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Abstract

Background: A personalized medicine approach provides opportunities for predictive and preventive medicine. Using genomic,
clinical, environmental, and behavioral data, the tracking and management of individual wellness is possible. A prolific way to
carry this personalized approach into routine practices can be accomplished by integrating clinical interpretations of genomic
variations into electronic medical records (EMRs)/electronic health records (EHRs). Today, various central EHR infrastructures
have been constituted in many countries of the world, including Turkey.

Objective: As an initial attempt to develop a sophisticated infrastructure, we have concentrated on incorporating the personal
single nucleotide polymorphism (SNP) data into the National Health Information System of Turkey (NHIS-T) for disease risk
assessment, and evaluated the performance of various predictive models for prostate cancer cases. We present our work as a three
part miniseries: (1) an overview of requirements, (2) the incorporation of SNP data into the NHIS-T, and (3) an evaluation of
SNP data incorporated into the NHIS-T for prostate cancer.

Methods: In the third article of this miniseries, we have evaluated the proposed complementary capabilities (ie, knowledge
base and end-user application) with real data. Before the evaluation phase, clinicogenomic associations about increased prostate
cancer risk were extracted from knowledge sources, and published predictive genomic models assessing individual prostate cancer
risk were collected. To evaluate complementary capabilities, we also gathered personal SNP data of four prostate cancer cases
and fifteen controls. Using these data files, we compared various independent and model-based, prostate cancer risk assessment
approaches.

Results: Through the extraction and selection processes of SNP-prostate cancer risk associations, we collected 209 independent
associations for increased risk of prostate cancer from the studied knowledge sources. Also, we gathered six cumulative models
and two probabilistic models. Cumulative models and assessment of independent associations did not have impressive results.
There was one of the probabilistic, model-based interpretation that was successful compared to the others. In envirobehavioral
and clinical evaluations, we found that some of the comorbidities, especially, would be useful to evaluate disease risk. Even
though we had a very limited dataset, a comparison of performances of different disease models and their implementation with
real data as use case scenarios helped us to gain deeper insight into the proposed architecture.

Conclusions: In order to benefit from genomic variation data, existing EHR/EMR systems must be constructed with the capability
of tracking and monitoring all aspects of personal health status (genomic, clinical, environmental, etc) in 24/7 situations, and also
with the capability of suggesting evidence-based recommendations. A national-level, accredited knowledge base is a top requirement
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for improved end-user systems interpreting these parameters. Finally, categorization using similar, individual characteristics (SNP
patterns, exposure history, etc) may be an effective way to predict disease risks, but this approach needs to be concretized and
supported with new studies.

(JMIR Med Inform 2014;2(2):e21) doi: 10.2196/medinform.3560
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Introduction

In this miniseries, we share our work that aims to incorporate
the personal single nucleotide polymorphism (SNP) data into
a national level electronic health record, for example, the
National Health Information System of Turkey (NHIS-T) for
disease risk assessment based on genotyping information of
patients.

First the literature review for SNP data incorporated electronic
medical record (EMR)/electronic health record (EHR)s is
presented. In addition, the requirements for the EMR/EHR
systems in terms of the standardizations of terminologies and
messaging are reviewed [1]. The need for a structured
knowledge base, decision support approaches, systems for
reporting, and risk assessment are addressed as well. Next, the
NHIS-T system is overviewed, and architectural extensions to
the NHIS-T for the integration of the SNP data are proposed
[2]. Additionally, we have presented our design and
developmental process for the complementary components of
this system, for example, a knowledge base, Clinicogenomic
Knowledge Base, (ClinGenKB), and end-user application,
Clinicogenomic Web Application, (ClinGenWeb).

In this part, we evaluated these complementary components for
prostate cancer using real, direct-to-consumer (DTC) SNP data
files. We have first of all extracted and transformed
clinicogenomic associations into knowledge base content, and
determined assessment and reporting approaches to discern the
disease risk at a personal level. Also an overall discussion of
the results, limitations, and possibilities of our work covered in
this miniseries is presented.

Methods

General Approach
In this article, we have focused on the evaluation of the
developed ClinGenKB and ClinGenWeb for prostate cancer
risk assessment.

Prostate cancer is the most common malignancy affecting men
in the Western countries, it is highly heterogeneous and a
multifactorial polygenic disease. The heterogeneous
characteristics of prostate cancer could be partially explained
by genetic factors [3]. In addition to genetic factors, age, race,
family health history, endogenous hormones, diseases,
environmental exposures, and various behavioral features are
proposed in the literature as confounders of prostate cancer
[4,5]. This complicated nature of prostate cancer, and burden
on public health services, make it an ideal case to research the
benefits of incorporating SNP data into an EHR for predictive,
preventive, and personalized medicine approaches.

Figure 1 shows the main workflow of the process. First, the
medical literature and knowledge sources to extract
clinicogenomic associations between SNP alleles and increased
prostate cancer risk are investigated. Additionally, the published
predictive genomic models assessing individual prostate cancer
risk are searched. In parallel, to evaluate our system with real
data, we have gathered the personal SNP data (23andMe files)
of individuals with prostate cancer and control samples. These
data files are used in the evaluation phase to infer personal
clinicogenomic associations based on ClinGenKB in the final
stage. The independent associations and model-based prostate
cancer risk assessment approaches are evaluated and compared
using real personal clinicogenomic data and external data, for
example, body mass index (BMI).
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Figure 1. Main steps of the evaluation process. SNP=single nucletotide polymorphism; CG-ASSOC.=clinicogenomic association;
CLINGENKB=clinicogenomic knowledge base; and CLINGENWEB=clinicogenomic web application.

Extraction of the Independent Clinicogenomic
Associations

Collection of Associations
Since the completion of Human Genome Project, SNP-disease
relationships have been extensively researched and published
in the medical literature. Results of these studies are mostly
collected in structured and/or narrative forms, from several
clinicogenomic knowledge sources. To develop a
clinicogenomic knowledge base for prostate cancer risk, we
determined reliable medical sources and collected
clinicogenomic associations in a standardized form.

In our study, to extract these associations, we have preferred to
utilize the publicly available knowledge sources, for example,
genome-wide association studies (GWAS) catalog, SNPedia,
and Cancer GAMAdb. We have selected the clinicogenomic
associations between SNPs and increased prostate cancer risk
from these knowledge sources, excluding studies about
gene-environment (eg, nutrition, drugs, chemical agents, etc)
interactions. In addition, we have ignored clinicogenomic
associations measuring SNP effects on the aggressivity and
mortality of the prostate cancer.

As the SNP nomenclatures and notations are represented
heterogeneously among different medical sources, the correct
unification and standardization of identifiers had to be the initial
step. We have checked all of the selected associations and
matched their reference single nucleotide polymorphism

identifiers (rsIDs) and alleles using Single Nucleotide
Polymorphism database (dbSNP). The SNP rsIDs, which had
been merged with another SNP, were updated, and allele values,
which had been identified based on reverse strand, were
transformed to the forward strand.

Selection of Suitable Associations
Generally, there is more than one odds ratio (OR) for every
SNP-disease association in various GWAS data
warehouses, depending on the diversity of studies. A selection
strategy is proposed to solve these value redundancies and
conflictions. For the clinicogenomic association set, we have
developed a four-phased selection approach to determine a
reasonable value per SNP allele.

In the first phase, because all test data was gathered from
Caucasians, we have obtained the clinicogenomic association
values from studies, which were performed on this race group.
If there weren’t any studies in the Caucasian populations, we
would’ve preferred to use results from the mixed population as
a second choice, and results from other races (Africans, Asians,
etc) as the last choice. In the second phase, we have assessed
the study type, for example, meta-analysis or research study,
and preferred meta-analysis results. After that, if we still had
more than one association value, we calculated the citation
number of referenced articles. Finally, we have selected the
highest OR, when needed (Table 1). With this approach, we
extracted one OR value for every single SNP from the
knowledge sources.
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Table 1. Selection criteria for extracted associations.

Order of preferenceCategoryPhase

Caucasians; mixed; other races (Africans, Asians, etc)Race and ethnicity1

Meta-analysis; research studyStudy type2

Highest number of citationsCredibility of journal3

Higher numberOdds ratio4

Evidence Degree Assignment to Clinicogenomic
Associations
There are still many biases and errors in the interpretation of
genetic association studies. Ideally, we would prefer to evaluate
association values to sort out all sources with a bias (study
design, genotyping problems, publication bias, etc) of studies,
but it becomes infeasible due to the time and effort needed by
the professional domain experts. So, a degree of evidence quality
is developed to rank all association values that are assigned.

During the extraction of clinicogenomic associations for prostate
cancer, we have generated a simple approach using some
indirect metrics to determine the quality of evidence degree for
every association to assess the clinical utility. There are three
major criteria that are used to determine the dimensions of
evidence; credibility of referenced article, reliability of the study,
and the scientific familiarity of SNP-disease relationships. To
calculate the credibility of the referenced article, we have used
the citation number of the article, the type of study, and the
number of authors. Then the reliability of the study is determined
based on the sample size (number of cases and controls), race,
and ethnicity status are also considered. To evaluate the

scientific familiarity of SNP-clinical condition relationship, we
have calculated the number of the scientific articles about the
SNP-prostate cancer relationship in PubMed, and the number
of cumulative models, which involves the SNP allele under
evaluation. These criteria are summarized in Table 2. Finally,
the degree of evidence quality was calculated as the arithmetic
average of all parameters for each association.

There are many SNPs reported with minor association degrees
to predict prostate cancer risk. For a physician, it is impossible
to interpret all disease relevant SNPs to determine the
appropriate clinical action. Thus, to present an overview of the
personal risk SNPs as a whole, we have categorized the
magnitude of impact and the evidence degree values of
associations into three classes as strong, moderate, and weak.
The thresholds for the magnitude of impact (OR) were
determined as strong (≥2.50), moderate (≥2.00 and <2.50), and
weak (<2.00) (Table 2).

We have also extracted indirect metrics corresponding to Venice
criteria to assign an evidence degree using PubMed publications
and our knowledge sources (Figure 2 shows this image). This
method has a potential for an automated evidence value
assignment, but needs to be validated in a separate study.

Table 2. Evidence degree assignment criteria for clinicogenomic associations.

ValueOrder of preference

Credibility of referenced article

(1-15)=1, (16-50)=2, and (>50)=3Citation number of article

(Research article and author number <10) =1; (research article and ≤10 author number
<35)=2; (research article and ≤35 author number)=3; (meta-analysis and author number<7)
=2; and (meta-analysis and ≥7 author number)=3

Type of study and number of
authors

Reliability of study

Other races (Africans, Asians, etc)=1; mixed=2; and Caucasians=3Race and ethnicity of studies
population

(<100)=1; (≥100 and <1000)=2; and (>1000)=3Sample size (each of case and
controls)

Scientific familiarity of SNP-disease relationship

(<7)=1; (≥7 and <19)=2; and (≥20)=3Number of article for SNP-
prostate cancer relationship in
PubMed

None=1, (<3)=2, and (≥3) =3Number of cumulative models
which involve SNP allele

Degree of evidence quality

=Total value/6

(<1.5)= weak; (≤1.5 and <2.3)= moderate; and (≤2.3)= strong
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Figure 2. Matching of our parameters and Venice criteria. SNP=single nucleotide polymorphism.

Risk Assessment and Reporting Approaches
As explained in the first part of this miniseries, there are
different types of risk assessment and reporting approaches, for
example, listing of clinicogenomic associations and their effects
as independent associations, complete representation of these
SNPs using visualization techniques, calculation of disease risk
using polygenic risk scoring and model-based approaches, etc.
In this study, we have focused on the different models for
prostate cancer.

Because most of the genomic associations have small degrees
of impact, cumulative models, which contain a few critical
SNPs, have been proposed previously to predict the disease
risk. We have extracted cumulative models for prostate cancer
risk assessment through PubMed searches.

The rsIDs and allele values of SNPs contained in models were
checked and adapted to forward genomic strands based on
dbSNP entries. Models, which involve additional external
parameters, such as family health history, are also collected.
Finally, the reference tables for all models containing the total
impact of involved parameters and corresponding risk values
are generated.

Among risk assessment tools other than cumulative models,
there are ongoing efforts utilizing different data mining
algorithms to interpret GWAS data for building various
predictive models. In order to present how these modeling
approaches could be implemented in our prototype system, we
also included two such examples into our study. These
probabilistic models are based on the works of Yücebaş and
Aydın Son to assess prostate cancer risk, and were developed
through a hybrid approach combining support vector machine

(SVM) and Iterative Dichotomiser 3 (ID3) decision tree (DT)
based on “A Multiethnic Genome-wide Scan of Prostate Cancer”
dataset from the database of Genotypes and Phenotypes (dbGaP)
(study accession no., phs000306, and version 2) [6,7]. The first
hybrid model (only SNP model) includes 33 SNPs and their
alleles, and the accuracy, precision, and recall values of this
model are 71.6%, 72.69%, and 68.96%, respectively [6,7]. The
second hybrid model originally was developed by integrating
genotyping and phenotyping data, and contains 28 SNPs, along
with clinical features; BMI, alcohol intake, and cigarette
smoking. The accuracy, precision, and recall values of this
model for the integrated model are 93.81%, 96.55%, and
90.92%, respectively [6,7].

Similar to cumulative models, to prepare these hybrid models,
first, we checked rsIDs and adapted allele values of contained
SNPs to forward deoxyribonucleic acid strands using dbSNP.
After that, we have converted the results of hybrid models as
association sets. Finally, we have prepared a reference table for
both of the genomic risk models containing SNP parameters.

Polygenic risk scoring is an extension of cumulative
model-based approaches. Different types of polygenic prediction
models were developed to combine the impact of disease
associated SNP data, for example, count method, log-odds
method, multiplicative model, etc. The count method is the
calculation of the total count of independent genomic risk
alleles. The log-odds method adds together the natural logarithm
of the allelic OR for each risk allele [8]. DTC testing companies
typically employ a multiplicative model to calculate life time
risk in the absence of an established method for combining SNP
risk estimates, that is multiplication of OR of each genotype
and average population risk [9].
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Preparation of Test Data
To evaluate the ClinGenKB and the ClinGenWeb platforms as
a part of our use case scenario, we have gathered real data
(23andMe files) from the Personal Genome Project [10]. In this
publicly available resource, genomic, environmental, and human
trait data are integrated together. There were four 23andMe files
that belonged to men who have been diagnosed with prostate
cancer. All of these patients were Caucasian men, over 60 years
of age. To build a demographically matched control set, we
have selected all the Caucasian men older than 60 years of age
as control samples. Through the Personal Genomes Project’s
website, we have acquired 23andMe files of 15 individual
healthy Caucasian men over the age of 60 (Table 3).

Before the evaluation of the proposed workflow and the
framework, first, a personal clinically relevant SNP (CR-SNP)
data file for prostate cancer patients from their original 23andMe
files are generated based on the clinicogenomic associations.
Then the clinicogenomic associations and these test data are
transferred into the ClinGenKB. Personal clinicogenomic
associations were acquired by processing the personal CR-SNP
data with a smart query based on the ClinGenKB. After that,
acquired clinicogenomic associations were transferred into the
ClinGenWeb. Also, some relevant personal health data were
transferred from the Personal Genome Project website to the
ClinGenWeb to be used in the interpretation of disease risks
based on the models. Finally, the validity of implemented
models and approaches are compared and discussed.

Table 3. Characteristics of genomic data owners.

Birth yearAncestral originProstate cancerParticipant

1937Germany-NorwayYes01-hu1213DA

1938IrelandYes03-huD889CC

1943United StatesYes07-hu28F39C

1950United States-AustriaYes13-hu6ED94A

1937United States-CanadaNo02-hu59141C

1939United States-United KingdomNo04-huF7E042

1939United StatesNo05-hu75BE2C

1941United StatesNo06-hu56B3B6

1943United States-IrelandNo08-huB59C05

1947United States-GermanyNo10-hu7A2F1D

1949United StatesNo12-huD57BBF

1951Hungary-Ukraine-RussiaNo14-huD7960A

1952United StatesNo15-hu2E413D

1952United StatesNo16-hu76CAA5

1953United States-United KingdomNo17-huA720D3

1953United StatesNo18-hu63DA55

1954United Kingdom-HungaryNo19-hu43860C

1954Germany-PolandNo20-huD00199

1954United States-SwedenNo21-huAC827A

Evaluation of Test Data
In prostate cancer, known relevant SNPs mostly have a modest
OR. Therefore, in the evaluation phase, we have assessed the
total impact of the independent relevant associations based on
four approaches, that is the number of SNPs based on the
dominant model, the number of SNPs based on the additive
model, the evidence-impact-SNP degree based on the dominant
model, and the evidence-impact-SNP degree based on the
additive model. The “number of SNPs”, are calculated as the
total count of existing relevant SNPs. In the dominant type of
this model, only the count of relevant SNPs is considered, but
in the additive type, the impact of homozygote SNPs is weighted
twice as much compared to heterozygote SNPs. In the
evidence-impact-SNP approach, for every existing SNP, we

have calculated an impact degree using the evidence degrees
(1, 2, and 3) and the impact degrees (1, 2, and 3). Also, similar
to the number of SNPs calculated, for the additive type we have
assigned 1 and 2 to heterozygote and homozygote SNPs as
weighting coefficients, respectively.

After that, all the cases and controls are evaluated based on the
predictive cumulative and probabilistic models. Then, results
for all of the cases and controls were interpreted and compared.
In the second hybrid model, where associations are based on
both genotyping and clinical data, SNPs and BMI, smoking and
alcohol consumption data are used. Here, due to a lack of the
clinical data, the risk for some individuals could not be assessed.

In addition to the genetic factors, there are various comorbidities,
sociodemographic characteristics, and environmental and
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behavioral exposures that are proposed as confounders of the
prostate cancer (Table 4). Therefore, we have analyzed the
personal, clinical, and the environmental characteristics, which

are meaningful for the prostate cancer pathogenesis, as the last
step of our evaluation.

Table 4. Example list of several risk and protective factors for the prostate cancer [2,3].

ParametersRisk category

Age, family health history, ethnicity, and race.Sociodemographic data

Nutrition and diet (animal fat, fruits, legumes, yellow-orange and cruciferous vegetables, soy
foods, dairy products, fatty fish, alcohol, coffee, green tea, modified citrus pectin, and
pomegranate).

Environmental sources

Supplements (multivitamins, vitamin E -with or without selenium, folic acid, zinc, calcium, vitamin
D, retinoid, and zyflamend).

Drugs (5 alpha-reductase inhibitors, nonsteroidal antiinflammatory drugs, statins, and toremifene).

Medical procedures (vasectomy, barium enema, hip or pelvis x-rays, and external beam radiation
therapy for rectal cancer).

Tobacco use (tobacco products, smoking).

Medical conditions (prostatitis, prostatic intraepithelial neoplasia, syphilis, skin basal cell carci-
noma, and benign prostate hyperplasia).

Personal health status (internal environment)

Anatomic measurements (high body mass index).

Results

Independent Associations for Prostate Cancer
Initially, we have determined 87 SNP alleles from the GWAS
catalog, 32 SNP alleles from the SNPedia, and 236 SNP alleles
from the Cancer GAMAdb, which are all associated with
increased prostate cancer risk. Through the extraction and

selection processes of SNP-prostate cancer risk associations,
we have excluded redundant, conflicting, and incomplete
associations. Finally, a total of 209 independent associations
for increased risk of prostate cancer from the studied knowledge
sources were acquired. Next, the evidence and the impact
categories are assigned to these associations (see Multimedia
Appendix 1). The overall assessment of all these different types
of clinicogenomic associations is summarized in Table 5.

Table 5. Distribution of clinicogenomic associations.

Evidence degree

TotalWeakModerateStrongImpact degree

7250Strong

4130Moderate

1983312342Weak

2093613142Total

Cumulative Models for Prostate Cancer
Cumulative models are the combination of the impact of several
clinicogenomic associations using arithmetic operators. For
some SNPs, only homozygote alleles are involved in the models
(recessive model), but mostly heterozygote SNPs (dominant
model) are part of the cumulative models. Both in dominant
and recessive models, the values of risk SNPs are accepted as
one unit of impact. Alterations of SNPs’ impact values regarding
homozygote and heterozygote alleles are defined as an additive
model. The dominant and recessive models as examples of the
cumulative predictive models retrieved from the scientific
literature, and the SNP alleles included in each of the cumulative
models are listed in Table 6.

In addition to Table 6, three of these cumulative models
(17-SNP_Helfand, 5-SNP_Zheng and 5-SNP_Salinas) were
enhanced using family health history as an additional parameter

and combined SNP-family health history models were produced
[11-13].

In the cumulative models, the existence of each association
contributes to the total score. For example, in the 5-SNP_Zheng
model, there are five different SNPs. The genetic model is
dominant for three SNPs (rs1447295-A, rs16901979-A, and
rs6983267-G) and recessive for the others (rs1859962-G,
rs4430796-A). For dominant models, homozygote and
heterozygote combinations of alleles are identified as a risk
factor in the same degree. For recessive models, only
homozygote combinations are considered as risk factors,
whereas heterozygote combinations are accepted as harmless.
Through analysis of a patient’s genotype, the total impact values
of clinicogenomic associations are determined and calculated
additively. Besides the SNP associations, the existence of
prostate cancer in family health history can be included as an
additional impact factor.
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The reference table for 5-SNP_Zheng model is presented as an
example in Table 7. If patients without family health history
have only one impact factor, the risk of having prostate cancer
increases by 1.5, compared to those who have none of the impact
factors. If a patient has all five risk SNPs with specified alleles,
and a positive family health history for prostate cancer, the total

impact is calculated to be 6. According to Table 7, this would
correspond to an increased risk of 9.46 for having prostate
cancer when compared to the general population. Full reference
tables for all cumulative models are provided in the Multimedia
Appendix 2 [11-16].

Table 6. Examples of cumulative risk prediction models for prostate cancer.

3-SNP_Beuten
[16]

4-SNP_Nam
[15]

5-SNP_Salinas
[13]

5-SNP_Zheng
[12]

9-SNP_Helfand
[14]

17-SNP_Helfand
[11]

rsIDs and risk allele

Dominantrs1819698-T

Recessivers2710646-A

Recessivers721048-A

Dominantrs10934853-A

Recessivers2736098-A

Dominantrs401681-C

Dominantrs1800629-A

Recessivers2348763-A

DominantDominantDominantDominantDominantrs1447295-A

DominantDominantDominantrs16901979-A

Dominantrs16902094-G

Dominantrs445114-T

DominantDominantDominantDominantrs6983267-G

Dominantrs6983561-C

RecessiveRecessivers10993994-T

DominantDominantrs10896450-G

Dominantrs11228565-A

Dominantrs12439137-G

Dominantrs2470152-T

Recessivers11649743-G

RecessiveRecessiveRecessiveRecessiveRecessivers1859962-G

RecessiveRecessiveDominantDominantrs4430796-A

Dominantrs8102476-C

DominantDominantrs5945572-A

Table 7. Reference table for 5-SNP_Zheng model.

Odds ratio (95% CI), with FHHaOdds ratio (95% CI), without FHHaTotal impact

1.00 (by definition)1.00 (by definition)0

1.62 (1.27-2.08)1.50 (1.18-1.92)1

2.07 (1.62-2.64)1.96 (1.54-2.49)2

2.71 (2.08-3.53)2.21 (1.70-2.89)3

4.76 (3.31-6.84)4.47 (2.93-6.80)4

9.46 (3.62-24.72)4.47 (2.93-6.80)5

9.46 (3.62-24.72)-6

a FHH = family health history
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Probabilistic Models for Prostate Cancer
In this study, we used two types of probabilistic models from
Yücebaş and Aydın Son based on a hybrid (SVM+ID3 DT)
approach; namely, first (only SNP) and second
(SNP-Environmental Combined) [6,7]. When the first hybrid
model (only SNP model) from Yücebaş and Aydın Son is
interpreted, we have captured 154 different association sets
containing the combination of several different SNPs and alleles
[6]. In the second genotype-phenotype integrated model, we
acquired 23 association sets containing 28 SNPs and their alleles

along with BMI, smoking, and alcohol usage [7]. The complete
associations of the hybrid models are listed in Multimedia
Appendices 3 and 4.

In these probabilistic models, if an individual accounted for all
parameters on one branch (ie, an association set), this individual
has a prostate cancer risk with the accuracy, precision, and recall
values of total model as presented in references [6,7]. Table 8
presents an example of the reference table for association sets
of the genotype-only hybrid model.

Table 8. Reference table for the probabilistic only SNP model.

Total count of SNPsBranch_id

4Branch_ 1

4Branch_ 2

7Branch_ 3

….….

2Branch_ 154

Evaluation Results for Test Data

Overview
In the evaluation phase, we have studied four cases and 15
controls, which consisted of Caucasian men, age 60 years or
older, and regarding independent clinicogenomic associations
and risk prediction models.

Complete results of test and evaluation processes (independent
association assessment, model-based evaluation, and clinical
and environmental evaluation) are provided in Multimedia
Appendix 5.

Results for Independent Associations
In prostate cancer, known relevant SNPs mostly have a modest
OR. Therefore, in the evaluation phase, we have assessed the
total impact of the independent relevant associations based on
four approaches, that is the number of SNPs based on the
dominant model, the number of SNPs based on the additive
model, the evidence-impact-SNP degree based on the dominant
model, and the evidence-impact-SNP degree based on the
additive model.

The comparative evaluation results of individual clinically
relevant SNPs of case and control groups regarding categorical
distribution of evidence quality and impact degrees are in
Multimedia Appendix 6. In these approaches, case groups were
divided into two or three different subsets (three patients with
high values and one patient with a low value for the dominant
models, and two patients with high, one patient with moderate,
and one patient with low values in terms of additive models).
In control groups, there were, in particular, five people
(21-huAC827A, 15-hu2E413D, 08-huB59C05, 17-huA720D3,
and 06-hu56B3B6) with values higher than all cases observed.
However, it must be remembered that, in the complete
assessment of all SNPs, due to the remarkable number of
relevant SNPs that were not analyzed, the results might be
distorted.

Results for Cumulative Models
Due to a lack of family health history data of individuals, we
couldn’t use this data to calculate cumulative risks. In our
limited number of cases, cumulative models did not have
meaningful results. But, similar to the complete evaluation of
independent associations, it must be considered that,
nonanalyzed SNPs could be distorting the results. Results of
these cumulative models are summarized in Table 9.
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Table 9. Summarized results for cumulative models.

ControlCase

UnknownOdds ratio<2.5Odds ratio≥2.5UnknownOdds ra-
tio<2.5

Odds ratio≥2.5

3102a3-117-SNP_Helfand

2121c-3b19-SNP_Helfand

-15--4-5-SNP_Zheng

-15--4-5-SNP_Salinas

-15--4-4-SNP_Nam

213-22-3-SNP_Beuten

a 02-hu59141C, 12-huD57BBF
b 01-hu1213DA, 03-huD889CC, and 07-hu28F39C
c 17-huA720D39

Results for Probabilistic Models
Regarding the probabilistic model-based interpretations; the
only SNP model from Yücebaş and Aydın Son [6] wasn’t
successful in terms of predicting the cases. In the second model
[7], where genotype and phenotype data were integrated, one
patient was determined as being under risk, two patients couldn’t
be evaluated because of data incompleteness (smoking and
alcohol consumption data), and one patient (03-huD889CC)
was determined as being risk free. In control samples, only one
individual (04-huF7E042) was determined as being in a risk
group, but six individuals were determined as being risk free.
There were eight individuals of this group that couldn’t be
evaluated due to data incompleteness. Although this model was
produced for those of African American descent, and even
though we had a limited number of cases and controls for the
evaluation process, it was still the most successful approach
when compared to the others. Interestingly, a patient
(03-huD889CC) was determined as the risk free, and this patient
was also determined as being in a low risk group according to
complete assessment approaches.

Clinical and Envirobehavioral Evaluation
Prostate cancer is a polygenic multifactorial disease, and both
environmental and genetic factors take important roles in its

pathogenic mechanism. Therefore, if we analyze the genomic
risks with clinical and environmental characteristics, we can
infer more accurate results. Characteristics of cases and controls
regarding clinical and environmental risk factors for prostate
cancer are summarized in Table 10.

In envirobehavioral and clinical evaluation, it was found that
patient “03-huD889CC” had previously been diagnosed with
syphilis. In prior publications, syphilis has been reported as a
risk factor for prostate cancer [2]. The healthy individuals, who
had a higher risk than controls, namely “06-hu56B3B6”, had
basal cell carcinoma, and “21-huAC827A” had hypogonadism,
that is a low level of testosterone. And both of these clinical
conditions are known to decrease the prostate cancer risk [1,2].
Also, “06-hu56B3B6” and “17-huA720D3” used several risky,
protective drugs and supplements regarding prostate cancer risk.
In patients “08-huB59C05” and “15-hu2E413D”, we did not
have enough data to evaluate the risk and protective factors. In
the health records of some cases and controls, there was some
data about nutritional status, physical activity, and usages of
supplements data, etc. But, all this data wasn’t useful during
the evaluation due to a lack of precise measurement information
(eg, amount, period, duration, etc).

JMIR Med Inform 2014 | vol. 2 | iss. 2 | e21 | p. 10http://medinform.jmir.org/2014/2/e21/
(page number not for citation purposes)

Beyan & Aydın SonJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 10. Clinical and environmental risk factors of cases and control.

Protective factorsRisk factorsIndividualsGroup

Hypercholesterolemia, BPHa01-hu1213DACase

Syphilis03-huD889CCCase

Hypercholesterolemia, BPHa, and lipitor07-hu28F39CCase

Obesity, hypercholesterolemia, and

simvastatin

13-hu6ED94ACase

T2DMb, vegetable servings, and regular phys-
ical activityObesity, multivitamins02-hu59141CControl

TURPcBPHa04-huF7E042Control

Regular physical activity05-hu75BE2CControl

Basal cell skin cancer, lycopene, and
pomegranate

Obesity, hypercholesterolemia, chlamydia infection,
alcoholism, ibuprofen, multivitamin, folic acid, vita-
min E, and selenium

06-hu56B3B6Control

Obesity08-huB59C05Control

Nonmelanoma skin cancer, regular physical
activity

Hypercholesterolemia, atorvastatin10-hu7A2F1DControl

Regular physical activity

Hypercholesterolemia, BPHa

Simvastatin, aspirin, and vasectomy12-huD57BBFControl

T2DMbOverweight, hypercholesterolemia, and BPHa14-huD7960AControl

Overweight15-hu2E413DControl

Omega-3 fish oilOverweight, aspirin16-hu76CAA5Control

Phytosterols, omega-3 fish oil, and melatoninHypercholesterolemia, aspirin, and multivitamin17-huA720D3Control

Omega-3 fish oil18-hu63DA55Control

Nonmelanoma skin cancerOverweight, hypercholesterolemia, and

lovastatin

19-hu43860CControl

Overweight, hypercholesterolemia, and atorvastatin20-huD00199Control

HypogonadismOverweight, hypercholesterolemia, and simvastatin21-huAC827AControl

a BPH = benign prostate hyperplasia
b T2DM = type II diabetes mellitus
c TURP = transurethral resection of the prostate

Discussion

Principal Results
In this study, we have extended the current architecture of a
centralized national EHR, NHIS-T, and developed two
complementary capabilities, a knowledge base (ClinGenKB)
and a reporting application (ClinGenWeb), to predict the risk
of diseases using SNP data.

With respect to interoperability, Health Level 7 Clinicogenomic
Work Group (HL7 CG-WG) develops several standards and
guidelines, and tries to overcome the chasm between the
genomic laboratory and the clinical practice. In comparing
current and required infrastructure characteristics, and
determining a few terminology standards for genome enabled
messaging, we reason NHIS-T can be adapted to HL7 CG-WG.

The unique identification of SNP data is a critical issue in
clinical genomics. In our system, due to simplicity and easiness,

we proposed to use rsIDs and allele values for identification of
SNPs. But, to avoid any inconsistencies, it is crucial to
remember that, some rsIDs have been merged over time. For
this reason, SNP numbers must be checked out based on the
dbSNP, and transformed into current values if required.
Additionally, as different genomic strand types are the preferred
choice among some clinicogenomic knowledge sources and
publications, the standardization of strand identification is
another important point for SNP data incorporated into clinical
systems.

Regarding clinical terminology, we prefer to use existing
NHIS-T standards, for example, International Classification of
Diseases and Related Problems, Tenth Revision (ICD-10) for
disease identification. For new data types (model name, model
type, etc), we produced our own specific value categories.

To store and process the huge amount of raw variant files, in
our architecture, we have proposed to store the raw and/or
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processed genomic data in the genomic laboratory databases,
and only to share clinically relevant variant data and/or
clinicogenomic association information between partners. To
derive CR-SNP data from personal SNP data, we need to use a
CR-SNP resource. This resource was designed as part of a
national level clinicogenomic knowledge base. This knowledge
base is also utilized to transform CR-SNP data to clinicogenomic
associations.

As it is emphasized in the literature, one of the most critical
components of the genome enabled EHRs is the development
of a national level knowledge base for clinicogenomic
information. This capability must be kept up to date and
manually curated by domain experts. In our study, we have
developed a prototype knowledge base (ClinGenKB), which
includes clinicogenomic associations for prostate cancer risk
prediction.

Several different approaches are proposed to define clinical
impact and evidence qualities of clinicogenomic associations
in various knowledge sources. But there is still a lack of
structured, objective, and comprehensive methodologies for
matching, selecting, and merging different studies. In our
prototype, we have proposed a simple methodology, but the
best methods of determining standards to calculate, limit biases,
and limit faults still need to be investigated in future
clinicogenomic association studies.

ClinGenWeb is a prototype for the end-user systems that
provides interpretations of the clinicogenomic associations. To
evaluate our system, we have used real data from the Personal
Genome Project. Collected data included 23andMe data files,
ages, ethnicities, ancestral origins, clinical data, and some
behavioral parameters. Age and ethnicity are extensively
accepted as proven risk factors for prostate cancer. All of our
cases and controls were selected from Caucasian men over 60
years old. The risk for prostate cancer is 2 in 16 for men 60
through 69 years old, and 1 in 9 for men 70 years and older
[17].

ClinGenWeb uses both complete and model-based
interpretations for clinicogenomic associations. Independent
associations may have very little importance for clinical
processes alone, but in complete interpretation, we tried to
interpret all relevant data as a whole. After analyzing our results,
we concluded that cases and controls could be divided into two
or three different risk groups as a result of genetic heterogeneity.
With the commissioning of whole genome sequencing/whole
exome sequencing (WGS/WES) in clinical practice, similarity
measurements of clinically relevant SNP patterns may be a new
way of producing predictive models in genomic medicine, but
this approach needs to be supported with more phenotypic data,
and needs to be tested in larger study samples.

There are several cumulative models proposed to predict prostate
cancer, but we couldn’t acquire meaningful results with these
models in our subjects. Another original approach was to use
the probabilistic (SVM+ID3 DT) model-based associations.
However, the only SNP model of this approach was not
successful, but the second model, which integrates genotype
and clinical data, was partly consistent. Unfortunately, the
number of available holistic envirogenomic models that could

be implemented here is limited. The probabilistic model utilized
was produced for men of African American, Latin, and Japanese
descent, and we have used the submodel template generated for
African American individuals, as their genetic background is
expected to carry a higher number of common SNPs with the
Caucasian population than Latin or Japanese populations.

Another critical point is that clinical, environmental, and
behavioral data can be used to explain pathogenic and clinical
heterogeneity, and to clarify the complexity of results. With the
support of clinical and behavioral data, we could interpret some
contradictory results. Because, most of the environmental and
behavioral data wasn’t stored in EMR/EHRs in a structured
manner, we generated the functionality to add these types of
data at the end-user level.

Due both to the bipartite structure of our interpretations (ie,
conversion of CR-SNP into clinicogenomic associations and
final clinical interpretations of associations), and the fact that
the final interpretation was accomplished at the end-user side,
we combined both clinicogenomic associations and external
parameters (such as BMI), which have been recorded or tracked
by end-users to support the decision making.

Limitations
Complete implementation of SNP data incorporated NHIS-T
in real systems was not possible due to the regulative and the
technical issues at this stage. So, we restricted our focus to
develop complementary capabilities as prototypes for NHIS-T,
namely, the ClinGenKB and the ClinGenWeb, which
specifically targeted prostate cancer risk prediction.

GWAS research is based on the “common disease, common
variant” hypothesis. However, some authors proposed that
common variants can explain only a modest part of complex
diseases and so the “common disease, rare variant(s)” hypothesis
was recently put forward [18]. Clinicogenomic associations
used to build the knowledge base in this study are based on
recent developments in the GWAS research and literature. In
our study, we have only used SNP data, but recent studies show
that different variants (Copy Number Variations, etc) are also
responsible for clinical conditions.

Also in the ClinGenKB, our critical focus was to generate a
structured clinicogenomic representation for only risk prediction
for prostate cancer. But, in the literature, there are several kinds
of information related to different stages of clinical decision
processes, for example, prognosis, pharmacogenomic, etc. In
the real world project, this prototype has to be enhanced with
additional types of associations and diseases.

We obtained case and control data from the Personal Genome
Project to evaluate our system, but the number of cases and
controls were so limited. To determine the value of this system
in clinical settings, more comprehensive data on genomic,
environmental, family health, and clinical conditions are needed.
Unfortunately, none of the cases and controls had family health
history data, and we couldn’t involve this critical parameter in
our evaluation processes. Existing clinical data about subjects
didn’t reflect the clinical and pathological heterogeneity of the
prostate cancer. In particular, we did not have precise
measurement information (amount, period, duration, etc) about
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behavioral characteristics of subjects (diet, physical activity,
supplements, etc), and we couldn’t interpret the possible effects
of these parameters on prostate cancer risk.

Another limitation was in aligning the terminologies of the
clinical and bioinformatical domains in a consistent way. ICD
classification is accepted as a standard for disease classification
in many countries including Turkey. But ICD-10 is not useful
to manage all levels of clinical, pathologic, and genetic
heterogeneities. It is expected that it will be managed in the
next version, ICD-11 that will be released in 2015 and the new
release can be integrated with other medical terminologies such
as Systematized Nomenclature of Medicine Clinical Term
(SNOMED-CT) [19]. Nevertheless, as proposed earlier, it is an
unavoidable requirement to develop a new taxonomy of diseases,
which will be based on information commons and a knowledge
network, combining molecular data, social data, environmental
data, clinical data, and health outcomes [20].

In the current study, due to the ethnic characteristics of our
subjects, we have primarily preferred the studies performed
with Caucasians to collect the clinicogenomic associations from
the literature. But, the terms of ethnicity and race are
sociocultural constructs affected by both biological and
environmental factors. For this reason, for a real world NHIS-T
system, genotyping data from the Turkish population is needed
to build the working knowledge base.

Also, predictive models that will be used in clinical settings
need to be validated. Especially, we need approaches to assess
the complete analysis of clinically relevant SNPs. With the
commissioning of WGS/WES in the clinical practice, similarity
measurements of clinically relevant SNP patterns may be a new
way to produce predictive models in genomic medicine, but
this approach needs to be enhanced with further phenotypic
data, and to be tested in large study samples.

On the other hand, the number of available holistic
envirogenomic models is limited. As most of the complex
diseases are progressing as an interaction of genomic and
environmental factors, more envirogenomic data also need to
be developed to build predictive disease models.

Comparison With Prior Work
GeneInsight Suite is an impressive application environment to
evaluate and share sequencing based test results. GeneInsight
Clinic can be integrated with EMRs or can be used as a
standalone system. It manages knowledge, and facilitates
reporting. GeneInsight Network (VariantWire) provides the
mechanism to connect laboratories and providers. Interpretations
of sequencing based tests are shared with corresponding
caregiver organizations using this system. GeneInsight Suite
allows clinicians to receive updates when new information on
previously unknown variants is certified for clinical use.

There are critical differences between the proposed system and
GeneInsight. First, our system is designed as part of a central
national level EHR. In the United States, the architecture of
EHR systems is more federated. Both systems include a
knowledge base and applications for the end-users.

In GeneInsight, the interpretation and reinterpretation of critical
variants are reported for clinical use. These interpretations do
not involve external data, which is not included in the EMR.
But, in the proposed system, the clinical interpretation of SNP
data is divided into two sequential processes, that is the
conversion of CR-SNP into clinicogenomic associations, and
the clinical interpretation of them. Final interpretation is
completed at the end-user application, and so it is possible to
use additional data for the risk prediction (environmental,
behavioral, etc). These processes are finalized based on
predictive models and automated analysis techniques.

Conclusions
Today, the health care systems are continuously evolving and
transforming under the influence of developments in technology
and globalization. A revolutionary paradigm shift is changing
the focus of medicine from the traditional provider-centric
approach to patient-centric personalized medicine. This
paradigm shift, dramatically transforms clinical processes,
medical education, and research in theory and practice. The
commissioning of new health services based on emerging
technologies (mobile health systems, pervasive applications,
environmental sensors, body area sensor networks, etc) also
dramatically supports these emerging trends.

But in the light of the literature on personalized medicine, we
can argue that the area of biomedical informatics has not begun
to show its major effect on health care systems, and the major
shifting in health care practices is expected soon via genomic
technologies. When we look at the big picture, we can see the
emergence of evidence-based managed health care systems with
knowledge discovery capabilities driven by big data and
knowledge infrastructures for sustainable, fair, and effective
care services.

In this respect, we consider that the next generation of health
information systems will be constructed based on tracking and
monitoring all aspects of individual health status through 24/7,
and implementing evidence-based recommendations to empower
individuals. Today, most of the personal, behavioral, and
environmental data is not a subject of EMR/EHR, or even PHR
contents. Characteristics of most environmental and behavioral
data require frequent measurements and (nearly) continuous
tracking. And, possibly if we extend PHR content (with genomic
data) toward involving environmental and behavioral factors,
we can add value to disease risk assessment and prediction.

As we emphasized before, a national level manually curated
and accredited knowledge base is the most important component
of evidence-based decision making. Based on this knowledge
base, collected risk data will gain a predictive meaning, and any
new discovery in clinical sciences will be reflected for
individuals by the reinterpretation of collected data. At this
point, we need additional and improved analytic tools based on
genomic and environmental parameters. We aim to develop a
knowledge repository integrating some knowledge bases with
semantic technologies, and adding some automatic evaluation
techniques to make it easier to extract and manually curate
existing references for the domain experts.
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Regarding the challenges facing health care systems, along with
the effective provision of public health services and associated
financial burdens, most of the important diseases are of a
complex nature. In the pathogenesis of complex diseases, the
interaction of genetic and environmental factors has critical
importance, and ethnicity, race, and geographic factors may
play distinctive roles. Hence, it is necessary to have the
appropriate clinicogenomic information about the target
population. Clinical data, environmental factors, and family
health history are critical components, and there is a need to
study the relationships between these parameters and genomic
factors. Eventually, it will be required both to conduct
envirogenetic studies in order to acquire original data for
population, and to enhance the NHIS-T data model for collecting
these types of data.

The omics area is not only represented by genomic data, and in
the near future different types of omics data will be available
for the routine clinical practices, for example, transcriptomics,
proteomics, metabolomics, and epigenomics. Also, systems
medicine offers possibilities that will increase the effectiveness
of risk prediction strategies.

In addition, we aim to enhance our system by integrating data
warehouses for research. With this capability, integrated
genomic and environmental datasets can also be used for clinical
research. We will extract the meaningful relationship patterns
via this system and, by using these patterns; we can calculate

the risks of groups who have similar characteristics, for example,
family members or communities.

The major aim of our system is to provide true and actionable
information for patients and their family practitioners. Our
system will process collected data and return evidence-based
recommendations to the individuals to make them responsible
for their preferences and consequences. The empowerment of
individuals to participate in their health care decisions is an
emerging trend in personalized medicine. At this point, we need
more curated information sources and visual representation
approaches intended for unprofessional individuals. Areas of
representation and reporting of clinicogenomic results should
focus on developing new approaches, techniques, and tools.

In the last 10 years, there has been a great effort to accomplish
a transformation to a national health care system based on
information technologies in Turkey. But yet, practical
applications of personal genomics and its integration into health
care services are in its infancy, and studies about personalized
medicine are at the academic level.

Our architecture and prototype, which aim to incorporate
personal SNP data into the NHIS-T, are also in their preliminary
stage. However, we need additional vision, research, work, and
tools to extend our EHR capabilities for the future genome
enabled health care systems. We believe that our work will be
a starting point for a predictive and preemptive personalized
national health care system.
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ClinGenKB: Clinicogenomic Knowledge Base
ClinGenWeb: Clinicogenomic Web Application
CR-SNP: clinically relevant single nucleotide polymorphism
dbSNP: Single Nucleotide Polymorphism database
DT: decision tree
DTC: direct-to-consumer
EHR: electronic health record
EMR: electronic medical record
GWAS: genome-wide association studies
HL7: Health Level 7
HL7 CG-WG: Health Level 7 Clinicogenomic Work Group
ICD: International Classification of Diseases and Health Related Problems
ICD-10: International Classification of Diseases and Related Problems, Tenth Revision
ID3: Iterative Dichotomiser 3
NHIS-T: National Health Information System of Turkey
OR: odds ratio
PHR: personal health record
rsIDs: reference single nucleotide polymorphism identifiers
SNP: single nucleotide polymorphism
SVM: support vector machine
WES: whole exome sequencing
WGS: whole genome sequencing
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