Alternatives to BGE

Compare BGE alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to BGE in 2026. Compare features, ratings, user reviews, pricing, and more from BGE competitors and alternatives in order to make an informed decision for your business.

  • 1
    Vertex AI
    Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case. Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection. Vertex AI Agent Builder enables developers to create and deploy enterprise-grade generative AI applications. It offers both no-code and code-first approaches, allowing users to build AI agents using natural language instructions or by leveraging frameworks like LangChain and LlamaIndex.
    Compare vs. BGE View Software
    Visit Website
  • 2
    LM-Kit.NET
    LM-Kit.NET is a cutting-edge, high-level inference SDK designed specifically to bring the advanced capabilities of Large Language Models (LLM) into the C# ecosystem. Tailored for developers working within .NET, LM-Kit.NET provides a comprehensive suite of powerful Generative AI tools, making it easier than ever to integrate AI-driven functionality into your applications. The SDK is versatile, offering specialized AI features that cater to a variety of industries. These include text completion, Natural Language Processing (NLP), content retrieval, text summarization, text enhancement, language translation, and much more. Whether you are looking to enhance user interaction, automate content creation, or build intelligent data retrieval systems, LM-Kit.NET offers the flexibility and performance needed to accelerate your project.
    Leader badge
    Partner badge
    Compare vs. BGE View Software
    Visit Website
  • 3
    Azure AI Search
    Deliver high-quality responses with a vector database built for advanced retrieval augmented generation (RAG) and modern search. Focus on exponential growth with an enterprise-ready vector database that comes with security, compliance, and responsible AI practices built in. Build better applications with sophisticated retrieval strategies backed by decades of research and customer validation. Quickly deploy your generative AI app with seamless platform and data integrations for data sources, AI models, and frameworks. Automatically upload data from a wide range of supported Azure and third-party sources. Streamline vector data processing with built-in extraction, chunking, enrichment, and vectorization, all in one flow. Support for multivector, hybrid, multilingual, and metadata filtering. Move beyond vector-only search with keyword match scoring, reranking, geospatial search, and autocomplete.
    Starting Price: $0.11 per hour
  • 4
    Mixedbread

    Mixedbread

    Mixedbread

    Mixedbread is a fully-managed AI search engine that allows users to build production-ready AI search and Retrieval-Augmented Generation (RAG) applications. It offers a complete AI search stack, including vector stores, embedding and reranking models, and document parsing. Users can transform raw data into intelligent search experiences that power AI agents, chatbots, and knowledge systems without the complexity. It integrates with tools like Google Drive, SharePoint, Notion, and Slack. Its vector stores enable users to build production search engines in minutes, supporting over 100 languages. Mixedbread's embedding and reranking models have achieved over 50 million downloads and outperform OpenAI in semantic search and RAG tasks while remaining open-source and cost-effective. The document parser extracts text, tables, and layouts from PDFs, images, and complex documents, providing clean, AI-ready content without manual preprocessing.
  • 5
    NVIDIA NeMo Retriever
    NVIDIA NeMo Retriever is a collection of microservices for building multimodal extraction, reranking, and embedding pipelines with high accuracy and maximum data privacy. It delivers quick, context-aware responses for AI applications like advanced retrieval-augmented generation (RAG) and agentic AI workflows. As part of the NVIDIA NeMo platform and built with NVIDIA NIM, NeMo Retriever allows developers to flexibly leverage these microservices to connect AI applications to large enterprise datasets wherever they reside and fine-tune them to align with specific use cases. NeMo Retriever provides components for building data extraction and information retrieval pipelines. The pipeline extracts structured and unstructured data (e.g., text, charts, tables), converts it to text, and filters out duplicates. A NeMo Retriever embedding NIM converts the chunks into embeddings and stores them in a vector database, accelerated by NVIDIA cuVS, for enhanced performance and speed of indexing.
  • 6
    Voyage AI

    Voyage AI

    Voyage AI

    Voyage AI delivers state-of-the-art embedding and reranking models that supercharge intelligent retrieval for enterprises, driving forward retrieval-augmented generation and reliable LLM applications. Available through all major clouds and data platforms. SaaS and customer tenant deployment (in-VPC). Our solutions are designed to optimize the way businesses access and utilize information, making retrieval faster, more accurate, and scalable. Built by academic experts from Stanford, MIT, and UC Berkeley, alongside industry professionals from Google, Meta, Uber, and other leading companies, our team develops transformative AI solutions tailored to enterprise needs. We are committed to pushing the boundaries of AI innovation and delivering impactful technologies for businesses. Contact us for custom or on-premise deployments as well as model licensing. Easy to get started, pay as you go, with consumption-based pricing.
  • 7
    Jina Reranker
    Jina Reranker v2 is a state-of-the-art reranker designed for Agentic Retrieval-Augmented Generation (RAG) systems. It enhances search relevance and RAG accuracy by reordering search results based on deeper semantic understanding. It supports over 100 languages, enabling multilingual retrieval regardless of the query language. It is optimized for function-calling and code search, making it ideal for applications requiring precise function signatures and code snippet retrieval. Jina Reranker v2 also excels in ranking structured data, such as tables, by understanding the downstream intent to query structured databases like MySQL or MongoDB. With a 6x speedup over its predecessor, it offers ultra-fast inference, processing documents in milliseconds. The model is available via Jina's Reranker API and can be integrated into existing applications using platforms like Langchain and LlamaIndex.
  • 8
    RankLLM

    RankLLM

    Castorini

    RankLLM is a Python toolkit for reproducible information retrieval research using rerankers, with a focus on listwise reranking. It offers a suite of rerankers, pointwise models like MonoT5, pairwise models like DuoT5, and listwise models compatible with vLLM, SGLang, or TensorRT-LLM. Additionally, it supports RankGPT and RankGemini variants, which are proprietary listwise rerankers. It includes modules for retrieval, reranking, evaluation, and response analysis, facilitating end-to-end workflows. RankLLM integrates with Pyserini for retrieval and provides integrated evaluation for multi-stage pipelines. It also includes a module for detailed analysis of input prompts and LLM responses, addressing reliability concerns with LLM APIs and non-deterministic behavior in Mixture-of-Experts (MoE) models. The toolkit supports various backends, including SGLang and TensorRT-LLM, and is compatible with a wide range of LLMs.
    Starting Price: Free
  • 9
    ColBERT

    ColBERT

    Future Data Systems

    ColBERT is a fast and accurate retrieval model, enabling scalable BERT-based search over large text collections in tens of milliseconds. It relies on fine-grained contextual late interaction: it encodes each passage into a matrix of token-level embeddings. At search time, it embeds every query into another matrix and efficiently finds passages that contextually match the query using scalable vector-similarity (MaxSim) operators. These rich interactions allow ColBERT to surpass the quality of single-vector representation models while scaling efficiently to large corpora. The toolkit includes components for retrieval, reranking, evaluation, and response analysis, facilitating end-to-end workflows. ColBERT integrates with Pyserini for retrieval and provides integrated evaluation for multi-stage pipelines. It also includes a module for detailed analysis of input prompts and LLM responses, addressing reliability concerns with LLM APIs and non-deterministic behavior in Mixture-of-Experts.
    Starting Price: Free
  • 10
    Pinecone Rerank v0
    Pinecone Rerank V0 is a cross-encoder model optimized for precision in reranking tasks, enhancing enterprise search and retrieval-augmented generation (RAG) systems. It processes queries and documents together to capture fine-grained relevance, assigning a relevance score from 0 to 1 for each query-document pair. The model's maximum context length is set to 512 tokens to preserve ranking quality. Evaluations on the BEIR benchmark demonstrated that Pinecone Rerank V0 achieved the highest average NDCG@10, outperforming other models on 6 out of 12 datasets. For instance, it showed up to a 60% boost on the Fever dataset compared to Google Semantic Ranker and over 40% on the Climate-Fever dataset relative to cohere-v3-multilingual or voyageai-rerank-2. The model is accessible through Pinecone Inference and is available to all users in public preview.
    Starting Price: $25 per month
  • 11
    Cohere Embed
    Cohere's Embed is a leading multimodal embedding platform designed to transform text, images, or a combination of both into high-quality vector representations. These embeddings are optimized for semantic search, retrieval-augmented generation, classification, clustering, and agentic AI applications.​ The latest model, embed-v4.0, supports mixed-modality inputs, allowing users to combine text and images into a single embedding. It offers Matryoshka embeddings with configurable dimensions of 256, 512, 1024, or 1536, enabling flexibility in balancing performance and resource usage. With a context length of up to 128,000 tokens, embed-v4.0 is well-suited for processing large documents and complex data structures. It also supports compressed embedding types, including float, int8, uint8, binary, and ubinary, facilitating efficient storage and faster retrieval in vector databases. Multilingual support spans over 100 languages, making it a versatile tool for global applications.
    Starting Price: $0.47 per image
  • 12
    RankGPT

    RankGPT

    Weiwei Sun

    RankGPT is a Python toolkit designed to explore the use of generative Large Language Models (LLMs) like ChatGPT and GPT-4 for relevance ranking in Information Retrieval (IR). It introduces methods such as instructional permutation generation and a sliding window strategy to enable LLMs to effectively rerank documents. It supports various LLMs, including GPT-3.5, GPT-4, Claude, Cohere, and Llama2 via LiteLLM. RankGPT provides modules for retrieval, reranking, evaluation, and response analysis, facilitating end-to-end workflows. It includes a module for detailed analysis of input prompts and LLM responses, addressing reliability concerns with LLM APIs and non-deterministic behavior in Mixture-of-Experts (MoE) models. The toolkit supports various backends, including SGLang and TensorRT-LLM, and is compatible with a wide range of LLMs. RankGPT's Model Zoo includes models like LiT5 and MonoT5, hosted on Hugging Face.
    Starting Price: Free
  • 13
    MonoQwen-Vision
    MonoQwen2-VL-v0.1 is the first visual document reranker designed to enhance the quality of retrieved visual documents in Retrieval-Augmented Generation (RAG) pipelines. Traditional RAG approaches rely on converting documents into text using Optical Character Recognition (OCR), which can be time-consuming and may result in loss of information, especially for non-textual elements like graphs and tables. MonoQwen2-VL-v0.1 addresses these limitations by leveraging Visual Language Models (VLMs) that process images directly, eliminating the need for OCR and preserving the integrity of visual content. This reranker operates in a two-stage pipeline, initially, it uses separate encoding to generate a pool of candidate documents, followed by a cross-encoding model that reranks these candidates based on their relevance to the query. By training a Low-Rank Adaptation (LoRA) on top of the Qwen2-VL-2B-Instruct model, MonoQwen2-VL-v0.1 achieves high performance without significant memory overhead.
  • 14
    Vectara

    Vectara

    Vectara

    Vectara is LLM-powered search-as-a-service. The platform provides a complete ML search pipeline from extraction and indexing to retrieval, re-ranking and calibration. Every element of the platform is API-addressable. Developers can embed the most advanced NLP models for app and site search in minutes. Vectara automatically extracts text from PDF and Office to JSON, HTML, XML, CommonMark, and many more. Encode at scale with cutting edge zero-shot models using deep neural networks optimized for language understanding. Segment data into any number of indexes storing vector encodings optimized for low latency and high recall. Recall candidate results from millions of documents using cutting-edge, zero-shot neural network models. Increase the precision of retrieved results with cross-attentional neural networks to merge and reorder results. Zero in on the true likelihoods that the retrieved response represents a probable answer to the query.
    Starting Price: Free
  • 15
    txtai

    txtai

    NeuML

    txtai is an all-in-one open source embeddings database designed for semantic search, large language model orchestration, and language model workflows. It unifies vector indexes (both sparse and dense), graph networks, and relational databases, providing a robust foundation for vector search and serving as a powerful knowledge source for LLM applications. With txtai, users can build autonomous agents, implement retrieval augmented generation processes, and develop multi-modal workflows. Key features include vector search with SQL support, object storage integration, topic modeling, graph analysis, and multimodal indexing capabilities. It supports the creation of embeddings for various data types, including text, documents, audio, images, and video. Additionally, txtai offers pipelines powered by language models that handle tasks such as LLM prompting, question-answering, labeling, transcription, translation, and summarization.
    Starting Price: Free
  • 16
    AI-Q NVIDIA Blueprint
    Create AI agents that reason, plan, reflect, and refine to produce high-quality reports based on source materials of your choice. An AI research agent, informed by many data sources, can synthesize hours of research in minutes. The AI-Q NVIDIA Blueprint enables developers to build AI agents that use reasoning and connect to many data sources and tools to distill in-depth source materials with efficiency and precision. Using AI-Q, agents summarize large data sets, generating tokens 5x faster and ingesting petabyte-scale data 15x faster with better semantic accuracy. Multimodal PDF data extraction and retrieval with NVIDIA NeMo Retriever, 15x faster ingestion of enterprise data, 3x lower retrieval latency, multilingual and cross-lingual, reranking to further improve accuracy, and GPU-accelerated index creation and search.
  • 17
    TILDE

    TILDE

    ielab

    TILDE (Term Independent Likelihood moDEl) is a passage re-ranking and expansion framework built on BERT, designed to enhance retrieval performance by combining sparse term matching with deep contextual representations. The original TILDE model pre-computes term weights across the entire BERT vocabulary, which can lead to large index sizes. To address this, TILDEv2 introduces a more efficient approach by computing term weights only for terms present in expanded passages, resulting in indexes that are 99% smaller than those of the original TILDE. This efficiency is achieved by leveraging TILDE as a passage expansion model, where passages are expanded using top-k terms (e.g., top 200) to enrich their content. It provides scripts for indexing collections, re-ranking BM25 results, and training models using datasets like MS MARCO.
  • 18
    Cohere Rerank
    Cohere Rerank is a powerful semantic search tool that refines enterprise search and retrieval by precisely ranking results. It processes a query and a list of documents, ordering them from most to least semantically relevant, and assigns a relevance score between 0 and 1 to each document. This ensures that only the most pertinent documents are passed into your RAG pipeline and agentic workflows, reducing token use, minimizing latency, and boosting accuracy. The latest model, Rerank v3.5, supports English and multilingual documents, as well as semi-structured data like JSON, with a context length of 4096 tokens. Long documents are automatically chunked, and the highest relevance score among chunks is used for ranking. Rerank can be integrated into existing keyword or semantic search systems with minimal code changes, enhancing the relevance of search results. It is accessible via Cohere's API and is compatible with various platforms, including Amazon Bedrock and SageMaker.
  • 19
    LlamaCloud

    LlamaCloud

    LlamaIndex

    LlamaCloud, developed by LlamaIndex, is a fully managed service for parsing, ingesting, and retrieving data, enabling companies to create and deploy AI-driven knowledge applications. It provides a flexible and scalable pipeline for handling data in Retrieval-Augmented Generation (RAG) scenarios. LlamaCloud simplifies data preparation for LLM applications, allowing developers to focus on building business logic instead of managing data.
  • 20
    Vertex AI Search
    Google Cloud's Vertex AI Search is a comprehensive, enterprise-grade search and retrieval platform that leverages Google's advanced AI technologies to deliver high-quality search experiences across various applications. It enables organizations to build secure, scalable search solutions for websites, intranets, and generative AI applications. It supports both structured and unstructured data, offering capabilities such as semantic search, vector search, and Retrieval Augmented Generation (RAG) systems, which combine large language models with data retrieval to enhance the accuracy and relevance of AI-generated responses. Vertex AI Search integrates seamlessly with Google's Document AI suite, facilitating efficient document understanding and processing. It also provides specialized solutions tailored to specific industries, including retail, media, and healthcare, to address unique search and recommendation needs.
  • 21
    DenserAI

    DenserAI

    DenserAI

    DenserAI is an innovative platform that transforms enterprise content into interactive knowledge ecosystems through advanced Retrieval-Augmented Generation (RAG) solutions. Its flagship products, DenserChat and DenserRetriever, enable seamless, context-aware conversations and efficient information retrieval, respectively. DenserChat enhances customer support, data analysis, and problem-solving by maintaining conversational context and providing real-time, intelligent responses. DenserRetriever offers intelligent data indexing and semantic search capabilities, ensuring quick and accurate access to information across extensive knowledge bases. By integrating these tools, DenserAI empowers businesses to boost customer satisfaction, reduce operational costs, and drive lead generation, all through user-friendly AI-powered solutions.
  • 22
    Meii AI

    Meii AI

    Meii AI

    Meii AI is a global leader in AI solutions, offering industry-trained Large Language Models that can be tuned accordingly with company-specific data and hosted privately or in your cloud. Our RAG ( Retrieval Augmented Generation ) based AI approach uses Embedded Model and Retrieval context ( Semantic Search ) while processing a conversational query to curate Insightful response that is specific for an Enterprise. Blended with our unique skills and decade long experience we had gained in Data Analytics solutions, we combine LLMs and ML Algorithms that offer great solutions for Mid level Enterprises. We are engineering a future that allows people, businesses, and governments to seamlessly leverage technology. With a vision to make AI accessible for everyone on the planet, our team is constantly breaking the barriers between machines and humans.
  • 23
    E5 Text Embeddings
    E5 Text Embeddings, developed by Microsoft, are advanced models designed to convert textual data into meaningful vector representations, enhancing tasks like semantic search and information retrieval. These models are trained using weakly-supervised contrastive learning on a vast dataset of over one billion text pairs, enabling them to capture intricate semantic relationships across multiple languages. The E5 family includes models of varying sizes—small, base, and large—offering a balance between computational efficiency and embedding quality. Additionally, multilingual versions of these models have been fine-tuned to support diverse languages, ensuring broad applicability in global contexts. Comprehensive evaluations demonstrate that E5 models achieve performance on par with state-of-the-art, English-only models of similar sizes.
    Starting Price: Free
  • 24
    Superlinked

    Superlinked

    Superlinked

    Combine semantic relevance and user feedback to reliably retrieve the optimal document chunks in your retrieval augmented generation system. Combine semantic relevance and document freshness in your search system, because more recent results tend to be more accurate. Build a real-time personalized ecommerce product feed with user vectors constructed from SKU embeddings the user interacted with. Discover behavioral clusters of your customers using a vector index in your data warehouse. Describe and load your data, use spaces to construct your indices and run queries - all in-memory within a Python notebook.
  • 25
    EmbeddingGemma
    EmbeddingGemma is a 308-million-parameter multilingual text embedding model, lightweight yet powerful, optimized to run entirely on everyday devices such as phones, laptops, and tablets, enabling fast, offline embedding generation that protects user privacy. Built on the Gemma 3 architecture, it supports over 100 languages, processes up to 2,000 input tokens, and leverages Matryoshka Representation Learning (MRL) to offer flexible embedding dimensions (768, 512, 256, or 128) for tailored speed, storage, and precision. Its GPU-and EdgeTPU-accelerated inference delivers embeddings in milliseconds, under 15 ms for 256 tokens on EdgeTPU, while quantization-aware training keeps memory usage under 200 MB without compromising quality. This makes it ideal for real-time, on-device tasks such as semantic search, retrieval-augmented generation (RAG), classification, clustering, and similarity detection, whether for personal file search, mobile chatbots, or custom domain use.
  • 26
    RAGFlow

    RAGFlow

    RAGFlow

    RAGFlow is an open source Retrieval-Augmented Generation (RAG) engine that enhances information retrieval by combining Large Language Models (LLMs) with deep document understanding. It offers a streamlined RAG workflow suitable for businesses of any scale, providing truthful question-answering capabilities backed by well-founded citations from various complex formatted data. Key features include template-based chunking, compatibility with heterogeneous data sources, and automated RAG orchestration.
    Starting Price: Free
  • 27
    Vectorize

    Vectorize

    Vectorize

    Vectorize is a platform designed to transform unstructured data into optimized vector search indexes, facilitating retrieval-augmented generation pipelines. It enables users to import documents or connect to external knowledge management systems, allowing Vectorize to extract natural language suitable for LLMs. The platform evaluates multiple chunking and embedding strategies in parallel, providing recommendations or allowing users to choose their preferred methods. Once a vector configuration is selected, Vectorize deploys it into a real-time vector pipeline that automatically updates with any data changes, ensuring accurate search results. The platform offers connectors to various knowledge repositories, collaboration platforms, and CRMs, enabling seamless integration of data into generative AI applications. Additionally, Vectorize supports the creation and updating of vector indexes in preferred vector databases.
    Starting Price: $0.57 per hour
  • 28
    voyage-code-3

    voyage-code-3

    Voyage AI

    Voyage AI introduces voyage-code-3, a next-generation embedding model optimized for code retrieval. It outperforms OpenAI-v3-large and CodeSage-large by an average of 13.80% and 16.81% on a suite of 32 code retrieval datasets, respectively. It supports embeddings of 2048, 1024, 512, and 256 dimensions and offers multiple embedding quantization options, including float (32-bit), int8 (8-bit signed integer), uint8 (8-bit unsigned integer), binary (bit-packed int8), and ubinary (bit-packed uint8). With a 32 K-token context length, it surpasses OpenAI's 8K and CodeSage Large's 1K context lengths. Voyage-code-3 employs Matryoshka learning to create embeddings with a nested family of various lengths within a single vector. This allows users to vectorize documents into a 2048-dimensional vector and later use shorter versions (e.g., 256, 512, or 1024 dimensions) without re-invoking the embedding model.
  • 29
    Codestral Embed
    Codestral Embed is Mistral AI's first embedding model, specialized for code, optimized for high-performance code retrieval and semantic understanding. It significantly outperforms leading code embedders in the market today, such as Voyage Code 3, Cohere Embed v4.0, and OpenAI’s large embedding model. Codestral Embed can output embeddings with different dimensions and precisions; for instance, with a dimension of 256 and int8 precision, it still performs better than any model from competitors. The dimensions of the embeddings are ordered by relevance, allowing users to choose the first n dimensions for a smooth trade-off between quality and cost. It excels in retrieval use cases on real-world code data, particularly in benchmarks like SWE-Bench, which is based on real-world GitHub issues and corresponding fixes, and Text2Code (GitHub), relevant for providing context for code completion or editing.
  • 30
    Arctic Embed 2.0
    Snowflake's Arctic Embed 2.0 introduces multilingual capabilities to its text embedding models, enhancing global-scale retrieval without compromising English performance or scalability. Building upon the robust foundation of previous releases, Arctic Embed 2.0 supports multiple languages, enabling developers to create stream-processing pipelines that incorporate neural networks and complex tasks like tracking, video encoding/decoding, and rendering, facilitating real-time analytics on various data types. The model leverages Matryoshka Representation Learning (MRL) for efficient embedding storage, allowing for significant compression with minimal quality degradation. This advancement ensures that enterprises can handle demanding workloads such as training large-scale models, fine-tuning, real-time inference, and high-performance computing tasks across diverse languages and regions.
    Starting Price: $2 per credit
  • 31
    Entry Point AI

    Entry Point AI

    Entry Point AI

    Entry Point AI is the modern AI optimization platform for proprietary and open source language models. Manage prompts, fine-tunes, and evals all in one place. When you reach the limits of prompt engineering, it’s time to fine-tune a model, and we make it easy. Fine-tuning is showing a model how to behave, not telling. It works together with prompt engineering and retrieval-augmented generation (RAG) to leverage the full potential of AI models. Fine-tuning can help you to get better quality from your prompts. Think of it like an upgrade to few-shot learning that bakes the examples into the model itself. For simpler tasks, you can train a lighter model to perform at or above the level of a higher-quality model, greatly reducing latency and cost. Train your model not to respond in certain ways to users, for safety, to protect your brand, and to get the formatting right. Cover edge cases and steer model behavior by adding examples to your dataset.
    Starting Price: $49 per month
  • 32
    Lamini

    Lamini

    Lamini

    Lamini makes it possible for enterprises to turn proprietary data into the next generation of LLM capabilities, by offering a platform for in-house software teams to uplevel to OpenAI-level AI teams and to build within the security of their existing infrastructure. Guaranteed structured output with optimized JSON decoding. Photographic memory through retrieval-augmented fine-tuning. Improve accuracy, and dramatically reduce hallucinations. Highly parallelized inference for large batch inference. Parameter-efficient finetuning that scales to millions of production adapters. Lamini is the only company that enables enterprise companies to safely and quickly develop and control their own LLMs anywhere. It brings several of the latest technologies and research to bear that was able to make ChatGPT from GPT-3, as well as Github Copilot from Codex. These include, among others, fine-tuning, RLHF, retrieval-augmented training, data augmentation, and GPU optimization.
    Starting Price: $99 per month
  • 33
    FastGPT

    FastGPT

    FastGPT

    FastGPT is a free, open source AI knowledge base platform that offers out-of-the-box data processing, model invocation, retrieval-augmented generation retrieval, and visual AI workflows, enabling users to easily build complex large language model applications. It allows the creation of domain-specific AI assistants by training models with imported documents or Q&A pairs, supporting various formats such as Word, PDF, Excel, Markdown, and web links. The platform automates data preprocessing tasks, including text preprocessing, vectorization, and QA segmentation, enhancing efficiency. FastGPT supports AI workflow orchestration through a visual drag-and-drop interface, facilitating the design of complex workflows that integrate tasks like database queries and inventory checks. It also offers seamless API integration with existing GPT applications and platforms like Discord, Slack, and Telegram using OpenAI-aligned APIs.
    Starting Price: $0.37 per month
  • 34
    Progress Agentic RAG

    Progress Agentic RAG

    Progress Software

    Progress Agentic RAG is a SaaS Retrieval-Augmented Generation platform that automatically indexes, searches, and generates AI-powered insights from structured and unstructured business data, including documents, emails, video, slides, and more, by combining RAG with agentic workflows that reason, classify, summarize, and answer queries with traceable, verifiable results without requiring users to build and manage their own RAG infrastructure. Designed as a modular no-code RAG-as-a-Service solution, it accelerates AI readiness by letting organizations extract contextual intelligence and business knowledge using natural language queries and quality-driven output metrics while integrating with any leading Large Language Model (LLM) and supporting multilingual, multimodal content indexing and retrieval. Features include AI summarization and classification, generated Q&A from enterprise data, a Prompt Lab for validating LLM behavior with custom prompts.
    Starting Price: $700 per month
  • 35
    Nomic Embed
    Nomic Embed is a suite of open source, high-performance embedding models designed for various applications, including multilingual text, multimodal content, and code. The ecosystem includes models like Nomic Embed Text v2, which utilizes a Mixture-of-Experts (MoE) architecture to support over 100 languages with efficient inference using 305M active parameters. Nomic Embed Text v1.5 offers variable embedding dimensions (64 to 768) through Matryoshka Representation Learning, enabling developers to balance performance and storage needs. For multimodal applications, Nomic Embed Vision v1.5 aligns with the text models to provide a unified latent space for text and image data, facilitating seamless multimodal search. Additionally, Nomic Embed Code delivers state-of-the-art performance on code embedding tasks across multiple programming languages.
    Starting Price: Free
  • 36
    Snowflake Cortex AI
    Snowflake Cortex AI is a fully managed, serverless platform that enables organizations to analyze unstructured data and build generative AI applications within the Snowflake ecosystem. It offers access to industry-leading large language models (LLMs) such as Meta's Llama 3 and 4, Mistral, and Reka-Core, facilitating tasks like text summarization, sentiment analysis, translation, and question answering. Cortex AI supports Retrieval-Augmented Generation (RAG) and text-to-SQL functionalities, allowing users to query structured and unstructured data seamlessly. Key features include Cortex Analyst, which enables business users to interact with data using natural language; Cortex Search, a hybrid vector and keyword search engine for document retrieval; and Cortex Fine-Tuning, which allows customization of LLMs for specific use cases.
    Starting Price: $2 per month
  • 37
    Kontech

    Kontech

    Kontech.ai

    Find out if your product is viable in the world's emerging markets without breaking your bank. Instantly access both quantitative and qualitative data obtained, evaluated, self-trained and validated by professional marketers and user researchers with over 20 years experience in the field. Gain culturally-aware insights into consumer behavior, product innovation, market trends and human-centric business strategies. Kontech.ai leverages Retrieval-Augmented Generation (RAG) to enrich our AI with the latest, diverse and exclusive knowledge base, ensuring highly accurate and trusted insights. Specialized fine-tuning with highly refined proprietary training dataset further improves the deep understanding of user behavior and market dynamics, transforming complex research into actionable intelligence.
  • 38
    IntelliWP

    IntelliWP

    Devscope

    IntelliWP is an advanced AI WordPress plugin for create chatbots that transforms your site into a self-updating, intelligent knowledge agent. It uses a combination of Retrieval-Augmented Generation (RAG) and fine-tuning technologies to deliver precise, real-time answers based on your website’s unique content. Unlike basic chatbots, IntelliWP adapts to your business context and provides expert-level support to visitors without human intervention. The plugin offers easy integration and multilingual capabilities, making it suitable for any WordPress site. IntelliWP also provides an intuitive dashboard to monitor system status and performance. With optional professional services for custom training and branding, it helps businesses enhance visitor engagement and deliver personalized experiences.
    Starting Price: 0
  • 39
    Inquir

    Inquir

    Inquir

    Inquir is an AI-powered platform that enables users to create personalized search engines tailored to their specific data needs. It offers capabilities such as integrating diverse data sources, building Retrieval-Augmented Generation (RAG) systems, and implementing context-aware search functionalities. Inquir's features include scalability, security with separate infrastructure for each organization, and a developer-friendly API. It also provides a faceted search for efficient data discovery and an analytics API to enhance the search experience. Flexible pricing plans are available, ranging from a free demo access tier to enterprise solutions, accommodating various business sizes and requirements. Transform product discovery with Inquir. Improve conversion rates and customer retention by providing fast and robust search experiences.
    Starting Price: $60 per month
  • 40
    Amazon Bedrock
    Amazon Bedrock is a fully managed service that simplifies building and scaling generative AI applications by providing access to a variety of high-performing foundation models (FMs) from leading AI companies such as AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon itself. Through a single API, developers can experiment with these models, customize them using techniques like fine-tuning and Retrieval Augmented Generation (RAG), and create agents that interact with enterprise systems and data sources. As a serverless platform, Amazon Bedrock eliminates the need for infrastructure management, allowing seamless integration of generative AI capabilities into applications with a focus on security, privacy, and responsible AI practices.
  • 41
    Exa

    Exa

    Exa.ai

    The Exa API retrieves the best content on the web using embeddings-based search. Exa understands meaning, giving results search engines can’t. Exa uses a novel link prediction transformer to predict links which match the meaning of a prompt. For queries that need semantic understanding, search with our SOTA web embeddings model over our custom index. For all other queries, we offer keyword-based search. Stop learning how to web scrape or parse HTML. Get the clean, full text of any page in our index, or intelligent embeddings-ranked highlights related to a query. Select any date range, include or exclude any domain, select a custom data vertical, or get up to 10 million results..
    Starting Price: $100 per month
  • 42
    Vertesia

    Vertesia

    Vertesia

    Vertesia is a unified, low-code generative AI platform that enables enterprise teams to rapidly build, deploy, and operate GenAI applications and agents at scale. Designed for both business professionals and IT specialists, Vertesia offers a frictionless development experience, allowing users to go from prototype to production without extensive timelines or heavy infrastructure. It supports multiple generative AI models from leading inference providers, providing flexibility and preventing vendor lock-in. Vertesia's agentic retrieval-augmented generation (RAG) pipeline enhances generative AI accuracy and performance by automating and accelerating content preparation, including intelligent document processing and semantic chunking. With enterprise-grade security, SOC2 compliance, and support for leading cloud infrastructures like AWS, GCP, and Azure, Vertesia ensures secure and scalable deployments.
  • 43
    Ragie

    Ragie

    Ragie

    Ragie streamlines data ingestion, chunking, and multimodal indexing of structured and unstructured data. Connect directly to your own data sources, ensuring your data pipeline is always up-to-date. Built-in advanced features like LLM re-ranking, summary index, entity extraction, flexible filtering, and hybrid semantic and keyword search help you deliver state-of-the-art generative AI. Connect directly to popular data sources like Google Drive, Notion, Confluence, and more. Automatic syncing keeps your data up-to-date, ensuring your application delivers accurate and reliable information. With Ragie connectors, getting your data into your AI application has never been simpler. With just a few clicks, you can access your data where it already lives. Automatic syncing keeps your data up-to-date ensuring your application delivers accurate and reliable information. The first step in a RAG pipeline is to ingest the relevant data. Use Ragie’s simple APIs to upload files directly.
    Starting Price: $500 per month
  • 44
    AskHandle

    AskHandle

    AskHandle

    AskHandle is a personalized AI support system that leverages advanced generative AI and natural language processing (NLP). With a proprietary Codeless RAG, it allows organizations to harness the tremendous capabilities of retrieval-augmented generation simply by adding information to the data sources. AskHandle provides an exceptionally user-friendly and straightforward way to create and manage AI-powered chatbots, enabling businesses to streamline and personalize both their internal and external customer support processes.
    Starting Price: $59/month
  • 45
    Deep Lake

    Deep Lake

    activeloop

    Generative AI may be new, but we've been building for this day for the past 5 years. Deep Lake thus combines the power of both data lakes and vector databases to build and fine-tune enterprise-grade, LLM-based solutions, and iteratively improve them over time. Vector search does not resolve retrieval. To solve it, you need a serverless query for multi-modal data, including embeddings or metadata. Filter, search, & more from the cloud or your laptop. Visualize and understand your data, as well as the embeddings. Track & compare versions over time to improve your data & your model. Competitive businesses are not built on OpenAI APIs. Fine-tune your LLMs on your data. Efficiently stream data from remote storage to the GPUs as models are trained. Deep Lake datasets are visualized right in your browser or Jupyter Notebook. Instantly retrieve different versions of your data, materialize new datasets via queries on the fly, and stream them to PyTorch or TensorFlow.
    Starting Price: $995 per month
  • 46
    VMware Private AI Foundation
    VMware Private AI Foundation is a joint, on‑premises generative AI platform built on VMware Cloud Foundation (VCF) that enables enterprises to run retrieval‑augmented generation workflows, fine‑tune and customize large language models, and perform inference in their own data centers, addressing privacy, choice, cost, performance, and compliance requirements. It integrates the Private AI Package (including vector databases, deep learning VMs, data indexing and retrieval services, and AI agent‑builder tools) with NVIDIA AI Enterprise (comprising NVIDIA microservices like NIM, NVIDIA’s own LLMs, and third‑party/open source models from places like Hugging Face). It supports full GPU virtualization, monitoring, live migration, and efficient resource pooling on NVIDIA‑certified HGX servers with NVLink/NVSwitch acceleration. Deployable via GUI, CLI, and API, it offers unified management through self‑service provisioning, model store governance, and more.
  • 47
    Asimov

    Asimov

    Asimov

    Asimov is a foundational AI-search and vector-search platform built for developers to upload content sources (documents, logs, files, etc.), auto-chunk and embed them, and expose them via a single API to power semantic search, filtering, and relevance for AI agents or applications. It removes the burden of managing separate vector-databases, embedding pipelines, or re-ranking systems by handling ingestion, metadata parameterization, usage tracking, and retrieval logic within a unified architecture. With support for adding content via a REST API and performing semantic search queries with custom filtering parameters, Asimov enables teams to build “search-across-everything” functionality with minimal infrastructure. It is designed to handle metadata, automatic chunking, embedding, and storage (e.g., into MongoDB) and provides developer-friendly tools, including a dashboard, usage analytics, and seamless integration.
    Starting Price: $20 per month
  • 48
    TopK

    TopK

    TopK

    TopK is a serverless, cloud-native, document database built for powering search applications. It features native support for both vector search (vectors are simply another data type) and keyword search (BM25-style) in a single, unified system. With its powerful query expression language, TopK enables you to build reliable search applications (semantic search, RAG, multi-modal, you name it) without juggling multiple databases or services. Our unified retrieval engine will evolve to support document transformation (automatically generate embeddings), query understanding (parse metadata filters from user query), and adaptive ranking (provide more relevant results by sending “relevance feedback” back to TopK) under one unified roof.
  • 49
    Klee

    Klee

    Klee

    Local and secure AI on your desktop, ensuring comprehensive insights with complete data security and privacy. Experience unparalleled efficiency, privacy, and intelligence with our cutting-edge macOS-native app and advanced AI features. RAG can utilize data from a local knowledge base to supplement the large language model (LLM). This means you can keep sensitive data on-premises while leveraging it to enhance the model‘s response capabilities. To implement RAG locally, you first need to segment documents into smaller chunks and then encode these chunks into vectors, storing them in a vector database. These vectorized data will be used for subsequent retrieval processes. When a user query is received, the system retrieves the most relevant chunks from the local knowledge base and inputs these chunks along with the original query into the LLM to generate the final response. We promise lifetime free access for individual users.
  • 50
    Graphlogic GL Platform
    Graphlogic Conversational AI Platform consists on: Robotic Process Automation (RPA) and Conversational AI for enterprises, leveraging state-of-the-art Natural Language Understanding (NLU) technology to create advanced chatbots, voicebots, Automatic Speech Recognition (ASR), Text-to-Speech (TTS) solutions, and Retrieval Augmented Generation (RAG) pipelines with Large Language Models (LLMs). Key components: - Conversational AI Platform - Natural Language understanding - Retrieval augmented generation or RAG pipeline - Speech-to-Text Engine - Text-to-Speech Engine - Channels connectivity - API builder - Visual Flow Builder - Pro-active outreach conversations - Conversational Analytics - Deploy everywhere (SaaS / Private Cloud / On-Premises) - Single-tenancy / multi-tenancy - Multiple language AI
    Starting Price: $75/1250 MAU/month