|
| 1 | +""" |
| 2 | +Cubature Kalman filter using Constant Turn Rate and Velocity (CTRV) model |
| 3 | +Fuse sensor data from IMU and GPS to obtain accurate position |
| 4 | +
|
| 5 | +https://ieeexplore.ieee.org/document/4982682 |
| 6 | +
|
| 7 | +Author: Raghuram Shankar |
| 8 | +
|
| 9 | +state matrix: 2D x-y position, yaw, velocity and yaw rate |
| 10 | +measurement matrix: 2D x-y position, velocity and yaw rate |
| 11 | +
|
| 12 | +dt: Duration of time step |
| 13 | +N: Number of time steps |
| 14 | +show_final: Flag for showing final result |
| 15 | +show_animation: Flag for showing each animation frame |
| 16 | +show_ellipse: Flag for showing covariance ellipse |
| 17 | +z_noise: Measurement noise |
| 18 | +x_0: Prior state estimate matrix |
| 19 | +P_0: Prior state estimate covariance matrix |
| 20 | +q: Process noise covariance |
| 21 | +hx: Measurement model matrix |
| 22 | +r: Sensor noise covariance |
| 23 | +SP: Sigma Points |
| 24 | +W: Weights |
| 25 | +
|
| 26 | +x_est: State estimate |
| 27 | +P_est: State estimate covariance |
| 28 | +x_true: Ground truth value of state |
| 29 | +x_true_cat: Concatenate all ground truth states |
| 30 | +x_est_cat: Concatenate all state estimates |
| 31 | +z_cat: Concatenate all measurements |
| 32 | +
|
| 33 | +""" |
| 34 | + |
| 35 | +import math |
| 36 | +import matplotlib.pyplot as plt |
| 37 | +import numpy as np |
| 38 | +from scipy.linalg import sqrtm |
| 39 | + |
| 40 | + |
| 41 | +dt = 0.1 |
| 42 | +N = 100 |
| 43 | + |
| 44 | +show_final = 1 |
| 45 | +show_animation = 0 |
| 46 | +show_ellipse = 0 |
| 47 | + |
| 48 | + |
| 49 | +z_noise = np.array([[0.1, 0.0, 0.0, 0.0], # x position [m] |
| 50 | + [0.0, 0.1, 0.0, 0.0], # y position [m] |
| 51 | + [0.0, 0.0, 0.1, 0.0], # velocity [m/s] |
| 52 | + [0.0, 0.0, 0.0, 0.1]]) # yaw rate [rad/s] |
| 53 | + |
| 54 | + |
| 55 | +x_0 = np.array([[0.0], # x position [m] |
| 56 | + [0.0], # y position [m] |
| 57 | + [0.0], # yaw [rad] |
| 58 | + [1.0], # velocity [m/s] |
| 59 | + [0.1]]) # yaw rate [rad/s] |
| 60 | + |
| 61 | + |
| 62 | +p_0 = np.array([[1e-3, 0.0, 0.0, 0.0, 0.0], |
| 63 | + [0.0, 1e-3, 0.0, 0.0, 0.0], |
| 64 | + [0.0, 0.0, 1.0, 0.0, 0.0], |
| 65 | + [0.0, 0.0, 0.0, 1.0, 0.0], |
| 66 | + [0.0, 0.0, 0.0, 0.0, 1.0]]) |
| 67 | + |
| 68 | + |
| 69 | +q = np.array([[1e-11, 0.0, 0.0, 0.0, 0.0], |
| 70 | + [0.0, 1e-11, 0.0, 0.0, 0.0], |
| 71 | + [0.0, 0.0, np.deg2rad(1e-4), 0.0, 0.0], |
| 72 | + [0.0, 0.0, 0.0, 1e-4, 0.0], |
| 73 | + [0.0, 0.0, 0.0, 0.0, np.deg2rad(1e-4)]]) |
| 74 | + |
| 75 | + |
| 76 | +hx = np.array([[1.0, 0.0, 0.0, 0.0, 0.0], |
| 77 | + [0.0, 1.0, 0.0, 0.0, 0.0], |
| 78 | + [0.0, 0.0, 0.0, 1.0, 0.0], |
| 79 | + [0.0, 0.0, 0.0, 0.0, 1.0]]) |
| 80 | + |
| 81 | + |
| 82 | +r = np.array([[0.015, 0.0, 0.0, 0.0], |
| 83 | + [0.0, 0.010, 0.0, 0.0], |
| 84 | + [0.0, 0.0, 0.1, 0.0], |
| 85 | + [0.0, 0.0, 0.0, 0.01]])**2 |
| 86 | + |
| 87 | + |
| 88 | +def cubature_kalman_filter(x_est, p_est, z): |
| 89 | + x_pred, p_pred = cubature_prediction(x_est, p_est) |
| 90 | + x_upd, p_upd = cubature_update(x_pred, p_pred, z) |
| 91 | + return x_upd, p_upd |
| 92 | + |
| 93 | + |
| 94 | +def f(x): |
| 95 | + """ |
| 96 | + Motion Model |
| 97 | + References: |
| 98 | + http://fusion.isif.org/proceedings/fusion08CD/papers/1569107835.pdf |
| 99 | + https://github.com/balzer82/Kalman |
| 100 | + """ |
| 101 | + x[0] = x[0] + (x[3]/x[4]) * (np.sin(x[4] * dt + x[2]) - np.sin(x[2])) |
| 102 | + x[1] = x[1] + (x[3]/x[4]) * (- np.cos(x[4] * dt + x[2]) + np.cos(x[2])) |
| 103 | + x[2] = x[2] + x[4] * dt |
| 104 | + x[3] = x[3] |
| 105 | + x[4] = x[4] |
| 106 | + return x |
| 107 | + |
| 108 | + |
| 109 | +def h(x): |
| 110 | + """Measurement Model""" |
| 111 | + x = hx @ x |
| 112 | + return x |
| 113 | + |
| 114 | + |
| 115 | +def sigma(x, p): |
| 116 | + """ |
| 117 | + Unscented Transform with Cubature Rule |
| 118 | + Generate 2n Sigma Points to represent the nonlinear motion |
| 119 | + Assign Weights to each Sigma Point, Wi = 1/2n |
| 120 | + Cubature Rule - Special Case of Unscented Transform |
| 121 | + W0 = 0, no extra tuning parameters, no negative weights |
| 122 | + """ |
| 123 | + n = np.shape(x)[0] |
| 124 | + SP = np.zeros((n, 2*n)) |
| 125 | + W = np.zeros((1, 2*n)) |
| 126 | + for i in range(n): |
| 127 | + SD = sqrtm(p) |
| 128 | + SP[:, i] = (x + (math.sqrt(n) * SD[:, i]).reshape((n, 1))).flatten() |
| 129 | + SP[:, i+n] = (x - (math.sqrt(n) * SD[:, i]).reshape((n, 1))).flatten() |
| 130 | + W[:, i] = 1/(2*n) |
| 131 | + W[:, i+n] = W[:, i] |
| 132 | + return SP, W |
| 133 | + |
| 134 | + |
| 135 | +def cubature_prediction(x_pred, p_pred): |
| 136 | + n = np.shape(x_pred)[0] |
| 137 | + [SP, W] = sigma(x_pred, p_pred) |
| 138 | + x_pred = np.zeros((n, 1)) |
| 139 | + p_pred = q |
| 140 | + for i in range(2*n): |
| 141 | + x_pred = x_pred + (f(SP[:, i]).reshape((n, 1)) * W[0, i]) |
| 142 | + for i in range(2*n): |
| 143 | + p_step = (f(SP[:, i]).reshape((n, 1)) - x_pred) |
| 144 | + p_pred = p_pred + (p_step @ p_step.T * W[0, i]) |
| 145 | + return x_pred, p_pred |
| 146 | + |
| 147 | + |
| 148 | +def cubature_update(x_pred, p_pred, z): |
| 149 | + n = np.shape(x_pred)[0] |
| 150 | + m = np.shape(z)[0] |
| 151 | + [SP, W] = sigma(x_pred, p_pred) |
| 152 | + y_k = np.zeros((m, 1)) |
| 153 | + P_xy = np.zeros((n, m)) |
| 154 | + s = r |
| 155 | + for i in range(2*n): |
| 156 | + y_k = y_k + (h(SP[:, i]).reshape((m, 1)) * W[0, i]) |
| 157 | + for i in range(2*n): |
| 158 | + p_step = (h(SP[:, i]).reshape((m, 1)) - y_k) |
| 159 | + P_xy = P_xy + ((SP[:, i]).reshape((n, 1)) - |
| 160 | + x_pred) @ p_step.T * W[0, i] |
| 161 | + s = s + p_step @ p_step.T * W[0, i] |
| 162 | + x_pred = x_pred + P_xy @ np.linalg.pinv(s) @ (z - y_k) |
| 163 | + p_pred = p_pred - P_xy @ np.linalg.pinv(s) @ P_xy.T |
| 164 | + return x_pred, p_pred |
| 165 | + |
| 166 | + |
| 167 | +def generate_measurement(x_true): |
| 168 | + gz = hx @ x_true |
| 169 | + z = gz + z_noise @ np.random.randn(4, 1) |
| 170 | + return z |
| 171 | + |
| 172 | + |
| 173 | +def plot_animation(i, x_true_cat, x_est_cat, z): |
| 174 | + if i == 0: |
| 175 | + plt.plot(x_true_cat[0], x_true_cat[1], '.r') |
| 176 | + plt.plot(x_est_cat[0], x_est_cat[1], '.b') |
| 177 | + else: |
| 178 | + plt.plot(x_true_cat[0:, 0], x_true_cat[0:, 1], 'r') |
| 179 | + plt.plot(x_est_cat[0:, 0], x_est_cat[0:, 1], 'b') |
| 180 | + plt.plot(z[0], z[1], '+g') |
| 181 | + plt.grid(True) |
| 182 | + plt.pause(0.001) |
| 183 | + |
| 184 | + |
| 185 | +def plot_ellipse(x_est, p_est): |
| 186 | + phi = np.linspace(0, 2 * math.pi, 100) |
| 187 | + p_ellipse = np.array( |
| 188 | + [[p_est[0, 0], p_est[0, 1]], [p_est[1, 0], p_est[1, 1]]]) |
| 189 | + x0 = 3 * sqrtm(p_ellipse) |
| 190 | + xy_1 = np.array([]) |
| 191 | + xy_2 = np.array([]) |
| 192 | + for i in range(100): |
| 193 | + arr = np.array([[math.sin(phi[i])], [math.cos(phi[i])]]) |
| 194 | + arr = x0 @ arr |
| 195 | + xy_1 = np.hstack([xy_1, arr[0]]) |
| 196 | + xy_2 = np.hstack([xy_2, arr[1]]) |
| 197 | + plt.plot(xy_1 + x_est[0], xy_2 + x_est[1], 'r') |
| 198 | + plt.pause(0.00001) |
| 199 | + |
| 200 | + |
| 201 | +def plot_final(x_true_cat, x_est_cat, z_cat): |
| 202 | + fig = plt.figure() |
| 203 | + subplot = fig.add_subplot(111) |
| 204 | + subplot.plot(x_true_cat[0:, 0], x_true_cat[0:, 1], |
| 205 | + 'r', label='True Position') |
| 206 | + subplot.plot(x_est_cat[0:, 0], x_est_cat[0:, 1], |
| 207 | + 'b', label='Estimated Position') |
| 208 | + subplot.plot(z_cat[0:, 0], z_cat[0:, 1], '+g', label='Noisy Measurements') |
| 209 | + subplot.set_xlabel('x [m]') |
| 210 | + subplot.set_ylabel('y [m]') |
| 211 | + subplot.set_title('Cubature Kalman Filter - CTRV Model') |
| 212 | + subplot.legend(loc='upper left', shadow=True, fontsize='large') |
| 213 | + plt.grid(True) |
| 214 | + plt.show() |
| 215 | + |
| 216 | + |
| 217 | +def main(): |
| 218 | + print(__file__ + " start!!") |
| 219 | + x_est = x_0 |
| 220 | + p_est = p_0 |
| 221 | + x_true = x_0 |
| 222 | + x_true_cat = np.array([x_0[0, 0], x_0[1, 0]]) |
| 223 | + x_est_cat = np.array([x_0[0, 0], x_0[1, 0]]) |
| 224 | + z_cat = np.array([x_0[0, 0], x_0[1, 0]]) |
| 225 | + for i in range(N): |
| 226 | + x_true = f(x_true) |
| 227 | + z = generate_measurement(x_true) |
| 228 | + if i == (N - 1) and show_final == 1: |
| 229 | + show_final_flag = 1 |
| 230 | + else: |
| 231 | + show_final_flag = 0 |
| 232 | + if show_animation == 1: |
| 233 | + plot_animation(i, x_true_cat, x_est_cat, z) |
| 234 | + if show_ellipse == 1: |
| 235 | + plot_ellipse(x_est[0:2], p_est) |
| 236 | + if show_final_flag == 1: |
| 237 | + plot_final(x_true_cat, x_est_cat, z_cat) |
| 238 | + x_est, p_est = cubature_kalman_filter(x_est, p_est, z) |
| 239 | + x_true_cat = np.vstack((x_true_cat, x_true[0:2].T)) |
| 240 | + x_est_cat = np.vstack((x_est_cat, x_est[0:2].T)) |
| 241 | + z_cat = np.vstack((z_cat, z[0:2].T)) |
| 242 | + print('CKF Over') |
| 243 | + |
| 244 | + |
| 245 | +if __name__ == '__main__': |
| 246 | + main() |
0 commit comments