Skip to content

Commit 4db588b

Browse files
committed
finish code clean up
1 parent 6a252de commit 4db588b

File tree

1 file changed

+30
-26
lines changed

1 file changed

+30
-26
lines changed

PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py

Lines changed: 30 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -192,43 +192,42 @@ def setup_planning(self):
192192
return etheta, cMin, xCenter, C, cBest
193193

194194
def setup_sample(self, iterations, foundGoal, cMin, xCenter, C, cBest):
195-
print("Batch: ", iterations)
196-
# Using informed rrt star way of computing the samples
197-
self.r = 2.0
198-
if iterations != 0:
199-
if foundGoal:
200-
# a better way to do this would be to make number of samples
201-
# a function of cMin
202-
m = 200
203-
self.samples = dict()
204-
self.samples[self.goalId] = self.goal
205-
else:
206-
m = 100
207-
cBest = self.g_scores[self.goalId]
208-
self.samples.update(self.informedSample(
209-
m, cBest, cMin, xCenter, C))
210-
return cBest
211195

196+
if len(self.vertex_queue) == 0 and len(self.edge_queue) == 0:
197+
print("Batch: ", iterations)
198+
# Using informed rrt star way of computing the samples
199+
self.r = 2.0
200+
if iterations != 0:
201+
if foundGoal:
202+
# a better way to do this would be to make number of samples
203+
# a function of cMin
204+
m = 200
205+
self.samples = dict()
206+
self.samples[self.goalId] = self.goal
207+
else:
208+
m = 100
209+
cBest = self.g_scores[self.goalId]
210+
self.samples.update(self.informedSample(
211+
m, cBest, cMin, xCenter, C))
212+
213+
# make the old vertices the new vertices
214+
self.old_vertices += self.tree.vertices.keys()
215+
# add the vertices to the vertex queue
216+
for nid in self.tree.vertices.keys():
217+
if nid not in self.vertex_queue:
218+
self.vertex_queue.append(nid)
212219
return cBest
213220

214221
def plan(self, animation=True):
215222

216223
etheta, cMin, xCenter, C, cBest = self.setup_planning()
217224
iterations = 0
218-
plan = []
219225

220226
foundGoal = False
221227
# run until done
222228
while (iterations < self.maxIter):
223-
if len(self.vertex_queue) == 0 and len(self.edge_queue) == 0:
224-
cBest = self.setup_sample(iterations,
225-
foundGoal, cMin, xCenter, C, cBest)
226-
# make the old vertices the new vertices
227-
self.old_vertices += self.tree.vertices.keys()
228-
# add the vertices to the vertex queue
229-
for nid in self.tree.vertices.keys():
230-
if nid not in self.vertex_queue:
231-
self.vertex_queue.append(nid)
229+
cBest = self.setup_sample(iterations,
230+
foundGoal, cMin, xCenter, C, cBest)
232231
# expand the best vertices until an edge is better than the vertex
233232
# this is done because the vertex cost represents the lower bound
234233
# on the edge cost
@@ -304,6 +303,10 @@ def plan(self, animation=True):
304303
iterations += 1
305304

306305
print("Finding the path")
306+
return self.find_final_path()
307+
308+
def find_final_path(self):
309+
plan = []
307310
plan.append(self.goal)
308311
currId = self.goalId
309312
while (currId != self.startId):
@@ -312,6 +315,7 @@ def plan(self, animation=True):
312315

313316
plan.append(self.start)
314317
plan = plan[::-1] # reverse the plan
318+
315319
return plan
316320

317321
def remove_queue(self, lastEdge, bestEdge):

0 commit comments

Comments
 (0)