Audience
Computational biologists and genetic engineers in need of a tool to model and design biological sequences across multiple modalities, enhancing research in genomics and synthetic biology
About Evo 2
Evo 2 is a genomic foundation model capable of generalist prediction and design tasks across DNA, RNA, and proteins. It utilizes a frontier deep learning architecture to model biological sequences at single-nucleotide resolution, achieving near-linear scaling of compute and memory relative to context length. Trained with 40 billion parameters and a 1 megabase context length, Evo 2 processes over 9 trillion nucleotides from diverse eukaryotic and prokaryotic genomes. This extensive training enables Evo 2 to perform zero-shot function prediction across multiple biological modalities, including DNA, RNA, and proteins, and to generate novel sequences with plausible genomic architecture. The model's capabilities have been demonstrated in tasks such as designing functional CRISPR systems and predicting disease-causing mutations in human genes. Evo 2 is publicly accessible via Arc's GitHub repository and is integrated into the NVIDIA BioNeMo framework.