
pg_probackup 3.0.0 Documentation

pg_probackup 3.0.0 Documentation

Table of Contents
1. About pg_probackup3 .. 1

Installing pg_probackup3 .. 2
Versioning ... 4

2. About pg_probackup3 Backup and Recovery .. 5
Features .. 5
Limitations ... 6

3. Backup and Recovery Setup .. 7
Initializing the Backup Catalog .. 7
Adding a New Backup Instance ... 7
Configuring pg_probackup3 .. 8
Specifying Connection Settings ... 9
Configuring the Database Cluster ... 9
Setting up STREAM Backups ... 10
Setting up Continuous WAL Archiving ... 11
Setting up PTRACK Backups .. 11
Configuring the Remote Mode ... 13
Configuring S3 Connectivity ... 13

4. Usage ... 16
Creating a Backup ... 16
Mounting a Backup Directory with FUSE .. 18
Restoring a Cluster .. 18
Managing the Backup Catalog ... 21
Using pg_probackup3 in the Remote Mode .. 27
Running pg_probackup3 on Parallel Threads .. 28
Checking Data Integrity .. 29
Configuring Retention Policy ... 30
More Examples ... 36

5. Reference ... 42
pg_probackup3 .. 43
libpgprobackup .. 63

A. Release Notes ... 73
pg_probackup 3.0.0 .. 73

Index ... 74

iii

Chapter 1. About pg_probackup3

Table of Contents
Installing pg_probackup3 .. 2
Versioning ... 4

pg_probackup3 is designed to manage backup and recovery of PostgreSQL database clusters. It sup-
ports Postgres Pro and PostgreSQL 15 or higher.

pg_probackup3 includes all the key functionalities of the prior versions of the pg_probackup utility.
Some less popular features may be missing at the moment, but will be implemented in the future.

As compared to pg_probackup, pg_probackup3 comprises the following new features and improve-
ments:

• Version independence: The same pg_probackup3 version can now be used with different versions
of Postgres Pro or PostgreSQL, ensuring compatibility and flexibility.

• API integration: pg_probackup3 can be integrated with various backup systems via API, thus of-
fering centralized management of the backup process.

• Work without SSH: pg_probackup3 can work without an SSH connection, enabling more effective
and secure data transfer.

• FUSE: pg_probackup3 introduces the new fuse command, which enables running a database in-
stance directly from a backup without requiring a full restore, using the FUSE (Filesystem in User
Space) mechanism.

• Operation by unprivileged users: pg_probackup3 can be started by users who do not have access
rights to PGDATA. This helps to increase security and reduce the risk of potential errors.

• A new backup format: Each backup is now stored as a single file, making it easier to manage and
store backups.

• pg_basebackup support: In the BASE data source mode, it is now possible to leverage the pg_base-
backup replication protocol for improved backup speed and efficiency.

• PRO mode: pg_probackup3 introduces a proprietary replication protocol in the new PRO data
source mode, available exclusively in Postgres Pro Enterprise.

• Merging incremental backup chains: It is now possible to save disk space by merging chains of
incremental backups.

• Completely reengineered core

• Redesigned architecture

• Improved performance

Note

Certain pg_probackup3 functionalities rely on features specific to Postgres Pro Enterprise.
These functionalities are automatically turned off for pg_probackup3 included in Postgres Pro
Standard.

1

https://postgrespro.com/docs/postgrespro/current/app-pgprobackup.html

About pg_probackup3

Installing pg_probackup3
pg_probackup3 includes the following packages:

• libpgprobackup3 — contains a shared library providing the API for backup creation, as well
as libpb3_encoder.so, a dynamic library to be loaded by the corresponding server extension.

• pg_probackup3 — contains the command-line utility for managing backups.

Note

All packages have to be installed and uninstalled together, as pg_probackup3 and libpg-
probackup3 only support the Postgres Pro version 15 and higher.

Note

Before installing pg_probackup3, make sure you have installed the pgpro_bindump module.

To install pg_probackup3, follow the steps below.

1. Download the archive with packages

Download the archive with packages using the provided link. The archive contains test reposito-
ries for building pg_probackup3 for the following operating systems:

• Debian 12

• Astra Linux Smolensk 1.8

• Ubuntu 22.04/24.04

• RHEL 9

2. Extract the archive

Extract the archive using the following command:

tar -xvzf pbk3.tar.gz pbk3/

3. Configure the repository

1. Install the GPG key.

The archive includes the keys directory containing the GPG key for connecting the reposi-
tory. Install the key based on your system.

• For Debian-based systems:

sed -n '/^$/,/=$/p' "/path/to/pbk3/keys/GPG-KEY-
POSTGRESPRO" | base64 -d | sudo tee "/etc/apt/
trusted.gpg.d/postgrespro.gpg" > /dev/null

• For RHEL-based systems:

2

About pg_probackup3

sudo rpm --import /path/to/pbk3/keys/GPG-KEY-POSTGRESPRO

2. Connect the repository.

• For Debian-based systems, create the file /etc/apt/sources.list.d/
pbk3.list with the following content.

• For Ubuntu 24.04:

deb file:///path/to/pbk3/ubuntu noble main

• For Ubuntu 22.04:

deb file:///path/to/pbk3/ubuntu jammy main

• For RHEL-based systems, create the file /etc/yum.repos.d/pbk3.repo with the
following content:

[pbk3]
name=pbk3
baseurl=file:///path/to/pbk3/rhel/9Server/os/x86_64/rpms
enabled=1
gpgcheck=1

4. Install the packages

• For Debian-based systems, after connecting the repository, update the package list:

sudo apt update

Then install the required packages:

sudo apt install libpgprobackup3 pg-probackup3

• For RHEL-based Systems, install the packages using yum:

sudo yum install libpgprobackup3 pg-probackup3

Or dnf:

sudo dnf install libpgprobackup3 pg-probackup3

5. Verify the installation

Ensure that the packages are installed correctly.

1. Check the Postgres Pro version:

/opt/pgpro/ent-16/bin/postgres --version

2. Check the pg_probackup3 version:

pg_probackup3 --version

3

About pg_probackup3

6. Configure Postgres Pro for pg_probackup3

To enable pg_probackup3, add the following parameters in the postgresql.conf file:

shared_preload_libraries = 'pgpro_bindump'
wal_level = 'replica' # or 'logical'
walsender_plugin_libraries = 'pgpro_bindump'

Once the installation is complete, it is required to restart the Postgres Pro instance.

Versioning
pg_probackup3 follows semantic versioning.

4

https://semver.org/

Chapter 2. About pg_probackup3
Backup and Recovery

Table of Contents
Features .. 5
Limitations ... 6

pg_probackup3 is a solution to manage local or remote backup and recovery of Postgres Pro database
clusters. It is designed to perform backups of the Postgres Pro instance that enable you to restore the
server in case of a failure.

Features

As compared to other backup solutions, pg_probackup3 offers the following benefits that can help
you implement different backup strategies and deal with large amounts of data:

• S3 support for storing data in private clouds using MinIO object storage, Amazon S3 storage, VK
Cloud storage and Google Cloud Storage: provided in Postgres Pro Enterprise. Backup data is trans-
ferred to and from S3 without saving it in intermediate locations thus eliminating the need of having
a large temporary storage.

• Tape ready: pg_probackup3 supports working with tape storage backup systems.
• NFS v4 and v5 support: pg_probackup3 allows storing backups in the network file system.
• Incremental backup: With three different incremental modes, you can plan the backup strategy

in accordance with your data flow. Incremental backups allow you to save disk space and speed
up backup as compared to taking full backups. It is also faster to restore the cluster by applying
incremental backups than by replaying WAL files.

• Remote operations: backing up Postgres Pro instance located on a remote system or restoring a
backup remotely.

• External directories: backing up files and directories located outside of the Postgres Pro data direc-
tory (PGDATA), such as scripts, configuration files, logs, or SQL dump files.

• Backup catalog: getting the list of backups and the corresponding meta information in plain text
or JSON formats.

• Archive catalog: getting the list of all WAL timelines and the corresponding meta information in
plain text or JSON formats.

• Integration with other applications enabled by the API provided by the libprobackup library.

To manage backup data, pg_probackup3 creates a backup catalog. This is a directory that stores all
backup files with additional meta information, as well as WAL archives required for point-in-time
recovery. You can store backups for different instances in separate subdirectories of a single backup
catalog.

Using pg_probackup3, you can take full or incremental backups:

• FULL backups contain all the data files required to restore the database cluster.
• Incremental backups operate at the page level, only storing the data that has changed since the

previous backup. It allows you to save disk space and speed up the backup process as compared to
taking full backups. It is also faster to restore the cluster by applying incremental backups than by
replaying WAL files. pg_probackup3 supports the following modes of incremental backups:

• DELTA backup. In this mode, pg_probackup3 reads all data files in the data directory and copies
only those pages that have changed since the previous backup. This mode can create read-only
I/O load equal to that of a full backup.

5

About pg_probackup3
Backup and Recovery

• PTRACK backup. In this mode, Postgres Pro tracks page changes on the fly. Continuous archiv-
ing is not necessary for it to operate. Each time a relation page is updated, this page is marked
in a special PTRACK bitmap. Tracking implies some minor overhead on the database server
operation, but speeds up incremental backups significantly.

pg_probackup3 can take only physical online backups, and online backups require WAL for consis-
tent recovery. So regardless of the chosen backup mode (FULL or DELTA), any backup taken with
pg_probackup3 must use the following WAL delivery mode:

• STREAM. Such backups include all the files required to restore the cluster to a consistent state at the
time the backup was taken. Regardless of continuous archiving having been set up or not, the WAL
segments required for consistent recovery are streamed via the replication protocol during backup
and included into the backup files. That's why such backups are called autonomous, or standalone.

• ARCHIVE. Such backups rely on continuous archiving to ensure consistent recovery. This is the
default WAL delivery mode.

In pg_probackup3 there are the following modes of backup data sources:

• DIRECT. Does not use any replication protocol.
• BASE. Uses the pg_basebackup protocol.
• PRO. The default mode that uses the pg_probackup3 protocol. It is included in Postgres Pro En-

terprise.

Limitations
pg_probackup3 currently has the following limitations:

• The remote mode is not supported on Windows systems.
• The Postgres Pro server from which the backup was taken and the restored server must be compat-

ible by the block_size and wal_block_size parameters and have the same major release number.
Depending on cluster configuration, Postgres Pro itself may apply additional restrictions, such as
CPU architecture or libc/icu versions.

• pg_probackup3 only supports Postgres Pro and PostgreSQL 15 or higher.

6

https://postgrespro.com/docs/postgresql/current/runtime-config-preset.html#GUC-BLOCK-SIZE
https://postgrespro.com/docs/postgresql/current/runtime-config-preset.html#GUC-WAL-BLOCK-SIZE

Chapter 3. Backup and Recovery
Setup

Table of Contents
Initializing the Backup Catalog .. 7
Adding a New Backup Instance ... 7
Configuring pg_probackup3 .. 8
Specifying Connection Settings ... 9
Configuring the Database Cluster ... 9
Setting up STREAM Backups ... 10
Setting up Continuous WAL Archiving ... 11
Setting up PTRACK Backups .. 11
Configuring the Remote Mode ... 13
Configuring S3 Connectivity ... 13

Once you have pg_probackup3 installed, complete the following setup:

• Initialize the backup catalog.
• Add a new backup instance to the backup catalog.
• Configure the database cluster to enable pg_probackup3 backups.
• Optionally, configure SSH for running pg_probackup3 operations in the remote mode.
• Optionally, configure S3 for running pg_probackup3 connected to the S3 storage.

Initializing the Backup Catalog
pg_probackup3 stores all WAL and backup files in the corresponding subdirectories of the backup
catalog.

Before initializing the backup catalog, make sure the following prerequisites are fulfilled:

• pg_probackup3 is connected to the Postgres Pro server.
• The user launching pg_probackup3 has full access to the backup_dir directory.

To initialize the backup catalog, run the following command:

pg_probackup3 init -B backup_dir

where backup_dir is the path to the backup catalog. If the backup_dir already exists, it must
be empty. Otherwise, pg_probackup3 returns an error.

pg_probackup3 creates the backup_dir backup catalog, with the following subdirectories:

• wal/ — directory for WAL files.
• backups/ — directory for backup files.

Once the backup catalog is initialized, you can add a new backup instance.

Adding a New Backup Instance
pg_probackup3 can store backups for multiple database clusters in a single backup catalog. To set up
the required subdirectories, you must add a backup instance to the backup catalog for each database
cluster you are going to back up.

7

Backup and Recovery Setup

To add a new backup instance, run the following command:

pg_probackup3 add-instance -B backup_dir -D data_dir --
instance=instance_name [remote_options]

Where:

• data_dir is the data directory of the cluster you are going to back up. To set up and use
pg_probackup3, write access to this directory is required.

• instance_name is the name of the subdirectories that will store WAL and backup files for this
cluster.

• remote_options are optional parameters that need to be specified only if data_dir is located on
a remote system.

pg_probackup3 creates the instance_name subdirectories under the backups/ and wal/
directories of the backup catalog. The backups/instance_name directory contains the
pg_probackup3.conf configuration file that controls pg_probackup3 settings for this backup in-
stance. If you run this command with the remote_options, the specified parameters will be added to
pg_probackup3.conf.

For details on how to fine-tune pg_probackup3 configuration, see the section called “Configuring
pg_probackup3”.

The user launching pg_probackup3 must have full access to backup_dir directory and at least
read-only access to data_dir directory. If you specify the path to the backup catalog in the BACK-
UP_PATH environment variable, you can omit the corresponding option when running pg_proback-
up3 commands.

Note

It is recommended to use the allow-group-access feature, so that backups can be done by
any OS user in the same group as the cluster owner. In this case, the user should have read
permissions for the cluster directory.

Configuring pg_probackup3
Once the backup catalog is initialized and a new backup instance is added, you can use
the pg_probackup3.conf configuration file located in the backup_dir/backups/in-
stance_name directory to fine-tune pg_probackup3 configuration.

For example, the backup command uses a regular Postgres Pro connection. To avoid specifying con-
nection options each time on the command line, you can set them in the pg_probackup3.conf
configuration file using the set-config command.

Note

It is not recommended to edit pg_probackup3.conf manually.

Initially, pg_probackup3.conf contains the following settings:

• PGDATA — the path to the data directory of the cluster to back up.
• system-identifier — the unique identifier of the Postgres Pro instance.

Additionally, you can define retention, logging, and compression settings using the set-config
command:

8

https://postgrespro.com/docs/postgresql/current/app-initdb.html#APP-INITDB-ALLOW-GROUP-ACCESS

Backup and Recovery Setup

pg_probackup3 set-config -B backup_dir --instance=instance_name
[--external-dirs=external_directory_path] [connection_options]
 [retention_options] [logging_options]

To view the current settings, run the following command:

pg_probackup3 show-config -B backup_dir --instance=instance_name

You can override the settings defined in pg_probackup3.conf when running pg_probackup3
commands via the corresponding environment variables and/or command line options.

Specifying Connection Settings
If you define connection settings in the pg_probackup3.conf configuration file, you can omit
connection options in all the subsequent pg_probackup3 commands. However, if the corresponding
environment variables are set, they get higher priority. The options provided on the command line
overwrite both environment variables and configuration file settings.

If nothing is given, the default values are taken. By default, pg_probackup3 tries to use local connection
via Unix domain socket (localhost on Windows) and tries to get the database name and the user
name from the PGUSER environment variable or the current OS user name.

Configuring the Database Cluster
Although pg_probackup3 can be used by a superuser, it is recommended to create a separate role with
the minimum permissions required for the chosen backup strategy. In these configuration instructions,
the backup role is used as an example.

For security reasons, it is recommended to run the configuration SQL queries below in a separate
database.

postgres=# CREATE DATABASE backupdb;
postgres=# \c backupdb

To perform a backup, the following permissions for role backup are required only in the database
used for connection to the Postgres Pro server:

BEGIN;
CREATE ROLE backup WITH LOGIN;
GRANT USAGE ON SCHEMA pg_catalog TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.current_setting(text) TO
 backup;
GRANT EXECUTE ON FUNCTION pg_catalog.set_config(text, text,
 boolean) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_is_in_recovery() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_backup_start(text, boolean)
 TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_backup_stop(boolean) TO
 backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_create_restore_point(text)
 TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_switch_wal() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_last_wal_replay_lsn() TO
 backup;
GRANT EXECUTE ON FUNCTION pg_catalog.txid_current() TO backup;

9

Backup and Recovery Setup

GRANT EXECUTE ON FUNCTION pg_catalog.txid_current_snapshot() TO
 backup;
GRANT EXECUTE ON FUNCTION
 pg_catalog.txid_snapshot_xmax(txid_snapshot) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_control_checkpoint() TO
 backup;
COMMIT;

In the pg_hba.conf file, allow connection to the database cluster on behalf of the backup role.

Note

Direct access to PGDATA is not needed for backup creation, since pg_probackup3 uses a repli-
cation protocol (the PRO or BASE modes) to retrieve file data or performs direct backups (the
DIRECT mode). The PRO mode is set as default.

Depending on whether you plan to take standalone or archive backups, Postgres Pro cluster configu-
ration will differ, as specified in the sections below. To run pg_probackup3 in the remote mode or
create PTRACK backups, additional setup is required.

For details, see the sections Setting up STREAM Backups, Setting up continuous WAL archiving,
Configuring the Remote Mode, and Setting up PTRACK Backups.

Setting up STREAM Backups
To set up the cluster for STREAM backups, complete the following steps:

• If the backup role does not exist, create it with the REPLICATION privilege when Configuring
the Database Cluster:

CREATE ROLE backup WITH LOGIN REPLICATION;

• If the backup role already exists, grant it with the REPLICATION privilege:

ALTER ROLE backup WITH REPLICATION;

• In the pg_hba.conf file, allow replication on behalf of the backup role.

• Make sure the parameter max_wal_senders is set high enough to leave at least one session available
for the backup process.

• Set the parameter wal_level to be higher than minimal.

If you are planning to perform PITR with STREAM backups, you still have to configure WAL archiv-
ing, as explained in the section Setting up continuous WAL archiving.

Once these steps are complete, you can start taking FULL, DELTA, and PTRACK backups in the
STREAM WAL mode.

Note

If you are planning to rely on .pgpass for authentication when running backup in
STREAM mode, then .pgpass must contain credentials for replication database, used
to establish connection via replication protocol. Example: pghost:5432:replication:back-
up_user:my_strong_password

10

https://postgrespro.com/docs/postgresql/current/auth-pg-hba-conf.html
https://postgrespro.com/docs/postgresql/current/auth-pg-hba-conf.html
https://postgrespro.com/docs/postgresql/current/runtime-config-replication.html#GUC-MAX-WAL-SENDERS
https://postgrespro.com/docs/postgresql/current/runtime-config-wal.html#GUC-WAL-LEVEL
https://postgrespro.com/docs/postgresql/current/libpq-pgpass.html

Backup and Recovery Setup

Setting up Continuous WAL Archiving
Performing PITR and making backups with the ARCHIVE WAL delivery mode require continuous
WAL archiving to be enabled. To set up continuous archiving in the cluster, complete the following
steps:

• Make sure the wal_level parameter is higher than minimal.

• If you are configuring archiving on the primary, archive_mode must be set to on or always.

• Set the archive_command parameter, as follows:

archive_command = '"install_dir/pg_probackup3" archive-push
 -B "backup_dir" --instance=instance_name --wal-file-name=%f
 [remote_options]'

where install_dir is the installation directory of the pg_probackup3 version you are going to use,
backup_dir and instance_name refer to the already initialized backup catalog instance for this
database cluster, and remote_options only need to be specified to archive WAL on a remote host. For
details about all possible archive-push parameters, see the section archive-push.

Once these steps are complete, you can start making backups in the ARCHIVE WAL mode as well
as perform PITR.

You can view the current state of the WAL archive using the show command. For details, see the
section called “Viewing WAL Archive Information”.

Note

Instead of using the archive-push command provided by pg_probackup3, you can use any other
tool to set up continuous archiving as long as it delivers WAL segments into backup_dir/
wal/instance_name directory. If compression is used, it should be gzip, and .gz suffix
in filename is mandatory.

Note

Instead of configuring continuous archiving by setting the archive_mode and
archive_command parameters, you can opt for using the pg_receivewal utility. In this
case, pg_receivewal -D directory option should point to backup_dir/wal/in-
stance_name directory. pg_probackup3 supports WAL compression that can be done by
pg_receivewal. “Zero Data Loss” archive strategy can be achieved only by using pg_receive-
wal.

Setting up PTRACK Backups
The PTRACK backup mode can be used only for Postgres Pro Standard and Postgres Pro Enterprise
installations, or patched vanilla PostgreSQL.

pg_probackup3 includes two applications for creating backups in the PTRACK mode:

• The PTRACK application for creating backups in the DIRECT mode.

• The pb3_ptrack application for creating backups in the PRO mode.

11

https://postgrespro.com/docs/postgresql/current/continuous-archiving.html
https://postgrespro.com/docs/postgresql/current/continuous-archiving.html
https://postgrespro.com/docs/postgresql/current/runtime-config-wal.html#GUC-WAL-LEVEL
https://postgrespro.com/docs/postgresql/current/runtime-config-wal.html#GUC-ARCHIVE-MODE
https://postgrespro.com/docs/postgresql/current/runtime-config-wal.html#GUC-ARCHIVE-COMMAND
https://postgrespro.com/docs/postgresql/current/app-pgreceivewal.html

Backup and Recovery Setup

If you are going to use PTRACK backups in the DIRECT mode, complete the following additional
steps.

Note

The permissions required for the role that will perform PTRACK backups (the backup role
in the examples below) are listed in the section called “Configuring the Database Cluster”. The
role must have permissions only in the database used for connection to the Postgres Pro server.

1. Add ptrack to the shared_preload_libraries variable in the postgresql.conf
file:

shared_preload_libraries = 'ptrack'

2. To enable tracking page updates, set the ptrack.map_size parameter to a positive integer and
restart the server.

For optimal performance, it is recommended to set ptrack.map_size to N / 1024, where N
is the size of the Postgres Pro cluster, in MB. If you set this parameter to a lower value, PTRACK
is more likely to map several blocks together, which leads to false-positive results when track-
ing changed blocks and increases the incremental backup size as unchanged blocks can also be
copied into the incremental backup. Setting ptrack.map_size to a higher value does not affect
PTRACK operation, but it is not recommended to set this parameter to a value higher than 1024.

Note

If you change the ptrack.map_size parameter value, the previously created PTRACK
map file is cleared, and tracking newly changed blocks starts from scratch. Thus, you
have to retake a full backup before taking incremental PTRACK backups after changing
ptrack.map_size.

3. Create PTRACK extension:

CREATE EXTENSION ptrack;

To create PTRACK backups in the PRO mode, set the pb3_ptrack.map_size parameter to a
positive integer in the postgresql.conf file and restart the server.

For optimal performance, it is recommended to set pb3_ptrack.map_size to N / 1024, where
N is the size of the Postgres Pro cluster, in MB. If you set this parameter to a lower value, pb3_ptrack is
more likely to map several blocks together, which leads to false-positive results when tracking changed
blocks and increases the incremental backup size as unchanged blocks can also be copied into the
incremental backup. Setting pb3_ptrack.map_size to a higher value does not affect pb3_ptrack
operation, but it is not recommended to set this parameter to a value higher than 1024.

Note

If you change the pb3_ptrack.map_size parameter value, the previously created pb3_p-
track map file is cleared, and tracking newly changed blocks starts from scratch. Thus, you
have to retake a full backup before taking incremental PTRACK backups after changing
pb3_ptrack.map_size.

12

Backup and Recovery Setup

Note

The pgpro_bindump module must be enabled before setting up pbk3_ptrack.

Warning

Enabling both PTRACK and pb3_ptrack applications at the same time will lead to critical
errors and backup failure. Make sure only the required application is activated.

Configuring the Remote Mode
pg_probackup3 supports the remote mode that allows you to perform backup and WAL archiving
operations remotely.

Set up SSH

pg_probackup3 can store and read backup files and metadata on an SSH server using the SFTP pro-
tocol. This operation scheme is similar to that of S3.

If you are going to use pg_probackup3 in the remote mode via SSH, set up a passwordless SSH
connection to the server via a public and private keys: set the public key on the server side and the
private one — on the client.

See the Remote Mode Options section for details on the remote connection parameters.

pg_probackup3 in the remote mode via SSH works as follows:

• All commands can be launched in the remote mode.
• Operating in the remote mode does not require the pg_probackup3 binary to be installed on the

remote system.

Configuring S3 Connectivity
pg_probackup3 supports S3 interface for storing backups. Backup data is transferred to and from
S3 without saving it in intermediate locations thus eliminating the need of having a large temporary
storage.

An example configuration with a remote agent and a cloud storage (S3) is shown in Figure 3.1.

Figure 3.1. pg_probackup3 setup with a remote agent and S3

In this figure, the following logical components are shown:

Backup server

A server where the main process of pg_probackup3 runs and where local backups are stored.

Database server

A server with a database instance that needs to be backed up.

Remote agent

A secondary pg_probackup3 process running on the database server. Only applicable to the remote
mode.

13

Backup and Recovery Setup

Cloud storage

A cloud storage for backups.

Set up Access to S3 Storage

If you are going to use pg_probackup3 with S3 interface, complete the following steps:

• Create a bucket with a unique and meaningful name in the S3 storage for you future backups.

• Create ACCESS_KEY and SECRET_ACCESS_KEY tokens to be used for secure connectivity
instead of your username and password.

• For communication between pg_probackup3 and S3 server, set values of environment variables
corresponding to your S3 server. For example:

export PG_PROBACKUP_S3_HOST=127.0.0.1
export PG_PROBACKUP_S3_PORT=9000
export PG_PROBACKUP_S3_REGION=ru-msk
export PG_PROBACKUP_S3_BUCKET_NAME=test1
export PG_PROBACKUP_S3_ACCESS_KEY=admin
export PG_PROBACKUP_S3_SECRET_ACCESS_KEY=password
export PG_PROBACKUP_S3_HTTPS=ON

Alternatively, you can provide S3 server settings in the S3 configuration file (see the --s3-con-
fig-file option in the section S3 Options for details).

It makes sense to specify S3 server settings if --s3=minio, as described in the section S3 Options.

The following environment variables can be specified:

PG_PROBACKUP_S3_HOST

Address or list of addresses of the S3 server. A list of one or several semicolon-delimited
addresses. Do not add a semicolon after the last address in the list. Each address can in-
clude the port number, separated by a colon. If the port number is not specified, the value of
PG_PROBACKUP_S3_PORT is assumed. Do not add a colon if the port number is not spec-
ified.

For example:

export PG_PROBACKUP_S3_PORT=80
export
 PG_PROBACKUP_S3_HOST="127.0.0.1:9000;10.4.13.56:443;172.17.0.1"

In this example, for the “127.0.0.1” address, the port 9000 is explicitly specified, for
“10.4.13.56”, the port 443 is specified, while for the “172.17.0.1” address, port 80, specified
through PG_PROBACKUP_S3_PORT, will be used.

If any of the specified addresses gets unavailable while pg_probackup3 is in operation, requests
to the S3 storage are distribited between the rest of the specified addresses. That is, when several
addresses are specified, pg_probackup3 performs load balancing of S3 requests.

PG_PROBACKUP_S3_PORT

The port of the S3 server.

PG_PROBACKUP_S3_REGION

The region of the S3 server.

14

Backup and Recovery Setup

PG_PROBACKUP_S3_BUCKET_NAME

The name of the bucket on the S3 server.

PG_PROBACKUP_S3_ACCESS_KEY, PG_PROBACKUP_S3_SECRET_ACCESS_KEY

Secure tokens on the S3 server.

PG_PROBACKUP_S3_HTTPS

The protocol to be used. Possible values:

• ON or HTTPS — use HTTPS
• Other than ON or HTTPS — use HTTP

PG_PROBACKUP_S3_BUFFER_SIZE

The size of the read/write buffer for communicating with S3, in MiB. The default is 16.

PG_PROBACKUP_S3_RETRIES

The maximum number of attempts to execute an S3 request in case of failures. The default is 3.

PG_PROBACKUP_S3_TIMEOUT

The maximum amount of time to execute an HTTP request to the S3 server, in seconds. The
default is 300.

PG_PROBACKUP_S3_IGNORE_CERT_VER

Don't verify the certificate host and peer. The default is ON.

PG_PROBACKUP_S3_CA_CERTIFICATE

Specify the path to file with trust Certificate Authority (CA) bundle.

PG_PROBACKUP_S3_CA_PATH

Specify the directory with trust CA certificates.

PG_PROBACKUP_S3_CLIENT_CERT

Setup SSL client certificate.

PG_PROBACKUP_S3_CLIENT_KEY

Setup private key file for TLS and SSL client certificate.

15

Chapter 4. Usage

Table of Contents
Creating a Backup ... 16
Mounting a Backup Directory with FUSE .. 18
Restoring a Cluster .. 18
Managing the Backup Catalog ... 21
Using pg_probackup3 in the Remote Mode .. 27
Running pg_probackup3 on Parallel Threads .. 28
Checking Data Integrity .. 29
Configuring Retention Policy ... 30
More Examples ... 36

Creating a Backup
To create a backup, run the following command:

pg_probackup3 backup -B backup_dir --instance=instance_name -
b backup_mode -s backup_source -i backup_id

Where backup_mode can take one of the following values: FULL, DELTA, and PTRACK.

And backup_source can take one of these: DIRECT, BASE, and PRO.

Warning

BASE and DIRECT backup data source modes do not support CFS.

Note

BASE and DIRECT backup data source modes support only FULL and DELTA backup
modes.

Some options can be skipped depending on the user goals:

• If backup_mode is not specified, the FULL mode is used by default.

• PRO is the default value for backup_source.

• If the backup ID is not specified explicitly in the body of a request, backup_id will take the value
of the date and time it was created.

• If the backup ID is specified and includes a path to a directory, backup_dir and in-
stance_name can be skipped without specification. Example: -i /mnt/ramdisk/backups/2.backup.

• If a path to the data directory is not specified either via backup_dir or via --backup-id, the
current directory will be used as the default one.

• If you omit the parent backup ID when performing incremental backups, pg_probackup3 will use
the latest valid backup from the backup chain. If pg_probackup3 somehow fails to find it, the backup
process will conclude with an error.

• If the --from-full parameter is specified, an incremental backup will be created from the last
FULL backup.

16

Usage

ARCHIVE Mode

ARCHIVE is the default WAL delivery mode.

To make a FULL backup in the ARCHIVE mode, run:

pg_probackup3 backup -B backup_dir --instance=instance_name -b FULL

ARCHIVE backups rely on continuous archiving to get WAL segments required to restore the cluster
to a consistent state at the time the backup was taken.

STREAM Mode

To make a FULL backup in the STREAM mode, add the --stream flag to the command from the
previous example:

pg_probackup3 backup -B backup_dir --instance=instance_name -b FULL
 --stream [--temp-slot]

The optional --temp-slot flag ensures that the required segments remain available if the WAL is
rotated before the backup is complete.

Note

While --temp-slot is optional, it can still affect the success of the backup.

Unlike backups in the ARCHIVE mode, STREAM backups include all the WAL segments required
to restore the cluster to a consistent state at the time the backup was taken.

During backup pg_probackup3 streams WAL files containing WAL records between Start LSN
and Stop LSN to the backup file.

Even if you are using continuous archiving, STREAM backups can still be useful in the following
cases:

• STREAM backups can be restored on the server that has no file access to WAL archive.
• STREAM backups enable you to restore the cluster state at the point in time for which WAL files

in archive are no longer available.

External Directories

To back up a directory located outside of the data directory, use the optional --external-dirs
parameter that specifies the path to this directory. If you would like to add more than one external
directory, you can provide several paths separated by colons on Linux systems.

For example, to include /etc/dir1 and /etc/dir2 directories into the full backup of your in-
stance_name instance that will be stored under the backup_dir directory on Linux, run:

pg_probackup3 backup -B backup_dir --instance=instance_name -b FULL
 --external-dirs=/etc/dir1:/etc/dir2

Similarly, to include C:\dir1 and C:\dir2 directories into the full backup on Windows, run:

pg_probackup3 backup -B backup_dir --instance=instance_name -b FULL
 --external-dirs=C:\dir1;C:\dir2

17

Usage

pg_probackup3 recursively copies the contents of each external directory into a separate subdirectory
in the backup catalog. Since external directories included into different backups do not have to be the
same, when you are restoring the cluster from an incremental backup, only those directories that belong
to this particular backup will be restored. Any external directories stored in the previous backups will
be ignored.

To include the same directories into each backup of your instance, you can specify them in the
pg_probackup3.conf configuration file using the set-config command with the --exter-
nal-dirs option.

Note

External directories are not supported in the BASE mode.

Mounting a Backup Directory with FUSE
pg_probackup3 allows running a database instance directly from a backup, inspecting and restoring
specific data without requiring a full restore, using the fuse command.

This command implements the FUSE (Filesystem in User Space) mechanism, mounting a virtual rep-
resentation of the backup directory. Postgres Pro interacts with this mounted directory as if it were
an actual PGDATA directory, while proxying all file system requests to the backup files. This ensures
that the backup remains unchanged, and all operations are read-only.

Figure 4.1. The pg_probackup3 FUSE Mechanism

The key use cases for the fuse command are as follows:

• Restore deleted data from a particular date (for example, using pg_dump).

• Investigate data from a certain point in time.

• Provide a read-only production-like environment when a full restore would be time-consuming.

• Roll back to a specific moment in time to test and debug application failures.

• Run reports on a backup without the overhead of a full restore, as an alternative to replication.

• Support developer databases on FUSE without the need to perform a full multi-gigabyte restore.

Note

CFS (Compressed File System) and tablespaces are not currently supported.

For details on the fuse command and its parameters, refer to the section called “Commands”.

Restoring a Cluster

Note

While backup files for restore can be retrieved from different sources (the file system, S3, or
SSH SFTP), pg_probackup3 can only restore the Postgres Pro server PGDATA to a local file
system.

18

Usage

To restore the database cluster from a backup, run the restore command with at least the following
options:

pg_probackup3 restore -B backup_dir --instance=instance_name -
i backup_id

Where:

• backup_dir is the backup catalog that stores all backup files and meta information.
• instance_name is the backup instance for the cluster to be restored.
• backup_id specifies the backup to restore the cluster from.

If you restore ARCHIVE backups or perform PITR, pg_probackup3 creates a recovery configura-
tion file once all data files are copied into the target directory. This file includes the minimal set-
tings required for recovery, except for the password in the primary_conninfo parameter; you have
to add the password manually or use the --primary-conninfo option, if required. pg_proback-
up3 writes recovery settings into the probackup_recovery.conf file and then includes it into
postgresql.auto.conf.

If you are restoring a STREAM backup, the restore is complete at once, with the cluster returned to
a self-consistent state at the point when the backup was taken. For ARCHIVE backups, Postgres Pro
replays all available archived WAL segments, so the cluster is restored to the latest state possible
within the current timeline. You can change this behavior by using the recovery target options with the
restore command, as explained in the section called “Performing Point-in-Time (PITR) Recovery”.

If the cluster to restore contains tablespaces, pg_probackup3 restores them to their original location
by default. To restore tablespaces to a different location, use the --tablespace-mapping/-T
option. Otherwise, restoring the cluster on the same host will fail if tablespaces are in use, because the
backup would have to be written to the same directories.

When using the --tablespace-mapping/-T option, you must provide absolute paths to the old
and new tablespace directories. If a path happens to contain an equals sign (=), escape it with a back-
slash. This option can be specified multiple times for multiple tablespaces. For example:

pg_probackup3 restore -B backup_dir --instance=instance_name -
D data_dir -j 4 -i backup_id -T tablespace1_dir=tablespace1_newdir
 -T tablespace2_dir=tablespace2_newdir

Partial Restore

You can restore particular databases without any special preparations using partial restore options with
the restore command and OIDs of these databases.

To restore the specified databases only, run the restore command with the following options:

pg_probackup3 restore -B backup_dir --instance=instance_name --db-
include-oid=dboid

The --db-include-oid option can be specified multiple times. For example, to restore only the
db1 and db2 databases with OIDs dboid1 and dboid2, respectively, run the following command:

pg_probackup3 restore -B backup_dir --instance=instance_name --db-
include-oid=dboid1 --db-include-oid=dboid2

To exclude one or more databases from restore, use the --db-exclude-oid option:

19

https://postgrespro.com/docs/postgresql/current/runtime-config-replication.html#GUC-PRIMARY-CONNINFO

Usage

pg_probackup3 restore -B backup_dir --instance=instance_name --db-
exclude-oid=dboid

The --db-exclude-oid option can be specified multiple times. For example, to exclude the db1
and db2 databases with OIDs dboid1 and dboid2, respectively, from restore, run the following
command:

pg_probackup3 restore -B backup_dir --instance=instance_name --db-
exclude-oid=dboid1 --db-exclude-oid=dboid2

Note

After the Postgres Pro cluster is successfully started, drop the excluded databases using the
DROP DATABASE command.

To decouple a single cluster containing multiple databases into separate clusters with minimal down-
time, run partial restore of the cluster as a standby using the --restore-as-replica option for
specific databases.

Note

The template0 and template1 databases are always restored.

Performing Point-in-Time (PITR) Recovery

If you have enabled continuous WAL archiving before taking backups, you can restore the cluster to
its state at an arbitrary point in time (recovery target) using recovery target options with the restore
command.

You can use both STREAM and ARCHIVE backups for point-in-time recovery as long as the WAL
archive is available at least starting from the time the backup was taken.

• To restore the cluster state at the exact time, specify the --recovery-target-time option,
in the timestamp format. For example:

pg_probackup3 restore -B backup_dir --instance=instance_name --
recovery-target-time="2024-04-10 18:18:26+03"

• To restore the current or latest cluster state, set the --recovery-target-time option value
to current or latest, respectively:

pg_probackup3 restore -B backup_dir --instance=instance_name --
recovery-target-time="latest"

• To restore the cluster state up to a specific transaction ID, use the --recovery-target-xid
option:

pg_probackup3 restore -B backup_dir --instance=instance_name --
recovery-target-xid=687

• To restore the cluster state up to the specific LSN, use --recovery-target-lsn option:

20

Usage

pg_probackup3 restore -B backup_dir --instance=instance_name --
recovery-target-lsn=16/B374D848

• To restore the cluster state up to the specific named restore point, use --recovery-tar-
get-name option:

pg_probackup3 restore -B backup_dir --instance=instance_name --
recovery-target-name="before_app_upgrade"

• To restore the backup to the latest state available in the WAL archive, use --recovery-tar-
get-stop option with latest value:

pg_probackup3 restore -B backup_dir --instance=instance_name --
recovery-target-stop="latest"

• To restore the cluster to the earliest point of consistency, use --recovery-target-stop op-
tion with the immediate value:

 pg_probackup3 restore -B backup_dir --
instance=instance_name --recovery-target-stop='immediate'

Managing the Backup Catalog
With pg_probackup3, you can manage backups from the command line:

• View backup information
• View WAL Archive Information
• Merge backups
• Delete backups

Viewing Backup Information

To view the list of existing backups for every instance, run the command:

pg_probackup3 show -B backup_dir

pg_probackup3 displays the list of all the available backups. For example:

BACKUP INSTANCE 'dev', version 3
===
Instance Version ID End time Mode WAL Mode
 TLI Duration Data WAL Zalg Zratio Start LSN Stop LSN Status
===
dev 17 1-full 2024-12-10 14:51:34+0000 FULL STREAM 1
 1s 38MB - none 1.00 0/A000028 0/A000138 OK
dev 17 1-delta 2024-12-10 14:52:02+0000 DELTA STREAM 1
 11MB - none 1.00 0/D000028 0/D000180 OK
dev 17 2-delta 2024-12-10 14:52:28+0000 DELTA STREAM 1
 22MB - none 1.00 0/10000028 0/10000138 OK
dev 17 1a-full 2024-12-10 14:54:10+0000 FULL ARCHIVE 1
 1s 75MB - none 1.00 0/12000028 0/12000138 OK
dev 17 1a-delta 2024-12-10 14:54:32+0000 DELTA ARCHIVE 1
 17MB - none 1.00 0/14000028 0/14000138 OK

For each backup, the following information is provided:

21

Usage

• Instance — the instance name.

• Version — Postgres Pro major version.

• ID — the backup identifier.

• End time — the backup end time.

• Mode — the method used to take this backup. Possible values: FULL, DELTA, PTRACK.

• WAL Mode — WAL delivery mode. Possible values: STREAM and ARCHIVE.

• TLI — timeline identifiers of the current backup and its parent.

• Duration — the time it took to perform the backup.

• Data — the size of the data files in this backup. This value does not include the size of WAL files.
For STREAM backups, the total size of the backup can be calculated as Data + WAL.

• WAL — the uncompressed size of WAL files that need to be applied during recovery for the backup
to reach a consistent state.

• compress-alg — compression algorithm used during backup. Possible values: zlib, lz4,
zstd, none.

• Zratio — compression ratio calculated as “uncompressed-bytes” / “data-bytes”.

• Start LSN — WAL log sequence number corresponding to the start of the backup process. REDO
point for Postgres Pro recovery process to start from.

• Stop LSN — WAL log sequence number corresponding to the end of the backup process. Con-
sistency point for Postgres Pro recovery process.

• Status — backup status. Possible values:

• OK — the backup is complete and valid.
• DONE — the backup is complete, but was not validated.
• RUNNING — the backup is in progress.
• MERGING — the backup is being merged.
• MERGED — the backup data files were successfully merged, but its metadata is in the process of

being updated. Only full backups can have this status.
• DELETING — the backup files are being deleted.
• CORRUPT — some of the backup files are corrupt.
• ERROR — the backup was aborted because of an unexpected error.
• ORPHAN — the backup is invalid because one of its parent backups is corrupt or missing.
• HIDDEN_FOR_TEST — a test script marked the backup as nonexistent. (pg_probackup3 never

sets this status by itself.)

You can restore the cluster from the backup only if the backup status is OK or DONE.

To get more detailed information about the backup, run the show command with the backup ID:

pg_probackup3 show -B backup_dir --instance=instance_name -
i backup_id

The sample output is as follows:

Backup 2-delta information.
backup_id=2-delta
parent_backup_id=1-delta
backup_mode=delta
tli=1

22

Usage

start_lsn=268435496
stop_lsn=268435768
start-time 2024-12-10 14:52:28+0000
start_time=1733842348
end-time 2024-12-10 14:52:28+0000
end_time=1733842348
recovery-time=0
data-bytes=22986632
uncompressed-bytes=22986632
compress-alg=none
compress-level=1
server-version=170001
min_xid=0
min_multixact=0
backup_source=pro
primary_conninfo=user=garbuz reusepass=1 channel_binding=prefer
 host=localhost port=5432 sslmode=prefer sslcompression=0
 sslcertmode=allow sslsni=1 ssl_min_protocol_version=TLSv1.2
 gssencmode=disable krbsrvname=postgres gssdelegation=0
 target_session_attrs=any target_server_type=any
 hostorder=sequential load_balance_hosts=disable
stream=true
program-version=3.0.0
block-size=8192
xlog-block-size=8192
status = OK

Detailed output has additional attributes:

• compress-alg — compression algorithm used during backup. Possible values: zlib, lz4,
zstd, none.

• compress-level — compression level used during backup.
• block-size — the block_size setting of Postgres Pro cluster at the backup start.
• checksum-version — are data block checksums enabled in the backed up Postgres Pro cluster.

Possible values: 1, 0.
• program-version — full version of pg_probackup3 binary used to create the backup.
• start-time — the backup start time.
• end-time — the backup end time.
• end-validation-time — the backup validation end time.
• expire-time — the point in time when a pinned backup can be removed in accordance with

retention policy. This attribute is only available for pinned backups.
• uncompressed-bytes — the size of data files before adding page headers and apply-

ing compression. You can evaluate the effectiveness of compression by comparing uncom-
pressed-bytes to data-bytes if compression if used.

• pgdata-bytes — the size of Postgres Pro cluster data files at the time of backup. You can
evaluate the effectiveness of an incremental backup by comparing pgdata-bytes to uncom-
pressed-bytes.

• recovery-xid — transaction ID at the backup end time.
• parent-backup-id — ID of the parent backup. Available only for incremental backups.
• primary_conninfo — libpq connection parameters used to connect to the Postgres Pro cluster

to take this backup. The password is not included.
• note — text note attached to backup.
• content-crc — CRC32 checksum of backup_content.control file. It is used to detect

corruption of backup metainformation.

You can use the --format=tree option to see the list of backups as a tree:

pg_probackup3 show -B backup_dir --format=tree

23

https://postgrespro.com/docs/postgresql/current/runtime-config-preset.html#GUC-BLOCK-SIZE
https://postgrespro.com/docs/postgresql/current/runtime-config-preset.html#GUC-DATA-CHECKSUMS

Usage

The sample output will look as follows:

BACKUP INSTANCE 'dev', version 3

1-full

1-delta

2-delta

1a-full

 ### 1a-delta

You can also get the detailed information about the backup in the JSON format:

pg_probackup3 show -B backup_dir --instance=instance_name --
format=json -i backup_id

The sample output is as follows:

[
 {
 "instance": "dev",
 "backups": [
 {
 "id": "2-delta",
 "parent-backup-id": "1-delta",
 "status": "OK",
 "start-time": "2024-12-10 14:52:28+0000",
 "end-time": "2024-12-10 14:52:28+0000",
 "backup-mode": "DELTA",
 "wal": "STREAM",
 "block-size": 8192,
 "xlog-block-size": 8192,
 "program-version": "3.0.0",
 "server-version": 17,
 "current-tli": 1,
 "start-lsn": "0/10000028",
 "stop-lsn": "0/10000138",
 "data-bytes": 22986632,
 "uncompressed-bytes": 22986632,
 "wal-bytes": 0,
 "compress-alg": "none",
 "compress-level": 1,
 "min-xid": 0,
 "min-multixact": 0,
 "backup-source": "pro"
 }
]
 }
]

Viewing WAL Archive Information

To view the information about WAL archive for every instance, run the command:

24

Usage

pg_probackup3 show -B backup_dir [--instance=instance_name] --
archive

pg_probackup3 displays the list of all the available WAL files grouped by timelines. For example:

BACKUP INSTANCE 'dev', version 3
===
TLI Parent TLI Switchpoint Min Segno Max Segno
 N segments Size Zratio N backups Status
===
1 0/0 000000010000000000000001
 000000010000000000000006 6 96MB 1.17 1 OK

For each timeline, the following information is provided:

• TLI — timeline identifier.
• Parent TLI — identifier of the timeline from which this timeline branched off.
• Switchpoint — LSN of the moment when the timeline branched off from its parent timeline.
• Min Segno — the first WAL segment belonging to the timeline.
• Max Segno — the last WAL segment belonging to the timeline.
• N segments — number of WAL segments belonging to the timeline.
• Size — the size that files take on disk.
• Zalg — compression algorithm used during backup. Possible values: zlib, lz4, zstd, none.
• Zratio — compression ratio calculated as N segments * wal_segment_size *
wal_block_size / Size.

• N backups — number of backups belonging to the timeline. To get the details about backups,
use the JSON format.

• Status — status of the WAL archive for this timeline. Possible values:

• OK — all WAL segments between Min Segno and Max Segno are present.
• DEGRADED — some WAL segments between Min Segno and Max Segno are missing. To

find out which files are lost, view this report in the JSON format. This status may appear if several
WAL files (in the middle of the sequence) were deleted by the delete command with the --
delete-wal option according to the retention policy. This status does not affect the restore
correctness, but it can be impossible to perform PITR of the cluster to some recovery targets.

To get more detailed information about the WAL archive in the JSON format, run the command:

pg_probackup3 show -B backup_dir [--instance=instance_name] --
archive --format=json

The sample output is as follows:

[
 {
 "instance": "dev",
 "version": "3",
 "timelines":
 [
 {
 "tli": 1,
 "parent-tli": 0,
 "switchpoint": "0/0",
 "min-segno": "000000010000000000000001",
 "max-segno": "000000010000000000000006",
 "n-segments": 6,

25

Usage

 "size": 100663615,
 "zratio": 1.17,
 "status": "OK",
 "backups": [
 {
 "id": "1-full",
 "status": "OK",
 "start-time": "2025-02-11 14:22:16+0000",
 "end-time": "2025-02-11 14:22:16+0000",
 "backup-mode": "FULL",
 "wal": "STREAM",
 "block-size": 8192,
 "xlog-block-size": 8192,
 "program-version": "3.0.0",
 "server-version": 17,
 "current-tli": 1,
 "start-lsn": "0/5000028",
 "stop-lsn": "0/5000128",
 "data-bytes": 60748163,
 "uncompressed-bytes": 60748163,
 "wal-bytes": 0,
 "compress-alg": "none",
 "compress-level": 1,
 "min-xid": 0,
 "min-multixact": 0,
 "backup-source": "pro"
 }
]
 }
]
 }]

Most fields are consistent with the plain format, with some exceptions:

• The size is in bytes.
• The closest-backup-id attribute contains the ID of the most recent valid backup that belongs

to one of the previous timelines. You can use this backup to perform point-in-time recovery to this
timeline. If such a backup does not exist, this string is empty.

• The lost-segments array provides with information about intervals of missing segments in
DEGRADED timelines. In OK timelines, the lost-segments array is empty.

• The backups array lists all backups belonging to the timeline. If the timeline has no backups, this
array is empty.

Merging Backups

As you take more and more incremental backups, the total size of the backup catalog can substantially
grow. To save disk space, you can merge incremental backups to their parent full backups or merge
chains of incremental backups.

During the merge, a brand-new backup is created, into which all the backups to be merged are added.
All redundant backups are deleted only after the merge is successful. While this process requires
additional disk space, it helps prevent data loss in case of any errors or system failures.

Note

If several child backups relate to the same parent, such backups are not deleted after merge,
and the disk space is not freed.

26

Usage

To merge an incremental backup to its parent full backup, run the merge command, specifying the
backup ID of the most recent incremental backup you would like to merge:

pg_probackup3 merge -B backup_dir --instance=instance_name -
i backup_id

This command merges backups that belong to a common incremental backup chain. If you specify a
full backup, it will be merged with its first incremental backup. If you specify an incremental backup,
it will be merged to its parent full backup, together with all incremental backups between them. Once
the merge is complete, the full backup takes in all the merged data, and the incremental backups are
removed as redundant. Thus, the merge operation is virtually equivalent to retaking a full backup
and removing all the outdated backups, but it allows you to save much time, especially for large data
volumes, as well as I/O and network traffic if you are using pg_probackup3 in the remote mode.

To merge a chain of incremental backups, specify the IDs of the first and the last incremental backup
in the chain:

pg_probackup3 merge -B backup_dir --instance=instance_name --merge-
from-id=merge_from -i backup_id

Or specify the first backup ID followed by the time interval (in hours) to merge all the backups created
during this time:

pg_probackup3 merge -B backup_dir --instance=instance_name -
i backup_id --merge-interval=merge_interval

Before the merge, pg_probackup3 validates all the affected backups to ensure that they are valid. You
can check the current backup status by running the show command with the backup ID:

pg_probackup3 show -B backup_dir --instance=instance_name -
i backup_id

If the merge is still in progress, the backup status is displayed as MERGING. For full backups, it can
also be shown as MERGED while the metadata is being updated at the final stage of the merge. The
merge is idempotent, so you can restart the merge if it was interrupted.

Deleting Backups

To delete a backup that is no longer required, run the following command:

pg_probackup3 delete -B backup_dir --instance=instance_name -
i backup_id

This command will delete the backup with the specified backup_id, together with all the incremen-
tal backups that descend from backup_id, if any. This way you can delete some recent incremental
backups, retaining the underlying full backup and some of the incremental backups that follow it.

Before deleting backups, you can run the delete command with the --dry-run flag, which dis-
plays the status of all the available backups according to the current retention policy, without perform-
ing any irreversible actions.

Using pg_probackup3 in the Remote Mode
pg_probackup3 supports the remote mode that allows you to perform backup operations remotely
via SSH. In this mode, the backup catalog is stored on a local system, while Postgres Pro instance to
be backed up is located on a remote system. You must have pg_probackup3 installed on both systems.

27

Usage

Note

pg_probackup3 relies on passwordless SSH connection for communication between the hosts.

Note

In addition to SSH connection, pg_probackup3 uses a regular connection to the database to
manage the remote operation. See the section Configuring the Database Cluster for details on
how to set up a database connection.

The typical workflow is as follows:

• On your backup host, configure pg_probackup3 as explained in the section Backup and Recovery
Setup. For the add-instance and set-config commands, make sure to specify remote mode options
that point to the database host with the Postgres Pro instance.

• If you would like to rely on ARCHIVE WAL delivery mode, configure continuous WAL archiving
from the database host to the backup host as explained in the section Setting up continuous WAL
archiving. For the archive-push and archive-get commands, you must specify the remote mode
options that point to the backup host with the backup catalog.

• Run the backup command with remote mode options on the backup host. pg_probackup3 connects
to the remote system via SSH and creates a backup locally.

For example, to create an archive full backup of a Postgres Pro cluster located on a remote system with
the host address 192.168.0.2 on behalf of the postgres user via the SSH connection through
the port 2302, run:

pg_probackup3 backup -B backup_dir --instance=instance_name -b
 FULL --remote-user=postgres --remote-host=192.168.0.2 --remote-
port=2302

Running pg_probackup3 on Parallel Threads
backup, restore, merge, delete, and validate processes can be executed on several parallel threads. This
can significantly speed up pg_probackup3 operation given enough resources (CPU cores, disk, and
network bandwidth).

Parallel execution is controlled by the -j/--threads and --num-write-threads com-
mand-line options. These options must be non-negative integers.

If --threads is not specified or set to zero, pg_probackup3 defaults to the number of CPU cores.
If the core count cannot be determined, a single thread will be used.

If --num-write-threads is not specified, the number of write threads will match the number
of read threads.

If the requested threads exceed the system limit (e.g., from /proc/sys/kernel/threads-max),
a warning will be displayed, and the system limit value will be used instead. If no limit is found, the
value specified by the user will be applied.

In the PRO mode, the number of read threads must be less than the value of the max_wal_senders
server parameter.

For example, to create a backup using four parallel threads, run the following command:

28

Usage

pg_probackup3 backup -B backup_dir --instance=instance_name -b FULL
 -j 4

Note

Parallel restore applies only to copying data from the backup catalog to the data directory of
the cluster. When Postgres Pro server is started, WAL records need to be replayed, and this
cannot be done in parallel.

Important

A technique is implemented that prevents repeatable copying of one file when pg_probackup3
runs on multiple threads. With this technique, however, when disks are slow or the system
is overloaded, parallel copying might fail. To handle this situation, resolve issues with your
system resources.

Checking Data Integrity

Page Validation

If data checksums are enabled in the database cluster, pg_probackup3 uses this information to check
correctness of data files during backup. While reading each page, pg_probackup3 checks whether the
calculated checksum coincides with the checksum stored in the page header. This guarantees that the
Postgres Pro instance and the backup itself have no corrupt pages. Note that pg_probackup3 reads
database files directly from the filesystem, so under heavy write load during backup it can show false-
positive checksum mismatches because of partial writes. If a page checksum mismatch occurs, the
page is re-read and checksum comparison is repeated.

A page is considered corrupt if checksum comparison has failed more than 300 times. In this case,
the backup is aborted.

Even if data checksums are not enabled, pg_probackup3 always performs sanity checks for page head-
ers.

Validating a Backup

pg_probackup3 calculates checksums for each file in a backup during the backup process. The process
of checking checksums of backup data files is called the backup validation. By default, validation
is run immediately after the backup is taken and right before the restore, to detect possible backup
corruption.

Note

The backup validation includes checking checksums for CFS files.

If you would like to skip backup validation, you can specify the --no-validate flag when running
backup and restore commands.

For example, to check that you can restore the database cluster from a backup copy up to transaction
ID 4242, run this command:

29

https://postgrespro.com/docs/postgresql/current/runtime-config-preset.html#GUC-DATA-CHECKSUMS

Usage

pg_probackup3 validate -B backup_dir --instance=instance_name --
recovery-target-xid=4242

If validation completes successfully, pg_probackup3 displays the corresponding message. If validation
fails, you will receive an error message with the exact time, transaction ID, and LSN up to which the
recovery is possible.

If you specify backup_id via -i/--backup-id option, then only the backup copy with specified
backup ID will be validated. If backup_id is specified with recovery target options, the validate
command will check whether it is possible to restore the specified backup to the specified recovery
target.

For example, to check that you can restore the database cluster from a backup copy with the SBOL6P
backup ID up to the specified timestamp, run this command:

pg_probackup3 validate -B backup_dir --instance=instance_name -i
 SBOL6P --recovery-target-time="2024-04-10 18:18:26+03"

If you specify the backup_id of an incremental backup, all its parents starting from FULL backup
will be validated.

If you omit all the parameters, all backups are validated.

Configuring Retention Policy
With pg_probackup3, you can configure retention policy to remove redundant backups, clean up un-
needed WAL files, as well as pin specific backups to ensure they are kept for the specified time, as
explained in the sections below. All these actions can be combined together in any way.

Removing Redundant Backups

By default, all backup copies created with pg_probackup3 are stored in the specified backup catalog.
To save disk space, you can configure retention policy to remove redundant backup copies.

To configure retention policy, set one or more of the following variables in the pg_proback-
up3.conf file via set-config:

--retention-redundancy=redundancy

Specifies the number of full backup copies to keep in the backup catalog.

--retention-window=window

Defines the earliest point in time for which pg_probackup3 can complete the recovery. This option
is set in the number of days from the current moment. For example, if retention-window=6,
pg_probackup3 must keep at least one backup copy that is older than six days, with all the correspond-
ing WAL files, and all the backups that follow.

If both --retention-redundancy and --retention-window options are set, both these
conditions have to be taken into account when purging the backup catalog. For example, if you set --
retention-redundancy=2 and --retention-window=6, pg_probackup3 has to keep two
full backup copies, as well as all the backups required to ensure recoverability for the last six days:

pg_probackup3 set-config -B backup_dir --instance=instance_name --
retention-redundancy=2 --retention-window=6

It is recommended to always keep at least two last parent full backups to avoid errors when creating
incremental backups.

30

Usage

To clean up the backup catalog in accordance with retention policy, you have to run the retention
command with retention flags, as shown below.

For example, to remove all backup copies that no longer satisfy the defined retention policy, run the
following command with the --delete-expired flag:

pg_probackup3 retention -B backup_dir --instance=instance_name --
delete-expired

If you would like to also remove the WAL files that are no longer required for any of the backups,
you should also specify the --delete-wal flag:

pg_probackup3 retention -B backup_dir --instance=instance_name --
delete-expired --delete-wal

You can also set or override the current retention policy by specifying --retention-redundan-
cy and --retention-window options directly when running the retention command:

pg_probackup3 retention -B backup_dir --instance=instance_name --
delete-expired --retention-window=6 --retention-redundancy=2

Since incremental backups require that their parent full backup and all the preceding incremental
backups are available, if any of such backups expire, they still cannot be removed while at least one
incremental backup in this chain satisfies the retention policy. To avoid keeping expired backups that
are still required to restore an active incremental one, you can merge them with this backup using the
--merge-expired flag when running the retention command.

Suppose you have backed up the node instance in the backup_dir directory, with the --reten-
tion-window option set to 6 and --retention-redundancy option set to 2, and you have
the following backups available on February 11, 2025:

BACKUP INSTANCE 'dev', version 3
===
Instance Version ID End time Mode WAL Mode
 TLI Duration Data WAL Zalg Zratio Start LSN Stop LSN Status
===
dev 17 full-1 2024-10-18 21:02:28+0000 FULL ARCHIVE
 1 87MB - none 1.00 0/10000028 0/10000128 OK
dev 17 delta-1-1 2024-11-11 00:36:01+0000 DELTA ARCHIVE
 1 23MB - none 1.00 0/12000028 0/12000128 OK
dev 17 delta-1-2 2024-11-15 15:43:01+0000 DELTA ARCHIVE
 1 22MB - none 1.00 0/14000028 0/14000128 OK
dev 17 full-2 2024-11-22 14:24:04+0000 FULL ARCHIVE
 1 98MB - none 1.00 0/17000028 0/17000128 OK
dev 17 delta-2-1 2024-11-23 18:10:55+0000 DELTA ARCHIVE
 1 23MB - none 1.00 0/19000028 0/19000128 OK
 --
retention
 window---
dev 17 delta-2-2 2025-02-06 23:44:33+0000 DELTA ARCHIVE
 1 33MB - none 1.00 0/1C000028 0/1C000128 OK
dev 17 full-3 2025-02-08 03:31:33+0000 FULL ARCHIVE
 1 120MB - none 1.00 0/1F000028 0/1F000128 OK
dev 17 delta-3-1 2025-02-09 07:18:31+0000 DELTA ARCHIVE
 1 23MB - none 1.00 0/21000028 0/21000128 OK

31

Usage

dev 17 delta-3-2 2025-02-10 11:05:17+0000 DELTA ARCHIVE
 1 23MB - none 1.00 0/23000028 0/23000128 OK
dev 17 full-4 2025-02-11 15:00:38+0000 FULL ARCHIVE
 1 1s 123MB - none 1.00 0/25000028 0/25000128 OK

If you run the retention command with the --delete-expired flag, the backups with IDs
full-1, delta-1-1, and delta-1-2 will be removed as they are expired both according to the
retention window and due to redundancy (the required set of full backups has already been retained).
delta-1-1 and delta-1-2 will also be removed since the base full backup is expired.

Running the retention command with the --merge-expired flag will merge backups full-2
and delta-2-1 with delta-2-2. The merge will occur with delta-2-2 as it is the first non-
expired delta backup, which can be merged with expired delta backups delta-2-1 and expired full
backup full-2. The new full backup ID will take the value of the current timestamp.

pg_probackup3 retention -B backup_dir --instance=node --delete-
expired --merge-expired
pg_probackup3 show -B backup_dir

BACKUP INSTANCE 'dev', version 3
===
Instance Version ID End time
 Mode WAL Mode TLI Duration Data WAL Zalg Zratio Start LSN Stop
 LSN Status
===
dev 17 2025-02-11-11-14-18-254 2025-02-11 11:14:18+0000
 FULL ARCHIVE 1 108MB - none 1.00 0/17000028
 0/19000128 OK
dev 17 full-3 2025-02-08 03:31:33+0000
 FULL ARCHIVE 1 120MB - none 1.00 0/1F000028
 0/1F000128 OK
dev 17 delta-3-1 2025-02-09 07:18:31+0000
 DELTA ARCHIVE 1 23MB - none 1.00 0/21000028
 0/21000128 OK
dev 17 delta-3-2 2025-02-10 11:05:17+0000
 DELTA ARCHIVE 1 23MB - none 1.00 0/23000028
 0/23000128 OK
dev 17 full-4 2025-02-11 15:00:38+0000
 FULL ARCHIVE 1 1s 123MB - none 1.00 0/25000028
 0/25000128 OK

The Duration field for the merged backup displays the time required for the merge.

Pinning Backups

If you need to keep certain backups longer than the established retention policy allows, you can pin
them for arbitrary time. For example:

pg_probackup3 set-backup -B backup_dir --instance=instance_name -
i backup_id --ttl=30d

This command sets the expiration time of the specified backup to 30 days starting from the time
indicated in its recovery-time attribute.

You can also explicitly set the expiration time for a backup using the --expire-time option. For
example:

32

Usage

pg_probackup3 set-backup -B backup_dir --instance=instance_name -
i backup_id --expire-time="2027-04-09 18:21:32+00"

Alternatively, you can use the --ttl and --expire-time options with the backup command to
pin the newly created backup:

pg_probackup3 backup -B backup_dir --instance=instance_name -b FULL
 --ttl=30d
pg_probackup3 backup -B backup_dir --instance=instance_name -b FULL
 --expire-time="2027-04-09 18:21:32+00"

To check if the backup is pinned, run the show command:

pg_probackup3 show -B backup_dir --instance=instance_name -
i backup_id

If the backup is pinned, it has the expire-time attribute that displays its expiration time:

...
recovery-time = '2024-04-09 18:21:32+00'
expire-time = '2027-04-09 18:21:32+00'
data-bytes = 22288792
...

You can unpin the backup by setting the --ttl option to zero:

pg_probackup3 set-backup -B backup_dir --instance=instance_name -
i backup_id --ttl=0

Note

A pinned incremental backup implicitly pins all its parent backups. If you unpin such a backup
later, its implicitly pinned parents will also be automatically unpinned.

Configuring WAL Archive Retention Policy

When continuous WAL archiving is enabled, archived WAL segments can take a lot of disk space.
Even if you delete old backup copies from time to time, the --delete-wal flag can purge only those
WAL segments that do not apply to any of the remaining backups in the backup catalog. However, if
point-in-time recovery is critical only for the most recent backups, you can configure WAL archive
retention policy to keep WAL archive of limited depth and win back some more disk space.

Suppose you have backed up the node instance in the backup_dir directory and configured con-
tinuous WAL archiving:

pg_probackup3 show -B backup_dir --instance=node

BACKUP INSTANCE 'dev', version 3
===
Instance Version ID End time
 Mode WAL Mode TLI Duration Data WAL Zalg Zratio Start LSN Stop
 LSN Status
===

33

Usage

dev 17 2025-02-11-15-13-36-756 2025-02-11 15:13:37+0000
 FULL ARCHIVE 1 1s 38MB - none 1.00 0/17000028
 0/19000128 OK
dev 17 2025-02-11-14-51-12-937 2025-02-06 23:44:33+0000
 DELTA ARCHIVE 1 33MB - none 1.00 0/1C000028
 0/1C000128 OK
dev 17 2025-02-11-14-51-33-367 2025-02-08 03:31:33+0000
 FULL ARCHIVE 1 120MB - none 1.00 0/1F000028
 0/1F000128 OK
dev 17 2025-02-11-14-51-51-220 2025-02-09 07:18:31+0000
 DELTA ARCHIVE 1 23MB - none 1.00 0/21000028
 0/21000128 OK
dev 17 2025-02-11-14-51-57-473 2025-02-10 11:05:17+0000
 DELTA ARCHIVE 1 23MB - none 1.00 0/23000028
 0/23000128 OK
dev 17 2025-02-11-15-00-37-815 2025-02-11 15:00:38+0000
 FULL ARCHIVE 1 1s 123MB - none 1.00 0/25000028
 0/25000128 OK

You can check the state of the WAL archive by running the show command with the --archive flag:

pg_probackup3 show -B backup_dir --instance=node --archive

BACKUP INSTANCE 'dev', version 3
==
TLI Parent TLI Switchpoint Min Segno Max Segno
 N segments Size Zratio N backups Status
==
1 0/0 000000010000000000000001
 000000010000000000000025 37 592MB 1.41 6 OK

To purge all unused WAL files (that do not apply to any of the remaining backups in the backup
catalog) run the following command:

pg_probackup3 retention -B backup_dir --instance=node --delete-wal

[2025-02-11 15:23:30.422696] [14218] [128670453549440] [info]
 command: ./pg_probackup3 retention -B /work/backup --instance dev
 --delete-wal
[2025-02-11 15:23:30.422738] [14218] [128670453549440] [info]
 execute command: 'retention', instance 'dev'
[2025-02-11 15:23:30.426167] [14218] [128670453549440] [info] WAL
 file 000000010000000000000001 removed
[2025-02-11 15:23:30.428095] [14218] [128670453549440] [info] WAL
 file 000000010000000000000002 removed
[2025-02-11 15:23:30.429776] [14218] [128670453549440] [info] WAL
 file 000000010000000000000003 removed
[2025-02-11 15:23:30.431838] [14218] [128670453549440] [info] WAL
 file 000000010000000000000004 removed
[2025-02-11 15:23:30.434124] [14218] [128670453549440] [info] WAL
 file 000000010000000000000005 removed
[2025-02-11 15:23:30.434196] [14218] [128670453549440] [info] WAL
 file 000000010000000000000005.00000028.backup removed
[2025-02-11 15:23:30.435852] [14218] [128670453549440] [info] WAL
 file 000000010000000000000006 removed

34

Usage

[2025-02-11 15:23:30.437579] [14218] [128670453549440] [info] WAL
 file 000000010000000000000007 removed
[2025-02-11 15:23:30.441360] [14218] [128670453549440] [info] WAL
 file 000000010000000000000008 removed
[2025-02-11 15:23:30.441815] [14218] [128670453549440] [info] WAL
 file 000000010000000000000008.00000028.backup removed
[2025-02-11 15:23:30.444488] [14218] [128670453549440] [info] WAL
 file 000000010000000000000009 removed
[2025-02-11 15:23:30.446902] [14218] [128670453549440] [info] WAL
 file 00000001000000000000000A removed
[2025-02-11 15:23:30.446961] [14218] [128670453549440] [info] WAL
 file 00000001000000000000000A.00000028.backup removed
[2025-02-11 15:23:30.448960] [14218] [128670453549440] [info] WAL
 file 00000001000000000000000B removed
[2025-02-11 15:23:30.450991] [14218] [128670453549440] [info] WAL
 file 00000001000000000000000C removed
[2025-02-11 15:23:30.451069] [14218] [128670453549440] [info] WAL
 file 00000001000000000000000C.00000028.backup removed
[2025-02-11 15:23:30.453236] [14218] [128670453549440] [info] WAL
 file 00000001000000000000000D removed
[2025-02-11 15:23:30.455291] [14218] [128670453549440] [info] WAL
 file 00000001000000000000000E removed
[2025-02-11 15:23:30.455462] [14218] [128670453549440] [info] WAL
 file 00000001000000000000000E.00000028.backup removed
[2025-02-11 15:23:30.458088] [14218] [128670453549440] [info] WAL
 file 00000001000000000000000F removed
[2025-02-11 15:23:30.459755] [14218] [128670453549440] [info] WAL
 file 000000010000000000000010 removed
[2025-02-11 15:23:30.459794] [14218] [128670453549440] [info] WAL
 file 000000010000000000000010.00000028.backup removed
[2025-02-11 15:23:30.461135] [14218] [128670453549440] [info] WAL
 file 000000010000000000000011 removed
[2025-02-11 15:23:30.462603] [14218] [128670453549440] [info] WAL
 file 000000010000000000000012 removed
[2025-02-11 15:23:30.462637] [14218] [128670453549440] [info] WAL
 file 000000010000000000000012.00000028.backup removed
[2025-02-11 15:23:30.464003] [14218] [128670453549440] [info] WAL
 file 000000010000000000000013 removed
[2025-02-11 15:23:30.465522] [14218] [128670453549440] [info] WAL
 file 000000010000000000000014 removed
[2025-02-11 15:23:30.465555] [14218] [128670453549440] [info] WAL
 file 000000010000000000000014.00000028.backup removed
[2025-02-11 15:23:30.466910] [14218] [128670453549440] [info] WAL
 file 000000010000000000000015 removed
[2025-02-11 15:23:30.468572] [14218] [128670453549440] [info] WAL
 file 000000010000000000000016 removed
[2025-02-11 15:23:30.468600] [14218] [128670453549440] [info] 30
 WAL files removed.

You can check the state of the WAL archive by running the show command with the --archive flag:

pg_probackup3 show -B backup_dir --instance=node --archive

BACKUP INSTANCE 'dev', version 3
==
TLI Parent TLI Switchpoint Min Segno Max Segno
 N segments Size Zratio N backups Status

35

Usage

==
1 0/0 000000010000000000000017
 000000010000000000000025 15 240MB 1.47 6 OK

More Examples
All examples below assume the remote mode of operations via SSH. If you are planning to run backup
and restore operation locally, skip the “Setup passwordless SSH connection” step and omit all --
remote-* options.

Examples are based on Ubuntu 22.04, Postgres Pro 17, and pg_probackup3

• backup — Postgres Pro role used to connect to the Postgres Pro cluster.
• backupdb — database used to connect to the Postgres Pro cluster.
• backup_host — host with the backup catalog.
• backup_user — user on backup_host running all pg_probackup3 operations.
• /mnt/backups — directory on backup_host where the backup catalog is stored.
• postgres_host — host with the Postgres Pro cluster.
• postgres — user on postgres_host under which Postgres Pro cluster processes are running..
• /var/lib/pgpro/std-17/data — Postgres Pro data directory on postgres_host.

Minimal Setup

This scenario illustrates setting up standalone FULL and DELTA backups.

1. Set up passwordless SSH connection from backup_host to postgres_host:

[backup_user@backup_host] ssh-copy-id postgres@postgres_host

2. Configure your Postgres Pro cluster.

For security purposes, it is recommended to use a separate database for backup operations.

postgres=#
CREATE DATABASE backupdb;

Connect to the backupdb database, create the probackup role, and grant the following per-
missions to this role:

backupdb=#
BEGIN;
CREATE ROLE backup WITH LOGIN REPLICATION;
GRANT USAGE ON SCHEMA pg_catalog TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.current_setting(text) TO
 backup;
GRANT EXECUTE ON FUNCTION pg_catalog.set_config(text, text,
 boolean) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_is_in_recovery() TO
 backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_start_backup(text,
 boolean, boolean) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_stop_backup(boolean,
 boolean) TO backup;
GRANT EXECUTE ON FUNCTION
 pg_catalog.pg_create_restore_point(text) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_switch_wal() TO backup;

36

Usage

GRANT EXECUTE ON FUNCTION pg_catalog.pg_last_wal_replay_lsn()
 TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.txid_current() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.txid_current_snapshot() TO
 backup;
GRANT EXECUTE ON FUNCTION
 pg_catalog.txid_snapshot_xmax(txid_snapshot) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_control_checkpoint() TO
 backup;
COMMIT;

Add the pg_probackup3 module pgpro_bindump in the postgresql.conf file:

echo "shared_preload_libraries = 'pgpro_bindump'" >> "/var/lib/
pgpro/std-17/data/postgresql.conf"
echo "walsender_plugin_libraries = 'pgpro_bindump' " >> "/var/
lib/pgpro/std-17/data/postgresql.conf"
echo "wal_level = 'replica'" >> "/var/lib/pgpro/std-17/data/
postgresql.conf"

3. Initialize the backup catalog:

[backup_user@backup_host]$ pg_probackup3 init -B /mnt/backups
2024-12-09 07:40:27.198881] [363926] [135107950659968] [info]
 Backup catalog '/mnt/backups' successfully initialized

4. Add instance pg-17 to the backup catalog:

[backup_user@backup_host]$ pg_probackup3 add-instance -B /mnt/
backups --instance pg-17 --remote-host=postgres_host --remote-
user=postgres -D var/lib/pgpro/std-17/data
[2024-12-09 07:47:56.595727] [364390] [138813944502656] [info]
 Instance 'pg-17' successfully initialized

5. Take a FULL backup:

[backup_user@backup_host] pg_probackup3 backup -B /mnt/backups
 --instance pg-17 -b FULL --stream --remote-host=postgres_host
 --remote-user=postgres -U backup -d backupdb --backup-id=1-
full
[2024-12-09 23:44:49.602026] [425177] [123209585379712]
 [info] START BACKUP COMMAND= PGPRO_CALL_PLUGIN pgpro_bindump
 start_backup(LABEL '1-full');
[2024-12-09 23:44:49.645450] [425177] [123209585379712] [info]
 PG_PROBACKUP 0/4000028 tli=1
[2024-12-09 23:44:49.652048] [425177]
 [123209585379712] [info] Created replication slot.
 Name='pg_probackup3_wal_streaming_425181', consistent
 point=0/0, snapshot name=, output plugin=
[2024-12-09 23:44:49.652185] [425177] [123209585379712]
 [info] BACKUP COMMAND PGPRO_CALL_PLUGIN pgpro_bindump
 copy_files(VERIFY_CHECKSUMS true, COMPRESS_ALG 'none',
 COMPRESS_LVL 1);
[2024-12-09 23:44:49.652468] [425177] [123209573729984] [info]
 Starting new segment 4

37

Usage

[2024-12-09 23:44:49.769640] [425177] [123209585379712]
 [info] BACKUP COMMAND PGPRO_CALL_PLUGIN pgpro_bindump
 stop_backup(STREAM true, COMPRESS_ALG 'none', COMPRESS_LVL 1);
[2024-12-09 23:44:49.805112] [425177] [123209573729984] [info]
 Stopping segment 4
[2024-12-09 23:44:49.805316] [425177] [123209573729984] [info]
 finished streaming WAL at 0/5000000 (timeline 1)
[2024-12-09 23:44:49.805343] [425177] [123209573729984] [info]
 WAL streaming: WAL streaming stop requested at 0/4000138,
 stopping at 0/5000000
[2024-12-09 23:44:49.805935] [425177] [123209585379712] [info]
 PG_PROBACKUP-STOP 0/4000138 tli=1 bytes written=39430093 bytes
 compressed=39430093
[2024-12-09 23:44:49.806484] [425177] [123209585379712] [info]
 Backup time 206
[2024-12-09 23:44:49.806515] [425177] [123209585379712] [info]
 Backup 1-full completed successfully.
INFO: Backup 1-full completed successfully.
[2024-12-09 23:44:49.806592] [425177] [123209585379712] [info]
 Start validate 1-full ...
[2024-12-09 23:44:49.807204] [425177] [123209585379712] [info]
 Validating backup 1-full
[2024-12-09 23:44:49.912115] [425177] [123209585379712] [info]
 Validate time 104
[2024-12-09 23:44:49.912398] [425177] [123209585379712] [info]
 INFO: Backup 1-full is valid

6. Let's take a look at the backup catalog:

[backup_user@backup_host] pg_probackup3 show -B /mnt/backups --
instance pg-17

BACKUP INSTANCE 'pg-17', version 3
==
 Instance Version ID End time Mode WAL Mode
 TLI Duration Data WAL Zalg Zratio Start LSN Stop LSN Status
==
pg-17 16 1-full 2024-12-09 23:44:49+0000 FULL STREAM
 1 38MB - none 1.00 0/4000028 0/4000138 OK

7. Take an incremental backup in the DELTA mode:

[backup_user@backup_host] pg_probackup3 backup -B /mnt/backups
 --instance pg-17 -b delta --stream --remote-host=postgres_host
 --remote-user=postgres -U backup -d backupdb --parent-backup-
id=1-full --backup-id=1-delta
[2024-12-10 01:00:50.804867] [430043] [130779551140224] [info]
 This PostgreSQL instance was initialized with data block
 checksums. Data block corruption will be detected
[2024-12-10 01:00:50.805233] [430043] [130779551140224]
 [info] START BACKUP COMMAND= PGPRO_CALL_PLUGIN pgpro_bindump
 start_backup(LABEL '1-delta', START_LSN '0/4000028');
[2024-12-10 01:00:50.843249] [430043] [130779551140224] [info]
 PG_PROBACKUP 0/6000028 tli=1
[2024-12-10 01:00:50.850799] [430043]
 [130779551140224] [info] Created replication slot.

38

Usage

 Name='pg_probackup3_wal_streaming_430047', consistent
 point=0/0, snapshot name=, output plugin=
[2024-12-10 01:00:50.850898] [430043] [130779551140224]
 [info] BACKUP COMMAND PGPRO_CALL_PLUGIN pgpro_bindump
 copy_files(VERIFY_CHECKSUMS true, START_LSN '0/4000028',
 COMPRESS_ALG 'none', COMPRESS_LVL 1);
[2024-12-10 01:00:50.851124] [430043] [130779470366400] [info]
 Starting new segment 6
[2024-12-10 01:00:50.877932] [430043] [130779551140224]
 [info] BACKUP COMMAND PGPRO_CALL_PLUGIN pgpro_bindump
 stop_backup(STREAM true, COMPRESS_ALG 'none', COMPRESS_LVL 1);
[2024-12-10 01:00:50.913070] [430043] [130779470366400] [info]
 Stopping segment 6
[2024-12-10 01:00:50.913284] [430043] [130779470366400] [info]
 finished streaming WAL at 0/7000000 (timeline 1)
[2024-12-10 01:00:50.913302] [430043] [130779470366400] [info]
 WAL streaming: WAL streaming stop requested at 0/6000138,
 stopping at 0/7000000
[2024-12-10 01:00:50.913497] [430043] [130779551140224] [info]
 PG_PROBACKUP-STOP 0/6000138 tli=1 bytes written=786310 bytes
 compressed=786310
[2024-12-10 01:00:50.913868] [430043] [130779551140224] [info]
 Backup time 110
[2024-12-10 01:00:50.913884] [430043] [130779551140224] [info]
 Backup 1-delta completed successfully.
INFO: Backup 1-delta completed successfully.
[2024-12-10 01:00:50.913918] [430043] [130779551140224] [info]
 Start validate 1-delta ...
[2024-12-10 01:00:50.914269] [430043] [130779551140224] [info]
 Validating backup 1-delta
[2024-12-10 01:00:50.934892] [430043] [130779551140224] [info]
 Validate time 20
[2024-12-10 01:00:50.935188] [430043] [130779551140224] [info]
 INFO: Backup 1-delta is valid

8. Let's add some parameters to pg_probackup3 configuration file, so that you can omit them
from the command line:

[backup_user@backup_host] pg_probackup3 set-config -B /mnt/
backups --instance pg-17 --remote-host=postgres_host --remote-
user=postgres -U backup -d backupdb
[2024-12-10 01:03:18.173698] [430208] [125541616851328] [info]
 Instance 'pg-17' successfully updated

9. Take another incremental backup in the DELTA mode, omitting some of the previous pa-
rameters:

[backup_user@backup_host] pg_probackup3 backup -B /mnt/backups
 --instance pg-17 -b delta --stream --parent-backup-id=1-delta
 --backup-id=2-delta
[2024-12-10 01:26:33.325658] [431695] [135663496210816] [info]
 This PostgreSQL instance was initialized with data block
 checksums. Data block corruption will be detected
[2024-12-10 01:26:33.326140] [431695] [135663496210816]
 [info] START BACKUP COMMAND= PGPRO_CALL_PLUGIN pgpro_bindump
 start_backup(LABEL '2-delta', START_LSN '0/6000028');

39

Usage

[2024-12-10 01:26:33.365430] [431695] [135663496210816] [info]
 PG_PROBACKUP 0/8000028 tli=1
[2024-12-10 01:26:33.372681] [431695]
 [135663496210816] [info] Created replication slot.
 Name='pg_probackup3_wal_streaming_431699', consistent
 point=0/0, snapshot name=, output plugin=
[2024-12-10 01:26:33.372762] [431695] [135663496210816]
 [info] BACKUP COMMAND PGPRO_CALL_PLUGIN pgpro_bindump
 copy_files(VERIFY_CHECKSUMS true, START_LSN '0/6000028',
 COMPRESS_ALG 'none', COMPRESS_LVL 1);
[2024-12-10 01:26:33.372966] [431695] [135663483619008] [info]
 Starting new segment 8
[2024-12-10 01:26:33.407073] [431695] [135663496210816]
 [info] BACKUP COMMAND PGPRO_CALL_PLUGIN pgpro_bindump
 stop_backup(STREAM true, COMPRESS_ALG 'none', COMPRESS_LVL 1);
[2024-12-10 01:26:33.441125] [431695] [135663483619008] [info]
 Stopping segment 8
[2024-12-10 01:26:33.441303] [431695] [135663483619008] [info]
 finished streaming WAL at 0/9000000 (timeline 1)
[2024-12-10 01:26:33.441318] [431695] [135663483619008] [info]
 WAL streaming: WAL streaming stop requested at 0/8000138,
 stopping at 0/9000000
[2024-12-10 01:26:33.441497] [431695] [135663496210816] [info]
 PG_PROBACKUP-STOP 0/8000138 tli=1 bytes written=786310 bytes
 compressed=786310
[2024-12-10 01:26:33.441809] [431695] [135663496210816] [info]
 Backup time 117
[2024-12-10 01:26:33.441822] [431695] [135663496210816] [info]
 Backup 2-delta completed successfully.
INFO: Backup 2-delta completed successfully.
[2024-12-10 01:26:33.441850] [431695] [135663496210816] [info]
 Start validate 2-delta ...
[2024-12-10 01:26:33.442115] [431695] [135663496210816] [info]
 Validating backup 2-delta
[2024-12-10 01:26:33.463554] [431695] [135663496210816] [info]
 Validate time 21
[2024-12-10 01:26:33.463728] [431695] [135663496210816] [info]
 INFO: Backup 2-delta is valid

10. Let's take a look at the instance configuration:

[backup_user@backup_host] pg_probackup3 show-config -B /mnt/
backups --instance pg-17

Backup instance information
system-identifier = 7446313657913924966
Connection parameters
pguser = backup
pgdatabase = backupdb
pgdata = /var/lib/pgpro/std-17/data
Logging parameters
log-level-console = info
log-level-file = off
log-format-console = plain
log-format-file = plain
log-filename = pg_probackup.log
log-rotation-size = 0

40

Usage

Compression parameters
compress-algorithm = none
compress-level = 0
Retention parameters
retention-redundancy = 0
retention-window = 0
wal-depth = 0

11. Let's take a look at the backup catalog:

[backup_user@backup_host] pg_probackup3 show -B /mnt/backups --
instance pg-17
BACKUP INSTANCE 'pg-17', version 3
===
 Instance Version ID End time Mode WAL
 Mode TLI Duration Data WAL Zalg Zratio Start LSN Stop LSN
 Status
===
pg-17 16 1-full 2024-12-09 23:44:49+0000 FULL
 STREAM 1 38MB - none 1.00 0/4000028
 0/4000138 OK
pg-17 16 1-delta 2024-12-10 01:00:50+0000 DELTA
 STREAM 1 768kB - none 1.00 0/6000028
 0/6000138 OK
pg-17 16 2-delta 2024-12-10 01:26:33+0000 DELTA
 STREAM 1 768kB - none 1.00 0/8000028
 0/8000138 OK

41

Chapter 5. Reference

Table of Contents
pg_probackup3 .. 43
libpgprobackup .. 63

42

Reference

Name
pg_probackup3 — utility to manage backup and recovery of Postgres Pro Enterprise database clusters

Synopsis

pg_probackup3 version

pg_probackup3 help [command]

pg_probackup3 init -B backup_dir --skip-if-exists

pg_probackup3 add-instance -B backup_dir -D data_dir --instance in-
stance_name --skip-if-exists

pg_probackup3 del-instance -B backup_dir --instance instance_name

pg_probackup3 set-config -B backup_dir --instance instance_name [op-
tion...]

pg_probackup3 set-backup -B backup_dir --instance instance_name -i back-
up_id [option...]

pg_probackup3 show-config -B backup_dir --instance instance_name [op-
tion...]

pg_probackup3 show -B backup_dir [option...]

pg_probackup3 backup -B backup_dir --instance instance_name -b back-
up_mode [option...]

pg_probackup3 restore -B backup_dir --instance instance_name [option...]

pg_probackup3 validate -B backup_dir [option...]

pg_probackup3 merge -B backup_dir --instance instance_name -i backup_id
[option...]

pg_probackup3 delete -B backup_dir --instance instance_name -i backup_id

pg_probackup3 archive-push -B backup_dir --instance instance_name --
wal-file-path wal_file_path --wal-file-name wal_file_name [option...]

pg_probackup3 fuse -B backup_dir --mnt-path mnt_path --instance in-
stance_name -i backup_id --cache-swap-size cache_swap_size [option...]

pg_probackup3 archive-get -B backup_dir --instance instance_name --wal-
file-path wal_file_path --wal-file-name wal_file_name [option...]

pg_probackup3 retention -B backup_dir --instance instance_name { --
delete-wal | --delete-expired | --merge-expired } [option...]

Command-Line Reference

Commands

This section describes pg_probackup3 commands. Optional parameters are enclosed in square brack-
ets. For detailed parameter descriptions, see the section Options.

version

43

Reference

pg_probackup3 version

Prints pg_probackup3 version.

If --format=json is specified, the output is printed in the JSON format. This may be needed for
native integration with JSON-based applications, such as PPEM. Example of a JSON output:

 pg_probackup3 version
 {
 "pg_probackup3":
 {
 "version": "3.0.0",
 },
 "compressions": [zlib, lz4, zstd]
 }

help

pg_probackup3 help [command]

Displays the synopsis of pg_probackup3 commands. If one of the pg_probackup3 commands is spec-
ified, shows detailed information about the options that can be used with this command.

init

pg_probackup3 init -B backup_dir [--skip-if-exists] [s3_options]
 [--help]
[ssh_options] [logging_options] [buffer_options]

Initializes the backup catalog in backup_dir that will store backup copies, WAL archive, and meta
information for the backed up database clusters. If the specified backup_dir already exists, it must
be empty. Otherwise, pg_probackup3 displays a corresponding error message. You can ignore this
error by specifying the --skip-if-exists option. Although the backup will not be initialized,
the application will return 0 code.

For more details of the process, refer to the section Initializing the Backup Catalog. For more details
of the command settings, see the section Common Options.

add-instance

pg_probackup3 add-instance -B backup_dir -D data_dir --
instance=instance_name
[--skip-if-exists] [s3_options] [ssh_options] [--help]
 [logging_options]
[connection_options] [compression_options] [retention_options]
[buffer_options]

Initializes a new backup instance inside the backup catalog backup_dir and generates the
pg_probackup3.conf configuration file that controls pg_probackup3 settings for the cluster with
the specified data_dir data directory. If the catalog was already initialized, you can ignore the error
by specifying --skip-if-exists.

For more details of the command settings, see sections Common Options and Adding a New Backup
Instance.

44

Reference

del-instance

pg_probackup3 del-instance -B backup_dir --instance=instance_name
 [s3_options] [--help]
[ssh_options] [logging_options] [buffer_options]

Deletes all backups and WAL files associated with the specified instance.

For more details of the command settings, see the section Common Options.

set-config

pg_probackup3 set-config -B backup_dir --instance=instance_name
[--help] [--pgdata=pgdata-path]
[--retention-redundancy=redundancy][--retention-window=window]
[compress_options] [connection_options]
[--archive-timeout=wait_time] [--external-
dirs=external_directory_path]
[logging_options] [ssh_options] [buffer_options]

Adds the specified connection, compression, retention, logging, and external directory settings into
the pg_probackup3.conf configuration file, or modifies the previously defined values.

For all available settings, see the Options section.

It is not recommended to edit pg_probackup3.conf manually.

set-backup

pg_probackup3 set-backup -B backup_dir --instance=instance_name -
i backup_id
{--ttl=ttl | --expire-time=time}
[--note=backup_note] [ssh_options]
[s3_options] [--help] [logging_options] [buffer_options]

Sets the provided backup-specific settings into the backup.control configuration file, or modifies
the previously defined values.

--note=backup_note

Sets the text note for backup copy. If backup_note contains newline characters, then only the
substring before the first newline character will be saved. The maximum size of a text note is 1
KB. The 'none' value removes the current note.

For more details of the command settings, see sections Common Options and Pinning Options.

show-config

pg_probackup3 show-config -B backup_dir --instance instance_name
[--format=plain|json] [s3_options] [ssh_options]
[logging_options] [buffer_options]

Displays all the current pg_probackup3 configuration settings, including those that are specified
in the pg_probackup3.conf configuration file located in the backup_dir/backups/in-
stance_name directory and those that were provided on a command line. The configuration settings
are shown as plain text.

To edit pg_probackup3.conf, use the set-config command.

45

Reference

show

pg_probackup3 show -B backup_dir
[--help] [--instance=instance_name [-i backup_id | --archive]]
[--show-log] [--format=plain|json] [--no-color] [--format=plain|
json|tree]
[s3_options] [ssh_options]
[logging_options] [buffer_options]

Shows the contents of the backup catalog. If instance_name and backup_id are specified,
shows detailed information about this backup. If the --archive option is specified, shows the con-
tents of WAL archive of the backup catalog.

By default, the contents of the backup catalog is shown as plain text. You can specify the --for-
mat=json option to get the result in the JSON format. If --no-color flag is used, then the output
is not colored. You can also use the --format=tree option to see the list of backups as a tree.

For details on usage, see the sections Managing the Backup Catalog and Viewing WAL Archive In-
formation.

backup

pg_probackup3 backup -B backup_dir --instance=instance_name -
b backup_mode -s backup_source -i backup_id
[--with-file-map] [--help] [-j num_threads] [--progress]
[--num-segments] [--create-slot] [--transfer-mode]
[--no-validate] [--skip-block-validation]
[--archive-timeout=wait_time] [--external-
dirs=external_directory_path]
[--no-sync] [--note=backup_note]
[connection_options] [compression_options] [ssh_options]
[pinning_options] [logging_options] [s3_options] [buffer_options]

Creates a backup copy of the Postgres Pro instance.

-b mode, --backup-mode=mode

Specifies the backup mode to use. Possible values are: FULL, DELTA, and PTRACK.

-s backup_source, --backup-source=backup_source

Specifies the backup data source. Possible values are: DIRECT, BASE, and PRO.

--num-segments num_segments

Specifies the number of the backup segments during the backup creation or merge. Must be a
positive integer.

Note

If the specified value exceeds the system limit for simultaneously open files, the process
will fail with the error message “too many open files”.

--backup-threads num_threads

Specifies the number of threads for copying files. Overrides the j/--threads option for file
copying.

46

Reference

--validate-threads num_threads

Specifies the number of threads for the backup validation. Overrides the j/--threads option
for the backup validation.

-C, --smooth-checkpoint

Spreads out the checkpoint over a period of time. By default, pg_probackup3 tries to complete
the checkpoint as soon as possible.

--stream

Makes a STREAM backup, which includes all the necessary WAL files by streaming them from
the database server via replication protocol.

--temp-slot[=true|false|on|off]

Creates a temporary physical replication slot for streaming WAL from the backed up Postgres
Pro instance. --temp-slot is enabled by default. It ensures that all the required WAL seg-
ments remain available if WAL is rotated while the backup is in progress. This flag can only
be used together with the --stream flag. The default slot name is pg_probackup_slot.
To change it, use the --slot/-S option and explicitly specify --temp-slot or --temp-
slot=true|on.

-S slot_name, --slot=slot_name

Specifies the replication slot to connect to for WAL streaming. This option can only be used
together with the --stream flag.

--backup-pg-log

Includes the log directory into the backup. This directory usually contains log messages. By de-
fault, log directory is excluded.

-E external_directory_path, --external-dirs=external_directory_path

Includes the specified directory into the backup by recursively copying its contents into a separate
subdirectory in the backup catalog. This option is useful to back up scripts, SQL dump files,
and configuration files located outside of the data directory. If you would like to back up several
external directories, separate their paths by a colon on Unix and a semicolon on Windows.

--archive-timeout=wait_time

Sets the timeout for WAL segment archiving and streaming, in seconds. By default, pg_proback-
up3 waits 300 seconds.

--skip-block-validation

Disables block-level checksum verification to speed up the backup process.

--no-validate

Skips automatic validation after the backup is taken. You can use this flag if you validate backups
regularly and would like to save time when running backup operations.

It is recommended to use this flag when creating a backup to an S3 storage. Due to some features
of S3 storages, automatic validation may appear incorrect in this case. Skip automatic validation
and then perform validation using a separate validate command.

--no-sync

Do not sync backed up files to disk. You can use this flag to speed up the backup process. Using
this flag can result in data corruption in case of operating system or hardware crash. If you use

47

Reference

this option, it is recommended to run the validate command once the backup is complete to detect
possible issues.

--note=backup_note

Sets the text note for backup copy. If backup_note contains newline characters, then only
substring before first newline character will be saved. Max size of text note is 1 KB. The 'none'
value removes current note.

--with-file-map

Enables file map generation. Required for the fuse command.

For more details of the command settings, see sections Common Options, Connection Options, Pinning
Options, Remote Mode Options, Compression Options, and Logging Options.

For details on usage, see the section Creating a Backup.

restore

pg_probackup3 restore -B backup_dir --instance=instance_name
[--help] [-D data_dir] [-i backup_id]
[--progress] [-T OLDDIR=NEWDIR]
[--external-mapping=OLDDIR=NEWDIR] [--skip-external-dirs]
[--no-validate] [--skip-block-validation]
[--no-sync] [--restore-command=cmdline]
[--primary-conninfo=primary_conninfo]
[--primary-slot-name=slot_name]
[recovery_target_options] [logging_options]
[ssh_options] [s3_options] [buffer_options]

Restores the Postgres Pro instance from a backup located in the backup_dir backup catalog.

Note

While backup files for restore can be retrieved from different sources (the file system, S3, or
SSH SFTP), pg_probackup3 can only restore the Postgres Pro server PGDATA to a local file
system.

Note

The restore command does not support the --threads option yet. The number of threads
will match the number of segments in the backup.

--primary-conninfo=primary_conninfo

Sets the primary_conninfo parameter to the specified value. This option will be ignored unless
the -R flag is specified.

Example: --primary-conninfo="host=192.168.1.50 port=5432 user=foo
password=foopass"

--primary-slot-name=slot_name

Sets the primary_slot_name parameter to the specified value. This option will be ignored unless
the -R flag is specified.

48

https://postgrespro.com/docs/postgresql/current/runtime-config-replication.html#GUC-PRIMARY-CONNINFO
https://postgrespro.com/docs/postgresql/current/runtime-config-replication.html#GUC-PRIMARY-SLOT-NAME

Reference

-T OLDDIR=NEWDIR, --tablespace-mapping=OLDDIR=NEWDIR

Relocates the tablespace from the OLDDIR to the NEWDIR directory at the time of recovery. Both
OLDDIR and NEWDIR must be absolute paths. If the path contains the equals sign (=), escape it
with a backslash. This option can be specified multiple times for multiple tablespaces.

--external-mapping=OLDDIR=NEWDIR

Relocates an external directory included into the backup from the OLDDIR to the NEWDIR di-
rectory at the time of recovery. Both OLDDIR and NEWDIR must be absolute paths. If the path
contains the equals sign (=), escape it with a backslash. This option can be specified multiple
times for multiple directories.

--skip-external-dirs

Skip external directories included into the backup with the --external-dirs option. The
contents of these directories will not be restored.

--skip-block-validation

Disables block-level checksum verification to speed up validation. During automatic validation
before the restore only file-level checksums will be verified.

--no-validate

Skips backup validation. You can use this flag if you validate backups regularly and would like
to save time when running restore operations.

--restore-command=cmdline

Sets the restore_command parameter to the specified command. For example: --re-
store-command='cp /mnt/server/archivedir/%f "%p"'

--no-sync

Do not sync restored files to disk. You can use this flag to speed up restore process. Using this
flag can result in data corruption in case of operating system or hardware crash. If it happens, you
have to run the restore command again.

For more details of the command settings, see sections Common Options, Recovery Target Options,
Remote Mode Options, Remote WAL Archive Options, Logging Options.

For details on usage, see the section Restoring a Cluster.

validate

pg_probackup3 validate -B backup_dir
[--help] [--instance=instance_name] [-i backup_id]
[-j num_threads] [--progress]
[--skip-block-validation] [buffer_options]
[logging_options] [ssh_options] [s3_options]

Verifies that all the files required to restore the cluster are present and are not corrupt. If you specify the
instance_name without any additional options, pg_probackup3 validates all the backups available
for this backup instance.

If the --progress option is specified, a list of the backup files and directories will be displayed
during the validation process.

For details, see the section Validating a Backup.

merge

49

https://postgrespro.com/docs/postgresql/current/archive-recovery-settings.html#RESTORE-COMMAND

Reference

pg_probackup3 merge -B backup_dir --instance=instance_name
 -i backup_id --merge-from-id=merge_from --merge-
interval=merge_interval
[-t | --target-backup-id=backup_id] [-j num_threads] [--progress]
 [--no-validate] [--no-sync]
[--with-file-map] [--keep-backups] [--dry-run] [--help]
 [logging_options] [ssh_options] [s3_options] [buffer_options]

Merges backups that belong to a common incremental backup chain. If you specify a full backup,
it will be merged with its first incremental backup. If you specify an incremental backup, it will be
merged to its parent full backup, together with all incremental backups between them. Once the merge
is complete, the full backup takes in all the merged data, and the incremental backups are removed
as redundant. You can also merge chains of incremental backups by specifying the first and the last
incremental backup or the time interval (in hours) after the first backup.

--no-validate

Skips automatic validation before and after merge.

--no-sync

Do not sync merged files to disk. You can use this flag to speed up the merge process. Using this
flag can result in data corruption in case of operating system or hardware crash.

-t, --target-backup-id

Specifies an ID of the merged backups.

--keep-backups

Preserves original backups after merging.

--merge-from-id

Specifies an ID of the first incremental backup from the backup chain for merge.

--merge-interval

Specifies a time period (in hours) before merging a chain of incremental backups.

--with-file-map

Enables file map generation. Required for the fuse command.

For more details of the command settings, see sections Common Options and Merging Backups.

delete

pg_probackup3 delete -B backup_dir --instance=instance_name
[--help] [--progress]
[--dry-run] [--no-sync] [logging_options] [ssh_options]
[s3_options] [buffer_options]

Deletes backups with specified backup_id.

--no-sync

Do not sync deleted files to disk. Using this flag can result in data corruption in case of operating
system or hardware crash.

For details, see the section Deleting Backups.

50

Reference

archive-push

pg_probackup3 archive-push -B backup_dir --instance=instance_name
--wal-file-name=wal_file_name [--wal-file-path=wal_file_path]
[--help] [--no-sync] [--compress]
[--archive-timeout=wait_time]
[--compress-algorithm=compression_algorithm]
[--compress-level=compression_level]
[ssh_options] [logging_options]
[s3_options] [buffer_options]

Copies WAL files into the corresponding subdirectory of the backup catalog and validates the backup
instance by instance_name and system-identifier. If parameters of the backup instance
and the cluster do not match, this command fails with the following error message: Refuse to push
WAL segment segment_name into archive. Instance parameters mismatch.

If the files to be copied already exists in the backup catalog, pg_probackup3 computes and compares
their checksums. If the checksums match, archive-push skips the corresponding file and returns
a successful execution code. Otherwise, archive-push fails with an error.

Each file is copied to a temporary file with the .part suffix. If the temporary file already exists,
pg_probackup3 will wait archive_timeout seconds before discarding it. After the copy is done,
atomic rename is performed. This algorithm ensures that a failed archive-push will not stall con-
tinuous archiving and that concurrent archiving from multiple sources into a single WAL archive has
no risk of archive corruption.

WAL segments copied to the archive are synced to disk unless the --no-sync flag is used.

You can use archive-push in the archive_command Postgres Pro parameter to set up continuous
WAL archiving.

For more details of the command settings, see sections Common Options, Archiving Options, and
Compression Options.

fuse

pg_probackup3 fuse -B backup_dir --mnt-path=mnt_path --
instance=instance_name
-i backup_id [--cache-swap-size=cache_swap_size] [--help]
 [ssh_options]
[logging_options] [s3_options] [buffer_options]

Mounts a backup directory as a virtual file system and allows the Postgres Pro server to run on top of it.

--cache-swap-size

Specifies the amount of data (in MB) stored in memory. The default value is 128 MB. When
the cache exceeds this size, changes are flushed to the nearby disk. This allows working with a
database snapshot without modifying the actual backup. The cache is cleared when the Postgres
Pro server is stopped.

To use the mounted backup as PGDATA, set mnt_path as the path for the -D parameter when starting
Postgres Pro with pg_ctl start.

Note

The backup chain to be mounted must include the --with-file-map option. This option
is available during the backup and merge operations.

51

https://postgrespro.com/docs/postgresql/current/runtime-config-wal.html#GUC-ARCHIVE-COMMAND

Reference

archive-get

pg_probackup3 archive-get -B backup_dir --instance=instance_name --
wal-file-path=wal_file_path --wal-file-name=wal_file_name
[--help] [ssh_options] [logging_options]
[s3_options] [buffer_options]

Copies WAL files from the corresponding subdirectory of the backup catalog to the cluster's write-
ahead log location. This command is automatically set by pg_probackup3 as part of the re-
store_command when restoring backups using a WAL archive. You do not need to set it manually
if you use local storage for backups or remote mode.

If you use S3 interface, to ensure that the Postgres Pro server has access to S3 storage to fetch WAL
files during restore, you can specify the --s3-config-file option that defines the S3 configura-
tion file with appropriate configuration settings, as described in the section called “S3 Options”.

For more details of the command settings, see sections Common Options, Archiving Options, and
Compression Options.

retention

pg_probackup3 retention -B backup_dir --instance=instance_name
[--retention-redundancy] [--retention-window] [--dry-run] [--merge-
expired]
[--delete-expired] [--delete-wal] [pinning_options]
[ssh_options] [s3_options] [buffer_options]

Sets the backup retention policy for an instance or directory and launches backup merge or purge
according to the specified parameters.

For more details of the command settings, see the section Retention Options.

Options

This section describes command-line options for pg_probackup3 commands. If the option value can
be derived from an environment variable, this variable is specified below the command-line option,
in the uppercase. Some values can be taken from the pg_probackup3.conf configuration file
located in the backup catalog.

For details, see the section called “Configuring pg_probackup3”.

If an option is specified using more than one method, command-line input has the highest priority,
while the pg_probackup3.conf settings have the lowest priority.

Common Options

The list of general options.

--dry-run

Initiates a trial run of the appropriate command, which does not actually do any changes, that is,
it does not create, delete or move files on disk. This flag allows you to check that all the command
options are correct and the command is ready to run. WAL streaming is skipped with --dry-
run.

-B directory, --backup-path=directory, BACKUP_PATH

Specifies the absolute path to the backup catalog. Backup catalog is a directory where all backup
files and meta information are stored. Since this option is required for most of the pg_probackup3

52

Reference

commands, you are recommended to specify it once in the BACKUP_PATH environment variable.
In this case, you do not need to use this option each time on the command line.

-D directory, --pgdata=directory, PGDATA

Specifies the absolute path to the data directory of the database cluster. This option is mandatory
only for the add-instance command. Other commands can take its value from the PGDATA envi-
ronment variable, or from the pg_probackup3.conf configuration file.

-i backup_id, --backup-id=backup_id

Specifies the unique identifier of the backup.

--parent-backup-id=parent_backup_id

Specifies the unique identifier of the parent backup (used for incremental backups).

--from-full

Creates an incremental backup from the latest parent FULL backup.

-j num_threads, --threads=num_threads

Sets the number of parallel threads for backup, restore, merge, validate, and
archive-push processes.

--progress

Shows the progress of operations.

--help

Shows detailed information about the options that can be used with this command.

-v version, --version=version

Shows pg_probackup3 version.

Recovery Target Options

If continuous WAL archiving is configured, you can use one of these options with restore command
to specify the moment up to which the database cluster must be restored.

--recovery-target-stop=immediate|latest

Defines when to stop the recovery:
• The immediate value stops the recovery after reaching the consistent state of the specified

backup. This is the default behavior for STREAM backups.
• The latest value continues the recovery until all WAL segments available in the archive

are applied. Setting this value of --recovery-target also sets --recovery-tar-
get-timeline to latest.

--recovery-target-timeline=timeline

Specifies a particular timeline to be used for recovery:

• current — the timeline of the specified backup, default.

• latest — the timeline of the latest available backup.

• A numeric value.

53

Reference

--recovery-target-lsn=lsn

Specifies the LSN of the write-ahead log location up to which recovery will proceed.

--recovery-target-name=recovery_target_name

Specifies a named savepoint up to which to restore the cluster.

--recovery-target-time=time|current|latest

Specifies the timestamp up to which recovery will proceed. If the time zone offset is not specified,
the local time zone is used.

Example: --recovery-target-time="2027-04-09 18:21:32+00"

--recovery-target-xid=xid

Specifies the transaction ID up to which recovery will proceed.

--recovery-target-inclusive=boolean,

Specifies whether to stop just after the specified recovery target (true), or just before the recov-
ery target (false). This option can only be used together with --recovery-target-time,
--recovery-target-lsn or --recovery-target-xid options. The default depends
on the recovery_target_inclusive parameter.

--recovery-target-action=pause|promote|shutdown

Specifies the action the server should take when the recovery target is reached.

Default: pause

Retention Options

These options are used with the retention command.

For details on configuring retention policy, see the section Configuring Retention Policy.

--retention-redundancy=redundancy,

Specifies the number of full backup copies to keep in the data directory. Must be a non-negative
integer. The zero value disables this setting.

Default: 0

--retention-window=window,

Specifies the number of days of recoverability. Must be a non-negative integer. The zero value
disables this setting.

Default: 0

--delete-wal

Deletes WAL files that are no longer required to restore the cluster from any of the existing
backups.

--delete-expired

Deletes backups that do not conform to the retention policy defined in the pg_proback-
up3.conf configuration file.

54

https://postgrespro.com/docs/postgresql/current/runtime-config-wal#GUC-RECOVERY-TARGET-INCLUSIVE
https://postgrespro.com/docs/postgresql/current/recovery-target-settings.html#RECOVERY-TARGET-ACTION

Reference

--merge-expired,

Merges the oldest incremental backup that satisfies the requirements of retention policy with its
parent backups that have already expired.

Pinning Options

You can use these options together with backup, set-backup, and retention commands.

For details on backup pinning, see the section Backup Pinning.

--ttl=ttl

Specifies the amount of time the backup should be pinned. Must be a non-negative integer. The
zero value unpins the already pinned backup. Supported units: ms, s, min, h, d (s by default).

Example: --ttl=30d

--expire-time=time

Specifies the timestamp up to which the backup will stay pinned. Must be an ISO-8601 complaint
timestamp. If the time zone offset is not specified, the local time zone is used.

Example: --expire-time="2027-04-09 18:21:32+00"

Logging Options

You can use these options with any command.

--no-color

Disable coloring for console log messages of warning and error levels.

--log-level-console=log_level

Controls which message levels are sent to the console log. Valid values are verbose, log,
info, warning, error and off. Each level includes all the levels that follow it. The later the
level, the fewer messages are sent. The off level disables console logging.

Default: info

Note

All console log messages are going to stderr, so the output of show and show-config
commands does not mingle with log messages.

--log-level-file=log_level

Controls which message levels are sent to a log file. Valid values are verbose, log, info,
warning, error, and off. Each level includes all the levels that follow it. The later the level,
the fewer messages are sent. The off level disables file logging.

Default: off

--log-filename=log_filename

Defines the filenames of the created log files. The filenames are treated as a strftime pattern,
so you can use %-escapes to specify time-varying filenames.

Default: pg_probackup.log

55

Reference

For example, if you specify the pg_probackup-%u.log pattern, pg_probackup3 generates a
separate log file for each day of the week, with %u replaced by the corresponding decimal number:
pg_probackup-1.log for Monday, pg_probackup-2.log for Tuesday, and so on.

This option takes effect if file logging is enabled by the --log-level-file option.

--error-log-filename=error_log_filename

Defines the filenames of log files for error messages only. The filenames are treated as a strf-
time pattern, so you can use %-escapes to specify time-varying filenames.

Default: none

For example, if you specify the error-pg_probackup-%u.log pattern, pg_probackup3
generates a separate log file for each day of the week, with %u replaced by the correspond-
ing decimal number: error-pg_probackup-1.log for Monday, error-pg_proback-
up-2.log for Tuesday, and so on.

This option is useful for troubleshooting and monitoring.

--log-directory=log_directory

Defines the directory in which log files will be created. You must specify the absolute path. This
directory is created lazily, when the first log message is written.

Note that the directory for log files is always created locally even if backups are created in the S3
storage. So be sure to pass a local path in log_directory when needed.

Default: $BACKUP_PATH/log/

--log-format-console=log_format

Defines the format of the console log. Only set from the command line. Note that you cannot spec-
ify this option in the pg_probackup3.conf configuration file through the set-config com-
mand and that the backup command also treats this option specified in the configuration file as
an error. Possible values are:
• plain — sets the plain-text format of the console log.
• json — sets the JSON format of the console log.

Default: plain

--log-format-file=log_format

Defines the format of log files used. Possible values are:
• plain — sets the plain-text format of log files.
• json — sets the JSON format of log files.

Default: plain

--log-rotation-size=log_rotation_size

Maximum size of an individual log file. If this value is reached, the log file is rotated once a
pg_probackup3 command is launched, except help and version commands. The zero value
disables size-based rotation. Supported units: kB, MB, GB, TB (kB by default).

Default: 0

--log-rotation-age=log_rotation_age

Maximum lifetime of an individual log file. If this value is reached, the log file is rotated once
a pg_probackup3 command is launched, except help and version commands. The time of
the last log file creation is stored in $BACKUP_PATH/log/log_rotation. The zero value
disables time-based rotation. Supported units: ms, s, min, h, d (min by default).

56

Reference

Default: 0

Connection Options

You can use these options together with the backup command.

All libpq environment variables are supported.

-d dbname, --pgdatabase=dbname, PGDATABASE

Specifies the name of the database to connect to. The connection is used only for managing backup
process, so you can connect to any existing database. If this option is not provided on the command
line, PGDATABASE environment variable, or the pg_probackup3.conf configuration file,
pg_probackup3 tries to take this value from the PGUSER environment variable, or from the current
user name if PGUSER variable is not set.

-h host, --pghost=host, PGHOST

Specifies the host name of the system on which the server is running. If the value begins with a
slash, it is used as a directory for the Unix domain socket.

Default: localhost

-p port, --pgport=port, PGPORT

Specifies the TCP port or the local Unix domain socket file extension on which the server is
listening for connections.

Default: 5432

-U username, --pguser=username, PGUSER

User name to connect as.

-w, --no-password

Disables a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file or PGPASSWORD environment variable, the
connection attempt will fail. This flag can be useful in batch jobs and scripts where no user is
present to enter a password.

-W, --password

Forces a password prompt. (Deprecated)

Compression Options

You can use these options together with backup and archive-push commands.

--compress-algorithm=compression_algorithm

Defines the algorithm to use for compressing data files. Possible values are zlib, lz4, zstd,
and none. If set to any value, but none, this option enables compression that uses the corre-
sponding algorithm. Both data files and WAL files are compressed. By default, compression is
disabled.

Default: none

--compress-level=compression_level

Defines the compression level. This option can be used together with the --compress-algo-
rithm option. Possible values depend on the compression algorithm specified:

57

https://postgrespro.com/docs/postgresql/current/libpq-envars.html
https://postgrespro.com/docs/postgresql/current/libpq-pgpass.html

Reference

• 0 — 9 for zlib

• 0 — 12 for lz4

• 0 — 22 for zstd

The value of 0 sets the default compression level for the specified algorithm:

• 6 for zlib

• 9 for lz4

• 3 for zstd

Note

The pure lz4 algorithm has only one compression level — 1. So, if the specified compres-
sion algorithm is lz4 and --compress-level is greater than 1, the lz4hc algorithm
is actually used, which is much slower although does better compression.

Default: 1

--compress

Specifies the default compression algorithm and --compress-level=1. The default algo-
rithm is selected among those supported by Postgres Pro according to the priorities: zstd (high-
est) -> lz4 -> zlib. The --compress option overrides the --compression-algorithm
and --compress-level settings and cannot be specified together with them.

Archiving Options

These options can be used with the archive-push command in the archive_command setting and the
archive-get command in the restore_command setting.

Additionally, remote mode options and logging options can be used.

--wal-file-path=wal_file_path

Provides the path to the WAL file in archive_command and restore_command. Use the
%p variable as the value for this option or explicitly specify the path to a file outside of the data
directory. If you skip this option, the path specified in pg_probackup3.conf will be used.

--wal-file-name=wal_file_name

Provides the name of the WAL file in archive_command and restore_command. Use the
%f variable as the value for this option for correct processing. If the value of --wal-file-
path is a path outside of the data directory, explicitly specify the filename.

--archive-timeout=wait_time

Sets the timeout for considering existing .part files to be stale. By default, pg_probackup3 waits
300 seconds. This option can be used only with the archive-push command.

--no-sync

Do not sync copied WAL files to disk. You can use this flag to speed up archiving process. Using
this flag can result in WAL archive corruption in case of operating system or hardware crash. This
option can be used only with archive-push command.

58

https://postgrespro.com/docs/postgresql/current/runtime-config-wal.html#GUC-ARCHIVE-COMMAND
https://postgrespro.com/docs/postgresql/current/archive-recovery-settings.html#RESTORE-COMMAND

Reference

Buffer Options

You can use these options with all commands.

--buffer-size=size

Specifies the buffer size (in bytes) for read and write operations. Must be a non-negative integer.
The zero value disables this setting. The default value is 0.

--buffer-read-size=size

Specifies a separate buffer size (in bytes) for read operations. Must be a non-negative integer. The
zero value disables this setting. The default value is 0.

--buffer-write-size=size

Specifies a separate extended buffer size (in bytes) for write operations. Must be a non-negative
integer. The zero value disables this setting. The default value is 0.

Remote Mode Options

This section describes the options related to running pg_probackup3 operations remotely via SSH.
These options can be used with all commands.

For details on configuring and using the remote mode, see the section called “Configuring the Remote
Mode” and the section called “Using pg_probackup3 in the Remote Mode”.

--remote-host=destination,

Specifies the remote host IP address or hostname to connect to.

--remote-port=port

Specifies the remote host port to connect to.

Default: 22

--remote-user=username

Specifies remote host user for SSH connection. If you omit this option, the current user initiating
the SSH connection is used.

--remote-path=path

Specifies pg_probackup3 installation directory on the remote system.

--ssh-options=ssh_options

Provides a string of SSH command-line options. For example, the following options can be used
to set keep-alive for SSH connections opened by pg_probackup3: --ssh-options="-o
ServerAliveCountMax=5 -o ServerAliveInterval=60". For the full list of pos-
sible options, see ssh_config manual page.

--ssh-password=password

Specifies the password for SSH connection.

Remote WAL Archive Options

This section describes the options used to provide the arguments for remote mode options.

--archive-host=destination

Provides the argument for the --remote-host option in the archive-get command.

59

https://man.openbsd.org/ssh_config.5

Reference

--archive-port=port

Provides the argument for the --remote-port option in the archive-get command.

Default: 22

--archive-user=username

Provides the argument for the --remote-user option in the archive-get command. If you
omit this option, the user that has started the Postgres Pro cluster is used.

Default: Postgres Pro user

Incremental Restore Options

This section describes the options for incremental cluster restore. These options can be used with the
restore command.

--I incremental_mode, --incremental-mode=incremental_mode

Specifies the incremental mode to be used. Possible values are:
• CHECKSUM — replace only pages with mismatched checksum and LSN.
• LSN — replace only pages with LSN greater than point of divergence.
• NONE — regular restore.

Partial Restore Options

This section describes the options for partial cluster restore. These options can be used with the restore
command.

--db-exclude-oid=dboid

Specifies the OID of the database to exclude from restore. All other databases in the cluster will be
restored as usual, including template0 and template1. This option can be specified multiple
times for multiple databases.

--db-include-oid=dboid

Specifies the OID of the database to restore from a backup. All other databases in the cluster
will not be restored, with the exception of template0 and template1. This option can be
specified multiple times for multiple databases.

Warning

Options --db-exclude-oid and --db-include-oid cannot be used together.

S3 Options

This section describes the options needed to store backups in private clouds. These options can be
used with any commands that pg_probackup3 runs using S3 interface.

--s3=s3_interface_provider

Specifies the S3 interface provider. Possible values are:

• minio — MinIO object storage, compatible with S3 cloud storage service. With this provider,
custom S3 server settings can be specified. The HTTP protocol, port 9000, and region us-
east-1 are used by default.

• vk — VK Cloud storage. With this provider, the S3 host address hb.vkcs.cloud, port 443,
and HTTPS protocol are only used. Custom values of the host, port, and protocol are ignored.
The default value of region is ru-msk.

60

Reference

• aws — Amazon S3 storage, offered by Amazon Web Services (AWS). With this provider,
the S3 host address bucket_name.s3.region.amazonaws.com, port 443, and HTTPS
protocol are only used. Custom values of the host, port, and protocol are ignored. The default
value of region is us-east-1.

• google —

With --s3=minio, pg_probackup3 will work fine for a VK Cloud storage if the S3 host address,
port and protocol are properly specified (host address is hb.vkcs.cloud or the one specified
in the appropriate section of the VK Cloud profile, port 443, and HTTPS protocol). Do not specify
--s3=minio for the Amazon S3 storage.

Once a pg_probackup3 command runs with the --s3 option, pg_probackup3 starts running all
commands that support parallel execution on 10 parallel threads (for details, see the section called
“Running pg_probackup3 on Parallel Threads”). You can change the number of threads using the
-j/--threads option.

--s3-config-file=path_to_config_file

Specifies the S3 configuration file. Settings in the configuration file override the environ-
ment variables. If this option is not specified, pg_probackup3 first looks for the S3 configura-
tion file at /etc/pg_probackup/s3.config and then at ~postgres/.pg_proback-
up/s3.config. The following is an example of the S3 configuration file:

access-key = ...
secret-key = ...
s3-host = localhost
s3-port = 9000
s3-bucket = s3demo
s3-region=us-east-1
s3-buffer-size = 32
s3-secure = on | https | http | off

Testing and Debugging Options

This section describes options useful only in a test or development environment.

--cfs-nondatafile-mode

Instructs backup command to backup CFS in a legacy mode. This allows fine-tuning compatibility
with pg_probackup3 versions earlier than 2.6.0. This option is mainly designed for testing.

PGPROBACKUP_TESTS_SKIP_HIDDEN

Instructs pg_probackup3 to ignore backups marked as hidden. Note that pg_probackup3 can never
mark a backup as hidden. It can only be done by directly editing the backup.control file.
This option can only be set with environment variables.

--destroy-all-other-dbs

By default, pg_probackup3 exits with an error if an attempt is made to perform a partial incre-
mental restore since this destroys databases not included in the restore set. This flag allows you
to suppress the error and proceed with the partial incremental restore (e.g., to keep a development
database snapshot up-to-date with a production one). This option can be used with the restore
command.

Important

Never use this flag in a production cluster.

61

Reference

PGPROBACKUP_TESTS_SKIP_EMPTY_COMMIT

Instructs pg_probackup3 to skip empty commits after pg_backup_stop.

Authors

Postgres Professional, Moscow, Russia.

62

Reference

Name
libpgprobackup — library with API to back up data, restore from backups, as well as validate and
merge backups

Description

The libpgprobackup library contains functions to back up data, restore from backups, as well as vali-
date and merge backups. The API provided enables you to create your own application to back up and
restore data instead of using the command-line utility pg_probackup.

The library stores backups in files of its own format.

The library takes over the interaction with the database server, data processing, coding, and decoding,
as well as creation and storing the metadata for backups.

An application that uses the library must provide it with access to the storage, such as a file system,
S3 storage, or tape. However, file system operations, such as reading and storing backups, as well
as storing the metadata, are the responsibility of the application. The application interacts with libpg-
probackup as follows:

1. The application prepares the database instance for backing up and calls the libpgprobackup backup
function.

2. libpgprobackup transforms the data files and WAL files to the pg_probackup3 format and redirects
them to the application.

3. The client application sends the data to a file on the target storage (file system, S3 storage, or tape)
and saves the backup metadata. Note that no intermediate storage is used.

4. To restore from a backup by calling the libpgprobackup restore function, to perform the backup
integrity check by calling the validate function, or to merge backups by calling the merge function,
the application provides the library with functions to get the backup data and metadata.

libpgprobackup is implemented in C++, but it can be used in applications written in different program-
ming languages. The integration with C/C++ applications must be least complicated. The library uses
the extern "C" calling convention.

libpgprobackup structures and functions are declared in the in the probackup_lib.h file.

Functions

The libpgprobackup library contains functions described below. When library functions are called,
they accept structures with command parameters and a structure with pointers to functions that work
with files and metadata.

bool backup (ConnectOptionsLib *conn_opt, BackupOptionsLib *backup_opt, Metadat-
aProviderLib *metadata);

Connects to the local or remote server and performs a backup. Returns true in the case of success
and false in case of error.

Arguments:

• conn_opt — pointer to the ConnectOptionsLib structure that defines the options to connect
to the Postgres Pro server, such as pghost, pgdatabase, pgport, pguser, password.

• backup_opt — pointer to the BackupOptionsLib structure that contains the backup options,
such as the backup mode or number of threads.

63

Reference

• metadata — pointer to the MetadataProviderLib structure that provides callback functions
for processing of backup metadata and file operations.

bool restore (RestoreOptionsLib *restore_opt, MetadataProviderLib *metadata);

Restores data from a backup using the parameters passed in the appropriate structures to the local
file system. Returns true in the case of success and false in case of error.

Arguments:

• restore_opt — pointer to the RestoreOptionsLib structure that contains the options to re-
store from a backup.

• metadata — pointer to the MetadataProviderLib structure that provides callback functions
for processing of backup metadata and file operations.

bool validate (RestoreOptionsLib *restore_opt, MetadataProviderLib *metadata, bool
withParents);

Verifies that all the files required to restore the cluster from a backup are present and are not
corrupt. If withParents is true, all the backups in the chain of parents are also validated.
Returns true in the case of success and false in case of error.

Arguments:

• restore_opt — pointer to the RestoreOptionsLib structure that contains the options for
integrity check of a backup.

• metadata — pointer to the MetadataProviderLib structure that provides callback functions
for processing of backup metadata and file operations.

• withParents — a boolean value that defines whether parent backups must also be validated.

bool merge (MergeOptionsLib *merge_opt, MetadataProviderLib *metadata);

Merges a chain of incremental backups into one full backup. During the merge a new full backup
created includes all the parent backups. If the parent backups do not have additional dependencies,
they are removed after a successful merge. Returns true in the case of success and false in
case of error.

Arguments:

• merge_opt — pointer to the MergeOptionsLib structure that contains the options for merging
backups.

• metadata — pointer to the MetadataProviderLib structure that provides callback functions
for processing of backup metadata and file operations.

uint64_t identify_system (ConnectOptionsLib *conn_opt);

Returns the unique Postgres Pro server identifier. It is used for managing and restoring backups
at the system level.

Arguments:

• conn_opt — pointer to the ConnectOptionsLib structure that defines the options to connect
to the Postgres Pro server.

void set_probackup_logger (Logger info, Logger warning, Logger error);

Defines three callback logger functions that libpgprobackup will use to output information, warn-
ing, or error messages. Each of these functions must accept a string parameter with the message
to be passed by the library.

64

Reference

Arguments:

• info — pointer to the function that will process information messages.

• warning — pointer to the function that will process warnings.

• error — pointer to the function that will process error messages.

Structures to Work with Files

The library gets feedback from the application through the structure of the MetadataProviderLib type,
which must contain pointers to functions that work with files and metadata.

Callbacks from the library to functions passed by the application are used. Pointers to functions are
passed to the library through the MetadataProviderLib structure. File read or write operations are
defined in the CSource and Csink structures, respectively.

For the feedback from the application, library structures contain the void *thisPointer pointer,
where the application can store the pointer to its own function or class instance. This pointer is passed
to callback functions when they are called from the library.

MetadataProviderLib

A pointer to this structure is passed to all the main librobackup functions, such as backup, restore,
validate, and merge. This structure defines methods to work with backup data, to write and read backup
metadata, and to get the list of backups.

typedef struct
{
 CSink *(*get_sink_for_backup)(const char *backup_id, void
 *thisPointer);
 CSource *(*get_source_for_backup)(const char *backup_id, void
 *thisPointer);

 void (*register_backup)(PgproBackup *backup, void *ptr);
 PgproBackup *(*get_backup_by_id)(const char *backup_id, void
 *thisPointer);
 void (*free_backup)(PgproBackup *backup, void *thisPointer);
 char **(*list_backup_ids)(void *thisPointer);

 bool (*write_backup_status)(const char *backup_id, BackupStatus
 status,
 void *thisPointer);

 void *thisPointer;
} MetadataProviderLib;

Where:

get_sink_for_backup

A pointer to the function that returns the pointer to the CSync structure (see CSource and Csink
for more details). Needed for writing information into the backup. backup_id contains the
string with the backup ID. In thisPointer, the application gets the pointer that was previously
passed to the library through the structure.

get_source_for_backup

A pointer to the function that returns the pointer to the CSource structure (see CSource and Csink
for more details). Needed for reading information from the backup. backup_id contains the

65

Reference

string with the backup ID. In thisPointer, the application gets the pointer that was previously
passed to the library through the structure.

register_backup

A pointer to the function that stores the backup metadata. Accepts the PgproBackup structure.

get_backup_by_id

A pointer to the function that gets metadata of the backup defined by backup_id.

free_backup

Frees the memory for the PgproBackup structure returned by get_backup_by_id.

list_backup_ids

Returns the list of available backup IDs. The list contains pointers to strings with the zero character
at the end. The last ponter in the list must also be zero. The memory for the list must be allocated
by a C function such as malloc or strdup because the library frees the memory using the
free function.

write_backup_status

A pointer to the function that saves the backup status. The backup status is updated separately
from saving the rest of the backup metadata.

void *thisPointer

A pointer to be passed from the library to all callback functions.

CSource and Csink

These structures are needed for reading and writing data blocks to a backup file. Pointers to these
functions must be returned by the get_source_for_backup and get_sink_for_backup functions, respec-
tively. Each of these structures is actually a backup file that is open for reading or writing, respectively.

/* Support structure */
typedef struct
{
 unsigned char *ptr;
 size_t len;
} c_buffer_t;

typedef struct
{
 c_buffer_t (*read_one)(void *thisPointer);
 ssize_t (*read)(char *buf, size_t size, void *thisPointer);
 void (*close)(void *thisPointer);
 void *thisPointer;
} CSource;
typedef struct
{
 /* Write one Pb structure. See @PbStructs. */
 size_t (*write_one)(uint8_t *buf, size_t size, void
 *thisPointer);
 ssize_t (*write)(char *buf, size_t size, void *thisPointer);
 /* Close this Sink. No more calls will be done. */
 void (*close)(void *thisPointer);
 void *thisPointer;
} CSink;

66

Reference

In the thisPointer field, an application can pass to the structure a pointer to a structure or appli-
cation class that, for instance, contains a descriptor of an open file.

Functions from the CSource structure are used for reading the backup file, while functions from the
CSink structure are used for writing the backup file. Each of these structures currently has two func-
tions for that. The read_one and write_one functions perfrom lower-level operations with a data
block. write_one saves the block size, while read_one first reads the block size and then the
data block of this size.

read and write functions are used for simpler implementation of reading/writing. Their arguments
are similar to those of common functions to work with files. Processing of the block size is done inside
the library. These functions must return the size of the read/written data or 1 in case of error.

close functions must close the file.

PgproBackup

Backup metadata is passed in this structure.

typedef struct
{
 BackupStatus backup_status;
 BackupMode backup_mode; /* Mode - one of
 BACKUP_MODE_xxx */
 char *backup_id; /* Identifier of the backup.
 */
 char *parent_backup_id; /* Identifier of the parent
 backup. */
 BackupTimeLineID tli; /* timeline of start and stop
 backup lsns */
 BackupXLogRecPtr start_lsn; /* backup's starting transaction
 log location */
 BackupXLogRecPtr stop_lsn; /* backup's finishing transaction
 log location */
 BackupTimestampTz start_time; /* UTC time of backup creation
 */
 BackupTransactionId minxid; /* min Xid for the moment of
 backup start */
 BackupMultiXactId
 minmulti; /* min multixact for the moment of backup
 start */

 bool stream; /* Was this backup taken in stream mode? I.e. does
 it include
 all needed WAL files? */
 bool from_replica; /* Was this backup taken from replica
 */
 char *primary_conninfo; /* Connection parameters of the backup
 in the format
 suitable for recovery.conf */
 char *note;

 /* For compatibility check */
 uint32_t block_size;
 uint32_t wal_block_size;
 char *program_version;
 int server_version;

67

Reference

 size_t uncompressed_bytes; ///< Size of data and non-data files
 before
 ///< compression is applied
 size_t data_bytes; ///< Size of data and non-data files after
 compression is
 ///< applied
 CompressAlg compress_alg;
 int compress_level;

 BackupTimestampTz
 end_time; /* the moment when backup was finished, or
 the moment
 * when we realized that backup is broken */
 BackupTimestampTz
 end_validation_time; /* UTC time when validation
 finished */

 BackupSource backup_source;/* direct, base or pro backup
 method*/

 size_t wal_bytes;// not used in pb3
} PgproBackup;

After execution of the backup function, the library calls a callback function register_backup, where
the filled-in PgproBackup structure is passed. Software engineers can save the passed information at
their discretion.

To get information on an existing backup, the library uses a callback function get_backup_by_id. From
this function, the application must return a pointer to the PgproBackup structure with the metadata of
the backup having the specified ID or a zero pointer in case of error.

To free the memory for the PgproBackup structure, the application must call the callback function
free_backup.

Command Options

This section lists structures that are used to pass options to the commands. For more details, see the
library header file probackup_lib.h.

connectOptionsLib

The following structure defines options to connect to the Postgres Pro server:

typedef struct connectOptionsLib
{
/* The database name. */
const char *pgdatabase;
/* Name of host to connect to. */
const char *pghost;
/* Port number to connect to at the server host, or socket file
 name
 * extension for Unix-domain connections.*/
const char *pgport;
/* Postgres Pro user name to connect as. */
const char *pguser;
/* Password to be used if the server demands password
 authentication. */
const char *password;
} ConnectOptionsLib;

68

Reference

backupOptionsLib

The structure below defines options to create a backup. Note that the FULL and DELTA backup modes
are only supported so far.

typedef struct backupOptionsLib
{
 /* Number of threads, if backup mode supports multithreading */
 int num_threads;
 /* Backup mode PAGE, PTRACK, DELTA, AUTO, FULL*/
 BackupMode backup_mode;
 /* Backup source DIRECT, BASE or PRO */
 BackupSource backup_source;
 /* For DIRECT source is required to set up PGDATA. It is not
 required for
 * other sources */
 const char *pgdata;
 /* Backup Id if you wants to use custom id, otherwise it will
 be generated a
 * unique id using datetime of creation */
 const char *backup_id;
 /* Id of parent backup. It is not required for FULL backup mode
 */
 const char *parent_backup_id;
 /* Name of replication slot, if you use custom slot created by
 * pg_create_physical_replication_slot(). Otherwise will be
 used auto
 * generated slot */
 const char *replication_slot;
 bool create_slot;
 const char *backup_note;
 /* If true, then WAL will be sent in stream mode, otherwise in
 archive mode
 */
 bool stream_wal;
 /* Progress flag. If true progress will be logged */
 bool progress;
 const char *external_dir_str;
 /* Verify check sums. It is available only if checksums turn on
 on
 * PostgresPro server */
 bool verify_checksums;
 /* Compression algorithm, that is used for sending data between
 PostgresPro
 * server and libpgprobackup */
 CompressAlg compress_alg;
 /* Compression level, that is used for sending data between
 PostgresPro
 * server and libpgprobackup */
 int compress_level;
 /* Wait timeout for WAL segment archiving */
 uint32_t archive_timeout;
} BackupOptionsLib;

restoreOptionsLib

The following structure defines options to restore from a backup. They are also used for backup val-
idation:

69

Reference

typedef struct restoreOptionsLib
{
 /* Number of threads */
 int num_threads;
 /* Path to pgdata for restoration */
 const char *pgdata;
 /* Backup ID for restoration */
 char *backup_id;
 /* Progress flag. If true progress will be logged */
 bool progress;
 /* Skip external directories */
 bool skip_external_dirs;
 const char *external_mapping;
 const char *tablespace_mapping;
 /* Checksum page verification */
 bool verify_checksums;
 /* Restore command to write in postgresql.auto.conf */
 /* https://postgrespro.ru/docs/enterprise/16/runtime-config-
wal#GUC-RESTORE-COMMAND */
 const char *config_content;
 /* Need recovery signal */
 bool need_recovery_signal;
 /* Need standby signal */
 bool need_standby_signal;
 /* No synchronization */
 bool no_sync;
} RestoreOptionsLib;

mergeOptionsLib

The following structure defines options to merge backups:

typedef struct mergeOptionsLib
{
 /* Number of threads */
 int num_threads;
 /* Path to pgdata to restore to */
 const char *pgdata;
 /* Incremental backup ID for the merge */
 const char *backup_id;
 /* Target backup ID for the merge */
 const char *target_backup_id;
 /* Progress flag. If true progress will be logged */
 bool progress;
 /* ID of the last increment */
 const char *merge_from_id;
 /* Time interval within which to merge backups */
 int interval;
} MergeOptionsLib;

Constants

BackupMode

/*

70

Reference

 Backup Mode is how backup is taken.
 All DIFF modes require parent backup id passed in the
 BackupOptions.
 Parent backup id is ignored in the FULL mode.

 DIFF_AUTO returns selected mode in the metadata. Tentatively it
 prefers
 DIFF_PAGE if WAL summarization is available, if not it tries to do
 DIFF_PTRACK if ptrack is enabled and finally it falls back to
 DIFF_DELTA.
 In case when even DIFF_DELTA is not possible (no parent full
 backup exists)
 FULL backup is taken.
*/
typedef enum BackupMode
{
 BACKUP_MODE_INVALID = 0,
 BACKUP_MODE_DIFF_PAGE, /* incremental page backup */
 BACKUP_MODE_DIFF_PTRACK, /* incremental page backup with ptrack
 system */
 BACKUP_MODE_DIFF_DELTA, /* incremental page backup with lsn
 comparison */
 BACKUP_MODE_DIFF_AUTO, /* library selects diff backup mode
 automatically */
 BACKUP_MODE_FULL /* full backup */
} BackupMode;

CompressAlg

/*
* Compression mode which is used to transfer data between PG server
 and the client lib.
* Default is NONE_COMPRESS.
*/
typedef enum CompressAlg
{
 NONE_COMPRESS = 0,
 ZLIB_COMPRESS,
 LZ4_COMPRESS,
 ZSTD_COMPRESS,
} CompressAlg;

BackupSource

/**
Backup Source is a method used by the client to access PGDATA.
*/
typedef enum
{
 /*
 * Direct access. The client reads data files directly.
 * Opens normal connection to execute PG_BACKUP_START/STOP.
 * Local file access. Multithreaded. No special PostgresPro
 edition
 * required.
 */
 BACKUP_SOURCE_DIRECT,

71

Reference

 /*
 * Uses pg_basebackup protocol.
 * Opens replication connection.
 * Remote file access. No special PostgresPro edition required.
 */
 BACKUP_SOURCE_BASE_BACKUP,
 /*
 * Uses pg_probackup protocol.
 * Opens replication connection.
 * Remote file access. Multithreaded. Only works with
 PostgresPro builds.
 * Supported PostgresPro versions start with ent-15.
 */
 BACKUP_SOURCE_PRO_BACKUP
} BackupSource;

72

Appendix A. Release Notes

Table of Contents
pg_probackup 3.0.0 .. 73

pg_probackup 3.0.0
Release date: 2025-03-28

This is the first public release of pg_probackup3.

pg_probackup3 is based on pg_probackup where most of the functionality is implemented.

Major features are as follows:

• Version independence: The same pg_probackup3 version can now be used with different versions
of Postgres Pro or PostgreSQL, ensuring compatibility and flexibility.

• API integration: pg_probackup3 can be integrated with various backup systems via API, thus of-
fering centralized management of the backup process.

• Work without SSH: pg_probackup3 can work without an SSH connection, enabling more effective
and secure data transfer.

• FUSE: pg_probackup3 introduces the new fuse command, which enables running a database in-
stance directly from a backup without requiring a full restore, using the FUSE (Filesystem in User
Space) mechanism.

• Operation by unprivileged users: pg_probackup3 can be started by users who do not have access
rights to PGDATA. This helps to increase security and reduce the risk of potential errors.

• A new backup format: Each backup is now stored as a single file, making it easier to manage and
store backups.

• pg_basebackup support: In the BASE data source mode, it is now possible to leverage the pg_base-
backup replication protocol for improved backup speed and efficiency.

• PRO mode: pg_probackup3 introduces a proprietary replication protocol in the new PRO data
source mode, available exclusively in Postgres Pro Enterprise.

• Merging incremental backup chains: It is now possible to save disk space by merging chains of
incremental backups.

73

Index
C
command

add-instance, 44
archive-get, 52
archive-push, 51
backup, 46
del-instance, 45
delete, 50
fuse, 51
help, 44
init, 44
merge, 49
restore, 48
retention, 52
set-backup, 45
set-config, 45
show, 46
show-config, 45
validate, 49
version, 43

L
libpgprobackup, 63

backup, 63
identify_system, 64
merge, 64
restore, 64
set_probackup_logger, 64
validate, 64

P
pg_probackup3, 43

74

	pg_probackup 3.0.0 Documentation
	Table of Contents
	Chapter 1. About pg_probackup3
	Installing pg_probackup3
	Versioning

	Chapter 2. About pg_probackup3 Backup and Recovery
	Features
	Limitations

	Chapter 3. Backup and Recovery Setup
	Initializing the Backup Catalog
	Adding a New Backup Instance
	Configuring pg_probackup3
	Specifying Connection Settings
	Configuring the Database Cluster
	Setting up STREAM Backups
	Setting up Continuous WAL Archiving
	Setting up PTRACK Backups
	Configuring the Remote Mode
	Set up SSH

	Configuring S3 Connectivity
	Set up Access to S3 Storage

	Chapter 4. Usage
	Creating a Backup
	ARCHIVE Mode
	STREAM Mode
	External Directories

	Mounting a Backup Directory with FUSE
	Restoring a Cluster
	Partial Restore
	Performing Point-in-Time (PITR) Recovery

	Managing the Backup Catalog
	Viewing Backup Information
	Viewing WAL Archive Information
	Merging Backups
	Deleting Backups

	Using pg_probackup3 in the Remote Mode
	Running pg_probackup3 on Parallel Threads
	Checking Data Integrity
	Page Validation
	Validating a Backup

	Configuring Retention Policy
	Removing Redundant Backups
	Pinning Backups
	Configuring WAL Archive Retention Policy

	More Examples
	Minimal Setup

	Chapter 5. Reference
	pg_probackup3
	Command-Line Reference
	Commands
	version
	help
	init
	add-instance
	del-instance
	set-config
	set-backup
	show-config
	show
	backup
	restore
	validate
	merge
	delete
	archive-push
	fuse
	archive-get
	retention

	Options
	Common Options
	Recovery Target Options
	Retention Options
	Pinning Options
	Logging Options
	Connection Options
	Compression Options
	Archiving Options
	Buffer Options
	Remote Mode Options
	Remote WAL Archive Options
	Incremental Restore Options
	Partial Restore Options
	S3 Options
	Testing and Debugging Options

	Authors

	libpgprobackup
	Description
	Functions
	Structures to Work with Files
	MetadataProviderLib
	CSource and Csink
	PgproBackup

	Command Options
	connectOptionsLib
	backupOptionsLib
	restoreOptionsLib
	mergeOptionsLib

	Constants
	BackupMode
	CompressAlg
	BackupSource

	Appendix A. Release Notes
	pg_probackup 3.0.0

	Index

