1- 
21import  tensorflow  as  tf 
3- from  keras .models  import  Model 
4- from  keras .applications  import  MobileNetV2 , ResNet50 , InceptionV3  # try to use them and see which is better 
5- from  keras .layers  import  Dense 
6- from  keras .callbacks  import  ModelCheckpoint , TensorBoard 
7- from  keras .utils  import  get_file 
8- from  keras .preprocessing .image  import  ImageDataGenerator 
2+ from  tensorflow . keras .models  import  Model 
3+ from  tensorflow . keras .applications  import  MobileNetV2 , ResNet50 , InceptionV3  # try to use them and see which is better 
4+ from  tensorflow . keras .layers  import  Dense 
5+ from  tensorflow . keras .callbacks  import  ModelCheckpoint , TensorBoard 
6+ from  tensorflow . keras .utils  import  get_file 
7+ from  tensorflow . keras .preprocessing .image  import  ImageDataGenerator 
98import  os 
109import  pathlib 
1110import  numpy  as  np 
@@ -65,7 +64,7 @@ def create_model(input_shape):
6564    # print the summary of the model architecture 
6665    model .summary ()
6766
68-     # training the model using rmsprop  optimizer 
67+     # training the model using adam  optimizer 
6968    model .compile (loss = "categorical_crossentropy" , optimizer = "adam" , metrics = ["accuracy" ])
7069    return  model 
7170
@@ -81,8 +80,8 @@ def create_model(input_shape):
8180    model_name  =  "MobileNetV2_finetune_last5" 
8281
8382    # some nice callbacks 
84-     tensorboard  =  TensorBoard (log_dir = f "logs/ { model_name } " 
85-     checkpoint  =  ModelCheckpoint (f "results/ { model_name } +  "-loss-{val_loss:.2f}-acc-{val_acc:.2f}. h5" ,
83+     tensorboard  =  TensorBoard (log_dir = os . path . join ( "logs"  ,  model_name ) )
84+     checkpoint  =  ModelCheckpoint (os . path . join ( "results"  ,  f" { model_name } +  "-loss-{val_loss:.2f}. h5" ) ,
8685                                save_best_only = True ,
8786                                verbose = 1 )
8887
0 commit comments