Skip to main content

Confluent's Python client for Apache Kafka

Project description

Confluent Python Client for Apache Kafka

Try Confluent Cloud - The Data Streaming Platform

Confluent's Python Client for Apache KafkaTM

confluent-kafka-python provides a high-level Producer, Consumer and AdminClient compatible with all Apache Kafka™ brokers >= v0.8, Confluent Cloud and Confluent Platform.

Recommended for Production: While this client works with any Kafka deployment, it's optimized for and fully supported with Confluent Cloud (fully managed) and Confluent Platform (self-managed), which provide enterprise-grade security, monitoring, and support.

Why Choose Confluent's Python Client?

Unlike the basic Apache Kafka Python client, confluent-kafka-python provides:

  • Production-Ready Performance: Built on librdkafka (C library) for maximum throughput and minimal latency, significantly outperforming pure Python implementations.
  • Enterprise Features: Schema Registry integration, transactions, exactly-once semantics, and advanced serialization support out of the box.
  • AsyncIO Support: Native async/await support for modern Python applications - not available in the Apache Kafka client.
  • Comprehensive Serialization: Built-in Avro, Protobuf, and JSON Schema support with automatic schema evolution handling.
  • Professional Support: Backed by Confluent's engineering team with enterprise SLAs and 24/7 support options.
  • Active Development: Continuously updated with the latest Kafka features and performance optimizations.
  • Battle-Tested: Used by thousands of organizations in production, from startups to Fortune 500 companies.

Performance Note: The Apache Kafka Python client (kafka-python) is a pure Python implementation that, while functional, has significant performance limitations for high-throughput production use cases. confluent-kafka-python leverages the same high-performance C library (librdkafka) used by Confluent's other clients, providing enterprise-grade performance and reliability.

Key Features

  • High Performance & Reliability: Built on librdkafka, the battle-tested C client for Apache Kafka, ensuring maximum throughput, low latency, and stability. The client is supported by Confluent and is trusted in mission-critical production environments.
  • Comprehensive Kafka Support: Full support for the Kafka protocol, transactions, and administration APIs.
  • Experimental; AsyncIO Producer: An experimental fully asynchronous producer (AIOProducer) for seamless integration with modern Python applications using asyncio.
  • Seamless Schema Registry Integration: Synchronous and asynchronous clients for Confluent Schema Registry to handle schema management and serialization (Avro, Protobuf, JSON Schema).
  • Improved Error Handling: Detailed, context-aware error messages and exceptions to speed up debugging and troubleshooting.
  • [Confluent Cloud] Automatic Zone Detection: Producers automatically connect to brokers in the same availability zone, reducing latency and data transfer costs without requiring manual configuration.
  • [Confluent Cloud] Simplified Configuration Profiles: Pre-defined configuration profiles optimized for common use cases like high throughput or low latency, simplifying client setup.
  • Enterprise Support: Backed by Confluent's expert support team with SLAs and 24/7 assistance for production deployments.

Usage

For a step-by-step guide on using the client, see Getting Started with Apache Kafka and Python.

Choosing Your Kafka Deployment

  • Confluent Cloud - Fully managed service with automatic scaling, security, and monitoring. Best for teams wanting to focus on applications rather than infrastructure.
  • Confluent Platform - Self-managed deployment with enterprise features, support, and tooling. Ideal for on-premises or hybrid cloud requirements.
  • Apache Kafka - Open source deployment. Requires manual setup, monitoring, and maintenance.

Additional examples can be found in the examples directory or the confluentinc/examples GitHub repo, which include demonstrations of:

  • Exactly once data processing using the transactional API.
  • Integration with asyncio.
  • (De)serializing Protobuf, JSON, and Avro data with Confluent Schema Registry integration.
  • Confluent Cloud configuration.

Also see the Python client docs and the API reference.

Finally, the tests are useful as a reference for example usage.

AsyncIO Producer (experimental)

Use the AsyncIO Producer inside async applications to avoid blocking the event loop.

import asyncio
from confluent_kafka.experimental.aio import AIOProducer

async def main():
    p = AIOProducer({"bootstrap.servers": "mybroker"})
    try:
        # produce() returns a Future; first await the coroutine to get the Future,
        # then await the Future to get the delivered Message.
        delivery_future = await p.produce("mytopic", value=b"hello")
        delivered_msg = await delivery_future
        # Optionally flush any remaining buffered messages before shutdown
        await p.flush()
    finally:
        await p.close()

asyncio.run(main())

Notes:

  • Batched async produce buffers messages; delivery callbacks, stats, errors, and logger run on the event loop.
  • Per-message headers are not supported in the batched async path. If headers are required, use the synchronous Producer.produce(...) (you can offload to a thread in async apps).

For a more detailed example that includes both an async producer and consumer, see examples/asyncio_example.py.

Architecture: For implementation details and component architecture, see the AIOProducer Architecture Overview.

When to use AsyncIO vs synchronous Producer

  • Use AsyncIO Producer when your code runs under an event loop (FastAPI/Starlette, aiohttp, Sanic, asyncio workers) and must not block.
  • Use synchronous Producer for scripts, batch jobs, and highest-throughput pipelines where you control threads/processes and can call poll()/flush() directly.
  • In async servers, prefer AsyncIO Producer; if you need headers, call sync produce() via run_in_executor for that path.

AsyncIO with Schema Registry

The AsyncIO producer and consumer integrate seamlessly with async Schema Registry serializers. See the Schema Registry Integration section below for full details.

Basic Producer example

from confluent_kafka import Producer

p = Producer({'bootstrap.servers': 'mybroker1,mybroker2'})

def delivery_report(err, msg):
    """ Called once for each message produced to indicate delivery result.
        Triggered by poll() or flush()."""
    if err is not None:
        print('Message delivery failed: {}'.format(err))
    else:
        print('Message delivered to {} [{}]'.format(msg.topic(), msg.partition()))

for data in some_data_source:
    # Trigger any available delivery report callbacks from previous produce() calls
    p.poll(0)

    # Asynchronously produce a message. The delivery report callback will
    # be triggered from the call to poll() above, or flush() below, when the
    # message has been successfully delivered or failed permanently.
    p.produce('mytopic', data.encode('utf-8'), callback=delivery_report)

# Wait for any outstanding messages to be delivered and delivery report
# callbacks to be triggered.
p.flush()

For a discussion on the poll based producer API, refer to the Integrating Apache Kafka With Python Asyncio Web Applications blog post.

Schema Registry Integration

This client provides full integration with Schema Registry for schema management and message serialization, and is compatible with both Confluent Platform and Confluent Cloud. Both synchronous and asynchronous clients are available.

Learn more

Synchronous Client & Serializers

Use the synchronous SchemaRegistryClient with the standard Producer and Consumer.

from confluent_kafka import Producer
from confluent_kafka.schema_registry import SchemaRegistryClient
from confluent_kafka.schema_registry.avro import AvroSerializer
from confluent_kafka.serialization import StringSerializer, SerializationContext, MessageField

# Configure Schema Registry Client
schema_registry_conf = {'url': 'http://localhost:8081/'}  # Confluent Platform
# For Confluent Cloud, add: 'basic.auth.user.info': '<sr-api-key>:<sr-api-secret>'
# See: https://docs.confluent.io/cloud/current/sr/index.html
schema_registry_client = SchemaRegistryClient(schema_registry_conf)

# 2. Configure AvroSerializer
avro_serializer = AvroSerializer(schema_registry_client,
                                 user_schema_str,
                                 lambda user, ctx: user.to_dict())

# 3. Configure Producer
producer_conf = {
    'bootstrap.servers': 'localhost:9092',
    'key.serializer': StringSerializer('utf_8'),
    'value.serializer': avro_serializer
}
producer = Producer(producer_conf)

# 4. Produce messages
producer.produce('my-topic', key='user1', value=some_user_object)
producer.flush()

Asynchronous Client & Serializers (AsyncIO)

Use the AsyncSchemaRegistryClient and Async serializers with AIOProducer and AIOConsumer. The configuration is the same as the synchronous client.

from confluent_kafka.experimental.aio import AIOProducer
from confluent_kafka.schema_registry import AsyncSchemaRegistryClient
from confluent_kafka.schema_registry._async.avro import AsyncAvroSerializer

# Setup async Schema Registry client and serializer
# (See configuration options in the synchronous example above)
schema_registry_conf = {'url': 'http://localhost:8081/'}
schema_client = AsyncSchemaRegistryClient(schema_registry_conf)
serializer = await AsyncAvroSerializer(schema_client, schema_str=avro_schema)

# Use with AsyncIO producer
producer = AIOProducer({"bootstrap.servers": "localhost:9092"})
serialized_value = await serializer(data, SerializationContext("topic", MessageField.VALUE))
delivery_future = await producer.produce("topic", value=serialized_value)

Available async serializers: AsyncAvroSerializer, AsyncJSONSerializer, AsyncProtobufSerializer (and corresponding deserializers).

See also:

Import paths

from confluent_kafka.schema_registry._async.avro import AsyncAvroSerializer, AsyncAvroDeserializer
from confluent_kafka.schema_registry._async.json_schema import AsyncJSONSerializer, AsyncJSONDeserializer
from confluent_kafka.schema_registry._async.protobuf import AsyncProtobufSerializer, AsyncProtobufDeserializer

Client-Side Field Level Encryption (CSFLE): To use Data Contracts rules (including CSFLE), install the rules extra (see Install section), and refer to the encryption examples in examples/README.md. For CSFLE-specific guidance, see the Confluent Cloud CSFLE documentation.

Note: The async Schema Registry interface mirrors the synchronous client exactly - same configuration options, same calling patterns, no unexpected gotchas or limitations. Simply add await to method calls and use the Async prefixed classes.

Troubleshooting

  • 401/403 Unauthorized when using Confluent Cloud: Verify your basic.auth.user.info (SR API key/secret) is correct and that the Schema Registry URL is for your specific cluster. Ensure you are using an SR API key, not a Kafka API key.
  • Schema not found: Check that your subject.name.strategy configuration matches how your schemas are registered in Schema Registry, and that the topic and message field (key/value) pairing is correct.

Basic Consumer example

from confluent_kafka import Consumer

c = Consumer({
    'bootstrap.servers': 'mybroker',
    'group.id': 'mygroup',
    'auto.offset.reset': 'earliest'
})

c.subscribe(['mytopic'])

while True:
    msg = c.poll(1.0)

    if msg is None:
        continue
    if msg.error():
        print("Consumer error: {}".format(msg.error()))
        continue

    print('Received message: {}'.format(msg.value().decode('utf-8')))

c.close()

Basic AdminClient example

Create topics:

from confluent_kafka.admin import AdminClient, NewTopic

a = AdminClient({'bootstrap.servers': 'mybroker'})

new_topics = [NewTopic(topic, num_partitions=3, replication_factor=1) for topic in ["topic1", "topic2"]]
# Note: In a multi-cluster production scenario, it is more typical to use a replication_factor of 3 for durability.

# Call create_topics to asynchronously create topics. A dict
# of <topic,future> is returned.
fs = a.create_topics(new_topics)

# Wait for each operation to finish.
for topic, f in fs.items():
    try:
        f.result()  # The result itself is None
        print("Topic {} created".format(topic))
    except Exception as e:
        print("Failed to create topic {}: {}".format(topic, e))

Thread safety

The Producer, Consumer, and AdminClient are all thread safe.

Install

# Basic installation
pip install confluent-kafka

# With Schema Registry support
pip install "confluent-kafka[avro,schemaregistry]"     # Avro
pip install "confluent-kafka[json,schemaregistry]"     # JSON Schema  
pip install "confluent-kafka[protobuf,schemaregistry]" # Protobuf

# With Data Contract rules (includes CSFLE support)
pip install "confluent-kafka[avro,schemaregistry,rules]"

Note: Pre-built Linux wheels do not include SASL Kerberos/GSSAPI support. For Kerberos, see the source installation instructions in INSTALL.md. To use Schema Registry with the Avro serializer/deserializer:

pip install "confluent-kafka[avro,schemaregistry]"

To use Schema Registry with the JSON serializer/deserializer:

pip install "confluent-kafka[json,schemaregistry]"

To use Schema Registry with the Protobuf serializer/deserializer:

pip install "confluent-kafka[protobuf,schemaregistry]"

When using Data Contract rules (including CSFLE) add the rulesextra, e.g.:

pip install "confluent-kafka[avro,schemaregistry,rules]"

Install from source

For source install, see the Install from source section in INSTALL.md.

Broker compatibility

The Python client (as well as the underlying C library librdkafka) supports all broker versions >= 0.8. But due to the nature of the Kafka protocol in broker versions 0.8 and 0.9 it is not safe for a client to assume what protocol version is actually supported by the broker, thus you will need to hint the Python client what protocol version it may use. This is done through two configuration settings:

  • broker.version.fallback=YOUR_BROKER_VERSION (default 0.9.0.1)
  • api.version.request=true|false (default true)

When using a Kafka 0.10 broker or later you don't need to do anything

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

confluent_kafka-2.12.1-cp314-cp314t-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.28+ x86-64

confluent_kafka-2.12.1-cp314-cp314t-manylinux_2_28_aarch64.whl (3.7 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.28+ ARM64

confluent_kafka-2.12.1-cp314-cp314t-macosx_13_0_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.14tmacOS 13.0+ x86-64

confluent_kafka-2.12.1-cp314-cp314t-macosx_13_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.14tmacOS 13.0+ ARM64

confluent_kafka-2.12.1-cp314-cp314-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.14Windows x86-64

confluent_kafka-2.12.1-cp314-cp314-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ x86-64

confluent_kafka-2.12.1-cp314-cp314-manylinux_2_28_aarch64.whl (3.7 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ ARM64

confluent_kafka-2.12.1-cp314-cp314-macosx_13_0_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.14macOS 13.0+ x86-64

confluent_kafka-2.12.1-cp314-cp314-macosx_13_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.14macOS 13.0+ ARM64

confluent_kafka-2.12.1-cp313-cp313-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.13Windows x86-64

confluent_kafka-2.12.1-cp313-cp313-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

confluent_kafka-2.12.1-cp313-cp313-manylinux_2_28_aarch64.whl (3.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

confluent_kafka-2.12.1-cp313-cp313-macosx_13_0_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.13macOS 13.0+ x86-64

confluent_kafka-2.12.1-cp313-cp313-macosx_13_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.13macOS 13.0+ ARM64

confluent_kafka-2.12.1-cp312-cp312-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.12Windows x86-64

confluent_kafka-2.12.1-cp312-cp312-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

confluent_kafka-2.12.1-cp312-cp312-manylinux_2_28_aarch64.whl (3.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

confluent_kafka-2.12.1-cp312-cp312-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

confluent_kafka-2.12.1-cp312-cp312-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

confluent_kafka-2.12.1-cp311-cp311-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.11Windows x86-64

confluent_kafka-2.12.1-cp311-cp311-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

confluent_kafka-2.12.1-cp311-cp311-manylinux_2_28_aarch64.whl (3.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

confluent_kafka-2.12.1-cp311-cp311-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

confluent_kafka-2.12.1-cp311-cp311-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

confluent_kafka-2.12.1-cp310-cp310-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.10Windows x86-64

confluent_kafka-2.12.1-cp310-cp310-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

confluent_kafka-2.12.1-cp310-cp310-manylinux_2_28_aarch64.whl (3.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

confluent_kafka-2.12.1-cp310-cp310-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

confluent_kafka-2.12.1-cp310-cp310-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

confluent_kafka-2.12.1-cp39-cp39-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.9Windows x86-64

confluent_kafka-2.12.1-cp39-cp39-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

confluent_kafka-2.12.1-cp39-cp39-manylinux_2_28_aarch64.whl (3.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ ARM64

confluent_kafka-2.12.1-cp39-cp39-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

confluent_kafka-2.12.1-cp39-cp39-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

confluent_kafka-2.12.1-cp38-cp38-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.8Windows x86-64

confluent_kafka-2.12.1-cp38-cp38-manylinux_2_28_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.28+ x86-64

confluent_kafka-2.12.1-cp38-cp38-manylinux_2_28_aarch64.whl (3.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.28+ ARM64

confluent_kafka-2.12.1-cp38-cp38-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

confluent_kafka-2.12.1-cp38-cp38-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file confluent_kafka-2.12.1-cp314-cp314t-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp314-cp314t-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7e58b64832b31e8a91ae933c1c8d44de41d80b4352507b79b7c67d908845a6b3
MD5 e35b5c6fb8f99113388438d304e13614
BLAKE2b-256 33193452a5417ca856d37d6cf9b063764c4e11ce4dcec412c28cb12336ffd3aa

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp314-cp314t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp314-cp314t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 43db6424ac66ff88bbe6ba1a686196d1f6bd79aa54d5611f1f0473bf5be47efa
MD5 c8610203e53ca77b2aedc9a7d1cb0333
BLAKE2b-256 a61e19b6eb0927d853d7149b97f88e7a4585f3a4d06cf6d8b575e8a80fcffce2

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp314-cp314t-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp314-cp314t-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 2672953ac47d80b6f5de9f4c182766a7cd26615afb0aaa1b8b00f4a7cfc62943
MD5 21a6aab323d85c5580f8b13b372ada32
BLAKE2b-256 64ba63526ae0c56b95892b73f66a81b2aae9af417c642b0818ec9e4e7e944223

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp314-cp314t-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp314-cp314t-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 b711de5a45eb8e54b4c1cb5bf841b969e53e680e971514003b210f0e544f96d9
MD5 813e9e5cd975b78dea3dbc040a88aebb
BLAKE2b-256 7fe8db65e7e9b5bf45f97fefa7c78039826ed3c6d32c02e599ee913f8cede480

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp314-cp314-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 0b9c1bc62e97123c969c8ec3f3623ad1ac85f3c1953da7b3b288cb759b3e21aa
MD5 4f35967fa8a8df86757b764bbafb0f48
BLAKE2b-256 8f40fdc769717baa73e8aad16c2d2b523d1a702b1dc8e9cfc243dbfe9d3a152e

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp314-cp314-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp314-cp314-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 77e1013062934294a374ef4f694179e0365e36317b4f8d3f84b009e4136cdc2f
MD5 61b2168de32e4ffef5163c584da9fe3e
BLAKE2b-256 0f2da8077855fd282eed2d29faef6522d96937ea64aa789ad79c3d0fbf3d95c1

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp314-cp314-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp314-cp314-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1460e51e72a03cafc10cebd52d25b84cc494983e1f51c46ccd043f46fab6f1d5
MD5 2238eae1ddb38abd315156491c6678da
BLAKE2b-256 71a18ad5e17883bcc07022e40859f76e7bc595524ebbf1fc71b9d54e148e9806

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp314-cp314-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp314-cp314-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 e26739ed8d19c7def3dde37fec621373cf15682a1a80b37add51ae435ee19d5f
MD5 a74458eaee54f1349dc19caf6c6349e4
BLAKE2b-256 8dcf768d89e471572f348bf94802b2381b64fc7105315d76be1a611bb6f1d62b

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp314-cp314-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp314-cp314-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 8c708d3f774217871a3959443606b28a667587ed783b70c3c01f057a38eaeedb
MD5 b4c30183a2eda06dd83c080bcdda05b1
BLAKE2b-256 035caf272d90e0f75f5516087df97cd1e2e04673df2245c0e43754e0ec5cde48

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 4391dd12f2bd56ab2d075bce4b91982b7a2684abf9f12ab4bc4227edefda7c19
MD5 b93f153d2dc0f35ea2451acdf92063bb
BLAKE2b-256 3181686be6b4a176f5299d1b02fe26a16071c1efc8043431e78402ae7c7f07b3

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 537346d05271f6966a2559011d433632178367711d71e3c79d32246ac09c775e
MD5 f5b4f8b252a8eaa2faf6676bbbfd2f52
BLAKE2b-256 ba112bfdde02bd9139aec6d0d3961a06b84c50dfbaec46bf09402c5a5c710884

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 23716c2f8f05815d1ce7a0caf2aa98bf71b7c73265295080d58882a091acddce
MD5 eb1ebe8300f7e1d3fbbe7640c3c56599
BLAKE2b-256 bbdf534e39ee496e17907bc19e0fda97ff65cd4a56a1379988602ad7339347e8

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp313-cp313-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp313-cp313-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 0e8e434ed453c9c5eb5d2d236b085b6dff91b39efb2ca962bf63581a9bb2f7a2
MD5 cfd69c6d2cf00266542121841f6f7040
BLAKE2b-256 abe0c9f4a3f2b6d0a8da8ec24125874e012523176e23192bd2bb439b0ff7adea

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp313-cp313-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp313-cp313-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 9620a7327d7259549a696272b91cc95689a26e5c770f5352c1fb5c1017f28dfc
MD5 af421f214904be600865bfe6b2dc5694
BLAKE2b-256 2d315221c9261903430e23b30c8f8776d00db881d4df12580855febd4f60a766

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6209fe4daed05d7ca578e99ac8f1e8c5bc3aa434e8183814c3b103bc10ed1c71
MD5 317516e7a8cd30234ebb97d60d2848d0
BLAKE2b-256 8ca2871cdb1ee19312b2a09702f30af07462a5c6a1a6adea8055f93cc6525971

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 aa06b7ec20b2b168c6ba20b32a90c9f87f08c9017a125373c3217f2aa011a504
MD5 a6868067f884c64a2f30c9655ae0e6c7
BLAKE2b-256 b49bf9a02935d136df317e7d7628d58cd44ce43e6efcaab38b17233eeb37ddd7

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d028bb2cffba425fd204435a1153466b7693e81c874bf9cdfc8147cb0aa285c7
MD5 0d7f16b1e9c3de7b6cd8d2aed4ccb0f2
BLAKE2b-256 5e486a7ab7968f601cd074e679523ca78ccb3ee4e35ced1f7f737bc2adb3f309

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0c0d6d3c0bd96d2923ac0a6e74df6d86763cba881383bc882972de1bdd48a57a
MD5 16239d6462e8e10817fd062c192c442b
BLAKE2b-256 e0cbf588c1e6a4be51c3cb932eb5f58a4545b5ad2555106e19a073b6f30d400c

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 197b1222535a2f9c8b32cd294e9e01af919bc315264015ba6bb1f18dabb638c4
MD5 7d898bcb8f8bedd6c7c042546499b0ed
BLAKE2b-256 daa7bbce88f7d347d706ce8140bdb625467465f2cace54ad57457ffbc66f2e82

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6c344b1e9a98baee9a221ef910b4817a1f4bb3b81ebe3304d4a9b3be3b99ddc1
MD5 23ad63f7aa26da2a1362e0be982c92cf
BLAKE2b-256 06f4292c56739663ec6150c2adf01bf256e0b0eeda8ee848d621c1f7640c87c8

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5958feea006c92ac4d5f37cc9b730eb1824a68d7536be7ec274d6841ce0412af
MD5 3be3a47009a064e490abcc9d75974b3c
BLAKE2b-256 3ab95cd5e26e66d2ac0470dd10d21660b18e2e8e201a1a0cba823b7ceba985e7

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e497f9fc780b21d72eedeb5dd0648966417467c42358a20b692d6c0bff85f533
MD5 c67a164e8157bbcf5c4ba3d518a7589a
BLAKE2b-256 d3cf554207922e8d13330da1d539e9bef59a89b6be0838a1d42a4dd327c63bd1

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8df2feafbac73f624121073ad49fe1ce890eb4833a5237b37fe7dd24fc5ba824
MD5 43e40a11e6c83841daa0759422adb2ab
BLAKE2b-256 cebce63edbea266797108a7a7640cdfdccf28f96db84d9bd1ad834414e225993

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5929ac16c1e7c6f632d99201575be5b45780a93bc0ac1b26391a719893ba21ea
MD5 e494e8950d564dad35b62b9b077923fc
BLAKE2b-256 46739ab5a5ccb3c89ed46f399b6c09e7ccc5538608ccdc118bcab48b04848dd4

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e78ae6689b8df7ef8ffac5039b6c4e8f8b733161a5278bcfba5b4a0da6ed9a2c
MD5 1259f32ea3461074631b6afe6b125b14
BLAKE2b-256 32d835ee9d70fa28b144a4bafbc10fda33ef61efbd6fe992724b43a1069b55d8

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 15c4389d0a16a4946c037f96388f6fbc8dfad38649afc1d583e0826131bb5c2c
MD5 e3a36123e41e115ce3276d8e371056de
BLAKE2b-256 6185636ce8295e86b1f740e81b7a6ebd00ae11a605bcb9e590744555444efb2f

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 45e5ee77416b82092ba4bf9f928208314ef1e54ac887397790db28b1ea9c39ef
MD5 8a938f7983019918fd30c42151ff0688
BLAKE2b-256 d15d10e76ee9d88ebbadbaff6dd739704f12c3e3ac859528d2c076fbbc581cf6

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6308da6a1feddfc8a5ab757982ab546c4482e33c056e7b4f379deeddfd821c0c
MD5 c9dd43a2ea8e012da056a0999ec6305f
BLAKE2b-256 c4ae27220c24f96b5cb7d69b01035e3ebe1fc6d6cde54e8d9e6e69a6fd8fcd69

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 418f52c52c3833a2481cb4f576f4bee5183776dd9411f5288286117d794d858c
MD5 b09ad69d6b666b592132948a4a70872f
BLAKE2b-256 c9ad0d2b906aece9069fc0bead3bd7907a440442209ee3795954359555a51b91

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 64a5798ec7fe5a101e055c2729c6ac6d6fd9d462a93a1fb3e314866a70ce804b
MD5 98c564069109edbe47013eee0be69e57
BLAKE2b-256 fe5be1aa9991d29ad9879dca916ce89c550be67e5a701d11bbd7eec41b45682f

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2b4bb9fefa85462aa0b1f5d96abadffad911d93033b470b3b6fc46d63f2a28e9
MD5 303f63bd93febf09b9d40e7234769ba8
BLAKE2b-256 1e0982941fedca144b5d54480ae4b9e54b7aa743e977f8c2d53a3d4c4f1af0f4

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1ca2519bf27ea71ca32feb01859a086183614c44f8d843a917fcc1c135c24706
MD5 077916bb6a81079d0e755f6b1a35e16b
BLAKE2b-256 956aeeaebdf3c06ed2d9f5395b644d2505032847b6de25647d8511734c7530b9

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e230fbd5a0e4d4228ebb9e0b6b92757c84757904f01060bc01ac4c42c50f619a
MD5 00ac551576e47c1290171349ce6bd377
BLAKE2b-256 6bcef7245d10022dac67d4bc62bf3da11ed1c576e2d1dd9a902b308a005e9154

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5a751d39a9efa82b49d212d17a88a3d3fe075b70c80fa39313443ac3ac95a967
MD5 c3885c5c9c2b4a7e406395580ad5a7d2
BLAKE2b-256 1ab8f90c6c4a27a97f9e129d20a54badbf728ee5178a4a53f69474d60858e2d3

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a8ab38f8e68c8a806682436e8bfa54537e39f349963a998fac43281af31f38fa
MD5 6e626adde44df133f1c9924c9ee38bb1
BLAKE2b-256 2e1f6cf2848450c0c6d150317e1f2ce817e4f1cd2ebbc5ceff1e0f26b20c6e9a

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5b021343cb27e08c145835602179702ccfa992885c7e500e92e46543c73bc7db
MD5 60bae49fe685b2f8d4f48f3259189c2e
BLAKE2b-256 c7b7e32f08408120f84675c6d969cba8851acdb0929da70fbb40a518f9535329

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 11b8e599b4cda812df288af736a92fb136c5a3f42803b64a7811066db8189cd6
MD5 543da0c8b8b2880a61943256032fe005
BLAKE2b-256 b36a9bc394457a0310cdb4af8879db1f80afb06d6e07928bc93a4951ee608655

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7626d800526489dd3ec1a9eac030e2cee0eda610e062732542f7b2bff07062a9
MD5 2ad65fa95054a2a3467811003d3568c9
BLAKE2b-256 00b86a241f56c47edc02723fbc3c72d613927d26b51efea8283df932168ae60e

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.12.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.12.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 073af99734dc6198d95ae6d41ada304cf791bd49cb9a5b29be665740a0028b28
MD5 e22075e812279ab2be284e2f8bb687c3
BLAKE2b-256 28f9540ed82efe753344bee1308018e56d57960d64d34e07d3729aa0145f4489

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page