Skip to content

Remote code execution via transformers_utils/get_config

High
russellb published GHSA-8fr4-5q9j-m8gm Dec 1, 2025

Package

pip vllm (pip)

Affected versions

<0.11.1

Patched versions

>=0.11.1

Description

Summary

vllm has a critical remote code execution vector in a config class named Nemotron_Nano_VL_Config. When vllm loads a model config that contains an auto_map entry, the config class resolves that mapping with get_class_from_dynamic_module(...) and immediately instantiates the returned class. This fetches and executes Python from the remote repository referenced in the auto_map string. Crucially, this happens even when the caller explicitly sets trust_remote_code=False in vllm.transformers_utils.config.get_config. In practice, an attacker can publish a benign-looking frontend repo whose config.json points via auto_map to a separate malicious backend repo; loading the frontend will silently run the backend’s code on the victim host.

Details

The vulnerable code resolves and instantiates classes from auto_map entries without checking whether those entries point to a different repo or whether remote code execution is allowed.

class Nemotron_Nano_VL_Config(PretrainedConfig):
    model_type = 'Llama_Nemotron_Nano_VL'

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        if vision_config is not None:
            assert "auto_map" in vision_config and "AutoConfig" in vision_config["auto_map"]
            # <-- vulnerable dynamic resolution + instantiation happens here
            vision_auto_config = get_class_from_dynamic_module(*vision_config["auto_map"]["AutoConfig"].split("--")[::-1])
            self.vision_config = vision_auto_config(**vision_config)
        else:
            self.vision_config = PretrainedConfig()

get_class_from_dynamic_module(...) is capable of fetching and importing code from the Hugging Face repo specified in the mapping. trust_remote_code is not enforced for this code path. As a result, a frontend repo can redirect the loader to any backend repo and cause code execution, bypassing the trust_remote_code guard.

Impact

This is a critical vulnerability because it breaks the documented trust_remote_code safety boundary in a core model-loading utility. The vulnerable code lives in a common loading path, so any application, service, CI job, or developer machine that uses vllm’s transformer utilities to load configs can be affected. The attack requires only two repos and no user interaction beyond loading the frontend model. A successful exploit can execute arbitrary commands on the host.

Fixes

Severity

High

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Network
Attack complexity
High
Privileges required
Low
User interaction
Required
Scope
Unchanged
Confidentiality
High
Integrity
High
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H

CVE ID

CVE-2025-66448

Weaknesses

Improper Control of Generation of Code ('Code Injection')

The product constructs all or part of a code segment using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the syntax or behavior of the intended code segment. Learn more on MITRE.

Credits