Audience
Developers and research teams needing a code generation model tool that reduces latency compared to traditional autoregressive systems while maintaining competitive benchmark performance
About ByteDance Seed
Seed Diffusion Preview is a large-scale, code-focused language model that uses discrete-state diffusion to generate code non-sequentially, achieving dramatically faster inference without sacrificing quality by decoupling generation from the token-by-token bottleneck of autoregressive models. It combines a two-stage curriculum, mask-based corruption followed by edit-based augmentation, to robustly train a standard dense Transformer, striking a balance between speed and accuracy and avoiding shortcuts like carry-over unmasking to preserve principled density estimation. The model delivers an inference speed of 2,146 tokens/sec on H20 GPUs, outperforming contemporary diffusion baselines while matching or exceeding their accuracy on standard code benchmarks, including editing tasks, thereby establishing a new speed-quality Pareto frontier and demonstrating discrete diffusion’s practical viability for real-world code generation.