@@ -33,34 +33,14 @@ def graph_based_slam(xEst, PEst, u, z):
3333 # Predict
3434 S = STATE_SIZE
3535 xEst [0 :S ] = motion_model (xEst [0 :S ], u )
36- G , Fx = jacob_motion (xEst [0 :S ], u )
37- PEst [0 :S , 0 :S ] = G .T * PEst [0 :S , 0 :S ] * G + Fx .T * Cx * Fx
38- initP = np .eye (2 )
3936
4037 # Update
4138 for iz in range (len (z [:, 0 ])): # for each observation
42- minid = search_correspond_LM_ID (xEst , PEst , z [iz , 0 :2 ])
43-
44- nLM = calc_n_LM (xEst )
45- if minid == nLM :
46- print ("New LM" )
47- # Extend state and covariance matrix
48- xAug = np .vstack ((xEst , calc_LM_Pos (xEst , z [iz , :])))
49- PAug = np .vstack ((np .hstack ((PEst , np .zeros ((len (xEst ), LM_SIZE )))),
50- np .hstack ((np .zeros ((LM_SIZE , len (xEst ))), initP ))))
51- xEst = xAug
52- PEst = PAug
53-
54- lm = get_LM_Pos_from_state (xEst , minid )
55- y , S , H = calc_innovation (lm , xEst , PEst , z [iz , 0 :2 ], minid )
56-
57- K = PEst * H .T * np .linalg .inv (S )
58- xEst = xEst + K * y
59- PEst = (np .eye (len (xEst )) - K * H ) * PEst
39+ pass
6040
6141 xEst [2 ] = pi_2_pi (xEst [2 ])
6242
63- return xEst , PEst
43+ return xEst , None
6444
6545
6646def calc_input ():
@@ -256,11 +236,6 @@ def main():
256236 plt .plot (RFID [:, 0 ], RFID [:, 1 ], "*k" )
257237 plt .plot (xEst [0 ], xEst [1 ], ".r" )
258238
259- # plot landmark
260- for i in range (calc_n_LM (xEst )):
261- plt .plot (xEst [STATE_SIZE + i * 2 ],
262- xEst [STATE_SIZE + i * 2 + 1 ], "xg" )
263-
264239 plt .plot (np .array (hxTrue [0 , :]).flatten (),
265240 np .array (hxTrue [1 , :]).flatten (), "-b" )
266241 plt .plot (np .array (hxDR [0 , :]).flatten (),
0 commit comments