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Abstract

Background: Electronic health records (EHRs) commonly contain patient addresses that provide valuable data for geocoding
and spatial analysis, enabling more comprehensive descriptions of individual patients for clinical purposes. Despite the widespread
use of EHRs in clinical decision support and interventions, no systematic review has examined the extent to which spatial analysis
is used to characterize patient phenotypes.

Objective: This study reviews advanced spatial analyses that used individual-level health data from EHRs within the United
States to characterize patient phenotypes.

Methods: We systematically evaluated English-language, peer-reviewed studies from the PubMed/MEDLINE, Scopus, Web
of Science, and Google Scholar databases from inception to August 20, 2023, without imposing constraints on study design or
specific health domains.

Results: A substantial proportion of studies (>85%) were limited to geocoding or basic mapping without implementing advanced
spatial statistical analysis, leaving only 49 studies that met the eligibility criteria. These studies used diverse spatial methods,
with a predominant focus on clustering techniques, while spatiotemporal analysis (frequentist and Bayesian) and modeling were
less common. A noteworthy surge (n=42, 86%) in publications was observed after 2017. The publications investigated a variety
of adult and pediatric clinical areas, including infectious disease, endocrinology, and cardiology, using phenotypes defined over
a range of data domains such as demographics, diagnoses, and visits. The primary health outcomes investigated were asthma,
hypertension, and diabetes. Notably, patient phenotypes involving genomics, imaging, and notes were limited.

Conclusions: This review underscores the growing interest in spatial analysis of EHR-derived data and highlights knowledge
gaps in clinical health, phenotype domains, and spatial methodologies. We suggest that future research should focus on addressing
these gaps and harnessing spatial analysis to enhance individual patient contexts and clinical decision support.

(JMIR Med Inform 2024;12:e56343) doi: 10.2196/56343
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Introduction

Electronic health records (EHRs) have significantly enriched
clinical decision support by providing relatively cost-effective,
time-efficient, and convenient sources of a large population of
patient records [1,2]. Because EHRs often contain patient

addresses, spatial analysis can enable value addition via
high-resolution geocoding. The simplest of such analyses may
be mapping, which can promote a better understanding of health
disparities. Further, patient geocoding can link external data
such as environmental, demographic, and socioeconomic factors
for more refined patient phenotyping and a more profound
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understanding of patient exposures for targeted interventions
[3].

The possibilities for applying spatial analysis on
individual-level, EHR-derived data are beyond geocoding, basic
mapping, or external data linkage. For instance, spatial network
analysis examines proximity to the sources of pollution [4],
measures accessibility to health care facilities [5], and optimizes
resource allocations to mitigate health disparities [6]. Spatial
clustering pinpoints statistically significant spatial and
spatiotemporal hotspots and cold spots [7], especially when
considering longitudinal EHRs data. Moreover, spatial and
spatiotemporal modeling can identify localized patterns, trends,
and relationships within a specific region [8,9]. Identifying
underserved communities through spatial analysis can enhance
clinical decision support to implement targeted interventions
such as screening, vaccination, or health education campaigns.

Despite the availability of advanced spatial analysis methods,
most studies primarily focus on basic mapping or geocoding.
Moreover, while these methodologies have the potential to better
describe the context of individual patients in biomedical studies,
there is a need for their improved application to derive more
meaningful insights. To accurately address medical conditions,
identify a disease in a patient, and scale that to cohorts of
patients, phenotyping is required [10]. Phenotypes are a
combination of observable traits, symptoms, and characteristics.
They can contain inclusion and exclusion criteria (eg, diagnoses,
procedures, laboratory reports, and medications) and can be
used to recruit patients who fit the necessary criteria for clinical
trials.

A prior systematic review used spatially linked EHRs data to
investigate the effects of social, physical, and built environments
on health outcomes [11]. Another study highlighted the need
to integrate spatial data related to individual patients into health

care decision-making and practice [12]. Nonetheless, this is the
first comprehensive study that systematically reviews US-based
studies that used spatial analysis for analyzing EHR-derived
data in characterizing patient phenotypes for clinical decision
support and interventions. This review collates and synthesizes
existing literature that used individual-level health data from
EHRs in conjunction with advanced spatial analyses and patient
phenotyping. Thus, the main objectives of this review are (1)
to evaluate the degree to which advanced spatial methods are
currently being used with individual-level data sourced from
EHRs in the United States, (2) to identify areas of spatial
analyses most applicable to biomedical studies, (3) to categorize
publications concerning their biomedical and clinical areas and
the specific patient phenotypes they target, and (4) to highlight
knowledge gaps and propose future research directions for
harnessing the potential of spatial analysis to enhance the context
of individual-level data sourced from EHRs for biomedical
studies.

Methods

Overview
This systematic review was performed using the protocols
outlined by the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) to identify the studies
that satisfy the eligibility criteria for subsequent data extraction
and synthesis (Multimedia Appendix 1).

Data Source
A comprehensive search for peer-reviewed studies was carried
out using abstracts and titles screening within the
PubMed/MEDLINE, Scopus, and Web of Science databases
using the search terms in Table 1. The search was conducted
on August 29, 2023, without limitations on study design or
specific health domains.

Table 1. The search strategy key terms.

Key termsThemea

(“Geospatial*” OR “Geo-spatial*” OR “Spatio-Temporal” OR “Spatial Temporal” OR “Space-Time” OR “Space Time”
OR “Spatiotemporal” OR “Geocod*” OR “ Spatial Autocorrelation” OR “Spatial Interpolation” OR “Spatial Epidemiology”
OR “Spatial Data” OR “Spatial Modeling” OR “Spatial Modelling” OR “Spatial Mapping” OR “Geographic Mapping” OR
“Georeferenc*” OR “Spatial Analys*” OR “Spatial Inequalit*” OR “Spatial Disparit*” OR “Spatial Dependenc*” OR
“Spatial Access*” OR “Geographical Mapping” OR “Geographical Visualization” OR “Geographic Visualization” OR
“Geovisualization” OR “Geographical Information System*” OR “Geographic Information System*” OR “Geofencing”
OR “Geographical Distribution*” OR “Geographic Distribution*” OR “Spatial Statistic*” OR “Spatial Bayesian” OR
“Spatial Hotspot*” OR “Spatial Cluster*” OR “Geographic Cluster*” OR “Geographic Hotspot*” OR “Remote Sensing”
OR “Global Positioning System” OR “Spatial Pattern*” OR “Spatial Data Mining” OR “Spatial Variabilit*” OR “Spatial
Heterogeneit*” OR “Geostatistic*” OR “Spatial Covariance” OR “Spatial Regression” OR “Spatial Uncertaint*” OR
“Spatial Point Pattern*” OR “Kriging” OR “Cartography” OR “Spatial Decision Support System*” OR “OpenStreetMap”
OR “Location-Based Services” OR “Spatial Quer*” OR “GIS” OR “Web GIS” OR “Satellite Imager*” OR “ArcGIS” OR
“QGIS” OR “Risk Mapping”) AND

Spatial analysis

(“EHR” OR “EMR” OR “EPR” OR “Electronic Health Record*” OR “Electronic Medical Record*” OR “Electronic Patient
Record*” OR “EDW” OR “Enterprise Data Warehouse” OR “RDW” OR “Research Data Warehouse”)

EHRb

aThe selected studies that used spatial analysis of EHR data were manually excluded if they lacked patient phenotype characteristics or were not conducted
based on the US data.
bEHR: electronic health record.
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Search Strategy
The initial search comprised 2 main categories. The first
category included a broad set of key terms related to spatial
analysis. The second category used the key terms associated
with EHR. Henceforth, our reference to EHRs will also
encompass electronic medical records (EMRs), electronic patient
records (EPRs), enterprise data warehouses (EDWs), and
research data warehouses (RDWs). The Boolean operator AND
was applied to synthesize the 2 categories.

For PubMed/MEDLINE, Scopus, and Web of Science, we used
a consistent search strategy tailored to the specific features and
functionalities of each platform. We used the advanced search
options available on these databases to input the key terms from
Table 1. The search was conducted across titles and abstracts.
For Google Scholar, due to its distinct search engine and more
limited filtering options compared to the other databases, we
conducted broad search queries with the same key terms. We
then manually reviewed the results to identify and include
relevant studies that met our criteria.

Study Selection
The retrieved abstracts and titles were imported into Covidence
systematic review software (Veritas Health Innovation), where
duplicate records between original databases are automatically
eliminated. Two reviewers (AM and BH) independently assessed
the eligibility of the studies based on the following inclusion
and exclusion criteria.

The studies were eligible for primary inclusion if they (1) were
composed in English; (2) were original peer-reviewed studies;
(3) used individual-level patient data derived from EHRs, EMRs,
EPRs, EDWs, or RDW; and (4) incorporated at least 1 form of
spatial methods. Conversely, the studies were excluded if they
(1) were not peer-reviewed (eg, letters, editorials, reviews, case
reports, abstracts, and grey literature), (2) solely geocoded
addresses or generated basic visualizations (eg, dot map and
choropleth map) without any spatial analysis, and (3) not based
on the US data.

The reviewers (AM and BH) independently reviewed the full
texts of all remaining studies. The studies also were excluded
if they lacked phenotype characteristics. Further, we manually
checked the references for all the selected studies for possible
inclusion. A third reviewer (AVA) was consulted to break ties.

Data Extraction
Upon identifying studies that satisfied all inclusion criteria, two
reviewers (AM and BH) extracted the following items for each
study: title, publication year, country and region, sample size,
study period, spatial methodologies, and key findings from the

spatial methods. Moreover, studies were assessed to identify
clinical domains (including primary and secondary when
applicable), health conditions or problems, and themes
(including social determinants of health [SDOH], environmental
factors, ecological aspects, climate, microbiome, genomics, and
clinical phenotypic characteristics). Previous publications have
emphasized the importance of data domain sources in
phenotyping, underscoring the need for validating the created
phenotype [13] and using multiple data sources. Thus, in cases
where the included publications did not provide details of data
sources but instead referenced previously published works,
referenced publications were reviewed. Additionally, we
cataloged the types of EHRs that served as the sources.

Narrative Synthesis
There is no universally accepted classification for spatial
analysis methods. In this review, we have adopted and refined
a classification framework based on the study of Nazia et al
[14], which initially categorized methods into frequentist and
Bayesian approaches and spatial and spatiotemporal methods.
This classification was further broken down into descriptive,
clustering, and modeling techniques [15]. Therefore, following
data extraction, the studies were categorized into the following
spatial methodology classifications: descriptive, clustering,
modeling (frequentist), spatiotemporal (frequentist), and
Bayesian. The phenotype characteristics were extracted and
recorded as free text. It should be noted that the categories were
not mutually exclusive.

The quality appraisal of the studies was not feasible due to the
substantial heterogeneity in spatial methodologies and health
domains. The geospatial distribution of the included studies
was visualized using ArcGIS Pro software (version 3.0; ESRI).

Results

Study Selection
The initial search yielded 1758 references. After removing
duplicate records, we identified 952 studies for abstract and title
screening, from which 375 were selected for full-text review.
Of these, 322 studies were excluded as they only contained
geocoding or basic mapping without any spatial analysis.
Additionally, 15 studies were omitted due to the absence of
patient phenotype characteristics (n=2) or were not based on
US data (n=13). We further manually searched references and
Google Scholar and found 11 new studies that met the eligibility
criteria. Therefore, 49 studies that fulfilled the inclusion criteria
were retained for data extraction and synthesis. Figure 1 depicts
the PRISMA flowchart for the study selection process.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) study selection flowchart.

Temporal and Geographic Distribution of Studies
Of the 49 included studies, a limited number (n=7, 14%) were
published prior to 2017. The earliest study included in this study
was published in 2011, and the publication frequency has
experienced a significant upsurge since 2017 (n=42, 86%),
likely due to increased adoption of EHR systems and growing

familiarity with spatial analysis techniques among researchers.
There was only one study [16] at the national level. General
characteristics of the included studies are presented in Table 2.
Most studies were concentrated in North Carolina (n=8, 16%),
Pennsylvania (n=6, 12%), California (n=6, 12%), and Illinois
(n=4, 8%). Figure 2 illustrates the geospatial distribution of
studies at the state level in the United States.
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Table 2. General characteristics of the included studies.

Study periodSample size, nRegionYearAuthorNo.

2002-20104613Atlanta2019Ali et al [7]1

2011-201624,428Cincinnati2018Beck et al [17]2

2007-2011147,000Durham2018Bravo et al [18]3

2007-2011147,351Durham2019Bravo et al [19]4

2007-201141,203Durham2019Bravo et al [20]5

20205421Delaware2020Brooks et al [21]6

2006-2015366Utah2021Carey et al [22]7

2006-201320,569Pennsylvania2016Casey et al [23]8

2007-2009103,690Wisconsin2015Chang et al [8]9

2013-201810,352Durham2020Cobert et al [24]10

2011-201221,578Denver2018Davidson et al [25]11

2019-20202195South Carolina2023DeMass et al [26]12

2007-20115390Los Angeles2014Epstein et al [27]13

2015-20212240Tennessee2023Gaudio et al [28]14

1999-20153736South Carolina2020Georgantopoulos et al [29]15

2012-201920,289Twin Cities, Minnesota2022Ghazi et al [30]16

2007-2012777,994Chicago2023Grag et al [31]17

2015-20201403Georgia2022Grunwell et al [32]18

2013-20151473Flint, Michigan2016Hanna-Attisha et al [33]19

2002-201013,938Atlanta2019Immergluck et al [34]20

2007-2008744Eastern North Carolina2011Jilcott et al [35]21

2011-20202427Kansas and Missouri2023Kane et al [36]22

2007-201147,175San Francisco2018Kersten et al [37]23

N/Aa3527North Carolina2018Lantos et al [38]24

≤20153527Durham2017Lantos et al [39]25

20163778Philadelphia2019Lê-Scherban et al [40]26

2000-2011154,424Northern California2015Lieu et al [41]27

2008-2015479Colorado2017Lipner et al [42]28

2011-201688,013Cincinnati and Houston2021Liu et al [43]29

2015-201714,309Chicago2019Mayne et al [44]30

2009-20134748Chicago2018Mayne et al [45]31

2005-201528,793Memphis2017Oyana et al [46]32

2003-2010~100 millionNationwide2017Patterson and Grossman [16]33

2000-2017642Philadelphia2019Pearson and Werth [47]34

2013-20176366New Haven2022Samuels et al [48]35

2009-201047,769Pennsylvania2011Schwartz et al [49]36

1998-2013558North Carolina2018Sharif-Askary et al [50]37

2020-2021446,440Southern California2022Sidell et al [51]38

2012-20203449Delaware2022Siegel et al [52]39

2011-20122049Pennsylvania2017Soares et al [6]40

2008-2018395,927Southern California2022Sun et al [53]41

2009-201131,275Denver2017Tabano et al [54]42
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Study periodSample size, nRegionYearAuthorNo.

2015-20173754Memphis2020Wakefield et al [55]43

2014-201639,211Chicago2022Wilson et al [56]44

2017-20197896Southern California2023Winckler et al [57]45

2011-201427,604Philadelphia2017Xie et al [3]46

2015-2019242,637Washington2023Xie et al [58]47

201921,923Central Texas2021Zhan et al [59]48

2007-201243,752Wisconsin2021Zhao et al [60]49

aNot applicable.

Figure 2. Geospatial distribution of the included studies at the state level in the United States.

Spatial Methodologies

Overview
Most studies focused on frequentist methods compared to the
Bayesian methods. Among frequentist methods, the most
prevalent category was clustering (n=29), followed by
descriptive (n=12), modeling (n=6), and spatiotemporal analyses
(n=2). More detailed explanations of the spatial methods used
in this study are provided in Multimedia Appendix 2.

Descriptive Analyses
Descriptive analyses were categorized into four groups: spatial
sampling (n=2), spatial overlay (n=2), proximity analysis (n=4),
and spatial interpolation (n=4).

Spatial Sampling

A 2 SD ellipse method is used to optimize spatial sampling
density. This ellipse contains almost 95% of the locations of
patients and is used to ensure that the collected samples reflect
the underlying spatial pattern in data, particularly when
resources are limited [61]. Lantos et al [38] and Lantos et al
[39] adopted this approach when sampling women who
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underwent cytomegalovirus antibody testing during pregnancy,
especially in peripheral areas with limited subject representation.

Spatial Overlay

Spatial overlay integrates various spatial data sources, often
maps, to represent their shared features. Wakefield et al [55]
overlaid the map of major radiation treatment interruptions
based on race onto the map of median household income. Their
analysis implied that regions with higher income levels
experienced lower rates of radiation treatment interruption.
Samuels et al [48] spatially joined patient addresses to the
nearest city parcels and computed an estimate of the incidence
of emergency department visits for asthma for each parcel [48].

Proximity Analysis

Proximity analysis includes measuring distances between
geographic features to identify nearby features within a defined
distance or buffer zone to uncover proximity patterns [62].
Wilson et al [56] created temporal and spatial buffers to assess
the correlation between individual exposure to violent crime
and blood pressure. Schwartz et al [49] evaluated the
associations between environmental factors and BMI within a
0.5-mile network buffer from the place of residence. Casey et
al [23] investigated the associations between prenatal residential
greenness and birth outcomes within 250-m and 1250-m buffers.
Using a geographic information system service area network
analysis, Jilcott et al [35] examined BMI percentile and
proximity to fast-food and pizza establishments among
adolescents within 0.25-mile Euclidean and network buffer
zones.

Spatial Interpolation

Ordinary Kriging is one of the most widely used spatial
interpolation techniques that leverages the spatial autocorrelation
structure of observed locations to estimate values at unmeasured
locations [63]. Hanna-Attisha et al [33] applied ordinary Kriging
with a spherical semivariogram model based on observations
of the children’s elevated blood lead level geocoded to the home
address to visualize blood lead level variations before and after
water source changes. Mayne et al [44] interpolated the levels
of neighborhood physical disorder based on an exponential
variogram. Patterson and Grossman [16] demonstrated spatial
variations for the incidence rates of each International
Classification of Diseases, Ninth Revision diagnostic code based
on an exponential variogram. Sun et al [53] estimated monthly
average concentrations of fine particulate matter to investigate
the associations between air pollution exposure during
pregnancy and gestational diabetes mellitus.

Spatial Clustering

Overview

Spatial clustering techniques assess whether health outcomes
are random, uniform, or clustered and pinpoint the locations of
clusters [64]. Spatial clustering was the most widely used
category (n=29) among all studied categories. Moran I clustering
and cluster detection were the most frequent techniques (n=10),
followed by kernel/point density estimation (n=5), spatial scan
statistics (n=4), and Getis-Ord Gi* statistics (n=4).

Kernel/Point Density Estimation

Kernel density estimation generates a smooth surface to
visualize areas of the most significant spatial intensity by
calculating a distance-weighted count of events within a
specified radius per unit area [65]. Several studies adopted
kernel density estimation to analyze patterns, including cholera
hospitalization [58], comparison of the spatial intensity of
chronic kidney disease with nonchronic kidney disease patients
[30], and comparison of the spatial intensity of breast cancer
and nonbreast cancer [52]. Using the point density function,
Beck et al [17] pinpointed hotspots of inpatient bed-day rates
within a 2-mile radius of a medical center, and Kane et al [36]
estimated the number of participants per square mile.

Global and Local Moran I

Global Moran I (GMI) evaluates the overall pattern for spatial
autocorrelation [66] by inferring if a variable is spatially
clustered or overdispersed versus being randomly distributed
under the null hypothesis [66]. Local Moran I (LISA) is used
to locate statistically significant clusters including hotspots,
cold spots, and outliers [67]. GMI has been adopted to analyze
spatial clustering of health outcomes including gestational
diabetes mellitus [53], day-of-surgery cancellation [43], obesity
[54], and COVID-19 [51]. All exhibited clustered patterns. Xie
et al [58] analyzed 3 groups: depression, obesity, and comorbid
cases, confirmed clustering for all outcomes, and identified
spatial clusters and outliers. Pearson and Werth [47] found
random distributions for dermatomyositis (DM) and subtypes,
classic DM, and clinically amyopathic DM. Meanwhile,
Davidson et al [25] pinpointed clusters with higher or lower
depression prevalence, and Winckler et al [57] identified a
cluster of low use of acute pediatric mental health interventions
in less-densely populated rural border areas.

GMI and semivariograms or variograms can also identify spatial
autocorrelation in model residuals. If detected, the models are
adjusted accordingly to avoid biased estimates. For example,
Lipner et al [42] modeled nontuberculous mycobacteria disease,
shifting the use from a nonspatial Bayesian model to a spatial
model when spatial autocorrelation was found in residuals.
Similarly, Georgantopoulos et al [29] incorporated spatial
random effects into a prostate cancer model due to significant
autocorrelation in the residuals. Sharif-Askary et al [50] used
variograms to assess spatial dependency in cleft lip or palate,
leading to a geostatistical model over standard logistic
regression. Conversely, Casey et al [23] found no spatial
autocorrelation in nonspatial model residuals.

The bivariate GMI quantifies the overall spatial dependence
between two distinct variables (positive value indicates high
values of one variable are surrounded by high values of the
other or low values are surrounded by low values, while negative
value implies high values of one variable are surrounded by
low values of the other) [68]. Bivariate LISA assesses the
relationship between the two variables at the local level. Pearson
and Werth [47] used bivariate GMI for the prevalence of DM,
classic DM, and clinically amyopathic DM with airborne toxics
but found no overall spatial dependencies. However, bivariate
LISA identified local dependencies at the zip code level. Garg
et al [31] applied bivariate GMI and found significant overall
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associations between longer (average) distances to the nearest
supermarket and higher incidence of diabetes, and bivariate
LISA identified significant “high-high” relationships at the zip
code level. Gaudio et al [28] used bivariate LISA and found no
local association between radiation therapy interruption and
social vulnerability index at the zip code level.

Getis-Ord Gi*

The Getis-Ord Gi* statistic identifies high- or low-value clusters
(hotspots and cold spots) by assessing deviations of health
outcomes at locations from the average within a defined
neighborhood [69]. Lê-Scherban et al [40] measured racial
residential segregation by examining the deviations in the
African American residents in each census tract from the mean
of neighboring tracts. Similarly, Mayne et al [45] measured
racial residential segregation for the percentage of non-Hispanic
Black residents. Ali et al [7] identified significant
community-onset methicillin-resistant Staphylococcus aureus
(CO-MRSA) hotspots with distinct patterns between cases and
controls. Kersten et al [37] detected the high- and low-value
clusters for the child opportunity index and median household
income.

Spatial Scan Statistics

The spatial scan statistics technique identifies high- and low-risk
clusters and estimates their relative risks [70]. It also can
incorporate covariates to characterize underlying patterns [71].
Lipner et al [42] found that people living in zip codes within
the primary cluster had an almost 2.5 times greater risk of
nontuberculous mycobacteria disease. Lieu et al [41] identified
clusters of underimmunization and vaccine refusal among
children, with rates ranging from 18% to 23% inside the clusters
compared to 11% outside.

The technique can also pinpoint cold spots. Brooks et al [21]
identified areas with significantly lower COVID-19 testing than
expected, indicating a need for interventions. Zhan et al [59]
observed significantly low rates of up-to-date colorectal cancer
screening.

Spatial Modeling (Frequentist)
Among the included studies, the generalized additive models
(GAMs) emerged as the most frequently used spatial models.
GAMs can account for spatial autocorrelation by incorporating
smooth functions (such as thin-plate regression) of spatial
coordinates [72], allowing the estimate of geographic variation
with or without covariate adjustments. GAMs were used to
identify the spatial variabilities in asthma prevalence [3,8] and
cytomegalovirus [38,39], although such variations often
diminished when adjusted for demographic factors such as race
and age. Less commonly used geospatial models were
generalized linear mixed effects [51] and spatial error [43]
models.

Spatiotemporal Analysis
Only 2 studies explored spatiotemporal patterns, and no
spatiotemporal modeling was conducted. Oyana et al [46] used

space-time scan statistics to study the spatiotemporal patterns
of childhood asthma and found a significant frequency increase
(2009-2013) and a rising trend from 4 to 16 per 1000 children
(2005-2015). Ali et al [7] used the space-time cube tool and
emerging hotspot analysis to analyze the spatial-temporal trends
and evolving patterns of CO-MRSA from 2002 to 2010. They
identified several types of space-time hotspots of CO-MRSA
including new, consecutive, intensifying, sporadic, and
oscillating hotspots.

Bayesian Analysis
The studies using Bayesian methods were categorized into
empirical Bayes smoothing (n=5) and Bayesian modeling (n=6).]

Empirical Bayes Smoothing

The empirical Bayes smoothing was used by Lê-Scherban et al
[40], Liu et al [43], Tabano et al [54], and Xie et al [58] to
stabilize estimated rates in areas with limited data points by
borrowing information from the overall population [73]. Zhao
et al [60] used nonparametric kernel smoothing to estimate the
prevalence of childhood obesity in areas with sparse
observations (n<20 individuals) [60].

Bayesian Modeling

Bayesian modeling can account for spatial and temporal
dependencies and quantify uncertainty by specifying prior
distributions [74]. Among the studies, the conditional
autoregressive (CAR) prior emerged as the most used, with 2
variants: intrinsic and multivariate CAR. Intrinsic CAR was
used to assess the spatial variations in diabetes in relationship
with racial isolation [18], hypertension related to racial isolation
[19], and type 2 diabetes mellitus with the built environment
[20]. Multivariate CAR was used to identify areas with higher
or lower-than-expected prostate cancer while controlling for
risk factors [29]. Moreover, hierarchical Bayesian that can
incorporate hierarchical structures for modeling [75] was used
to investigate spatial distributions of patients admitted for
drug-related reasons concerning the area deprivation index [24].
Bayesian negative binomial hurdle models that can account for
excessive zeros and overdispersion were used to examine spatial
variation between patient responses to the questions concerning
unhealthy home environments and the mean number of
emergency department visits after screening [26].

Phenotyping

Clinical Domain Characteristics and Themes
The largest category of studies was classified under the
infectious disease (n=7), endocrinology (n=7), and oncology
(n=6) domains. Additionally, 19 studies had a pediatric domain
or focus, as noted with an additional column in Table 3.
Maternal and newborn care was classified as its own domain
(n=8), but it overlapped with other domains such as nephrology,
endocrinology, and infectious disease.
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Table 3. Clinical domains and condition or problem of focus for each publication.

Pediatric population involvedSecondary clinical domainbCondition by clinical domaina

Pediatric

✓—dDoSCc [43]

✓—EBLLe [33]

✓—Disparities in inpatient bed-day rates [17]

Maternal and newborn care

✓—Under immunization; vaccine refusal [41]

—Preterm birth; small for gestational age; hypertensive disorder of
pregnancy [44]

—Preterm birth; small for gestational age; low birth weight; low Apgar
score [23]

—Hypertension [56]

—Hypertension [19]

EndocrinologyHypertension; diabetes [40]

Endocrine; nephrologyHypertension; diabetes; CKDf [31]

Maternal and newborn careHypertension, disorder of pregnancy [45]

Endocrinology

Maternal and newborn careGDMg [53]

—T2DMh [18]

—T2DM [20]

—Obesity [54]

✓—Obesity [49]

✓—Obesity [35]

✓—Obesity [60]

PsychiatryObesity; depression [58]

Psychiatry

✓—Acute pediatric mental health interventions or services [57]

—Depression [25]

✓—Telemedicine use in developmental-behavioral pediatrics [6]

Emergency medicineDrug overdoses [24]

Emergency medicine

✓—Disparities in pediatric acute care visit frequency and diagnoses [37]

✓—Disparities in use of PICUi [27]

—Emergency department use [26]

Pulmonary

Emergency medicineAsthma, emergency department asthma visits [48]

✓—Asthma [32]

✓—Asthma [46]

—Asthma [3]

—Asthma [8]

Infectious disease

PulmonaryCoccidioidomycosis [22]
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Pediatric population involvedSecondary clinical domainbCondition by clinical domaina

✓—Community-associated MRSAj [34]

✓—Community-onset-MRSA [7]

—COVID-19 [21]

—COVID-19 [51]

✓Maternal and newborn careCMVk [39]

✓—CMV [38]

—Nontuberculous mycobacterial infection [42]

Oncology

—RTIl [55]

—RTI [28]

—Colorectal cancer screening [59]

—Prostate cancer [29]

—TNBCm [52]

✓—Disparities in genomic answers for kids (GA4K) [36]

Maxillofacial

✓—Cleft lip or palate [50]

Nephrology

—CKD [30]

Rheumatology

Neurology; dermatologyDermatomyositis [47]

All domains

—Geospatial variation of disease incidence [16]

aCondition or problem of focus column displays the general condition of the study and may not directly correspond to the phenotype.
bPublications with more than 1 clinical domain and those with a pediatric component are noted as such.
cDoSC: day-of-surgery cancellation.
dNot applicable.
eEBLL: elevated blood lead levels.
fCKD: chronic kidney disease.
gGDM: gestational diabetes mellitus.
hT2DM: diabetes mellitus, type 2.
iPICU: pediatric intensive care unit.
jMRSA: methicillin-resistant Staphylococcus aureus.
kCMV: cytomegalovirus.
lRTI: radiation treatment interruption.
mTNBC: triple-negative breast cancer.

The relationship between the clinical domains and the
“conditions or problems of focus” in each study was examined
(Table 3). In some cases, direct correspondence was observed,
while in other instances, the “condition or problems of focus”
differed from the phenotype of the patient cohort. In many
studies, one or more overlapping domains were observed (eg,
rheumatology, neurology, and dermatology for the study of
DM). Asthma (n=5), hypertension (n=5), and diabetes (n=4)
were studied most frequently. Three studies did not focus on
any health condition but rather on examining disparities in either
a data source or a specific domain or cohort (eg, disparities in
the use of pediatric intensive care units).

Every study was attributed to at least one prominent theme,
with the possibility of multiple themes. SDOH themes were
prevalent in many studies. To organize and present this
information, we used the domains defined by the Healthy People
2030 framework [76]. There are 5 domains in the SDOH
framework (Table 4), with the corresponding counts of these
domains being seen as themes of the studies. Most studies had
1 or more SDOH themes (n=42). Many studies focused either
on all the domains or SDOH holistically without particular focus
on any specific domain (n=32). However, some studies
contained prominent themes that were not directly related to
SDOH, which were phenotypic features (n=4), followed by
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environmental (n=3), and ecological (n=2), with climate, genomics, and microbiome, each contributing one study.

Table 4. SDOHa themes examined within the framework of Healthy People 2030 SDOH domains [76].

Counts, nLabels and SDOH domains

SDOH 1

2Economic stability (employment, food insecurity, housing instability, poverty)

SDOH 2

N/AbEducation access and quality (early childhood development and education, enrollment in higher education, high school
graduation, language, and literacy)

SDOH 3

5Health access and quality (access to health services, access to primary care, health literacy)

SDOH 4

14Neighborhood and built environment (access to foods that support healthy dietary patterns, crime and violence, environmental
conditions, quality of housing)

SDOH 5

5Social and community context (civic participation, discrimination, incarceration, social cohesion)

36All 5 SDOH domains or SDOH as a whole

8Non-SDOH focus

aSDOH: social determinants of health.
bNot applicable.

Clinical Phenotype Features
For each publication, clinical phenotype definitions were
extracted (Multimedia Appendix 3). In almost all studies,
phenotype definitions included demographic details such as
patient age, race, and gender, along with some diagnostic
characteristics (eg, asthma diagnosis). Only a limited number
of phenotypes were observed to be validated (n=8). The most
frequently observed method for phenotype validation was a
manual chart review of all matches or a sample of matched
charts. None of the studies with chart review as a validation
method shared information on the match rate. Additionally,
only two studies [20,58] were observed to use validated
eMERGE Network computable phenotypes from the Phenotype
Knowledgebase [77-79].

Discussion

Principal Findings
This systematic review is the first comprehensive investigation
of spatial methodologies within EHR-derived data in the United
States. The findings reveal that a considerable portion of studies
predominantly focus on basic mapping or geocoding, with a
limited use of advanced spatial analysis methods. Spatial
clustering and descriptive analysis were the most used methods,
while space-time modeling, either frequentist or Bayesian, was
not widely applied. The diverse use of spatial analysis for
EHR-derived data in different health domains highlights the
potential to incorporate spatial methods to enhance the context
of individual patients for future biomedical research. We found
limited use of EHR-derived data for spatial analysis, probably
due to the challenge of safeguarding patient privacy. Address
data, crucial for spatial analysis, is highly confidential and often

restricted from sharing. Researchers and institutions often use
geographic masking techniques [6,80] to balance data use and
privacy protection by altering the precise geographic coordinates
while preserving the overall spatial characteristics of data.
Encouraging the adoption of spatial analysis could promote
biomedical knowledge sharing and collaboration.

The use of EHRs data for spatial analysis can present several
challenges, particularly in accurately geocoding patient
addresses. Issues, such as address formatting errors, incomplete
or outdated addresses, and potential inaccuracies in geocoding
services, can influence the outcome of spatial analysis [81].
Advanced geocoding algorithms and manual verification
processes can mitigate these issues. For instance, Goldberg et
al [82] developed a web-based system for rapid manual
intervention of previously geocoded data, significantly
improving the match rate and quality of individual geocodes
with minimal time and effort. Additionally, when addresses are
only available at the zip code level, additional nuances arise as
zip code boundaries are often not well-defined and can change
over time [83]. Spatial smoothing techniques and zip code
centroids can mitigate some of these challenges. We recommend
standardizing address formats before geocoding (using tools
like the US Postal Service address verification), using advanced
geocoding services, leveraging higher-resolution geographical
data when possible, and integrating multiple spatial scales to
enhance the accuracy and reliability of spatial analysis using
EHRs data.

We acknowledge that not all patient phenotypes are inherently
suited for spatial analysis, and integrating genomics, imaging,
and clinical notes phenotypes can be particularly challenging.
However, evidence suggests that spatial techniques can provide
valuable insights even in these areas where their application
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may initially appear challenging. For instance, Baker et al [84]
demonstrated the effectiveness of spatial analysis in genomics
by combining single-nucleotide polymorphism genotyping with
geospatial K-function analysis. Their study of typhoid in Nepal
found significant geographic clustering of cases. Canino [85]
developed a robust framework that integrated biological data
with geographic information from EMRs. Their system
identified correlations between patient profiles and geographic
factors such as environmental exposures related to pollution.
Future interdisciplinary studies can explore developing
frameworks that integrate genomics or notes with geospatial
datasets to reveal complex relationships and patterns.

The application of spatiotemporal analysis of EHR-derived data
was mainly limited to exploring spatiotemporal clusters with
no spatiotemporal modeling. This might be due to the technical
expertise required for analysis, data complexity, availability of
longitudinal data, and computational challenges. The Bayesian
framework offers a more adaptable framework to handle
complex spatial and temporal dependencies, control confounding
variables [86], and incorporate prior information, such as
existing medical literature and expert opinions, resulting in more
interpretable results [87,88]. Moreover, spatiotemporal Bayesian
modeling can aid in understanding disease trends and
progressions, seasonality, and long-term shifts at the local levels
[89]. Bayesian modeling can also account for uncertainty in
parameter estimates and predictions to assess the reliability of
findings before implementing interventions [90]. Thus, future
research should delve into spatial and spatiotemporal modeling,
focusing on Bayesian approaches. Moreover, ignoring spatial
dependence in modeling can bias parameter estimates [9,91,92].
Additional state-of-the-art methods, such as space-time
autoregressive models and generalized additive models for
location scale and shape, also provide flexibility in modeling
complex relationships. Spatiotemporal point process models
also contribute by analyzing the distribution of health events
and underlying states over space and time.

Among the health conditions studied, chronic and infectious
diseases emerged as the most frequently investigated domains
compared to others. This disparity may be attributed to the
pressing public health concerns posed by diseases with
immediate impacts that often attract more funding and resources
for research initiatives [93,94]. The historically high mortality
rates of these conditions likely led to continuous research.
Furthermore, the nature of spatial contamination and the spread
of infectious diseases has historically driven the development
of spatial analysis for clinical purposes, exemplified by John
Snow’s seminal cholera investigation. Surprisingly, despite the
plethora of funding in cancer research, we only found a small
number of studies within the cancer domain, which may likewise
be attributed to and indicative of the pressing needs of other
domains such as infectious disease.

We observed recurring and prominent themes related to the
SDOH. This emphasis may result from the growing maturity
and increased awareness within the biomedical informatics
community regarding the significant influence of social,
economic, and environmental factors on health outcomes.
Understanding the roles of SDOH in health disparities will likely
lead to the implementation of integrative health interventions

that address the needs of individuals affected by these health
disparities. These interventions can likewise be enhanced by
incorporating spatial perspectives.

Another missed opportunity is the limited use of computable
phenotypes—automated algorithms designed for characterizing
diseases and enrolling patients in studies. Most studies primarily
depended on the manual application of inclusion and exclusion
criteria to define phenotypes. While this method may be suitable
in certain scenarios, it often necessitates greater depth and
granularity to consistently and accurately capture the intended
patient cohorts. The accuracy and precision of the manual
approach can vary depending on the data sources and clinical
domains. Notably, only 2 of the studies in this review used
computable phenotypes, indicating a limited adoption of this
essential and potentially transformative approach, highlighting
a noteworthy area for growth. Furthermore, only 5 studies
carried out any form of chart review validation. Validation
methods, including chart reviews, genetic markers, and clinical
variables, are indispensable in phenotyping to guarantee the
accurate characterization of the desired cohorts. This applies
even to computable phenotypes within specific medical domains
[95].

Limitations
This study has several main limitations. First, we only
considered English-language studies, possibly introducing
language bias. Additionally, selection bias is possible due to
database availability. However, we mitigated these limitations
by searching Google Scholar and conducting backward reference
checking to identify relevant studies that might yet be identified
through our initial search strategy. Finally, we used a query
search strategy with limited keywords, which inherently
restricted the scope of studies we could retrieve, potentially
omitting studies that did not use these specific terms in their
abstract or title.

Our rationale to focus exclusively on US data was driven by
our familiarity with the reliability and availability of EHR-based
systems within the country. Moreover, we recognize that spatial
analyses of health data in regions, such as Europe, Asia,
Australia, and Canada, use different terminologies and labels
for their systems, which might not align with our search terms
for EHRs or EMRs. For instance, Canada’s national
administrative databases and electronic discharge records could
encompass significant work not captured by our key terms, a
situation that can be generalized to other countries. To avoid
inconsistencies arising from varying data labeling and storage
systems across different regions, we opted to concentrate on
the United States. Nevertheless, future research should endeavor
to include and explore contributions from these regions to
provide a more comprehensive understanding of emerging trends
in spatial analysis in characterizing patient phenotypes.

Conclusions
This systematic review provided a comprehensive overview of
the current use of spatial analysis in EHR-based research in the
United States and underscored the pivotal role that spatial
analysis can play in clinical decision support and interventions.
The use of EHR-derived spatial analysis is on an upward
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trajectory, parallel with the widespread adoption of EHR
systems. The volume of studies on this topic is anticipated to
continue to grow. The primary health outcomes investigated
were asthma, hypertension, and diabetes. Notably, patient
phenotypes involving genomics, imaging, and notes that are
notoriously high-dimensional and add to the computational

intensity of spatial methods were limited. This review also
highlighted the need for additional exploration of spatial analysis
techniques, including but not limited to spatiotemporal Bayesian
analysis and modeling, particularly in computable phenotypes
or patient phenotypes involving genomics, imaging, and notes.
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DM: dermatomyositis
EDW: enterprise data warehouse
EHR: electronic health record
EMR: electronic medical record
EPR: electronic patient record
GAM: generalized additive model
GMI: global Moran I
LISA: local Moran I
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
SDOH: social determinants of health
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