HunyuanCustom
HunyuanCustom is a multi-modal customized video generation framework that emphasizes subject consistency while supporting image, audio, video, and text conditions. Built upon HunyuanVideo, it introduces a text-image fusion module based on LLaVA for enhanced multi-modal understanding, along with an image ID enhancement module that leverages temporal concatenation to reinforce identity features across frames. To enable audio- and video-conditioned generation, it further proposes modality-specific condition injection mechanisms, an AudioNet module that achieves hierarchical alignment via spatial cross-attention, and a video-driven injection module that integrates latent-compressed conditional video through a patchify-based feature-alignment network. Extensive experiments on single- and multi-subject scenarios demonstrate that HunyuanCustom significantly outperforms state-of-the-art open and closed source methods in terms of ID consistency, realism, and text-video alignment.
Learn more
VideoPoet
VideoPoet is a simple modeling method that can convert any autoregressive language model or large language model (LLM) into a high-quality video generator. It contains a few simple components. An autoregressive language model learns across video, image, audio, and text modalities to autoregressively predict the next video or audio token in the sequence. A mixture of multimodal generative learning objectives are introduced into the LLM training framework, including text-to-video, text-to-image, image-to-video, video frame continuation, video inpainting and outpainting, video stylization, and video-to-audio. Furthermore, such tasks can be composed together for additional zero-shot capabilities. This simple recipe shows that language models can synthesize and edit videos with a high degree of temporal consistency.
Learn more
Wan2.1
Wan2.1 is an open-source suite of advanced video foundation models designed to push the boundaries of video generation. This cutting-edge model excels in various tasks, including Text-to-Video, Image-to-Video, Video Editing, and Text-to-Image, offering state-of-the-art performance across multiple benchmarks. Wan2.1 is compatible with consumer-grade GPUs, making it accessible to a broader audience, and supports multiple languages, including both Chinese and English for text generation. The model's powerful video VAE (Variational Autoencoder) ensures high efficiency and excellent temporal information preservation, making it ideal for generating high-quality video content. Its applications span across entertainment, marketing, and more.
Learn more
txtai
txtai is an all-in-one open source embeddings database designed for semantic search, large language model orchestration, and language model workflows. It unifies vector indexes (both sparse and dense), graph networks, and relational databases, providing a robust foundation for vector search and serving as a powerful knowledge source for LLM applications. With txtai, users can build autonomous agents, implement retrieval augmented generation processes, and develop multi-modal workflows. Key features include vector search with SQL support, object storage integration, topic modeling, graph analysis, and multimodal indexing capabilities. It supports the creation of embeddings for various data types, including text, documents, audio, images, and video. Additionally, txtai offers pipelines powered by language models that handle tasks such as LLM prompting, question-answering, labeling, transcription, translation, and summarization.
Learn more