torch.logsumexp","torch.lstsq","torch.lt","torch.lu","torch.lu_solve","torch.lu_unpack","torch.manual_seed","torch.masked_select","torch.matmul","torch.matrix_power","torch.matrix_rank","torch.max","torch.mean","torch.median","torch.meshgrid","torch.min","torch.mm","torch.mode","torch.mul","torch.multinomial","torch.mv","torch.mvlgamma","torch.narrow","torch.ne","torch.neg","AdaptiveAvgPool1d","AdaptiveAvgPool2d","AdaptiveAvgPool3d","AdaptiveLogSoftmaxWithLoss","AdaptiveMaxPool1d","AdaptiveMaxPool2d","AdaptiveMaxPool3d","AlphaDropout","AvgPool1d","AvgPool2d","AvgPool3d","BCELoss","BCEWithLogitsLoss","BatchNorm1d","BatchNorm2d","BatchNorm3d","Bilinear","CELU","CTCLoss","ConstantPad1d","ConstantPad2d","ConstantPad3d","Conv1d","Conv2d","Conv3d","ConvTranspose1d","ConvTranspose2d","ConvTranspose3d","CosineEmbeddingLoss","CosineSimilarity","CrossEntropyLoss","DataParallel","Dropout","Dropout2d","Dropout3d","ELU","Embedding","EmbeddingBag","Flatten","Fold","FractionalMaxPool2d","GELU","GRU","GRUCell","GroupNorm","Hardshrink","Hardsigmoid","Hardswish","Hardtanh","HingeEmbeddingLoss","Identity","InstanceNorm1d","InstanceNorm2d","InstanceNorm3d","KLDivLoss","L1Loss","LPPool1d","LPPool2d","LSTM","LSTMCell","LayerNorm","LeakyReLU","Linear","LocalResponseNorm","LogSigmoid","LogSoftmax","MSELoss","MarginRankingLoss","MaxPool1d","MaxPool2d","MaxPool3d","MaxUnpool1d","MaxUnpool2d","MaxUnpool3d","Module","ModuleDict","ModuleList","MultiLabelMarginLoss","MultiLabelSoftMarginLoss","MultiMarginLoss","MultiheadAttention","NLLLoss","PReLU","PairwiseDistance","ParameterDict","ParameterList","PixelShuffle","PoissonNLLLoss","RNN","RNNBase","RNNCell","RReLU","ReLU","ReLU6","ReflectionPad1d","ReflectionPad2d","ReplicationPad1d","ReplicationPad2d","ReplicationPad3d","SELU","Sequential","Sigmoid","SmoothL1Loss","SoftMarginLoss","Softmax","Softmax2d","Softmin","Softplus","Softshrink","Softsign","SyncBatchNorm","Tanh","Tanhshrink","Threshold","Transformer","TransformerDecoder","TransformerDecoderLayer","TransformerEncoder","TransformerEncoderLayer","TripletMarginLoss","Unfold","Upsample","UpsamplingBilinear2d","UpsamplingNearest2d","ZeroPad2d","DistributedDataParallel","Parameter","torch.nn.utils.clip_grad_norm_","torch.nn.utils.clip_grad_value_","torch.nn.utils.parameters_to_vector","BasePruningMethod","CustomFromMask","Identity","L1Unstructured","LnStructured","PruningContainer","RandomStructured","RandomUnstructured","torch.nn.utils.prune.custom_from_mask","torch.nn.utils.prune.global_unstructured","torch.nn.utils.prune.identity","torch.nn.utils.prune.is_pruned","torch.nn.utils.prune.l1_unstructured","torch.nn.utils.prune.ln_structured","torch.nn.utils.prune.random_structured","torch.nn.utils.prune.random_unstructured","torch.nn.utils.prune.remove","torch.nn.utils.remove_spectral_norm","torch.nn.utils.remove_weight_norm","PackedSequence","torch.nn.utils.rnn.pack_padded_sequence","torch.nn.utils.rnn.pack_sequence","torch.nn.utils.rnn.pad_packed_sequence","torch.nn.utils.rnn.pad_sequence","torch.nn.utils.spectral_norm","torch.nn.utils.vector_to_parameters","torch.nn.utils.weight_norm","no_grad","torch.nonzero","torch.norm","torch.normal","torch.numel","torch.ones","torch.ones_like","torch.orgqr","torch.ormqr","torch.pca_lowrank","torch.pinverse","torch.poisson","torch.polygamma","torch.pow","torch.prod","torch.promote_types","torch.qr","torch.quantize_per_channel","torch.quantize_per_tensor","SobolEngine","torch.rad2deg","torch.rand","torch.rand_like","torch.randint","torch.randint_like","torch.randn","torch.randn_like","torch.randperm","torch.range","torch.real","torch.reciprocal","torch.remainder","torch.renorm","torch.repeat_interleave","torch.reshape","torch.result_type","torch.rfft","torch.roll","torch.rot90","torch.round","torch.rsqrt","torch.save","torch.searchsorted","torch.seed","torch.set_default_dtype","torch.set_default_tensor_type","torch.set_flush_denormal","set_grad_enabled","torch.set_num_interop_threads","torch.set_num_threads","torch.set_printoptions","torch.set_rng_state","torch.sigmoid","torch.sign","torch.sin","torch.sinh","torch.slogdet","torch.solve","torch.sort","torch.sparse_coo_tensor","torch.split","torch.sqrt","torch.square","torch.squeeze","torch.stack","torch.std","torch.std_mean","torch.stft","torch.sum","torch.svd","torch.svd_lowrank","torch.symeig","torch.t","torch.take","torch.tan","torch.tanh","torch.tensor","torch.tensordot","torch.topk","torch.trace","torch.transpose","torch.trapz","torch.triangular_solve","torch.tril","torch.tril_indices","torch.triu","torch.triu_indices","torch.true_divide","torch.trunc","torch.unbind","torch.unique","torch.unique_consecutive","torch.unsqueeze","torch.vander","torch.var","torch.var_mean","torch.view_as_complex","torch.view_as_real","torch.where","torch.zeros","torch.zeros_like","torch.hub","PyTorch documentation","TorchScript","TorchScript Builtins","TorchScript Language Reference","Python Language Reference Coverage","TorchScript Unsupported Pytorch Constructs","torch.utils.mobile_optimizer","torch.utils.model_zoo","Multiprocessing package - torch.multiprocessing","Named Tensors operator coverage","Named Tensors","torch.nn","torch.nn.functional","torch.nn.init","Automatic Mixed Precision examples","Autograd mechanics","Broadcasting semantics","CPU threading and TorchScript inference","CUDA semantics","Distributed Data Parallel","Extending PyTorch","Frequently Asked Questions","Features for large-scale deployments","Multiprocessing best practices","Reproducibility","Serialization semantics","Windows FAQ","torch.onnx","torch.optim","Javadoc","Quantization","torch.random","Distributed RPC Framework","Distributed Autograd Design","Remote Reference Protocol","torch.sparse","torch.Storage","Tensor Attributes","Tensor Views","torch.utils.tensorboard","torch.Tensor","torch","torchvision.datasets","torchvision","torchvision.io","torchvision.models","torchvision.ops","torchvision.transforms","torchvision.utils","Type Info"],titleterms:{"break":461,"case":[5,459],"class":[459,461,463],"default":[2,13,461],"export":485,"function":[2,6,14,15,459,460,461,463,467,469,470,472,473,485,488,493,505],"import":[457,484],"new":5,"return":[461,479,492],"var":450,"while":461,Adding:[5,478,485],For:461,Not:463,One:484,Ops:[1,463,499],The:5,Use:[461,476,485],With:463,__config__:0,__torch_function__:478,about:5,abs:[8,19],absolut:20,access:[8,461],accumul:472,aco:21,acosh:22,activ:[469,470],adaptive_avg_pool1d:470,adaptive_avg_pool2d:470,adaptive_avg_pool3d:470,adaptive_max_pool1d:470,adaptive_max_pool2d:470,adaptive_max_pool3d:470,adaptiveavgpool1d:199,adaptiveavgpool2d:200,adaptiveavgpool3d:201,adaptivelogsoftmaxwithloss:202,adaptivemaxpool1d:203,adaptivemaxpool2d:204,adaptivemaxpool3d:205,add:23,addbmm:24,addcdiv:25,addcmul:26,addmm:27,addmv:28,addr:29,adjust:486,affine_grid:470,agnost:476,alexnet:[485,503],algebra:8,algorithm:[486,491],align:468,allclos:30,alloc:479,alpha_dropout:470,alphadropout:206,amd:7,amp:1,angl:[8,31],anomali:2,api:[2,7,10,459,468,475,478,480,488],appendix:459,approach:483,arang:32,argmax:33,argmin:34,argsort:35,argument:492,arithmet:461,as_strid:36,as_tensor:37,asin:38,asinh:39,ask:[5,459,479,485],assign:461,assumpt:492,asynchron:[14,476,481],atan2:41,atan:40,atanh:42,aten:485,attach:480,attribut:[459,461,463,495],author:10,autocast:[1,472],autograd:[2,7,8,10,468,472,473,478,490,491],automat:[1,2,13,459,472],avg_pool1d:470,avg_pool2d:470,avg_pool3d:470,avgpool1d:207,avgpool2d:208,avgpool3d:209,avoid:[5,481],awai:467,backend:[14,490],background:[491,492],backward:[473,474,491],baddbmm:43,bartlett_window:44,basepruningmethod:329,basic:[14,468,490],batch:13,batch_norm:470,batchnorm1d:212,batchnorm2d:[213,488],batchnorm3d:[214,488],bceloss:210,bcewithlogitsloss:211,behavior:[1,13],benchmark:7,bernoulli:[15,45],best:[476,481,483],beta:15,between:463,bilinear:[215,470],binary_cross_entropi:[1,470],binary_cross_entropy_with_logit:[1,470],bincount:46,binomi:15,bitwise_and:47,bitwise_not:48,bitwise_or:49,bitwise_xor:50,bla:499,blackman_window:51,block_diag:52,bmm:53,bottleneck:3,bound:463,broadcast:474,broadcast_tensor:54,broken:484,bucket:55,buffer:[476,481],bug:5,build:[5,7,475,480,484],built:[459,460],builtin:460,c10:7,cach:[457,476],call:[461,473],can:[1,479],can_cast:56,caption:500,cartesian_prod:57,cast:461,cat:58,categor:15,cauchi:15,cdist:59,ceil:60,celeba:500,celu:[216,470],cffi:484,chain_matmul:61,chang:6,channel:484,characterist:503,check:[2,459,473],checkpoint:4,chi2:15,choleski:62,cholesky_invers:63,cholesky_solv:64,choos:14,chunk:65,cifar:500,cityscap:500,clamp:66,classif:503,claus:484,clip:472,clip_grad_norm_:326,clip_grad_value_:327,closur:486,cnn:503,coco:500,code:[5,459,476],codebas:5,collate_fn:13,collect:[11,14],combin:67,come:14,common:[5,14,480],commun:[11,14],comparison:[459,461,499],compat:474,compiled_with_cxx11_abi:68,complex:[8,473],compon:484,comput:[2,491,499],concurr:473,conj:69,consider:480,constant:[459,461],constantpad1d:218,constantpad2d:219,constantpad3d:220,constraint:15,construct:[461,463,486],contain:469,context:[2,491],continu:461,continuousbernoulli:15,contract:467,contribut:5,controversi:6,conv1d:[221,470,488],conv2d:[222,470,488],conv3d:[223,470,488],conv_transpose1d:470,conv_transpose2d:470,conv_transpose3d:470,convbn1d:488,convbn2d:488,convbnrelu1d:488,convbnrelu2d:488,convers:505,convolut:[469,470,503],convrelu1d:488,convrelu2d:488,convrelu3d:488,convtranspose1d:224,convtranspose2d:225,convtranspose3d:226,core:6,correct:[2,473],correctli:463,cos:70,cosh:71,cosine_embedding_loss:470,cosine_similar:470,cosineembeddingloss:227,cosinesimilar:228,coverag:[462,467,478,488],cpp:484,cpp_extens:9,cpu:[7,473,475],creat:[8,459,468],creation:499,cross:[72,473],cross_entropi:470,crossentropyloss:229,ctc_loss:470,ctcloss:217,cuda:[1,7,11,466,476,479,481,484],cudnn:482,cufft:476,cummax:73,cummin:74,cumprod:75,cumsum:76,current:468,custom:[472,478,485],custom_from_mask:337,customfrommask:330,data:[13,477,479,485],data_parallel:470,dataload:7,dataparallel:[230,469,470,472,476],dataset:[13,500],datasetfold:500,deadlock:481,debug:[459,488],decis:6,deeplabv3:503,defin:[461,473,478],deg2rad:77,densenet:503,depend:491,deploy:480,deprec:2,dequant:[78,488],deriv:[15,473],descriptor:466,design:[477,490,491,492],det:79,detect:[2,500,503],determin:473,develop:[5,6],devic:[476,495],diag:80,diag_emb:81,diagflat:82,diagon:83,dict:461,differenti:2,digamma:84,dim:467,dimens:[467,468],dirichlet:15,disabl:[2,13,459,499],discuss:5,dispatch:7,dist:85,distanc:[469,470],distribut:[7,14,15,469,470,477,490,491],distributeddataparallel:[324,472,476,477],div:86,diverg:[15,463],dlpack:16,doc:5,document:[5,458],doe:473,doesn:479,domain:473,dot:87,down:484,download:457,driver:484,dropout2d:[232,470],dropout3d:[233,470],dropout:[231,469,470],dtype:[472,488,495],dure:491,dynam:488,edg:459,eig:88,einsum:89,elig:1,elu:[234,470,488],embed:[235,470],embedding_bag:470,embeddingbag:236,emnist:500,empti:90,empty_lik:91,empty_strid:92,enable_grad:93,encod:473,end:[485,491],engin:7,entrypoint:457,environ:[14,480],equal:95,erf:96,erfc:97,erfinv:98,error:[479,484],event:11,exampl:[472,477,485,491],except:479,exclud:473,execut:476,exp:99,explicit:468,expm1:100,exponenti:15,exponentialfamili:15,express:461,extend:[10,478],extens:[10,11,478,480,484],extern:485,eye:101,factori:467,fakedata:500,faq:[6,484],fashion:500,fast:491,faster:503,featur:[5,480],feature_alpha_dropout:470,fft:102,fight:481,file:[14,466],file_descriptor:466,file_system:466,finfo:507,fishersnedecor:15,fix:5,flatten:[103,237],fleet:480,flickr:500,flip:104,fliplr:105,flipud:106,float16:1,float32:1,floatfunct:488,floor:107,floor_divid:108,fmod:109,fold:[238,470],fork:144,format:485,forward:491,found:484,frac:110,fractionalmaxpool2d:239,framework:490,freed:479,freez:145,frequent:[5,459,479,485],from:[8,457,467,473,484,485],from_numpi:111,full:112,full_lik:113,fulli:503,futur:17,gamma:15,gather:114,gelu:[240,470],gener:[7,11,18,474,499,505],geometr:15,geqrf:116,ger:117,get:5,get_default_dtyp:118,get_num_interop_thread:119,get_num_thread:120,get_rng_stat:121,global_unstructur:338,glu:470,googlenet:503,govern:[6,7],gpu:[14,469,470,472,479],gradient:[1,2,472,499],graph:[459,473],grid_sampl:470,group:[14,490],groupnorm:[243,488],gru:241,grucel:242,guid:[5,6],gumbel:15,gumbel_softmax:470,halfcauchi:15,halfnorm:15,hamming_window:123,handler:479,hann_window:124,happen:473,hardshrink:[244,470],hardsigmoid:[245,470],hardswish:[246,470,488],hardtanh:[247,470],higher:2,hinge_embedding_loss:470,hingeembeddingloss:248,hip:7,histc:125,histori:473,hmdb51:500,hogwild:481,hook:473,how:[457,473,486],hub:457,ident:[249,331,339,479],ifft:126,ignor:146,iinfo:507,imag:[8,127,505],imagefold:500,imagenet:500,implement:[5,457,477,492],improv:5,incept:503,includ:484,independ:15,index:499,index_select:128,indic:458,infer:[468,475],info:507,init:471,initi:14,initial_se:129,input:[1,467,472],inspect:459,instal:484,instanc:503,instance_norm:470,instancenorm1d:[250,488],instancenorm2d:[251,488],instancenorm3d:[252,488],instead:476,instrins:488,interest:7,interfac:[14,488],intern:477,interpol:470,interpret:459,intrins:488,introduct:488,invers:130,ipc:484,irfft:131,is_complex:132,is_floating_point:133,is_nonzero:134,is_prun:340,is_storag:135,is_tensor:136,isclos:137,isfinit:138,isinf:139,isn:479,isnan:140,issu:5,istft:141,iter:[13,461],javadoc:487,jit:[7,144,145,146,147,148,149,150,151,152,153,459],join:499,jvp:473,keep:467,kei:[6,484],keypoint:503,kinet:500,kl_div:470,kldivloss:253,kmnist:500,known:457,kthvalu:154,l1_loss:470,l1_unstructur:341,l1loss:254,l1unstructur:332,languag:[459,461,462],lapack:499,laplac:15,larg:480,launch:14,layer:469,layer_norm:470,layernorm:[259,488],layout:[2,495],leaky_relu:470,leakyrelu:260,learn:486,lerp:156,level:[2,7,488],lgamma:157,librari:7,lifetim:492,like:478,limit:[457,485],linear:[8,261,469,470,488],linearrelu:488,linspac:158,list:461,liter:461,ln_structur:342,lnstructur:333,load:[13,147,159,457],loader:479,lobpcg:160,local:[2,499],local_response_norm:470,localresponsenorm:262,log10:162,log1p:163,log2:164,log:[161,480],log_softmax:470,logaddexp2:166,logaddexp:165,logcumsumexp:167,logdet:168,logic:[457,461],logical_and:169,logical_not:170,logical_or:171,logical_xor:172,logitrelaxedbernoulli:15,lognorm:15,logsigmoid:[263,470],logsoftmax:264,logspac:173,logsumexp:174,lookup:461,loop:461,loss:[469,470,472],lowrankmultivariatenorm:15,lp_pool1d:470,lp_pool2d:470,lppool1d:255,lppool2d:256,lstm:[257,488],lstmcell:258,lstsq:175,lsun:500,lu_solv:178,lu_unpack:179,maintain:[6,7],make:[5,6],manag:[11,466,476],manipul:468,manual:2,manual_se:180,map:13,margin_ranking_loss:470,marginrankingloss:266,mask:503,masked_select:181,match:[461,468],math:[460,499],matmul:182,matrix_pow:183,matrix_rank:184,max:185,max_pool1d:470,max_pool2d:470,max_pool3d:470,max_unpool1d:470,max_unpool2d:470,max_unpool3d:470,maxpool1d:267,maxpool2d:268,maxpool3d:269,maxunpool1d:270,maxunpool2d:271,maxunpool3d:272,mean:186,mechan:473,median:187,memori:[11,13,476,479],memory_format:495,meshgrid:188,metadata:480,method:[2,460,461,463],migrat:459,min:189,mistak:5,mix:[1,459,472,503],mixin:2,mixturesamefamili:15,mkldnn:7,mnasnet:503,mnist:500,mobile_optim:464,mobilenet:503,mode:[191,491],model:[10,457,472,479,480,483,488,503],model_zoo:465,moder:6,modul:[7,273,459,460,461,463,478],moduledict:274,modulelist:[275,461],more:5,mse_loss:470,mseloss:265,mul:192,multi:[13,14,469,470],multi_margin_loss:470,multiheadattent:279,multilabel_margin_loss:470,multilabel_soft_margin_loss:470,multilabelmarginloss:276,multilabelsoftmarginloss:277,multimarginloss:278,multinomi:[15,193],multipl:[472,478],multiprocess:[7,466,476,481,484],multithread:473,multivariatenorm:15,mutat:499,mvlgamma:195,name:[461,467,468],narrow:196,nccl:14,need:472,neg:198,negativebinomi:15,network:[14,479,503],nll_loss:470,nllloss:280,no_grad:356,node:473,non:[13,469,470,473,485],nonlinear:469,nonzero:357,norm:358,normal:[15,359,469,470],note:490,notic:457,notion:473,number:[8,11,473,475,479],numel:360,numer:2,numpi:482,nvidia:11,nvtx:11,object:503,observ:488,old:8,one:472,one_hot:470,onehotcategor:15,ones:361,ones_lik:362,onlin:5,onnx:[7,485],onnx_aten:485,onnx_aten_fallback:485,onnx_fallthrough:485,open:5,oper:[2,7,14,461,467,468,473,478,480,484,485,488,499],ops:[472,504],optim:[7,472,486,490,491],option:[461,475,484,486],order:13,orgqr:363,ormqr:364,other:[14,469,499],out:[467,479],over:[1,461],overrid:478,overview:5,owner:492,pack_padded_sequ:349,pack_sequ:350,packag:[1,2,10,14,466,484],packedsequ:348,pad:[469,470],pad_packed_sequ:351,pad_sequ:352,pairwise_dist:470,pairwisedist:282,parallel:[476,477,479,499],paramet:[325,461,486],parameterdict:283,parameterlist:284,parameters_to_vector:328,pareto:15,parti:14,particip:5,particular:472,pass:[481,491],pathwis:15,pattern:461,pca_lowrank:365,pdist:470,penalti:472,peopl:6,per:[472,486],perform:7,permut:467,person:[7,503],philosophi:6,phototour:500,pil:505,pin:[13,476],pinvers:366,pipe:484,pixel_shuffl:470,pixelshuffl:285,place:[2,467,473,474,499],plan:476,platform:13,point:[14,480],pointwis:499,poisson:[15,367],poisson_nll_loss:470,poissonnllloss:286,polygamma:368,pool:[469,470],pow:369,powerpc:7,practic:[476,481,483],precis:[1,472],prefer:1,prelu:[281,470],prepar:488,print:461,probabl:15,process:[5,6,13,472,490],processgroup:477,prod:370,profil:[2,480],project:6,promot:[1,5],promote_typ:371,propag:468,properli:479,properti:463,propos:5,protect:484,protocol:492,prune:[337,338,339,340,341,342,343,344,345],pruningcontain:334,publish:457,pull:5,python:[5,459,460,461,462,463],pytorch:[5,6,7,10,14,458,459,460,463,473,478,482,485],qat:488,qfunction:488,qmnist:500,quantiz:[469,488],quantize_per_channel:373,quantize_per_tensor:374,quasi:499,question:[5,459,479,485],queue:481,rad2deg:376,rand:377,rand_lik:378,randint:379,randint_lik:380,randn:381,randn_lik:382,random:[11,13,479,489,499],random_structur:343,random_unstructur:344,randomstructur:335,randomunstructur:336,randperm:383,rang:[384,461],rate:486,raw:485,readabl:5,real:[8,385],reason:492,reciproc:386,recommend:483,record:491,recurr:[469,479],recurs:459,reduct:499,refer:[1,459,461,462,468,492],refin:461,reflectionpad1d:293,reflectionpad2d:294,registri:15,relaxedbernoulli:15,relaxedonehotcategor:15,relu6:[292,470,488],relu:[291,470,488],remaind:387,remot:492,remov:[345,467],remove_spectral_norm:346,remove_weight_norm:347,renorm:388,repeat_interleav:389,replicationpad1d:295,replicationpad2d:296,replicationpad3d:297,report:[5,479],represent:8,reproduc:482,request:5,requires_grad:473,reshap:390,resnet:503,resnext:503,resolut:461,result_typ:391,retain:473,reus:481,review:5,rfft:392,rng:7,rnn:[287,349,350,351,352],rnnbase:288,rnncell:289,robust:5,rocm:7,roll:393,rot90:394,round:395,rpc:490,rref:[490,492],rrelu:[290,470],rsqrt:396,rule:468,run:457,runtim:[475,479,503],safeti:473,sampl:499,sampler:13,save:[148,397,457,480,483],sbd:500,sbu:500,scalar:473,scale:[1,472,480],scenario:492,schema:463,scheme:488,score:15,script:[149,459,484,485],scriptfunct:142,scriptmodul:143,searchsort:398,seed:399,segment:503,selu:[298,470],semant:[468,474,476,483,503],sequenti:299,serial:[8,483,499],set_default_dtyp:400,set_default_tensor_typ:401,set_flush_denorm:402,set_grad_en:403,set_num_interop_thread:404,set_num_thread:405,set_printopt:406,set_rng_stat:407,share:[14,466,492],shufflenet:503,shut:484,sigmoid:[300,408,470],sign:409,simd:7,simpl:[461,491],sin:410,singl:[13,472],sinh:411,slice:[461,499],slogdet:412,smart:491,smooth_l1_loss:470,smoothl1loss:301,sobolengin:375,soft_margin_loss:470,softmarginloss:302,softmax2d:304,softmax:[303,470],softmin:[305,470],softplu:[306,470],softshrink:[307,470],softsign:[308,470],solv:413,sort:414,sourc:[5,484],spars:[469,470,493],sparse_coo_tensor:415,spawn:[14,466],specif:[1,13],spectral:499,spectral_norm:353,speed:484,split:416,sqrt:417,squar:418,squeez:419,squeezenet:503,stack:420,start:5,statement:461,std:421,std_mean:422,step:486,stft:423,stl10:500,storag:494,strategi:466,stream:[11,476],studentt:15,style:13,subgraph:473,submit:5,subprocess:466,subscript:461,subsystem:468,sum:[424,469],support:[460,467,468,485],svd:425,svd_lowrank:426,svhn:500,symeig:427,syncbatchnorm:309,synchron:14,system:[14,466],tabl:458,take:[429,486],tan:430,tanh:[310,431,470],tanhshrink:[311,470],tcp:14,tenet:6,tensor:[2,8,10,432,460,463,466,467,468,478,488,495,496,498,499,505],tensorboard:497,tensordot:433,tensorpip:490,ternari:461,test:[5,478],third:14,thread:[473,475],threshold:[312,470],through:481,tip:481,tool:11,top:488,topk:434,torch:[0,1,2,3,4,7,9,11,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,326,327,328,337,338,339,340,341,342,343,344,345,346,347,349,350,351,352,353,354,355,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,463,464,465,466,469,470,471,478,485,486,488,489,493,494,495,497,498,499,505,507],torchaudio:7,torchscript:[10,459,460,461,463,475,480],torchserv:7,torchtext:7,torchvis:[7,485,500,501,502,503,504,505,506],trace:[150,435,459,485],trace_modul:151,tracer:459,train:[472,481,485],transform:[15,313,469,505],transformeddistribut:15,transformerdecod:314,transformerdecoderlay:315,transformerencod:316,transformerencoderlay:317,transit:8,transpos:436,trapz:437,triag:5,triangular_solv:438,tril:439,tril_indic:440,triplet_margin_loss:470,tripletmarginloss:318,triu:441,triu_indic:442,true_divid:443,trunc:444,tune:475,tupl:461,tutori:[5,490],type:[1,13,461,478,485,507],typic:472,ucf101:500,unbind:445,uncontroversi:6,unfold:[319,470],unifi:467,uniform:15,uniqu:446,unique_consecut:447,unscal:472,unsqueez:448,unsupport:[461,463],unus:152,upsampl:[320,470],upsample_bilinear:470,upsample_nearest:470,upsamplingbilinear2d:321,upsamplingnearest2d:322,usag:[480,484],use:[14,473,486],user:492,usp:500,util:[3,4,7,9,13,14,16,326,327,328,337,338,339,340,341,342,343,344,345,346,347,349,350,351,352,353,354,355,464,465,469,488,497,499,506],valu:[461,492],vander:449,var_mean:451,variabl:[2,14,459,461],variant:467,vector_to_paramet:354,vgg:503,video:[502,503],view:496,view_as_complex:452,view_as_r:453,vision:[469,470],vjp:473,voc:500,vonmis:15,wait:153,warn:459,weibul:15,weight:469,weight_norm:355,what:473,where:[454,457],which:14,wide:[480,503],widest:1,win:484,window:[7,484],without:484,work:[13,472,479],worker:479,workflow:488,wrapper:478,write:478,xla:7,zero:455,zeropad2d:323,zeros_lik:456}}) \ No newline at end of file diff --git a/docs/stable/sparse.html b/docs/stable/sparse.html index 0491b9d2bc71..171c71c98963 100644 --- a/docs/stable/sparse.html +++ b/docs/stable/sparse.html @@ -593,7 +593,7 @@

                                                                      Functions

                                                                      -torch.sparse.addmm(mat: torch.Tensor, mat1: torch.Tensor, mat2: torch.Tensor, beta: float = 1, alpha: float = 1) → torch.Tensor[source]
                                                                      +torch.sparse.addmm(mat, mat1, mat2, beta=1, alpha=1)[source]

                                                                      This function does exact same thing as torch.addmm() in the forward, except that it supports backward for sparse matrix mat1. mat1 need to have sparse_dim = 2. Note that the gradients of mat1 is a @@ -604,10 +604,13 @@

                                                                      FunctionsTensor) – a dense matrix to be added

                                                                    • mat1 (SparseTensor) – a sparse matrix to be multiplied

                                                                    • mat2 (Tensor) – a dense matrix be multiplied

                                                                    • -
                                                                    • beta (Number, optional) – multiplier for mat (β\beta +

                                                                    • beta (Number, optional) – multiplier for mat (β\beta + )

                                                                    • -
                                                                    • alpha (Number, optional) – multiplier for mat1@mat2mat1 @ mat2 - (α\alpha +

                                                                    • alpha (Number, optional) – multiplier for mat1@mat2mat1 @ mat2 + + (α\alpha + )

                                                                    @@ -619,10 +622,13 @@

                                                                    Functionstorch.sparse.mm(mat1, mat2)[source]

                                                                    Performs a matrix multiplication of the sparse matrix mat1 and dense matrix mat2. Similar to torch.mm(), If mat1 is a -(n×m)(n \times m) - tensor, mat2 is a (m×p)(m \times p) +(n×m)(n \times m) + + tensor, mat2 is a (m×p)(m \times p) + tensor, out will be a -(n×p)(n \times p) +(n×p)(n \times p) + dense tensor. mat1 need to have sparse_dim = 2. This function also supports backward for both matrices. Note that the gradients of mat1 is a coalesced sparse tensor.

                                                                    @@ -664,7 +670,7 @@

                                                                    Functions
                                                                    -torch.sparse.sum(input: torch.Tensor, dim: Optional[Tuple[int]] = None, dtype: Optional[int] = None) → torch.Tensor[source]
                                                                    +torch.sparse.sum(input, dim=None, dtype=None)[source]

                                                                    Returns the sum of each row of SparseTensor input in the given dimensions dim. If dim is a list of dimensions, reduce over all of them. When sum over all sparse_dim, this method diff --git a/docs/stable/tensorboard.html b/docs/stable/tensorboard.html index b9e4d388d3e7..a95701ed6e96 100644 --- a/docs/stable/tensorboard.html +++ b/docs/stable/tensorboard.html @@ -396,563 +396,6 @@

                                                                    torch.utils.tensorboard


                                                                  -
                                                                  -
                                                                  -class torch.utils.tensorboard.writer.SummaryWriter(log_dir=None, comment='', purge_step=None, max_queue=10, flush_secs=120, filename_suffix='')[source]
                                                                  -

                                                                  Writes entries directly to event files in the log_dir to be -consumed by TensorBoard.

                                                                  -

                                                                  The SummaryWriter class provides a high-level API to create an event file -in a given directory and add summaries and events to it. The class updates the -file contents asynchronously. This allows a training program to call methods -to add data to the file directly from the training loop, without slowing down -training.

                                                                  -
                                                                  -
                                                                  -__init__(log_dir=None, comment='', purge_step=None, max_queue=10, flush_secs=120, filename_suffix='')[source]
                                                                  -

                                                                  Creates a SummaryWriter that will write out events and summaries -to the event file.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • log_dir (string) – Save directory location. Default is -runs/CURRENT_DATETIME_HOSTNAME, which changes after each run. -Use hierarchical folder structure to compare -between runs easily. e.g. pass in ‘runs/exp1’, ‘runs/exp2’, etc. -for each new experiment to compare across them.

                                                                  • -
                                                                  • comment (string) – Comment log_dir suffix appended to the default -log_dir. If log_dir is assigned, this argument has no effect.

                                                                  • -
                                                                  • purge_step (int) – When logging crashes at step T+XT+X - and restarts at step TT -, -any events whose global_step larger or equal to TT - will be -purged and hidden from TensorBoard. -Note that crashed and resumed experiments should have the same log_dir.

                                                                  • -
                                                                  • max_queue (int) – Size of the queue for pending events and -summaries before one of the ‘add’ calls forces a flush to disk. -Default is ten items.

                                                                  • -
                                                                  • flush_secs (int) – How often, in seconds, to flush the -pending events and summaries to disk. Default is every two minutes.

                                                                  • -
                                                                  • filename_suffix (string) – Suffix added to all event filenames in -the log_dir directory. More details on filename construction in -tensorboard.summary.writer.event_file_writer.EventFileWriter.

                                                                  • -
                                                                  -
                                                                  -
                                                                  -

                                                                  Examples:

                                                                  -
                                                                  from torch.utils.tensorboard import SummaryWriter
                                                                  -
                                                                  -# create a summary writer with automatically generated folder name.
                                                                  -writer = SummaryWriter()
                                                                  -# folder location: runs/May04_22-14-54_s-MacBook-Pro.local/
                                                                  -
                                                                  -# create a summary writer using the specified folder name.
                                                                  -writer = SummaryWriter("my_experiment")
                                                                  -# folder location: my_experiment
                                                                  -
                                                                  -# create a summary writer with comment appended.
                                                                  -writer = SummaryWriter(comment="LR_0.1_BATCH_16")
                                                                  -# folder location: runs/May04_22-14-54_s-MacBook-Pro.localLR_0.1_BATCH_16/
                                                                  -
                                                                  -
                                                                  -
                                                                  - -
                                                                  -
                                                                  -add_scalar(tag, scalar_value, global_step=None, walltime=None)[source]
                                                                  -

                                                                  Add scalar data to summary.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • tag (string) – Data identifier

                                                                  • -
                                                                  • scalar_value (float or string/blobname) – Value to save

                                                                  • -
                                                                  • global_step (int) – Global step value to record

                                                                  • -
                                                                  • walltime (float) – Optional override default walltime (time.time()) -with seconds after epoch of event

                                                                  • -
                                                                  -
                                                                  -
                                                                  -

                                                                  Examples:

                                                                  -
                                                                  from torch.utils.tensorboard import SummaryWriter
                                                                  -writer = SummaryWriter()
                                                                  -x = range(100)
                                                                  -for i in x:
                                                                  -    writer.add_scalar('y=2x', i * 2, i)
                                                                  -writer.close()
                                                                  -
                                                                  -
                                                                  -

                                                                  Expected result:

                                                                  -_images/add_scalar.png -
                                                                  - -
                                                                  -
                                                                  -add_scalars(main_tag, tag_scalar_dict, global_step=None, walltime=None)[source]
                                                                  -

                                                                  Adds many scalar data to summary.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • main_tag (string) – The parent name for the tags

                                                                  • -
                                                                  • tag_scalar_dict (dict) – Key-value pair storing the tag and corresponding values

                                                                  • -
                                                                  • global_step (int) – Global step value to record

                                                                  • -
                                                                  • walltime (float) – Optional override default walltime (time.time()) -seconds after epoch of event

                                                                  • -
                                                                  -
                                                                  -
                                                                  -

                                                                  Examples:

                                                                  -
                                                                  from torch.utils.tensorboard import SummaryWriter
                                                                  -writer = SummaryWriter()
                                                                  -r = 5
                                                                  -for i in range(100):
                                                                  -    writer.add_scalars('run_14h', {'xsinx':i*np.sin(i/r),
                                                                  -                                    'xcosx':i*np.cos(i/r),
                                                                  -                                    'tanx': np.tan(i/r)}, i)
                                                                  -writer.close()
                                                                  -# This call adds three values to the same scalar plot with the tag
                                                                  -# 'run_14h' in TensorBoard's scalar section.
                                                                  -
                                                                  -
                                                                  -

                                                                  Expected result:

                                                                  -_images/add_scalars.png -
                                                                  - -
                                                                  -
                                                                  -add_histogram(tag, values, global_step=None, bins='tensorflow', walltime=None, max_bins=None)[source]
                                                                  -

                                                                  Add histogram to summary.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • tag (string) – Data identifier

                                                                  • -
                                                                  • values (torch.Tensor, numpy.array, or string/blobname) – Values to build histogram

                                                                  • -
                                                                  • global_step (int) – Global step value to record

                                                                  • -
                                                                  • bins (string) – One of {‘tensorflow’,’auto’, ‘fd’, …}. This determines how the bins are made. You can find -other options in: https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html

                                                                  • -
                                                                  • walltime (float) – Optional override default walltime (time.time()) -seconds after epoch of event

                                                                  • -
                                                                  -
                                                                  -
                                                                  -

                                                                  Examples:

                                                                  -
                                                                  from torch.utils.tensorboard import SummaryWriter
                                                                  -import numpy as np
                                                                  -writer = SummaryWriter()
                                                                  -for i in range(10):
                                                                  -    x = np.random.random(1000)
                                                                  -    writer.add_histogram('distribution centers', x + i, i)
                                                                  -writer.close()
                                                                  -
                                                                  -
                                                                  -

                                                                  Expected result:

                                                                  -_images/add_histogram.png -
                                                                  - -
                                                                  -
                                                                  -add_image(tag, img_tensor, global_step=None, walltime=None, dataformats='CHW')[source]
                                                                  -

                                                                  Add image data to summary.

                                                                  -

                                                                  Note that this requires the pillow package.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • tag (string) – Data identifier

                                                                  • -
                                                                  • img_tensor (torch.Tensor, numpy.array, or string/blobname) – Image data

                                                                  • -
                                                                  • global_step (int) – Global step value to record

                                                                  • -
                                                                  • walltime (float) – Optional override default walltime (time.time()) -seconds after epoch of event

                                                                  • -
                                                                  -
                                                                  -
                                                                  -
                                                                  -
                                                                  Shape:

                                                                  img_tensor: Default is (3,H,W)(3, H, W) -. You can use torchvision.utils.make_grid() to -convert a batch of tensor into 3xHxW format or call add_images and let us do the job. -Tensor with (1,H,W)(1, H, W) -, (H,W)(H, W) -, (H,W,3)(H, W, 3) - is also suitable as long as -corresponding dataformats argument is passed, e.g. CHW, HWC, HW.

                                                                  -
                                                                  -
                                                                  -

                                                                  Examples:

                                                                  -
                                                                  from torch.utils.tensorboard import SummaryWriter
                                                                  -import numpy as np
                                                                  -img = np.zeros((3, 100, 100))
                                                                  -img[0] = np.arange(0, 10000).reshape(100, 100) / 10000
                                                                  -img[1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000
                                                                  -
                                                                  -img_HWC = np.zeros((100, 100, 3))
                                                                  -img_HWC[:, :, 0] = np.arange(0, 10000).reshape(100, 100) / 10000
                                                                  -img_HWC[:, :, 1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000
                                                                  -
                                                                  -writer = SummaryWriter()
                                                                  -writer.add_image('my_image', img, 0)
                                                                  -
                                                                  -# If you have non-default dimension setting, set the dataformats argument.
                                                                  -writer.add_image('my_image_HWC', img_HWC, 0, dataformats='HWC')
                                                                  -writer.close()
                                                                  -
                                                                  -
                                                                  -

                                                                  Expected result:

                                                                  -_images/add_image.png -
                                                                  - -
                                                                  -
                                                                  -add_images(tag, img_tensor, global_step=None, walltime=None, dataformats='NCHW')[source]
                                                                  -

                                                                  Add batched image data to summary.

                                                                  -

                                                                  Note that this requires the pillow package.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • tag (string) – Data identifier

                                                                  • -
                                                                  • img_tensor (torch.Tensor, numpy.array, or string/blobname) – Image data

                                                                  • -
                                                                  • global_step (int) – Global step value to record

                                                                  • -
                                                                  • walltime (float) – Optional override default walltime (time.time()) -seconds after epoch of event

                                                                  • -
                                                                  • dataformats (string) – Image data format specification of the form -NCHW, NHWC, CHW, HWC, HW, WH, etc.

                                                                  • -
                                                                  -
                                                                  -
                                                                  -
                                                                  -
                                                                  Shape:

                                                                  img_tensor: Default is (N,3,H,W)(N, 3, H, W) -. If dataformats is specified, other shape will be -accepted. e.g. NCHW or NHWC.

                                                                  -
                                                                  -
                                                                  -

                                                                  Examples:

                                                                  -
                                                                  from torch.utils.tensorboard import SummaryWriter
                                                                  -import numpy as np
                                                                  -
                                                                  -img_batch = np.zeros((16, 3, 100, 100))
                                                                  -for i in range(16):
                                                                  -    img_batch[i, 0] = np.arange(0, 10000).reshape(100, 100) / 10000 / 16 * i
                                                                  -    img_batch[i, 1] = (1 - np.arange(0, 10000).reshape(100, 100) / 10000) / 16 * i
                                                                  -
                                                                  -writer = SummaryWriter()
                                                                  -writer.add_images('my_image_batch', img_batch, 0)
                                                                  -writer.close()
                                                                  -
                                                                  -
                                                                  -

                                                                  Expected result:

                                                                  -_images/add_images.png -
                                                                  - -
                                                                  -
                                                                  -add_figure(tag, figure, global_step=None, close=True, walltime=None)[source]
                                                                  -

                                                                  Render matplotlib figure into an image and add it to summary.

                                                                  -

                                                                  Note that this requires the matplotlib package.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • tag (string) – Data identifier

                                                                  • -
                                                                  • figure (matplotlib.pyplot.figure) – Figure or a list of figures

                                                                  • -
                                                                  • global_step (int) – Global step value to record

                                                                  • -
                                                                  • close (bool) – Flag to automatically close the figure

                                                                  • -
                                                                  • walltime (float) – Optional override default walltime (time.time()) -seconds after epoch of event

                                                                  • -
                                                                  -
                                                                  -
                                                                  -
                                                                  - -
                                                                  -
                                                                  -add_video(tag, vid_tensor, global_step=None, fps=4, walltime=None)[source]
                                                                  -

                                                                  Add video data to summary.

                                                                  -

                                                                  Note that this requires the moviepy package.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • tag (string) – Data identifier

                                                                  • -
                                                                  • vid_tensor (torch.Tensor) – Video data

                                                                  • -
                                                                  • global_step (int) – Global step value to record

                                                                  • -
                                                                  • fps (float or int) – Frames per second

                                                                  • -
                                                                  • walltime (float) – Optional override default walltime (time.time()) -seconds after epoch of event

                                                                  • -
                                                                  -
                                                                  -
                                                                  -
                                                                  -
                                                                  Shape:

                                                                  vid_tensor: (N,T,C,H,W)(N, T, C, H, W) -. The values should lie in [0, 255] for type uint8 or [0, 1] for type float.

                                                                  -
                                                                  -
                                                                  -
                                                                  - -
                                                                  -
                                                                  -add_audio(tag, snd_tensor, global_step=None, sample_rate=44100, walltime=None)[source]
                                                                  -

                                                                  Add audio data to summary.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • tag (string) – Data identifier

                                                                  • -
                                                                  • snd_tensor (torch.Tensor) – Sound data

                                                                  • -
                                                                  • global_step (int) – Global step value to record

                                                                  • -
                                                                  • sample_rate (int) – sample rate in Hz

                                                                  • -
                                                                  • walltime (float) – Optional override default walltime (time.time()) -seconds after epoch of event

                                                                  • -
                                                                  -
                                                                  -
                                                                  -
                                                                  -
                                                                  Shape:

                                                                  snd_tensor: (1,L)(1, L) -. The values should lie between [-1, 1].

                                                                  -
                                                                  -
                                                                  -
                                                                  - -
                                                                  -
                                                                  -add_text(tag, text_string, global_step=None, walltime=None)[source]
                                                                  -

                                                                  Add text data to summary.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • tag (string) – Data identifier

                                                                  • -
                                                                  • text_string (string) – String to save

                                                                  • -
                                                                  • global_step (int) – Global step value to record

                                                                  • -
                                                                  • walltime (float) – Optional override default walltime (time.time()) -seconds after epoch of event

                                                                  • -
                                                                  -
                                                                  -
                                                                  -

                                                                  Examples:

                                                                  -
                                                                  writer.add_text('lstm', 'This is an lstm', 0)
                                                                  -writer.add_text('rnn', 'This is an rnn', 10)
                                                                  -
                                                                  -
                                                                  -
                                                                  - -
                                                                  -
                                                                  -add_graph(model, input_to_model=None, verbose=False)[source]
                                                                  -

                                                                  Add graph data to summary.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • model (torch.nn.Module) – Model to draw.

                                                                  • -
                                                                  • input_to_model (torch.Tensor or list of torch.Tensor) – A variable or a tuple of -variables to be fed.

                                                                  • -
                                                                  • verbose (bool) – Whether to print graph structure in console.

                                                                  • -
                                                                  -
                                                                  -
                                                                  -
                                                                  - -
                                                                  -
                                                                  -add_embedding(mat, metadata=None, label_img=None, global_step=None, tag='default', metadata_header=None)[source]
                                                                  -

                                                                  Add embedding projector data to summary.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • mat (torch.Tensor or numpy.array) – A matrix which each row is the feature vector of the data point

                                                                  • -
                                                                  • metadata (list) – A list of labels, each element will be convert to string

                                                                  • -
                                                                  • label_img (torch.Tensor) – Images correspond to each data point

                                                                  • -
                                                                  • global_step (int) – Global step value to record

                                                                  • -
                                                                  • tag (string) – Name for the embedding

                                                                  • -
                                                                  -
                                                                  -
                                                                  -
                                                                  -
                                                                  Shape:

                                                                  mat: (N,D)(N, D) -, where N is number of data and D is feature dimension

                                                                  -

                                                                  label_img: (N,C,H,W)(N, C, H, W) -

                                                                  -
                                                                  -
                                                                  -

                                                                  Examples:

                                                                  -
                                                                  import keyword
                                                                  -import torch
                                                                  -meta = []
                                                                  -while len(meta)<100:
                                                                  -    meta = meta+keyword.kwlist # get some strings
                                                                  -meta = meta[:100]
                                                                  -
                                                                  -for i, v in enumerate(meta):
                                                                  -    meta[i] = v+str(i)
                                                                  -
                                                                  -label_img = torch.rand(100, 3, 10, 32)
                                                                  -for i in range(100):
                                                                  -    label_img[i]*=i/100.0
                                                                  -
                                                                  -writer.add_embedding(torch.randn(100, 5), metadata=meta, label_img=label_img)
                                                                  -writer.add_embedding(torch.randn(100, 5), label_img=label_img)
                                                                  -writer.add_embedding(torch.randn(100, 5), metadata=meta)
                                                                  -
                                                                  -
                                                                  -
                                                                  - -
                                                                  -
                                                                  -add_pr_curve(tag, labels, predictions, global_step=None, num_thresholds=127, weights=None, walltime=None)[source]
                                                                  -

                                                                  Adds precision recall curve. -Plotting a precision-recall curve lets you understand your model’s -performance under different threshold settings. With this function, -you provide the ground truth labeling (T/F) and prediction confidence -(usually the output of your model) for each target. The TensorBoard UI -will let you choose the threshold interactively.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • tag (string) – Data identifier

                                                                  • -
                                                                  • labels (torch.Tensor, numpy.array, or string/blobname) – Ground truth data. Binary label for each element.

                                                                  • -
                                                                  • predictions (torch.Tensor, numpy.array, or string/blobname) – The probability that an element be classified as true. -Value should in [0, 1]

                                                                  • -
                                                                  • global_step (int) – Global step value to record

                                                                  • -
                                                                  • num_thresholds (int) – Number of thresholds used to draw the curve.

                                                                  • -
                                                                  • walltime (float) – Optional override default walltime (time.time()) -seconds after epoch of event

                                                                  • -
                                                                  -
                                                                  -
                                                                  -

                                                                  Examples:

                                                                  -
                                                                  from torch.utils.tensorboard import SummaryWriter
                                                                  -import numpy as np
                                                                  -labels = np.random.randint(2, size=100)  # binary label
                                                                  -predictions = np.random.rand(100)
                                                                  -writer = SummaryWriter()
                                                                  -writer.add_pr_curve('pr_curve', labels, predictions, 0)
                                                                  -writer.close()
                                                                  -
                                                                  -
                                                                  -
                                                                  - -
                                                                  -
                                                                  -add_custom_scalars(layout)[source]
                                                                  -

                                                                  Create special chart by collecting charts tags in ‘scalars’. Note that this function can only be called once -for each SummaryWriter() object. Because it only provides metadata to tensorboard, the function can be called -before or after the training loop.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -

                                                                  layout (dict) – {categoryName: charts}, where charts is also a dictionary -{chartName: ListOfProperties}. The first element in ListOfProperties is the chart’s type -(one of Multiline or Margin) and the second element should be a list containing the tags -you have used in add_scalar function, which will be collected into the new chart.

                                                                  -
                                                                  -
                                                                  -

                                                                  Examples:

                                                                  -
                                                                  layout = {'Taiwan':{'twse':['Multiline',['twse/0050', 'twse/2330']]},
                                                                  -             'USA':{ 'dow':['Margin',   ['dow/aaa', 'dow/bbb', 'dow/ccc']],
                                                                  -                  'nasdaq':['Margin',   ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']]}}
                                                                  -
                                                                  -writer.add_custom_scalars(layout)
                                                                  -
                                                                  -
                                                                  -
                                                                  - -
                                                                  -
                                                                  -add_mesh(tag, vertices, colors=None, faces=None, config_dict=None, global_step=None, walltime=None)[source]
                                                                  -

                                                                  Add meshes or 3D point clouds to TensorBoard. The visualization is based on Three.js, -so it allows users to interact with the rendered object. Besides the basic definitions -such as vertices, faces, users can further provide camera parameter, lighting condition, etc. -Please check https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene for -advanced usage.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • tag (string) – Data identifier

                                                                  • -
                                                                  • vertices (torch.Tensor) – List of the 3D coordinates of vertices.

                                                                  • -
                                                                  • colors (torch.Tensor) – Colors for each vertex

                                                                  • -
                                                                  • faces (torch.Tensor) – Indices of vertices within each triangle. (Optional)

                                                                  • -
                                                                  • config_dict – Dictionary with ThreeJS classes names and configuration.

                                                                  • -
                                                                  • global_step (int) – Global step value to record

                                                                  • -
                                                                  • walltime (float) – Optional override default walltime (time.time()) -seconds after epoch of event

                                                                  • -
                                                                  -
                                                                  -
                                                                  -
                                                                  -
                                                                  Shape:

                                                                  vertices: (B,N,3)(B, N, 3) -. (batch, number_of_vertices, channels)

                                                                  -

                                                                  colors: (B,N,3)(B, N, 3) -. The values should lie in [0, 255] for type uint8 or [0, 1] for type float.

                                                                  -

                                                                  faces: (B,N,3)(B, N, 3) -. The values should lie in [0, number_of_vertices] for type uint8.

                                                                  -
                                                                  -
                                                                  -

                                                                  Examples:

                                                                  -
                                                                  from torch.utils.tensorboard import SummaryWriter
                                                                  -vertices_tensor = torch.as_tensor([
                                                                  -    [1, 1, 1],
                                                                  -    [-1, -1, 1],
                                                                  -    [1, -1, -1],
                                                                  -    [-1, 1, -1],
                                                                  -], dtype=torch.float).unsqueeze(0)
                                                                  -colors_tensor = torch.as_tensor([
                                                                  -    [255, 0, 0],
                                                                  -    [0, 255, 0],
                                                                  -    [0, 0, 255],
                                                                  -    [255, 0, 255],
                                                                  -], dtype=torch.int).unsqueeze(0)
                                                                  -faces_tensor = torch.as_tensor([
                                                                  -    [0, 2, 3],
                                                                  -    [0, 3, 1],
                                                                  -    [0, 1, 2],
                                                                  -    [1, 3, 2],
                                                                  -], dtype=torch.int).unsqueeze(0)
                                                                  -
                                                                  -writer = SummaryWriter()
                                                                  -writer.add_mesh('my_mesh', vertices=vertices_tensor, colors=colors_tensor, faces=faces_tensor)
                                                                  -
                                                                  -writer.close()
                                                                  -
                                                                  -
                                                                  -
                                                                  - -
                                                                  -
                                                                  -add_hparams(hparam_dict, metric_dict)[source]
                                                                  -

                                                                  Add a set of hyperparameters to be compared in TensorBoard.

                                                                  -
                                                                  -
                                                                  Parameters
                                                                  -
                                                                    -
                                                                  • hparam_dict (dict) – Each key-value pair in the dictionary is the -name of the hyper parameter and it’s corresponding value. -The type of the value can be one of bool, string, float, -int, or None.

                                                                  • -
                                                                  • metric_dict (dict) – Each key-value pair in the dictionary is the -name of the metric and it’s corresponding value. Note that the key used -here should be unique in the tensorboard record. Otherwise the value -you added by add_scalar will be displayed in hparam plugin. In most -cases, this is unwanted.

                                                                  • -
                                                                  -
                                                                  -
                                                                  -

                                                                  Examples:

                                                                  -
                                                                  from torch.utils.tensorboard import SummaryWriter
                                                                  -with SummaryWriter() as w:
                                                                  -    for i in range(5):
                                                                  -        w.add_hparams({'lr': 0.1*i, 'bsize': i},
                                                                  -                      {'hparam/accuracy': 10*i, 'hparam/loss': 10*i})
                                                                  -
                                                                  -
                                                                  -

                                                                  Expected result:

                                                                  -_images/add_hparam.png -
                                                                  - -
                                                                  -
                                                                  -flush()[source]
                                                                  -

                                                                  Flushes the event file to disk. -Call this method to make sure that all pending events have been written to -disk.

                                                                  -
                                                                  - -
                                                                  -
                                                                  -close()[source]
                                                                  -
                                                                  - -
                                                                  -

                                                            diff --git a/docs/stable/tensors.html b/docs/stable/tensors.html index a736f3530b43..d84a58fab950 100644 --- a/docs/stable/tensors.html +++ b/docs/stable/tensors.html @@ -1048,9 +1048,11 @@
                                                            bernoulli(*, generator=None) → Tensor
                                                            -

                                                            Returns a result tensor where each result[i]\texttt{result[i]} +

                                                            Returns a result tensor where each result[i]\texttt{result[i]} + is independently -sampled from Bernoulli(self[i])\text{Bernoulli}(\texttt{self[i]}) +sampled from Bernoulli(self[i])\text{Bernoulli}(\texttt{self[i]}) + . self must have floating point dtype, and the result will have the same dtype.

                                                            See torch.bernoulli()

                                                            @@ -1063,7 +1065,8 @@
                                                            bernoulli_(p=0.5, *, generator=None) → Tensor

                                                            Fills each location of self with an independent sample from -Bernoulli(p)\text{Bernoulli}(\texttt{p}) +Bernoulli(p)\text{Bernoulli}(\texttt{p}) + . self can have integral dtype.

                                                            @@ -1073,9 +1076,11 @@ bernoulli_(p_tensor, *, generator=None) → Tensor

                                                            p_tensor should be a tensor containing probabilities to be used for drawing the binary random number.

                                                            -

                                                            The ith\text{i}^{th} +

                                                            The ith\text{i}^{th} + element of self tensor will be set to a -value sampled from Bernoulli(p_tensor[i])\text{Bernoulli}(\texttt{p\_tensor[i]}) +value sampled from Bernoulli(p_tensor[i])\text{Bernoulli}(\texttt{p\_tensor[i]}) + .

                                                            self can have integral dtype, but p_tensor must have floating point dtype.

                                                            @@ -1185,7 +1190,8 @@ cauchy_(median=0, sigma=1, *, generator=None) → Tensor

                                                            Fills the tensor with numbers drawn from the Cauchy distribution:

                                                            -f(x)=1πσ(xmedian)2+σ2f(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - \text{median})^2 + \sigma^2} +f(x)=1πσ(xmedian)2+σ2f(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - \text{median})^2 + \sigma^2} +

                                                            @@ -1752,7 +1758,8 @@ exponential_(lambd=1, *, generator=None) → Tensor

                                                            Fills self tensor with elements drawn from the exponential distribution:

                                                            -f(x)=λeλxf(x) = \lambda e^{-\lambda x} +f(x)=λeλxf(x) = \lambda e^{-\lambda x} +
                                                            @@ -1874,7 +1881,8 @@ geometric_(p, *, generator=None) → Tensor

                                                            Fills self tensor with elements drawn from the geometric distribution:

                                                            -f(X=k)=pk1(1p)f(X=k) = p^{k - 1} (1 - p) +f(X=k)=pk1(1p)f(X=k) = p^{k - 1} (1 - p) +
                                                            @@ -2385,21 +2393,28 @@
                                                            log_normal_(mean=1, std=2, *, generator=None)

                                                            Fills self tensor with numbers samples from the log-normal distribution -parameterized by the given mean μ\mu +parameterized by the given mean μ\mu + and standard deviation -σ\sigma +σ\sigma + . Note that mean and std are the mean and standard deviation of the underlying normal distribution, and not of the returned distribution:

                                                            -f(x)=1xσ2π e(lnxμ)22σ2f(x) = \dfrac{1}{x \sigma \sqrt{2\pi}}\ e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}} +f(x)=1xσ2π e(lnxμ)22σ2f(x) = \dfrac{1}{x \sigma \sqrt{2\pi}}\ e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}} +
                                                            @@ -4053,9 +4068,10 @@

                                                            Fills self tensor with numbers sampled from the continuous uniform distribution:

                                                            -P(x)=1tofromP(x) = \dfrac{1}{\text{to} - \text{from}} +P(x)=1tofromP(x) = \dfrac{1}{\text{to} - \text{from}} + + -
                                                            @@ -4113,10 +4129,15 @@ of elements, but may have a different size. For a tensor to be viewed, the new view size must be compatible with its original size and stride, i.e., each new view dimension must either be a subspace of an original dimension, or only span -across original dimensions that satisfy the following -contiguity-like condition that ,

                                                            +across original dimensions d,d+1,,d+kd, d+1, \dots, d+k + + that satisfy the following +contiguity-like condition that i=d,,d+k1\forall i = d, \dots, d+k-1 + +,

                                                            -stride[i]=stride[i+1]×size[i+1]\text{stride}[i] = \text{stride}[i+1] \times \text{size}[i+1] +stride[i]=stride[i+1]×size[i+1]\text{stride}[i] = \text{stride}[i+1] \times \text{size}[i+1] +

                                                            Otherwise, it will not be possible to view self tensor as shape without copying it (e.g., via contiguous()). When it is unclear whether a view() can be performed, it is advisable to use reshape(), which diff --git a/docs/stable/torch.html b/docs/stable/torch.html index ae7b37442814..0530ddd03f6f 100644 --- a/docs/stable/torch.html +++ b/docs/stable/torch.html @@ -429,19 +429,23 @@

                                                            Tensorsinput.

                                                            - - - @@ -584,11 +588,13 @@

                                                            Indexing, Slicing, Joining, Mutating Opsinput with each element sampled from a Poisson distribution with rate parameter given by the corresponding element in input i.e.,

                                                            - - @@ -753,7 +759,8 @@

                                                            Pointwise Opsinput.

                                                            - @@ -862,14 +869,16 @@

                                                            Pointwise Opsinput with the scalar other and returns a new resulting tensor.

                                                            - - @@ -998,11 +1007,13 @@

                                                            Comparison OpsTrue if two tensors have the same size and elements, False otherwise.

                                                            - - @@ -1021,11 +1032,13 @@

                                                            Comparison Ops(values, indices) where values is the k th smallest element of each row of the input tensor in the given dimension dim.

                                                            - - @@ -1035,7 +1048,8 @@

                                                            Comparison Opsinput tensor.

                                                            - @@ -1107,7 +1121,8 @@

                                                            Other Operations

                                                            - @@ -1165,10 +1180,14 @@

                                                            Other Operations

                                                            - @@ -1239,20 +1258,25 @@

                                                            BLAS and LAPACK Operationsinput and mat2.

                                                            - - - - @@ -1280,17 +1304,22 @@

                                                            BLAS and LAPACK Operations

                                                            - - @@ -1321,22 +1350,29 @@

                                                            BLAS and LAPACK Operations

                                                            - - - - @@ -1349,12 +1385,15 @@

                                                            BLAS and LAPACK Operations

                                                            - - diff --git a/docs/stable/torchvision/ops.html b/docs/stable/torchvision/ops.html index 6e0e55564707..28143bebd2bc 100644 --- a/docs/stable/torchvision/ops.html +++ b/docs/stable/torchvision/ops.html @@ -346,7 +346,7 @@

                                                            torchvision.ops
                                                            -torchvision.ops.nms(boxes: torch.Tensor, scores: torch.Tensor, iou_threshold: float) → torch.Tensor[source]
                                                            +torchvision.ops.nms(boxes, scores, iou_threshold)[source]

                                                            Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union (IoU).

                                                            NMS iteratively removes lower scoring boxes which have an @@ -379,7 +379,7 @@

                                                            torchvision.ops
                                                            -torchvision.ops.roi_align(input: torch.Tensor, boxes: torch.Tensor, output_size: None, spatial_scale: float = 1.0, sampling_ratio: int = -1, aligned: bool = False) → torch.Tensor[source]
                                                            +torchvision.ops.roi_align(input, boxes, output_size, spatial_scale=1.0, sampling_ratio=-1, aligned=False)[source]

                                                            Performs Region of Interest (RoI) Align operator described in Mask R-CNN

                                                            Parameters
                                                            @@ -412,7 +412,7 @@

                                                            torchvision.ops
                                                            -torchvision.ops.ps_roi_align(input: torch.Tensor, boxes: torch.Tensor, output_size: int, spatial_scale: float = 1.0, sampling_ratio: int = -1) → torch.Tensor[source]
                                                            +torchvision.ops.ps_roi_align(input, boxes, output_size, spatial_scale=1.0, sampling_ratio=-1)[source]

                                                            Performs Position-Sensitive Region of Interest (RoI) Align operator mentioned in Light-Head R-CNN.

                                                            @@ -443,7 +443,7 @@

                                                            torchvision.ops
                                                            -torchvision.ops.roi_pool(input: torch.Tensor, boxes: torch.Tensor, output_size: None, spatial_scale: float = 1.0) → torch.Tensor[source]
                                                            +torchvision.ops.roi_pool(input, boxes, output_size, spatial_scale=1.0)[source]

                                                            Performs Region of Interest (RoI) Pool operator described in Fast R-CNN

                                                            Parameters
                                                            @@ -468,7 +468,7 @@

                                                            torchvision.ops
                                                            -torchvision.ops.ps_roi_pool(input: torch.Tensor, boxes: torch.Tensor, output_size: int, spatial_scale: float = 1.0) → torch.Tensor[source]
                                                            +torchvision.ops.ps_roi_pool(input, boxes, output_size, spatial_scale=1.0)[source]

                                                            Performs Position-Sensitive Region of Interest (RoI) Pool operator described in R-FCN

                                                            @@ -494,7 +494,7 @@

                                                            torchvision.ops
                                                            -torchvision.ops.deform_conv2d(input: torch.Tensor, offset: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, stride: Tuple[int, int] = (1, 1), padding: Tuple[int, int] = (0, 0), dilation: Tuple[int, int] = (1, 1)) → torch.Tensor[source]
                                                            +torchvision.ops.deform_conv2d(input, offset, weight, bias=None, stride=(1, 1), padding=(0, 0), dilation=(1, 1))[source]

                                                            Performs Deformable Convolution, described in Deformable Convolutional Networks

                                                            Parameters
                                                            @@ -537,37 +537,37 @@

                                                            torchvision.ops
                                                            -class torchvision.ops.RoIAlign(output_size: None, spatial_scale: float, sampling_ratio: int, aligned: bool = False)[source]
                                                            +class torchvision.ops.RoIAlign(output_size, spatial_scale, sampling_ratio, aligned=False)[source]

                                                            See roi_align

                                                            -class torchvision.ops.PSRoIAlign(output_size: int, spatial_scale: float, sampling_ratio: int)[source]
                                                            +class torchvision.ops.PSRoIAlign(output_size, spatial_scale, sampling_ratio)[source]

                                                            See ps_roi_align

                                                            -class torchvision.ops.RoIPool(output_size: None, spatial_scale: float)[source]
                                                            +class torchvision.ops.RoIPool(output_size, spatial_scale)[source]

                                                            See roi_pool

                                                            -class torchvision.ops.PSRoIPool(output_size: int, spatial_scale: float)[source]
                                                            +class torchvision.ops.PSRoIPool(output_size, spatial_scale)[source]

                                                            See ps_roi_pool

                                                            -class torchvision.ops.DeformConv2d(in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, padding: int = 0, dilation: int = 1, groups: int = 1, bias: bool = True)[source]
                                                            +class torchvision.ops.DeformConv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)[source]

                                                            See deform_conv2d

                                                            -class torchvision.ops.MultiScaleRoIAlign(featmap_names: List[str], output_size: List[int], sampling_ratio: int)[source]
                                                            +class torchvision.ops.MultiScaleRoIAlign(featmap_names, output_size, sampling_ratio)[source]

                                                            Multi-scale RoIAlign pooling, which is useful for detection with or without FPN.

                                                            It infers the scale of the pooling via the heuristics present in the FPN paper.

                                                            @@ -599,7 +599,7 @@

                                                            torchvision.ops
                                                            -class torchvision.ops.FeaturePyramidNetwork(in_channels_list: List[int], out_channels: int, extra_blocks: Optional[torchvision.ops.feature_pyramid_network.ExtraFPNBlock] = None)[source]
                                                            +class torchvision.ops.FeaturePyramidNetwork(in_channels_list, out_channels, extra_blocks=None)[source]

                                                            Module that adds a FPN from on top of a set of feature maps. This is based on “Feature Pyramid Network for Object Detection”.

                                                            The feature maps are currently supposed to be in increasing depth diff --git a/docs/stable/torchvision/transforms.html b/docs/stable/torchvision/transforms.html index 84808663e602..82cc9108dc74 100644 --- a/docs/stable/torchvision/transforms.html +++ b/docs/stable/torchvision/transforms.html @@ -367,14 +367,12 @@

                                                            Transforms on PIL Image
                                                            class torchvision.transforms.CenterCrop(size)[source]
                                                            -

                                                            Crops the given image at the center. -The image can be a PIL Image or a torch Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading dimensions

                                                            +

                                                            Crops the given PIL Image at the center.

                                                            Parameters

                                                            size (sequence or int) – Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is -made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).

                                                            +made.

                                                            @@ -406,10 +404,7 @@

                                                            Transforms on PIL Image
                                                            class torchvision.transforms.FiveCrop(size)[source]
                                                            -

                                                            Crop the given image into four corners and the central crop. -The image can be a PIL Image or a Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading -dimensions

                                                            +

                                                            Crop the given PIL Image into four corners and the central crop

                                                            Note

                                                            This transform returns a tuple of images and there may be a mismatch in the number of @@ -419,8 +414,7 @@

                                                            Transforms on PIL Image
                                                            Parameters

                                                            size (sequence or int) – Desired output size of the crop. If size is an int -instead of sequence like (h, w), a square crop of size (size, size) is made. -If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).

                                                            +instead of sequence like (h, w), a square crop of size (size, size) is made.

                                                            Example

                                                            @@ -464,23 +458,20 @@

                                                            Transforms on PIL Image
                                                            class torchvision.transforms.Pad(padding, fill=0, padding_mode='constant')[source]
                                                            -

                                                            Pad the given image on all sides with the given “pad” value. -The image can be a PIL Image or a torch Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading dimensions

                                                            +

                                                            Pad the given PIL Image on all sides with the given “pad” value.

                                                            Parameters
                                                              -
                                                            • padding (int or tuple or list) – Padding on each border. If a single int is provided this +

                                                            • padding (int or tuple) – Padding on each border. If a single int is provided this is used to pad all borders. If tuple of length 2 is provided this is the padding on left/right and top/bottom respectively. If a tuple of length 4 is provided -this is the padding for the left, top, right and bottom borders respectively. -In torchscript mode padding as single int is not supported, use a tuple or -list of length 1: [padding, ].

                                                            • +this is the padding for the left, top, right and bottom borders +respectively.

                                                            • fill (int or tuple) – Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant

                                                            • padding_mode (str) –

                                                              Type of padding. Should be: constant, edge, reflect or symmetric. -Default is constant. Mode symmetric is not yet supported for Tensor inputs.

                                                              +Default is constant.

                                                              • constant: pads with a constant value, this value is specified with fill

                                                              • edge: pads with the last value at the edge of the image

                                                              • @@ -557,33 +548,26 @@

                                                                Transforms on PIL Image
                                                                class torchvision.transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant')[source]
                                                                -

                                                                Crop the given image at a random location. -The image can be a PIL Image or a Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading -dimensions

                                                                +

                                                                Crop the given PIL Image at a random location.

                                                                Parameters
                                                                • size (sequence or int) – Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is -made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).

                                                                • +made.

                                                                • padding (int or sequence, optional) – Optional padding on each border -of the image. Default is None. If a single int is provided this -is used to pad all borders. If tuple of length 2 is provided this is the padding -on left/right and top/bottom respectively. If a tuple of length 4 is provided -this is the padding for the left, top, right and bottom borders respectively. -In torchscript mode padding as single int is not supported, use a tuple or -list of length 1: [padding, ].

                                                                • +of the image. Default is None, i.e no padding. If a sequence of length +4 is provided, it is used to pad left, top, right, bottom borders +respectively. If a sequence of length 2 is provided, it is used to +pad left/right, top/bottom borders, respectively.

                                                                • pad_if_needed (boolean) – It will pad the image if smaller than the desired size to avoid raising an exception. Since cropping is done after padding, the padding seems to be done at a random offset.

                                                                • -
                                                                • fill (int or tuple) – Pixel fill value for constant fill. Default is 0. If a tuple of +

                                                                • fill – Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant

                                                                • -
                                                                • padding_mode (str) –

                                                                  Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant. -Mode symmetric is not yet supported for Tensor inputs.

                                                                  -
                                                                  -
                                                                    +
                                                                  • padding_mode

                                                                    Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.

                                                                    +
                                                                    • constant: pads with a constant value, this value is specified with fill

                                                                    • edge: pads with the last value on the edge of the image

                                                                    • reflect: pads with reflection of image (without repeating the last value on the edge)

                                                                      @@ -599,7 +583,6 @@

                                                                      Transforms on PIL Image

                                                                -

                                                            @@ -666,9 +649,7 @@

                                                            Transforms on PIL Image
                                                            class torchvision.transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=2)[source]
                                                            -

                                                            Crop the given image to random size and aspect ratio. -The image can be a PIL Image or a Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading dimensions

                                                            +

                                                            Crop the given PIL Image to random size and aspect ratio.

                                                            A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. @@ -676,14 +657,10 @@

                                                            Transforms on PIL Image
                                                            Parameters
                                                              -
                                                            • size (int or sequence) – expected output size of each edge. If size is an -int instead of sequence like (h, w), a square output size (size, size) is -made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).

                                                            • -
                                                            • scale (tuple of python:float) – range of size of the origin size cropped

                                                            • -
                                                            • ratio (tuple of python:float) – range of aspect ratio of the origin aspect ratio cropped.

                                                            • -
                                                            • interpolation (int) – Desired interpolation enum defined by filters. -Default is PIL.Image.BILINEAR. If input is Tensor, only PIL.Image.NEAREST, PIL.Image.BILINEAR -and PIL.Image.BICUBIC are supported.

                                                            • +
                                                            • size – expected output size of each edge

                                                            • +
                                                            • scale – range of size of the origin size cropped

                                                            • +
                                                            • ratio – range of aspect ratio of the origin aspect ratio cropped

                                                            • +
                                                            • interpolation – Default: PIL.Image.BILINEAR

                                                            @@ -725,7 +702,7 @@

                                                            Transforms on PIL Image
                                                            class torchvision.transforms.RandomVerticalFlip(p=0.5)[source]
                                                            -

                                                            Vertically flip the given image randomly with a given probability. +

                                                            Vertically flip the given PIL Image randomly with a given probability. The image can be a PIL Image or a torch Tensor, in which case it is expected to have […, H, W] shape, where … means an arbitrary number of leading dimensions

                                                            @@ -739,9 +716,7 @@

                                                            Transforms on PIL Image
                                                            class torchvision.transforms.Resize(size, interpolation=2)[source]
                                                            -

                                                            Resize the input image to the given size. -The image can be a PIL Image or a torch Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading dimensions

                                                            +

                                                            Resize the input PIL Image to the given size.

                                                            Parameters
                                                              @@ -749,12 +724,9 @@

                                                              Transforms on PIL Image[size, ].

                                                              -
                                                            • interpolation (int, optional) – Desired interpolation enum defined by filters. -Default is PIL.Image.BILINEAR. If input is Tensor, only PIL.Image.NEAREST, PIL.Image.BILINEAR -and PIL.Image.BICUBIC are supported.

                                                            • +(size * height / width, size)

                                                              +
                                                            • interpolation (int, optional) – Desired interpolation. Default is +PIL.Image.BILINEAR

                                                            @@ -769,11 +741,8 @@

                                                            Transforms on PIL Image
                                                            class torchvision.transforms.TenCrop(size, vertical_flip=False)[source]
                                                            -

                                                            Crop the given image into four corners and the central crop plus the flipped version of -these (horizontal flipping is used by default). -The image can be a PIL Image or a Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading -dimensions

                                                            +

                                                            Crop the given PIL Image into four corners and the central crop plus the flipped version of +these (horizontal flipping is used by default)

                                                            Note

                                                            This transform returns a tuple of images and there may be a mismatch in the number of @@ -785,7 +754,7 @@

                                                            Transforms on PIL Image
                                                            • size (sequence or int) – Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is -made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).

                                                            • +made.

                                                            • vertical_flip (bool) – Use vertical flipping instead of horizontal

                                                            @@ -1036,7 +1005,7 @@

                                                            Functional Transforms
                                                            Parameters
                                                              -
                                                            • img (PIL Image or Tensor) – Image to be adjusted.

                                                            • +
                                                            • img (PIL Image or Torch Tensor) – Image to be adjusted.

                                                            • brightness_factor (float) – How much to adjust the brightness. Can be any non negative number. 0 gives a black image, 1 gives the original image while 2 increases the brightness by a factor of 2.

                                                            • @@ -1046,7 +1015,7 @@

                                                              Functional Transforms

                                                              Brightness adjusted image.

                                                            Return type
                                                            -

                                                            PIL Image or Tensor

                                                            +

                                                            PIL Image or Torch Tensor

                                                            @@ -1058,7 +1027,7 @@

                                                            Functional Transforms
                                                            Parameters
                                                              -
                                                            • img (PIL Image or Tensor) – Image to be adjusted.

                                                            • +
                                                            • img (PIL Image or Torch Tensor) – Image to be adjusted.

                                                            • contrast_factor (float) – How much to adjust the contrast. Can be any non negative number. 0 gives a solid gray image, 1 gives the original image while 2 increases the contrast by a factor of 2.

                                                            • @@ -1068,39 +1037,35 @@

                                                              Functional Transforms

                                                              Contrast adjusted image.

                                                            Return type
                                                            -

                                                            PIL Image or Tensor

                                                            +

                                                            PIL Image or Torch Tensor

                                                            -torchvision.transforms.functional.adjust_gamma(img: torch.Tensor, gamma: float, gain: float = 1) → torch.Tensor[source]
                                                            +torchvision.transforms.functional.adjust_gamma(img, gamma, gain=1)[source]

                                                            Perform gamma correction on an image.

                                                            Also known as Power Law Transform. Intensities in RGB mode are adjusted based on the following equation:

                                                            -Iout=255×gain×(Iin255)γI_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma} +Iout=255×gain×(Iin255)γI_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma} + + -

                                                            See Gamma Correction for more details.

                                                            Parameters
                                                              -
                                                            • img (PIL Image or Tensor) – PIL Image to be adjusted.

                                                            • -
                                                            • gamma (float) – Non negative real number, same as γ\gamma +

                                                            • img (PIL Image) – PIL Image to be adjusted.

                                                            • +
                                                            • gamma (float) – Non negative real number, same as γ\gamma + in the equation. gamma larger than 1 make the shadows darker, while gamma smaller than 1 make dark regions lighter.

                                                            • gain (float) – The constant multiplier.

                                                            -
                                                            Returns
                                                            -

                                                            Gamma correction adjusted image.

                                                            -
                                                            -
                                                            Return type
                                                            -

                                                            PIL Image or Tensor

                                                            -
                                                            @@ -1141,7 +1106,7 @@

                                                            Functional Transforms
                                                            Parameters
                                                              -
                                                            • img (PIL Image or Tensor) – Image to be adjusted.

                                                            • +
                                                            • img (PIL Image or Torch Tensor) – Image to be adjusted.

                                                            • saturation_factor (float) – How much to adjust the saturation. 0 will give a black and white image, 1 will give the original image while 2 will enhance the saturation by a factor of 2.

                                                            • @@ -1151,61 +1116,51 @@

                                                              Functional Transforms

                                                              Saturation adjusted image.

                                                            Return type
                                                            -

                                                            PIL Image or Tensor

                                                            +

                                                            PIL Image or Torch Tensor

                                                            -torchvision.transforms.functional.affine(img: torch.Tensor, angle: float, translate: List[int], scale: float, shear: List[float], resample: int = 0, fillcolor: Optional[int] = None) → torch.Tensor[source]
                                                            -

                                                            Apply affine transformation on the image keeping image center invariant. -The image can be a PIL Image or a Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading dimensions.

                                                            +torchvision.transforms.functional.affine(img, angle, translate, scale, shear, resample=0, fillcolor=None)[source] +

                                                            Apply affine transformation on the image keeping image center invariant

                                                            Parameters
                                                              -
                                                            • img (PIL Image or Tensor) – image to be rotated.

                                                            • +
                                                            • img (PIL Image) – PIL Image to be rotated.

                                                            • angle (float or int) – rotation angle in degrees between -180 and 180, clockwise direction.

                                                            • translate (list or tuple of python:integers) – horizontal and vertical translations (post-rotation translation)

                                                            • scale (float) – overall scale

                                                            • -
                                                            • shear (float or tuple or list) – shear angle value in degrees between -180 to 180, clockwise direction. -If a tuple of list is specified, the first value corresponds to a shear parallel to the x axis, while -the second value corresponds to a shear parallel to the y axis.

                                                            • -
                                                            • resample (PIL.Image.NEAREST or PIL.Image.BILINEAR or PIL.Image.BICUBIC, optional) – An optional resampling filter. See filters for more information. -If omitted, or if the image is PIL Image and has mode “1” or “P”, it is set to PIL.Image.NEAREST. -If input is Tensor, only PIL.Image.NEAREST and PIL.Image.BILINEAR are supported.

                                                            • +
                                                            • shear (float or tuple or list) – shear angle value in degrees between -180 to 180, clockwise direction.

                                                            • +
                                                            • a tuple of list is specified, the first value corresponds to a shear parallel to the x axis, while (If) –

                                                            • +
                                                            • second value corresponds to a shear parallel to the y axis. (the) –

                                                            • +
                                                            • resample (PIL.Image.NEAREST or PIL.Image.BILINEAR or PIL.Image.BICUBIC, optional) – An optional resampling filter. +See filters for more information. +If omitted, or if the image has mode “1” or “P”, it is set to PIL.Image.NEAREST.

                                                            • fillcolor (int) – Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)

                                                            -
                                                            Returns
                                                            -

                                                            Transformed image.

                                                            -
                                                            -
                                                            Return type
                                                            -

                                                            PIL Image or Tensor

                                                            -
                                                            -torchvision.transforms.functional.center_crop(img: torch.Tensor, output_size: List[int]) → torch.Tensor[source]
                                                            -

                                                            Crops the given image at the center. -The image can be a PIL Image or a Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading dimensions

                                                            +torchvision.transforms.functional.center_crop(img, output_size)[source] +

                                                            Crop the given PIL Image and resize it to desired size.

                                                            Parameters
                                                              -
                                                            • img (PIL Image or Tensor) – Image to be cropped.

                                                            • -
                                                            • output_size (sequence or int) – (height, width) of the crop box. If int or sequence with single int -it is used for both directions.

                                                            • +
                                                            • img (PIL Image) – Image to be cropped. (0,0) denotes the top left corner of the image.

                                                            • +
                                                            • output_size (sequence or int) – (height, width) of the crop box. If int, +it is used for both directions

                                                            Returns

                                                            Cropped image.

                                                            Return type
                                                            -

                                                            PIL Image or Tensor

                                                            +

                                                            PIL Image

                                                            @@ -1245,15 +1200,12 @@

                                                            Functional Transforms
                                                            -torchvision.transforms.functional.crop(img: torch.Tensor, top: int, left: int, height: int, width: int) → torch.Tensor[source]
                                                            -

                                                            Crop the given image at specified location and output size. -The image can be a PIL Image or a Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading -dimensions

                                                            +torchvision.transforms.functional.crop(img, top, left, height, width)[source] +

                                                            Crop the given PIL Image.

                                                            Parameters
                                                              -
                                                            • img (PIL Image or Tensor) – Image to be cropped. (0,0) denotes the top left corner of the image.

                                                            • +
                                                            • img (PIL Image) – Image to be cropped. (0,0) denotes the top left corner of the image.

                                                            • top (int) – Vertical component of the top left corner of the crop box.

                                                            • left (int) – Horizontal component of the top left corner of the crop box.

                                                            • height (int) – Height of the crop box.

                                                            • @@ -1264,14 +1216,14 @@

                                                              Functional Transforms

                                                              Cropped image.

                                                            Return type
                                                            -

                                                            PIL Image or Tensor

                                                            +

                                                            PIL Image

                                                            -torchvision.transforms.functional.erase(img: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False) → torch.Tensor[source]
                                                            +torchvision.transforms.functional.erase(img, i, j, h, w, v, inplace=False)[source]

                                                            Erase the input Tensor Image with given value.

                                                            Parameters
                                                            @@ -1296,10 +1248,8 @@

                                                            Functional Transforms
                                                            -torchvision.transforms.functional.five_crop(img: torch.Tensor, size: List[int]) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor][source]
                                                            -

                                                            Crop the given image into four corners and the central crop. -The image can be a PIL Image or a Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading dimensions

                                                            +torchvision.transforms.functional.five_crop(img, size)[source] +

                                                            Crop the given PIL Image into four corners and the central crop.

                                                            Note

                                                            This transform returns a tuple of images and there may be a @@ -1307,12 +1257,9 @@

                                                            Functional Transforms
                                                            Parameters
                                                            -
                                                              -
                                                            • img (PIL Image or Tensor) – Image to be cropped.

                                                            • -
                                                            • size (sequence or int) – Desired output size of the crop. If size is an +

                                                              size (sequence or int) – Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is -made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).

                                                            • -
                                                            +made.

                                                            Returns

                                                            @@ -1330,10 +1277,10 @@

                                                            Functional Transforms
                                                            torchvision.transforms.functional.hflip(img: torch.Tensor) → torch.Tensor[source]
                                                            -

                                                            Horizontally flip the given PIL Image or Tensor.

                                                            +

                                                            Horizontally flip the given PIL Image or torch Tensor.

                                                            Parameters
                                                            -

                                                            img (PIL Image or Tensor) – Image to be flipped. If img +

                                                            img (PIL Image or Torch Tensor) – Image to be flipped. If img is a Tensor, it is expected to be in […, H, W] format, where … means it can have an arbitrary number of trailing dimensions.

                                                            @@ -1342,7 +1289,7 @@

                                                            Functional Transforms

                                                            Horizontally flipped image.

                                                            Return type
                                                            -

                                                            PIL Image or Tensor

                                                            +

                                                            PIL Image

                                                            @@ -1376,25 +1323,21 @@

                                                            Functional Transforms
                                                            -torchvision.transforms.functional.pad(img: torch.Tensor, padding: List[int], fill: int = 0, padding_mode: str = 'constant') → torch.Tensor[source]
                                                            -

                                                            Pad the given image on all sides with the given “pad” value. -The image can be a PIL Image or a torch Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading dimensions

                                                            +torchvision.transforms.functional.pad(img, padding, fill=0, padding_mode='constant')[source] +

                                                            Pad the given PIL Image on all sides with specified padding mode and fill value.

                                                            Parameters
                                                              -
                                                            • img (PIL Image or Tensor) – Image to be padded.

                                                            • -
                                                            • padding (int or tuple or list) – Padding on each border. If a single int is provided this +

                                                            • img (PIL Image) – Image to be padded.

                                                            • +
                                                            • padding (int or tuple) – Padding on each border. If a single int is provided this is used to pad all borders. If tuple of length 2 is provided this is the padding on left/right and top/bottom respectively. If a tuple of length 4 is provided -this is the padding for the left, top, right and bottom borders respectively. -In torchscript mode padding as single int is not supported, use a tuple or -list of length 1: [padding, ].

                                                            • -
                                                            • fill (int or str or tuple) – Pixel fill value for constant fill. Default is 0. If a tuple of +this is the padding for the left, top, right and bottom borders +respectively.

                                                            • +
                                                            • fill – Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. -This value is only used when the padding_mode is constant. Only int value is supported for Tensors.

                                                            • -
                                                            • padding_mode

                                                              Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant. -Mode symmetric is not yet supported for Tensor inputs.

                                                              +This value is only used when the padding_mode is constant

                                                            • +
                                                            • padding_mode

                                                              Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.

                                                              • constant: pads with a constant value, this value is specified with fill

                                                              • edge: pads with the last value on the edge of the image

                                                              • @@ -1418,7 +1361,7 @@

                                                                Functional Transforms

                                                                Padded image.

                                                            Return type
                                                            -

                                                            PIL Image or Tensor

                                                            +

                                                            PIL Image

                                                            @@ -1468,62 +1411,55 @@

                                                            Functional Transforms
                                                            -torchvision.transforms.functional.resize(img: torch.Tensor, size: List[int], interpolation: int = 2) → torch.Tensor[source]
                                                            -

                                                            Resize the input image to the given size. -The image can be a PIL Image or a torch Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading dimensions

                                                            +torchvision.transforms.functional.resize(img, size, interpolation=2)[source] +

                                                            Resize the input PIL Image to the given size.

                                                            Parameters
                                                              -
                                                            • img (PIL Image or Tensor) – Image to be resized.

                                                            • +
                                                            • img (PIL Image) – Image to be resized.

                                                            • size (sequence or int) – Desired output size. If size is a sequence like (h, w), the output size will be matched to this. If size is an int, the smaller edge of the image will be matched to this number maintaining the aspect ratio. i.e, if height > width, then image will be rescaled to -(size×heightwidth,size)\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right) -. -In torchscript mode padding as single int is not supported, use a tuple or -list of length 1: [size, ].

                                                            • -
                                                            • interpolation (int, optional) – Desired interpolation enum defined by filters. -Default is PIL.Image.BILINEAR. If input is Tensor, only PIL.Image.NEAREST, PIL.Image.BILINEAR -and PIL.Image.BICUBIC are supported.

                                                            • +(size×heightwidth,size)\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right) + +

                                                              +
                                                            • interpolation (int, optional) – Desired interpolation. Default is +PIL.Image.BILINEAR

                                                            Returns

                                                            Resized image.

                                                            Return type
                                                            -

                                                            PIL Image or Tensor

                                                            +

                                                            PIL Image

                                                            -torchvision.transforms.functional.resized_crop(img: torch.Tensor, top: int, left: int, height: int, width: int, size: List[int], interpolation: int = 2) → torch.Tensor[source]
                                                            -

                                                            Crop the given image and resize it to desired size. -The image can be a PIL Image or a Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading dimensions

                                                            +torchvision.transforms.functional.resized_crop(img, top, left, height, width, size, interpolation=2)[source] +

                                                            Crop the given PIL Image and resize it to desired size.

                                                            Notably used in RandomResizedCrop.

                                                            Parameters
                                                              -
                                                            • img (PIL Image or Tensor) – Image to be cropped. (0,0) denotes the top left corner of the image.

                                                            • +
                                                            • img (PIL Image) – Image to be cropped. (0,0) denotes the top left corner of the image.

                                                            • top (int) – Vertical component of the top left corner of the crop box.

                                                            • left (int) – Horizontal component of the top left corner of the crop box.

                                                            • height (int) – Height of the crop box.

                                                            • width (int) – Width of the crop box.

                                                            • size (sequence or int) – Desired output size. Same semantics as resize.

                                                            • -
                                                            • interpolation (int, optional) – Desired interpolation enum defined by filters. -Default is PIL.Image.BILINEAR. If input is Tensor, only PIL.Image.NEAREST, PIL.Image.BILINEAR -and PIL.Image.BICUBIC are supported.

                                                            • +
                                                            • interpolation (int, optional) – Desired interpolation. Default is +PIL.Image.BILINEAR.

                                                            Returns

                                                            Cropped image.

                                                            Return type
                                                            -

                                                            PIL Image or Tensor

                                                            +

                                                            PIL Image

                                                            @@ -1556,12 +1492,10 @@

                                                            Functional Transforms
                                                            -torchvision.transforms.functional.ten_crop(img: torch.Tensor, size: List[int], vertical_flip: bool = False) → List[torch.Tensor][source]
                                                            -

                                                            Generate ten cropped images from the given image. -Crop the given image into four corners and the central crop plus the -flipped version of these (horizontal flipping is used by default). -The image can be a PIL Image or a Tensor, in which case it is expected -to have […, H, W] shape, where … means an arbitrary number of leading dimensions

                                                            +torchvision.transforms.functional.ten_crop(img, size, vertical_flip=False)[source] +

                                                            Generate ten cropped images from the given PIL Image. +Crop the given PIL Image into four corners and the central crop plus the +flipped version of these (horizontal flipping is used by default).

                                                            Note

                                                            This transform returns a tuple of images and there may be a @@ -1570,10 +1504,9 @@

                                                            Functional Transforms
                                                            Parameters
                                                              -
                                                            • img (PIL Image or Tensor) – Image to be cropped.

                                                            • size (sequence or int) – Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is -made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).

                                                            • +made.

                                                            • vertical_flip (bool) – Use vertical flipping instead of horizontal

                                                            @@ -1660,7 +1593,7 @@

                                                            Functional Transforms

                                                            Vertically flip the given PIL Image or torch Tensor.

                                                            Parameters
                                                            -

                                                            img (PIL Image or Tensor) – Image to be flipped. If img +

                                                            img (PIL Image or Torch Tensor) – Image to be flipped. If img is a Tensor, it is expected to be in […, H, W] format, where … means it can have an arbitrary number of trailing dimensions.

                                                          • floor_divide_() (torch.Tensor method) -
                                                          • -
                                                          • flush() (torch.utils.tensorboard.writer.SummaryWriter method)
                                                          • fmod() (in module torch) @@ -4842,7 +4806,7 @@

                                                            S

                                                          • (torch.Tensor method)
                                                          • -
                                                          • sorted_indices (torch.nn.utils.rnn.PackedSequence attribute) +
                                                          • sorted_indices() (torch.nn.utils.rnn.PackedSequence property)
                                                          • spadd() (torch.sparse.FloatTensor method)
                                                          • @@ -5031,8 +4995,6 @@

                                                            S

                                                          • sum_to_size() (torch.Tensor method) -
                                                          • -
                                                          • SummaryWriter (class in torch.utils.tensorboard.writer)
                                                          • support (torch.distributions.bernoulli.Bernoulli attribute) @@ -5506,7 +5468,7 @@

                                                            U

                                                          • unscale_() (torch.cuda.amp.GradScaler method)
                                                          • -
                                                          • unsorted_indices (torch.nn.utils.rnn.PackedSequence attribute) +
                                                          • unsorted_indices() (torch.nn.utils.rnn.PackedSequence property)
                                                            • diff --git a/docs/stable/jit_builtin_functions.html b/docs/stable/jit_builtin_functions.html index d6449b988eb2..a5c877476e56 100644 --- a/docs/stable/jit_builtin_functions.html +++ b/docs/stable/jit_builtin_functions.html @@ -7640,7 +7640,7 @@

                                                            float

                                                            float

                                                            __float__

                                                            int

                                                            nn.LogSoftmax

                                                            Applies the log(Softmax(x))\log(\text{Softmax}(x)) +

                                                            Applies the log(Softmax(x))\log(\text{Softmax}(x)) + function to an n-dimensional input Tensor.

                                                            nn.AdaptiveLogSoftmaxWithLoss

                                                            nn.RNN

                                                            Applies a multi-layer Elman RNN with tanh\tanh - or ReLU\text{ReLU} +

                                                            Applies a multi-layer Elman RNN with tanh\tanh + + or ReLU\text{ReLU} + non-linearity to an input sequence.

                                                            nn.LSTM

                                                            nn.Linear

                                                            Applies a linear transformation to the incoming data: y=xAT+by = xA^T + b +

                                                            Applies a linear transformation to the incoming data: y=xAT+by = xA^T + b +

                                                            nn.Bilinear

                                                            Applies a bilinear transformation to the incoming data: y=x1TAx2+by = x_1^T A x_2 + b +

                                                            Applies a bilinear transformation to the incoming data: y=x1TAx2+by = x_1^T A x_2 + b +

                                                            nn.Dropout2d

                                                            Randomly zero out entire channels (a channel is a 2D feature map, e.g., the jj --th channel of the ii --th sample in the batched input is a 2D tensor input[i,j]\text{input}[i, j] +

                                                            Randomly zero out entire channels (a channel is a 2D feature map, e.g., the jj + +-th channel of the ii + +-th sample in the batched input is a 2D tensor input[i,j]\text{input}[i, j] + ).

                                                            nn.Dropout3d

                                                            Randomly zero out entire channels (a channel is a 3D feature map, e.g., the jj --th channel of the ii --th sample in the batched input is a 3D tensor input[i,j]\text{input}[i, j] +

                                                            Randomly zero out entire channels (a channel is a 3D feature map, e.g., the jj + +-th channel of the ii + +-th sample in the batched input is a 3D tensor input[i,j]\text{input}[i, j] + ).

                                                            nn.AlphaDropout

                                                            nn.CosineSimilarity

                                                            Returns cosine similarity between x1x_1 - and x2x_2 +

                                                            Returns cosine similarity between x1x_1 + + and x2x_2 + , computed along dim.

                                                            nn.PairwiseDistance

                                                            Computes the batchwise pairwise distance between vectors v1v_1 -, v2v_2 +

                                                            Computes the batchwise pairwise distance between vectors v1v_1 + +, v2v_2 + using the p-norm:

                                                            nn.L1Loss

                                                            Creates a criterion that measures the mean absolute error (MAE) between each element in the input xx - and target yy +

                                                            Creates a criterion that measures the mean absolute error (MAE) between each element in the input xx + + and target yy + .

                                                            nn.MSELoss

                                                            Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input xx - and target yy +

                                                            Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input xx + + and target yy + .

                                                            nn.CrossEntropyLoss

                                                            nn.MarginRankingLoss

                                                            Creates a criterion that measures the loss given inputs x1x1 -, x2x2 -, two 1D mini-batch Tensors, and a label 1D mini-batch tensor yy +

                                                            Creates a criterion that measures the loss given inputs x1x1 + +, x2x2 + +, two 1D mini-batch Tensors, and a label 1D mini-batch tensor yy + (containing 1 or -1).

                                                            nn.HingeEmbeddingLoss

                                                            Measures the loss given an input tensor xx - and a labels tensor yy +

                                                            Measures the loss given an input tensor xx + + and a labels tensor yy + (containing 1 or -1).

                                                            nn.MultiLabelMarginLoss

                                                            Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between input xx - (a 2D mini-batch Tensor) and output yy +

                                                            Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between input xx + + (a 2D mini-batch Tensor) and output yy + (which is a 2D Tensor of target class indices).

                                                            nn.SmoothL1Loss

                                                            Creates a criterion that uses a squared term if the absolute element-wise error falls below 1 and an L1 term otherwise.

                                                            nn.SoftMarginLoss

                                                            Creates a criterion that optimizes a two-class classification logistic loss between input tensor xx - and target tensor yy +

                                                            Creates a criterion that optimizes a two-class classification logistic loss between input tensor xx + + and target tensor yy + (containing 1 or -1).

                                                            nn.MultiLabelSoftMarginLoss

                                                            Creates a criterion that optimizes a multi-label one-versus-all loss based on max-entropy, between input xx - and target yy - of size (N,C)(N, C) +

                                                            Creates a criterion that optimizes a multi-label one-versus-all loss based on max-entropy, between input xx + + and target yy + + of size (N,C)(N, C) + .

                                                            nn.CosineEmbeddingLoss

                                                            Creates a criterion that measures the loss given input tensors x1x_1 -, x2x_2 - and a Tensor label yy +

                                                            Creates a criterion that measures the loss given input tensors x1x_1 + +, x2x_2 + + and a Tensor label yy + with values 1 or -1.

                                                            nn.MultiMarginLoss

                                                            Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input xx - (a 2D mini-batch Tensor) and output yy - (which is a 1D tensor of target class indices, 0yx.size(1)10 \leq y \leq \text{x.size}(1)-1 +

                                                            Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input xx + + (a 2D mini-batch Tensor) and output yy + + (which is a 1D tensor of target class indices, 0yx.size(1)10 \leq y \leq \text{x.size}(1)-1 + ):

                                                            nn.TripletMarginLoss

                                                            Creates a criterion that measures the triplet loss given an input tensors x1x1 -, x2x2 -, x3x3 - and a margin with a value greater than 00 +

                                                            Creates a criterion that measures the triplet loss given an input tensors x1x1 + +, x2x2 + +, x3x3 + + and a margin with a value greater than 00 + .

                                                            nn.PixelShuffle

                                                            Rearranges elements in a tensor of shape (,C×r2,H,W)(*, C \times r^2, H, W) - to a tensor of shape (,C,H×r,W×r)(*, C, H \times r, W \times r) +

                                                            Rearranges elements in a tensor of shape (,C×r2,H,W)(*, C \times r^2, H, W) + + to a tensor of shape (,C,H×r,W×r)(*, C, H \times r, W \times r) + .

                                                            nn.Upsample

                                                            Linear / Identity

                                                            11 +

                                                            11 +

                                                            Conv{1,2,3}D

                                                            11 +

                                                            11 +

                                                            Sigmoid

                                                            11 +

                                                            11 +

                                                            Tanh

                                                            53\frac{5}{3} +

                                                            53\frac{5}{3} +

                                                            ReLU

                                                            2\sqrt{2} +

                                                            2\sqrt{2} +

                                                            Leaky Relu

                                                            21+negative_slope2\sqrt{\frac{2}{1 + \text{negative\_slope}^2}} +

                                                            21+negative_slope2\sqrt{\frac{2}{1 + \text{negative\_slope}^2}} +

                                                            arange

                                                            Returns a 1-D tensor of size endstartstep\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil +

                                                            Returns a 1-D tensor of size endstartstep\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil + with values from the interval [start, end) taken with common difference step beginning from start.

                                                            range

                                                            Returns a 1-D tensor of size endstartstep+1\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1 +

                                                            Returns a 1-D tensor of size endstartstep+1\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1 + with values from start to end with step step.

                                                            linspace

                                                            Returns a one-dimensional tensor of steps equally spaced points between start and end.

                                                            logspace

                                                            Returns a one-dimensional tensor of steps points logarithmically spaced with base base between basestart{\text{base}}^{\text{start}} - and baseend{\text{base}}^{\text{end}} +

                                                            Returns a one-dimensional tensor of steps points logarithmically spaced with base base between basestart{\text{base}}^{\text{start}} + + and baseend{\text{base}}^{\text{end}} + .

                                                            eye

                                                            rand

                                                            Returns a tensor filled with random numbers from a uniform distribution on the interval [0,1)[0, 1) +

                                                            Returns a tensor filled with random numbers from a uniform distribution on the interval [0,1)[0, 1) +

                                                            rand_like

                                                            Returns a tensor with the same size as input that is filled with random numbers from a uniform distribution on the interval [0,1)[0, 1) +

                                                            Returns a tensor with the same size as input that is filled with random numbers from a uniform distribution on the interval [0,1)[0, 1) + .

                                                            randint

                                                            atan2

                                                            Element-wise arctangent of inputi/otheri\text{input}_{i} / \text{other}_{i} +

                                                            Element-wise arctangent of inputi/otheri\text{input}_{i} / \text{other}_{i} + with consideration of the quadrant.

                                                            bitwise_not

                                                            mvlgamma

                                                            Computes the multivariate log-gamma function) with dimension pp +

                                                            Computes the multivariate log-gamma function) with dimension pp + element-wise, given by

                                                            neg

                                                            Returns a new tensor with the negative of the elements of input.

                                                            polygamma

                                                            Computes the nthn^{th} +

                                                            Computes the nthn^{th} + derivative of the digamma function on input.

                                                            pow

                                                            ge

                                                            Computes inputother\text{input} \geq \text{other} +

                                                            Computes inputother\text{input} \geq \text{other} + element-wise.

                                                            gt

                                                            Computes input>other\text{input} > \text{other} +

                                                            Computes input>other\text{input} > \text{other} + element-wise.

                                                            isclose

                                                            le

                                                            Computes inputother\text{input} \leq \text{other} +

                                                            Computes inputother\text{input} \leq \text{other} + element-wise.

                                                            lt

                                                            Computes input<other\text{input} < \text{other} +

                                                            Computes input<other\text{input} < \text{other} + element-wise.

                                                            max

                                                            ne

                                                            Computes inputotherinput \neq other +

                                                            Computes inputotherinput \neq other + element-wise.

                                                            sort

                                                            combinations

                                                            Compute combinations of length rr +

                                                            Compute combinations of length rr + of the given tensor.

                                                            cross

                                                            meshgrid

                                                            Take NN - tensors, each of which can be either scalar or 1-dimensional vector, and create NN - N-dimensional grids, where the ii - th grid is defined by expanding the ii +

                                                            Take NN + + tensors, each of which can be either scalar or 1-dimensional vector, and create NN + + N-dimensional grids, where the ii + + th grid is defined by expanding the ii + th input over dimensions defined by other inputs.

                                                            logcumsumexp

                                                            chain_matmul

                                                            Returns the matrix product of the NN +

                                                            Returns the matrix product of the NN + 2-D tensors.

                                                            cholesky

                                                            Computes the Cholesky decomposition of a symmetric positive-definite matrix AA +

                                                            Computes the Cholesky decomposition of a symmetric positive-definite matrix AA + or for batches of symmetric positive-definite matrices.

                                                            cholesky_inverse

                                                            Computes the inverse of a symmetric positive-definite matrix AA - using its Cholesky factor uu +

                                                            Computes the inverse of a symmetric positive-definite matrix AA + + using its Cholesky factor uu + : returns matrix inv.

                                                            cholesky_solve

                                                            Solves a linear system of equations with a positive semidefinite matrix to be inverted given its Cholesky factor matrix uu +

                                                            Solves a linear system of equations with a positive semidefinite matrix to be inverted given its Cholesky factor matrix uu + .

                                                            dot

                                                            lstsq

                                                            Computes the solution to the least squares and least norm problems for a full rank matrix AA - of size (m×n)(m \times n) - and a matrix BB - of size (m×k)(m \times k) +

                                                            Computes the solution to the least squares and least norm problems for a full rank matrix AA + + of size (m×n)(m \times n) + + and a matrix BB + + of size (m×k)(m \times k) + .

                                                            lu

                                                            Computes the LU factorization of a matrix or batches of matrices A.

                                                            lu_solve

                                                            Returns the LU solve of the linear system Ax=bAx = b +

                                                            Returns the LU solve of the linear system Ax=bAx = b + using the partially pivoted LU factorization of A from torch.lu().

                                                            lu_unpack

                                                            qr

                                                            Computes the QR decomposition of a matrix or a batch of matrices input, and returns a namedtuple (Q, R) of tensors such that input=QR\text{input} = Q R - with QQ - being an orthogonal matrix or batch of orthogonal matrices and RR +

                                                            Computes the QR decomposition of a matrix or a batch of matrices input, and returns a namedtuple (Q, R) of tensors such that input=QR\text{input} = Q R + + with QQ + + being an orthogonal matrix or batch of orthogonal matrices and RR + being an upper triangular matrix or batch of upper triangular matrices.

                                                            solve

                                                            This function returns the solution to the system of linear equations represented by AX=BAX = B +

                                                            This function returns the solution to the system of linear equations represented by AX=BAX = B + and the LU factorization of A, in order as a namedtuple solution, LU.

                                                            svd

                                                            This function returns a namedtuple (U, S, V) which is the singular value decomposition of a input real matrix or batches of real matrices input such that input=U×diag(S)×VTinput = U \times diag(S) \times V^T +

                                                            This function returns a namedtuple (U, S, V) which is the singular value decomposition of a input real matrix or batches of real matrices input such that input=U×diag(S)×VTinput = U \times diag(S) \times V^T + .

                                                            svd_lowrank

                                                            Return the singular value decomposition (U, S, V) of a matrix, batches of matrices, or a sparse matrix AA - such that AUdiag(S)VTA \approx U diag(S) V^T +

                                                            Return the singular value decomposition (U, S, V) of a matrix, batches of matrices, or a sparse matrix AA + + such that AUdiag(S)VTA \approx U diag(S) V^T + .

                                                            pca_lowrank

                                                            trapz

                                                            Estimate ydx\int y\,dx +

                                                            Estimate ydx\int y\,dx + along dim, using the trapezoid rule.

                                                            triangular_solve

                                                            Solves a system of equations with a triangular coefficient matrix AA - and multiple right-hand sides bb +

                                                            Solves a system of equations with a triangular coefficient matrix AA + + and multiple right-hand sides bb + .