|
| 1 | +""" |
| 2 | +
|
| 3 | +A converter between Cartesian and Frenet coordinate systems |
| 4 | +
|
| 5 | +author: Wang Zheng (@Aglargil) |
| 6 | +
|
| 7 | +Ref: |
| 8 | +
|
| 9 | +- [Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame] |
| 10 | +(https://www.researchgate.net/profile/Moritz_Werling/publication/224156269_Optimal_Trajectory_Generation_for_Dynamic_Street_Scenarios_in_a_Frenet_Frame/links/54f749df0cf210398e9277af.pdf) |
| 11 | +
|
| 12 | +""" |
| 13 | + |
| 14 | +import math |
| 15 | + |
| 16 | + |
| 17 | +class CartesianFrenetConverter: |
| 18 | + """ |
| 19 | + A class for converting states between Cartesian and Frenet coordinate systems |
| 20 | + """ |
| 21 | + |
| 22 | + @ staticmethod |
| 23 | + def cartesian_to_frenet(rs, rx, ry, rtheta, rkappa, rdkappa, x, y, v, a, theta, kappa): |
| 24 | + """ |
| 25 | + Convert state from Cartesian coordinate to Frenet coordinate |
| 26 | +
|
| 27 | + Parameters |
| 28 | + ---------- |
| 29 | + rs: reference line s-coordinate |
| 30 | + rx, ry: reference point coordinates |
| 31 | + rtheta: reference point heading |
| 32 | + rkappa: reference point curvature |
| 33 | + rdkappa: reference point curvature rate |
| 34 | + x, y: current position |
| 35 | + v: velocity |
| 36 | + a: acceleration |
| 37 | + theta: heading angle |
| 38 | + kappa: curvature |
| 39 | +
|
| 40 | + Returns |
| 41 | + ------- |
| 42 | + s_condition: [s(t), s'(t), s''(t)] |
| 43 | + d_condition: [d(s), d'(s), d''(s)] |
| 44 | + """ |
| 45 | + dx = x - rx |
| 46 | + dy = y - ry |
| 47 | + |
| 48 | + cos_theta_r = math.cos(rtheta) |
| 49 | + sin_theta_r = math.sin(rtheta) |
| 50 | + |
| 51 | + cross_rd_nd = cos_theta_r * dy - sin_theta_r * dx |
| 52 | + d = math.copysign(math.hypot(dx, dy), cross_rd_nd) |
| 53 | + |
| 54 | + delta_theta = theta - rtheta |
| 55 | + tan_delta_theta = math.tan(delta_theta) |
| 56 | + cos_delta_theta = math.cos(delta_theta) |
| 57 | + |
| 58 | + one_minus_kappa_r_d = 1 - rkappa * d |
| 59 | + d_dot = one_minus_kappa_r_d * tan_delta_theta |
| 60 | + |
| 61 | + kappa_r_d_prime = rdkappa * d + rkappa * d_dot |
| 62 | + |
| 63 | + d_ddot = (-kappa_r_d_prime * tan_delta_theta + |
| 64 | + one_minus_kappa_r_d / (cos_delta_theta * cos_delta_theta) * |
| 65 | + (kappa * one_minus_kappa_r_d / cos_delta_theta - rkappa)) |
| 66 | + |
| 67 | + s = rs |
| 68 | + s_dot = v * cos_delta_theta / one_minus_kappa_r_d |
| 69 | + |
| 70 | + delta_theta_prime = one_minus_kappa_r_d / cos_delta_theta * kappa - rkappa |
| 71 | + s_ddot = (a * cos_delta_theta - |
| 72 | + s_dot * s_dot * |
| 73 | + (d_dot * delta_theta_prime - kappa_r_d_prime)) / one_minus_kappa_r_d |
| 74 | + |
| 75 | + return [s, s_dot, s_ddot], [d, d_dot, d_ddot] |
| 76 | + |
| 77 | + @ staticmethod |
| 78 | + def frenet_to_cartesian(rs, rx, ry, rtheta, rkappa, rdkappa, s_condition, d_condition): |
| 79 | + """ |
| 80 | + Convert state from Frenet coordinate to Cartesian coordinate |
| 81 | +
|
| 82 | + Parameters |
| 83 | + ---------- |
| 84 | + rs: reference line s-coordinate |
| 85 | + rx, ry: reference point coordinates |
| 86 | + rtheta: reference point heading |
| 87 | + rkappa: reference point curvature |
| 88 | + rdkappa: reference point curvature rate |
| 89 | + s_condition: [s(t), s'(t), s''(t)] |
| 90 | + d_condition: [d(s), d'(s), d''(s)] |
| 91 | +
|
| 92 | + Returns |
| 93 | + ------- |
| 94 | + x, y: position |
| 95 | + theta: heading angle |
| 96 | + kappa: curvature |
| 97 | + v: velocity |
| 98 | + a: acceleration |
| 99 | + """ |
| 100 | + if abs(rs - s_condition[0]) >= 1.0e-6: |
| 101 | + raise ValueError( |
| 102 | + "The reference point s and s_condition[0] don't match") |
| 103 | + |
| 104 | + cos_theta_r = math.cos(rtheta) |
| 105 | + sin_theta_r = math.sin(rtheta) |
| 106 | + |
| 107 | + x = rx - sin_theta_r * d_condition[0] |
| 108 | + y = ry + cos_theta_r * d_condition[0] |
| 109 | + |
| 110 | + one_minus_kappa_r_d = 1 - rkappa * d_condition[0] |
| 111 | + |
| 112 | + tan_delta_theta = d_condition[1] / one_minus_kappa_r_d |
| 113 | + delta_theta = math.atan2(d_condition[1], one_minus_kappa_r_d) |
| 114 | + cos_delta_theta = math.cos(delta_theta) |
| 115 | + |
| 116 | + theta = CartesianFrenetConverter.normalize_angle(delta_theta + rtheta) |
| 117 | + |
| 118 | + kappa_r_d_prime = rdkappa * d_condition[0] + rkappa * d_condition[1] |
| 119 | + |
| 120 | + kappa = (((d_condition[2] + kappa_r_d_prime * tan_delta_theta) * |
| 121 | + cos_delta_theta * cos_delta_theta) / one_minus_kappa_r_d + rkappa) * \ |
| 122 | + cos_delta_theta / one_minus_kappa_r_d |
| 123 | + |
| 124 | + d_dot = d_condition[1] * s_condition[1] |
| 125 | + v = math.sqrt(one_minus_kappa_r_d * one_minus_kappa_r_d * |
| 126 | + s_condition[1] * s_condition[1] + d_dot * d_dot) |
| 127 | + |
| 128 | + delta_theta_prime = one_minus_kappa_r_d / cos_delta_theta * kappa - rkappa |
| 129 | + |
| 130 | + a = (s_condition[2] * one_minus_kappa_r_d / cos_delta_theta + |
| 131 | + s_condition[1] * s_condition[1] / cos_delta_theta * |
| 132 | + (d_condition[1] * delta_theta_prime - kappa_r_d_prime)) |
| 133 | + |
| 134 | + return x, y, theta, kappa, v, a |
| 135 | + |
| 136 | + @ staticmethod |
| 137 | + def normalize_angle(angle): |
| 138 | + """ |
| 139 | + Normalize angle to [-pi, pi] |
| 140 | + """ |
| 141 | + a = math.fmod(angle + math.pi, 2.0 * math.pi) |
| 142 | + if a < 0.0: |
| 143 | + a += 2.0 * math.pi |
| 144 | + return a - math.pi |
0 commit comments