| 
 | 1 | +# 115. [Distinct Subsequences](https://leetcode.com/problems/distinct-subsequences/)  | 
 | 2 | + | 
 | 3 | +## Approach 1: Recursion with Memoization  | 
 | 4 | + | 
 | 5 | +### Solution  | 
 | 6 | +python  | 
 | 7 | +```python  | 
 | 8 | +# Time Complexity: O(n * m)  | 
 | 9 | +# Space Complexity: O(n * m)  | 
 | 10 | +class Solution:  | 
 | 11 | +    def numDistinct(self, s: str, t: str) -> int:  | 
 | 12 | +        # Memoization table  | 
 | 13 | +        memo = [[-1 for _ in range(len(t))] for _ in range(len(s))]  | 
 | 14 | +        return self.numDistinctHelper(s, t, 0, 0, memo)  | 
 | 15 | +      | 
 | 16 | +    def numDistinctHelper(self, s: str, t: str, sIndex: int, tIndex: int, memo: list) -> int:  | 
 | 17 | +        # If t is exhausted, one subsequence is found  | 
 | 18 | +        if tIndex == len(t):  | 
 | 19 | +            return 1  | 
 | 20 | +        # If s is exhausted first, no subsequence can be formed  | 
 | 21 | +        if sIndex == len(s):  | 
 | 22 | +            return 0  | 
 | 23 | +        # Check memoization table  | 
 | 24 | +        if memo[sIndex][tIndex] != -1:  | 
 | 25 | +            return memo[sIndex][tIndex]  | 
 | 26 | +          | 
 | 27 | +        # If characters match, both decisions can be made  | 
 | 28 | +        if s[sIndex] == t[tIndex]:  | 
 | 29 | +            memo[sIndex][tIndex] = self.numDistinctHelper(s, t, sIndex + 1, tIndex + 1, memo) + \  | 
 | 30 | +                                   self.numDistinctHelper(s, t, sIndex + 1, tIndex, memo)  | 
 | 31 | +        else:  | 
 | 32 | +            # If characters don't match, skip the current character in s  | 
 | 33 | +            memo[sIndex][tIndex] = self.numDistinctHelper(s, t, sIndex + 1, tIndex, memo)  | 
 | 34 | +          | 
 | 35 | +        return memo[sIndex][tIndex]  | 
 | 36 | +```  | 
 | 37 | + | 
 | 38 | +## Approach 2: Dynamic Programming  | 
 | 39 | + | 
 | 40 | +### Solution  | 
 | 41 | +python  | 
 | 42 | +```python  | 
 | 43 | +# Time Complexity: O(n * m)  | 
 | 44 | +# Space Complexity: O(n * m)  | 
 | 45 | +class Solution:  | 
 | 46 | +    def numDistinct(self, s: str, t: str) -> int:  | 
 | 47 | +        # DP table  | 
 | 48 | +        dp = [[0] * (len(t) + 1) for _ in range(len(s) + 1)]  | 
 | 49 | + | 
 | 50 | +        # Base case: empty t can be formed by all possible substrings of s  | 
 | 51 | +        for i in range(len(s) + 1):  | 
 | 52 | +            dp[i][len(t)] = 1  | 
 | 53 | + | 
 | 54 | +        # Fill the table in reverse order  | 
 | 55 | +        for i in range(len(s) - 1, -1, -1):  | 
 | 56 | +            for j in range(len(t) - 1, -1, -1):  | 
 | 57 | +                if s[i] == t[j]:  | 
 | 58 | +                    # Both using the character and ignoring it  | 
 | 59 | +                    dp[i][j] = dp[i + 1][j + 1] + dp[i + 1][j]  | 
 | 60 | +                else:  | 
 | 61 | +                    # Ignore the character in s  | 
 | 62 | +                    dp[i][j] = dp[i + 1][j]  | 
 | 63 | + | 
 | 64 | +        # Result is the number of ways to form t[0...m] from s[0...n]  | 
 | 65 | +        return dp[0][0]  | 
 | 66 | +```  | 
 | 67 | + | 
 | 68 | +## Approach 3: Dynamic Programming with Space Optimization  | 
 | 69 | + | 
 | 70 | +### Solution  | 
 | 71 | +python  | 
 | 72 | +```python  | 
 | 73 | +# Time Complexity: O(n * m)  | 
 | 74 | +# Space Complexity: O(m)  | 
 | 75 | +class Solution:  | 
 | 76 | +    def numDistinct(self, s: str, t: str) -> int:  | 
 | 77 | +        # Previous and current row for space optimization  | 
 | 78 | +        prev = [0] * (len(t) + 1)  | 
 | 79 | +        curr = [0] * (len(t) + 1)  | 
 | 80 | +          | 
 | 81 | +        # Base case: empty t can be formed by all possible substrings of s  | 
 | 82 | +        for i in range(len(s) + 1):  | 
 | 83 | +            prev[len(t)] = 1  | 
 | 84 | +          | 
 | 85 | +        # Fill the table in reverse order  | 
 | 86 | +        for i in range(len(s) - 1, -1, -1):  | 
 | 87 | +            for j in range(len(t) - 1, -1, -1):  | 
 | 88 | +                if s[i] == t[j]:  | 
 | 89 | +                    curr[j] = prev[j + 1] + prev[j]  | 
 | 90 | +                else:  | 
 | 91 | +                    curr[j] = prev[j]  | 
 | 92 | +            # Move current row to previous for next iteration  | 
 | 93 | +            prev = curr[:]  | 
 | 94 | +          | 
 | 95 | +        # Result is the number of ways to form t[0...m] from s[0...n]  | 
 | 96 | +        return prev[0]  | 
 | 97 | +```  | 
 | 98 | + | 
0 commit comments