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Abstract

Hospital environments are currently primarily device-
oriented: software services are installed, often manually,
on specific devices. For instance, an application to view
MRI scans may only be available on a limited number of
workstations. The medical world is changing to a service-
oriented environment, which means that every software ser-
vice should be available on every device. However, these
devices have widely varying capabilities, ranging from
powerful workstations to PDAs, and high-bandwidth local
machines to low-bandwidth remote machines. To support
running applications in such an environment, we need to
treat the hospital machines as a cloud, where components
of the application are automatically deployed to machines
in the cloud with the required capabilities and connectivity.
In this paper, we suggest an architecture for applications in
such a cloud, in which components are reliably and auto-
matically deployed on the basis of a declarative model of
the application using the Nix package manager.

1. Introduction

Hospitals are complex organizations, requiring the co-
ordination of specialists and support staff operating com-
plex medical equipment, involving large data sets, to take
care of the health of large numbers of patients. The use of
information technology for diagnosis and for storage and
access of patient data is of increasing importance. Hospi-
tals are evolving into integrated information environments,
where patient data, ranging from administrative records to
high-density 3D images, should be accessible in real time at

any place in the hospital. These data are used by people in
different roles such as doctors, nurses, analysts, administra-
tors, and patients. Each user group uses different portions
of the data for different purposes and at different locations,
requiring careful administration and application of access
rights. Data are also accessed by medical equipment and
software, for example, to improve diagnosis by combining
information from multiple sources.

The infrastructure of typical hospital environments is
currently mostly device-oriented. That is, the components
implementing a workflow are statically deployed to fixed
devices, which leads to overcapacity due to suboptimal us-
age of resources (resources are reserved for particular work-
flows, even if not used); inflexibility in reacting to events;
a multitude of deployment and maintenance scenarios; but
above all, it requires users to go to the device that supports
a particular task. Because of these problems, the medi-
cal world is changing to a service-oriented environment in
which the access to services is decoupled from the physical
access to particular devices. That is, users should be able to
access data and perform computations from where they are,
instead of having to go to a particular device for realizing a
task.

However, the information technology infrastructure of
hospitals is heterogeneous and consist of thousands of elec-
tronic devices, ranging from workstations to medical equip-
ment such as MRI scanners. These devices are connected by
wired and wireless networks with complex topologies with
different security and privacy policies applicable to differ-
ent nodes. These devices have widely varying capabilities
in terms of processing speed, graphical rendering perfor-
mance, storage space and reliability, and so on.

To support running applications in such an environment,



we need to treat the hospital machines as a cloud, where
components of the application are automatically deployed
to machines in the cloud with the required capabilities and
connectivity. For instance, when starting a CPU-intensive
application (e.g., a viewer for 3D scans) on a sufficiently
powerful PC, the computation component of the application
would be deployed automatically to the local machine. On
the other hand, if we ran it on a underpowered PDA, this
component would be deployed to a fast server sufficiently
close enough to the PDA in the network topology.

This kind of cloud deployment requires two things. First,
it is necessary to design applications in a way that allows
them to be distributed across different nodes dynamically,
and to create a model of applications that describe their
components and the dataflows between them. These com-
ponents can then be mapped onto nodes in the cloud with
the appropriate quality-of-service characteristics. We give
an outline of how to design components implementing a
service in Section 2.

Second, given a mapping from components to machines
in the cloud, it is necessary to deploy each component to its
selected machine. Software deployment — the transition
from source code to a running software system on some
(collection of) devices — in a heterogeneous environment
is inherently difficult. Moreover, maintaining such installa-
tions is even more difficult, because of the growing amal-
gam of versions and variants of the software in combina-
tion with changing requirements. The practice of software
deployment of complex medical software in hospital envi-
ronments is based on ad-hoc mechanisms, making software
deployment a semi-automatic process requiring significant
human intervention. Thus, it is essential that deployment is
automatic and reliable; the deployment of a component to
a node should not interfere with other applications or other
versions of the component running on the node.

We have previously developed Nix [8], a package man-
agement tool that builds and deploys software packages us-
ing declarative specifications of those packages, which al-
lows this kind of reliable, automatic deployment. In Sec-
tion 3, we show a distributed extension of Nix, called Dis-
nix, that provides the same properties in distributed envi-
ronments. This is a work in progress: we have applied Dis-
nix to a prototype hospital application, but as we discuss
in Section 4, much work remains to be done on improving
the modeling of distributed applications, mapping compo-
nents to cloud machines automatically, and performing an
evaluation of real applications under realistic conditions.

2. Designing services for distributed deploy-
ment

We want to access every service from every device in a
hospital environment. It is not feasible to perform all com-

putations on a client such as a workstation or PDA, nor is
it possible to perform all computations on remote servers.
Not all devices are powerful enough for all types of compu-
tations on the local machine of the user.

Therefore every component that implements a service
should be able to run on the machine of the client as well
as on different machines (e.g. servers) in the cloud, so that
it is possible to automatically derive several variants of ser-
vices. For instance, in a thin client variant all computation
is done on a server, while in a fat client variant all compu-
tation is done on the server; hybrids, where some computa-
tion (e.g. rendering) but not all is done locally should also
be possible.

Thus, it is necessary to design applications so that they
can be distributed across different nodes dynamically with-
out too much programming effort. The approach used in
a prototype medical system that we used as a case study,
SDS2 [3], is to design the application as a large set of
components, implemented as web services that commu-
nicate via protocols such as SOAP. Typical examples of
such components are a user interface, a computational layer,
and a data (storage) layer. Components should not assume
that they run on the same machine; e.g., they should not
have dependencies on each other through the local file sys-
tem. Such an architecture allows many different deploy-
ment variants, depending on the available resources: for in-
stance, in a fat client scenario, all web services can run on
the local machine, while in a thin client scenario, they can
be deployed to one or more remote machines.

However, to deploy the components of such a distributed
application requires substantial effort from system admin-
istrators. The software deployment process in hospital en-
vironments is usually a semi-automatic process. There are
software deployment tools that assist administrators in this
task, but a large part of the deployment process is done by
hand on the basis of deployment documentation. A semi-
automatic software deployment process requires up-to-date
documentation which describes how to execute the deploy-
ment steps, and is labour-intensive. If for some reason peo-
ple with the appropriate skills disappear or if the documen-
tation is out-of-date or incomplete, the software deployment
process becomes more time consuming, more error prone,
risky and more expensive. This is not unlikely for many
large organizations. It also becomes more difficult or even
impossible to reproduce a previous deployment scenario or
reason about its correctness.

To automate the deployment of distributed applications,
it is necessary to describe the application in a model that
specifies its components and runtime dependencies between
components, as well as non-functional aspects such as
quality-of-service requirements, e.g. that a component re-
quires a certain level of processing speed from the machine
on which it runs. Given such a model, we can then au-



tomatically deploy each component of the application to a
machine in the cloud that has the desired characteristics.

3. Deploying services in a cloud

Thus, we need model-driven software deployment: given
a model of a software system that describes its components
and dependencies, a deployment tool must be able to cor-
rectly install these components to the appropriate machines.
It must guarantee that such deployment is reliable and de-
terministic: for instance, previous components installations
on a target machine should not affect the success of the in-
stallation of the new component.

Alas, existing deployment tools are generally not up to
this task. For instance, Unix package managers such as
RPM [11] cannot guarantee correct deployment due to an
inability to support multiple co-existing versions or variants
of a component. E.g., if two users were to run two different
applications in the cloud, involving two different versions
of some component X, then we would be in trouble if these
two versions were deployed to the same machine in the
cloud: one version (typically the newer) would overwrite
the other. Unless versions are perfectly backwards com-
patible, this will break applications. Furthermore, package
managers typically describe how to build and deploy com-
ponents but not compositions of components. It is possible
to specify what libraries, compilers and so on are needed to
build or run a component, but such specifications are nom-
inal (i.e., they state dependencies such as “package named
X with version greater than N”). Such specifications are in-
exact and do not allow the deployment system to automati-
cally reproduce a configuration on a remote machine.

We have previously developed the purely functional
package manager Nix, which solves these problems for lo-
cal deployment (i.e., on a single machine). We are devel-
oping an extension called Disnix that supports distributed
deployment on the basis of the kinds of models described
above.

3.1. Nix

The Nix package manager [8, 5] builds and stores pack-
ages in a purely functional manner: packages are built from
source using descriptions in a simple purely functional lan-
guage, and build results are immutable. This ensures that
multiple versions of a package can coexist on a system, that
upgrades can be performed in an atomic manner, and that it
is possible to roll back to previous configurations. It forms
the basis for NixOS (http://nixos.org/), a Linux
distribution with a purely functional configuration manage-
ment model [7].

Rather than storing packages in global namespaces such
as the /usr/bin directory on Unix, each package is stored

rec {
HelloService = derivation {
name = "HelloService-1.0";
src = fetchurl {
url = http://nixos.org/.../HelloService.tar.gz;
md5 = "de3187eac06baf5f0506c06935a1fd29";

};
buildInputs = [ant jdk axis2];
buildCommand = ’’
tar xf $src
cd HelloService
ant generate.service.aar
mkdir -p $out/webapps/axis2/WEB-INF/services
cp HelloService.aar $out/webapps/axis2/WEB-INF/services

’’;
};

HelloWorldService = derivation { ... };
stdenv = ...
firefox = import ...
... # other package definitions

}

Figure 1. pkgs.nix, an example of a Nix expres-
sion.

in isolation of other packages in a subdirectory of the Nix
store, the directory /nix/store. For instance, the directory
/nix/store/pz3g9yq2x2ql...-firefox-2.0.0.16 contains a partic-
ular instance of Mozilla Firefox. The string pz3g9yq2x2ql...
is a 160-bit cryptographic hash of the inputs to the build pro-
cess of the package: its source code, the build script, depen-
dencies such as the C compiler, etc. This scheme ensures
that different versions or variant builds of a package do not
interfere with each other in the file system. For instance,
a change to the source code (e.g., due to a new version) or
to a dependency (e.g., using another version of the C com-
piler) will cause a change to the hash, and so the resulting
package will end up under a different path name in the Nix
store.

Nix builds packages from a description in a purely func-
tional language called the Nix expression language. Nix
expressions describe dependency graphs of build actions,
called derivations, that each build a path in the Nix store.
Figure 1 shows a Nix expression defining a number of
derivations bound to variables that can refer to each other.
For instance, the value of the variable HelloService is a
derivation that builds an Apache Axis web service. The
function derivation is the primitive operation that produces a
build action from a set of attributes, such as the name of the
package, its source (which is produced by the build action
returned by the call to the function fetchurl), a shell script
that performs the actual build action (buildCommand), and
so on. All attributes are passed through environment vari-
ables to the build command, e.g., the variable src will con-
tain the path in the Nix store of the downloaded sources.
The environment variable out contains the target path in the
store for the package, e.g., /nix/store/hash-HelloService-1.0.

The user can install packages using a command such as



$ nix-env -f pkgs.nix -i firefox

which builds the derivation resulting from the evaluation of
the firefox variable in Figure 1, along with all its depen-
dencies, resulting in many new packages in the Nix store.
To upgrade Firefox, the user updates the Nix expression in
question (which is typically automated through a number of
mechanisms, such as an automated download mechanism),
and performs

$ nix-env -f pkgs.nix -u firefox

which builds the new Firefox package and makes it avail-
able in the user’s PATH. The evaluation of the firefox value
will lead to the build of a new Firefox version in the Nix
store, which will not overwrite any previously installed ver-
sions thanks to the hashing scheme. Thus, it is possible to
roll back to the previous version. Such upgrades are also
transactional: the user will never observe part of the old
and part of the new version at the same time.

3.2. Disnix

Disnix is an extension to the Nix deployment system that
supports distributed software deployment operations [14].
The Disnix deployment system contains an interface which
allows another process or user to access the Nix store and
Nix user profiles remotely through a distributed communi-
cation protocol, e.g. SOAP. The Disnix system also consists
of tools that support distributed installing, upgrading, unin-
stalling and other deployment activities by calling these in-
terfaces on the nodes in the distributed system.

To deploy packages on a single computer Nix just needs
to know the compositions of each package and how to build
them. Disnix needs some additional information for deploy-
ing services on multiple computers. Therefore three models
are introduced: a services model, an infrastructure model
and a distribution model.

The services model describes the services that can be dis-
tributed across computers in the network. This is a simple
example of the kind of model of a distributed application
that we described in Section 2. It does not describe any
quality of service requirements. Each service is essentially
a package, except that it has an extra property called de-
pendsOn which describes the inter-dependencies on other
services. Figure 2 shows a Nix expression that describes
a model for two services: HelloService, which has no de-
pendencies, and HelloWorldService, which depends on the
former.

We also need to specify what machines are available in
the cloud. The infrastructure model is a Nix expression that
describes certain attributes about each computer in the net-
work. Figure 3 shows a simple example of a network with
two computers; again, it does not specify QoS attributes.
In the model we describe the hostname and the target end-
point references (targetEPR) of the Disnix interface. The

rec {
pkgs = import ./pkgs.nix;

HelloService = {
pkg = pkgs.HelloService;
dependsOn = [];

};
HelloWorldService = {

pkg = pkgs.HelloWorldService;
dependsOn = [ HelloService ];

};
}

Figure 2. services.nix

{ itchy = {
hostname = "itchy";
targetEPR = http://itchy/.../DisnixService;

};
scratchy = {

hostname = "scratchy";
targetEPR = http://scratchy/.../DisnixService;

};
}

Figure 3. infrastructure.nix

targetEPR is a URL that points to the Disnix web service
that can execute operations on the remote Nix store. This
is needed to deploy components to the remote machine and
execute them.

Finally, the distribution model is a Nix expression that
connects the services and infrastructure model, mapping
services to computers. It contains a function which takes a
services and infrastructure model as its inputs and returns a
list of pairs. Each pair describes what service should be dis-
tributed to which computer in the network. Figure 4 shows
an example. It is also possible to specify a specific compo-
nent multiple times in the model. In this case the same vari-
ant of the service will be deployed on multiple machines. It
is also possible to use multiple variants of a specific compo-
nent by defining their compositions in the services model.

With these three models, we can now deploy a dis-
tributed application. For instance, given the three example
models, Disnix will build the HelloService and HelloWorld-
Service components as well as their dependencies on the
local machine, copy the closure of each component (that is,
the Nix store paths of the component and its runtime de-
pendencies) to the Nix store of the machine indicated by

{services, infrastructure}:

[ { service = services.HelloService;
target = infrastructure.itchy; }

{ service = services.HelloWorldService;
target = infrastructure.scratchy; }

]

Figure 4. distribution.nix



the distribution model, and then start each component. For
instance, the closure of the HelloWorldService component
will be copied to the machine scratchy and then started.

When performing an upgrade from a previous version of
a distributed application, Disnix uses a variant of the two-
phase commit protocol [13] to make the transition from the
current deployment state to the new deployment state in the
distributed system an atomic operation. Disnix also blocks
access to services while the commit phase is in progress. In
the commit phase, the old version of the service is stopped,
the new version is started, and the blocked connections are
unblocked and forwarded to the new version of the service.
From this point, all connections will be to the new versions
of the services in the system. There is no time window in
which one can simultaneously reach the old version of some
service and the new version of another [14].

4. Future work

Above we have outlined an architecture for deployment
of distributed applications in clouds, along with tool support
to deploy components reliably to machines in the cloud. We
have applied it to a prototype research application called
SDS2 [3]. However, while the Nix deployment system and
the Disnix extension provide a solid foundation, much work
remains to be done.

Most importantly, the models of services (Figure 2) and
machines (Figure 3) should take quality-of-service prop-
erties into account. For instance, each component should
declare the QoS properties it requires from the machine
on which it runs, e.g. processing speed or storage capac-
ity. Components should also declare the required band-
width and latency of dataflows between components, and
the model must address persistent storage aspects of com-
ponents. Likewise, each machine should declare the QoS
properties that it provides. Since a hospital environment is
heterogeneous, we also have to capture the topology of the
network and the properties of computer systems and service
components, taking into account factors such as network
bandwidth, available memory, and resource utilization.

Moreover, the mapping from components to machines
should be performed automatically. Currently the distribu-
tion of services to machines in the network is a static pro-
cess (e.g. by defining a mapping such as in Figure 4). In-
stead, it should should be computed automatically, taking
into account the defined QoS properties, network topology
and the current load on each machine. The Disnix toolset
currently contains a very simple generator that generates a
distribution model from services and infrastructure models
by using a round-robin scheduling method. It does not take
quality of service into account.

Given the dynamic nature of a hospital environment, ma-
chines should be autodiscovered, e.g. via a protocol such

as Zeroconf. Also, the network topology and configura-
tion is dynamic; the load on individual nodes changes over
time; and not all machines are available continuously, as
some may break, others need maintenance, new machines
are added, and so on. Such events may prompt a redistribu-
tion of service components, and should not require a man-
ual update of the deployment configurations. Redeploying
running components automatically to other machines places
additional constraints on components in order to make such
upgrades atomic [14].

Components implementing a service can be linked in
various ways. For instance, in a thin client scenario, where
components may reside on different servers, components
communicate through network protocols such as SOAP. On
the other hand, in a fat client scenario, where all the com-
putations are done on the client machine, this is subopti-
mal: we would rather link components together as libraries,
communicating using intra-process function calls. Thus we
should abstract over the communication mechanism, and
use a generator to produce code for components implement-
ing a service described in the model with different interfaces
depending on how a component should be coupled, for in-
stance as a shared library or as a web service. The generator
is also used to integrate with the deployment system, so that
it can distribute components to the right machines in the
cloud.

Another consideration is the privacy of data. Where in
the old, device-oriented situation data were naturally con-
fined to a few devices, they may now be transported over
long distances, requiring explicit access control. This may
not be restricted to simple granting or denial of access.
Sometimes data may be partially accessible to certain par-
ties. For example, medical research may need to examine
the results of tests, but should not be able to track this to
individual patients, thus requiring anonymisation of data.
Such scenarios require different variants of services to be
deployed.

5. Related work

Software deployment has traditionally been done in a
relatively ad hoc manner. There are many deployment
tools (e.g. RPM [11]) that typically have various funda-
mental limitations with respect to correctness of deploy-
ment: e.g., they cannot guarantee that an upgrade of one
application cannot affect others because of shared depen-
dencies. The Nix deployment system solves many of the
problems of mainstream deployment solutions, but it was
not designed for distributed deployment, and it does not take
non-functional requirements (such as performance) into ac-
count. The Disnix approach outlined here is thus a natural
continuation of our previous work.

Deployment in the context of grid computing [10] is



discussed in [12], which notes the difficulty in deploy-
ing software to grid nodes — an often manual process —
as an obstacle to wider use. For instance, in the Globus
Toolkit [9], users must provide XML files that describe what
files should be copied to remote machines to perform a job.
Similarly, Apple’s Xgrid [2] by default simply copies the
job’s executable and the contents of the current directory to
the remote machine. Thus, the user is burdened with figur-
ing out the code dependencies of the job. In [6], we showed
that Nix’s notion of deploying closures to remote machines
can make such tasks much simpler.

SOA deployment technologies often focus primarily
on composition and discovery of services (for instance,
see [15] for a comparison of several composition lan-
guages), and ignore building and installing services on com-
puter systems. There seems to be little research activity in
the area of service deployment, an exception being [1]. De-
ployment of components in distributed environments is ad-
dressed more frequently [4].

6. Conclusion

In this paper we have described our vision of moving
from device orientation in hospital environments to service
orientation. As it is not possible in general in such envi-
ronments to perform all computations on a client, nor de-
sirable to perform all computations on remote servers, this
requires treating the systems in such an environment as a
cloud to which distributed applications must be deployed
automatically. This requires a component-based approach
to software development and models to describe compo-
nents and their dependencies. These can then be mapped
dynamically onto machines in the cloud with the required
quality-of-service properties. This requires a reliable de-
ployment system, which is what the Nix package manager
provides.

We have to extend Disnix with new features that make
the distribution of services dynamic and deal with hetero-
geneous infrastructures, so that we can distribute services
in a cloud in an optimal manner. Furthermore, we have to
investigate methods and techniques for designing applica-
tions so that they can distributed across nodes in a cloud.
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