Alternatives to Onehouse
Compare Onehouse alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Onehouse in 2026. Compare features, ratings, user reviews, pricing, and more from Onehouse competitors and alternatives in order to make an informed decision for your business.
-
1
Teradata VantageCloud
Teradata
Teradata VantageCloud: The complete cloud analytics and data platform for AI. Teradata VantageCloud is an enterprise-grade, cloud-native data and analytics platform that unifies data management, advanced analytics, and AI/ML capabilities in a single environment. Designed for scalability and flexibility, VantageCloud supports multi-cloud and hybrid deployments, enabling organizations to manage structured and semi-structured data across AWS, Azure, Google Cloud, and on-premises systems. It offers full ANSI SQL support, integrates with open-source tools like Python and R, and provides built-in governance for secure, trusted AI. VantageCloud empowers users to run complex queries, build data pipelines, and operationalize machine learning models—all while maintaining interoperability with modern data ecosystems. -
2
AnalyticsCreator
AnalyticsCreator
AnalyticsCreator is a metadata-driven data warehouse automation solution built specifically for teams working within the Microsoft data ecosystem. It helps organizations speed up the delivery of production-ready data products by automating the entire data engineering lifecycle—from ELT pipeline generation and dimensional modeling to historization and semantic model creation for platforms like Microsoft SQL Server, Azure Synapse Analytics, and Microsoft Fabric. By eliminating repetitive manual coding and reducing the need for multiple disconnected tools, AnalyticsCreator helps data teams reduce tool sprawl and enforce consistent modeling standards across projects. The solution includes built-in support for automated documentation, lineage tracking, schema evolution, and CI/CD integration with Azure DevOps and GitHub. Whether you’re working on data marts, data products, or full-scale enterprise data warehouses, AnalyticsCreator allows you to build faster, govern better, and deliver -
3
StarTree
StarTree
StarTree, powered by Apache Pinot™, is a fully managed real-time analytics platform built for customer-facing applications that demand instant insights on the freshest data. Unlike traditional data warehouses or OLTP databases—optimized for back-office reporting or transactions—StarTree is engineered for real-time OLAP at true scale, meaning: - Data Volume: query performance sustained at petabyte scale - Ingest Rates: millions of events per second, continuously indexed for freshness - Concurrency: thousands to millions of simultaneous users served with sub-second latency With StarTree, businesses deliver always-fresh insights at interactive speed, enabling applications that personalize, monitor, and act in real time.Starting Price: Free -
4
Amazon Redshift
Amazon
More customers pick Amazon Redshift than any other cloud data warehouse. Redshift powers analytical workloads for Fortune 500 companies, startups, and everything in between. Companies like Lyft have grown with Redshift from startups to multi-billion dollar enterprises. No other data warehouse makes it as easy to gain new insights from all your data. With Redshift you can query petabytes of structured and semi-structured data across your data warehouse, operational database, and your data lake using standard SQL. Redshift lets you easily save the results of your queries back to your S3 data lake using open formats like Apache Parquet to further analyze from other analytics services like Amazon EMR, Amazon Athena, and Amazon SageMaker. Redshift is the world’s fastest cloud data warehouse and gets faster every year. For performance intensive workloads you can use the new RA3 instances to get up to 3x the performance of any cloud data warehouse.Starting Price: $0.25 per hour -
5
Snowflake
Snowflake
Snowflake is a comprehensive AI Data Cloud platform designed to eliminate data silos and simplify data architectures, enabling organizations to get more value from their data. The platform offers interoperable storage that provides near-infinite scale and access to diverse data sources, both inside and outside Snowflake. Its elastic compute engine delivers high performance for any number of users, workloads, and data volumes with seamless scalability. Snowflake’s Cortex AI accelerates enterprise AI by providing secure access to leading large language models (LLMs) and data chat services. The platform’s cloud services automate complex resource management, ensuring reliability and cost efficiency. Trusted by over 11,000 global customers across industries, Snowflake helps businesses collaborate on data, build data applications, and maintain a competitive edge.Starting Price: $2 compute/month -
6
BigLake
Google
BigLake is a storage engine that unifies data warehouses and lakes by enabling BigQuery and open-source frameworks like Spark to access data with fine-grained access control. BigLake provides accelerated query performance across multi-cloud storage and open formats such as Apache Iceberg. Store a single copy of data with uniform features across data warehouses & lakes. Fine-grained access control and multi-cloud governance over distributed data. Seamless integration with open-source analytics tools and open data formats. Unlock analytics on distributed data regardless of where and how it’s stored, while choosing the best analytics tools, open source or cloud-native over a single copy of data. Fine-grained access control across open source engines like Apache Spark, Presto, and Trino, and open formats such as Parquet. Performant queries over data lakes powered by BigQuery. Integrates with Dataplex to provide management at scale, including logical data organization.Starting Price: $5 per TB -
7
CelerData Cloud
CelerData
CelerData is a high-performance SQL engine built to power analytics directly on data lakehouses, eliminating the need for traditional data‐warehouse ingestion pipelines. It delivers sub-second query performance at scale, supports on-the‐fly JOINs without costly denormalization, and simplifies architecture by allowing users to run demanding workloads on open format tables. Built on the open source engine StarRocks, the platform outperforms legacy query engines like Trino, ClickHouse, and Apache Druid in latency, concurrency, and cost-efficiency. With a cloud-managed service that runs in your own VPC, you retain infrastructure control and data ownership while CelerData handles maintenance and optimization. The platform is positioned to power real-time OLAP, business intelligence, and customer-facing analytics use cases and is trusted by enterprise customers (including names such as Pinterest, Coinbase, and Fanatics) who have achieved significant latency reductions and cost savings. -
8
Apache Doris
The Apache Software Foundation
Apache Doris is a modern data warehouse for real-time analytics. It delivers lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within a second. Storage engine with real-time upsert, append and pre-aggregation. Optimize for high-concurrency and high-throughput queries with columnar storage engine, MPP architecture, cost based query optimizer, vectorized execution engine. Federated querying of data lakes such as Hive, Iceberg and Hudi, and databases such as MySQL and PostgreSQL. Compound data types such as Array, Map and JSON. Variant data type to support auto data type inference of JSON data. NGram bloomfilter and inverted index for text searches. Distributed design for linear scalability. Workload isolation and tiered storage for efficient resource management. Supports shared-nothing clusters as well as separation of storage and compute.Starting Price: Free -
9
Qlik Compose
Qlik
Qlik Compose for Data Warehouses provides a modern approach by automating and optimizing data warehouse creation and operation. Qlik Compose automates designing the warehouse, generating ETL code, and quickly applying updates, all whilst leveraging best practices and proven design patterns. Qlik Compose for Data Warehouses dramatically reduces the time, cost and risk of BI projects, whether on-premises or in the cloud. Qlik Compose for Data Lakes automates your data pipelines to create analytics-ready data sets. By automating data ingestion, schema creation, and continual updates, organizations realize faster time-to-value from their existing data lake investments. -
10
VeloDB
VeloDB
Powered by Apache Doris, VeloDB is a modern data warehouse for lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within seconds. Storage engine with real-time upsert、append and pre-aggregation. Unparalleled performance in both real-time data serving and interactive ad-hoc queries. Not just structured but also semi-structured data. Not just real-time analytics but also batch processing. Not just run queries against internal data but also work as a federate query engine to access external data lakes and databases. Distributed design to support linear scalability. Whether on-premise deployment or cloud service, separation or integration of storage and compute, resource usage can be flexibly and efficiently adjusted according to workload requirements. Built on and fully compatible with open source Apache Doris. Support MySQL protocol, functions, and SQL for easy integration with other data tools. -
11
Dremio
Dremio
Dremio delivers lightning-fast queries and a self-service semantic layer directly on your data lake storage. No moving data to proprietary data warehouses, no cubes, no aggregation tables or extracts. Just flexibility and control for data architects, and self-service for data consumers. Dremio technologies like Data Reflections, Columnar Cloud Cache (C3) and Predictive Pipelining work alongside Apache Arrow to make queries on your data lake storage very, very fast. An abstraction layer enables IT to apply security and business meaning, while enabling analysts and data scientists to explore data and derive new virtual datasets. Dremio’s semantic layer is an integrated, searchable catalog that indexes all of your metadata, so business users can easily make sense of your data. Virtual datasets and spaces make up the semantic layer, and are all indexed and searchable. -
12
SelectDB
SelectDB
SelectDB is a modern data warehouse based on Apache Doris, which supports rapid query analysis on large-scale real-time data. From Clickhouse to Apache Doris, to achieve the separation of the lake warehouse and upgrade to the lake warehouse. The fast-hand OLAP system carries nearly 1 billion query requests every day to provide data services for multiple scenes. Due to the problems of storage redundancy, resource seizure, complicated governance, and difficulty in querying and adjustment, the original lake warehouse separation architecture was decided to introduce Apache Doris lake warehouse, combined with Doris's materialized view rewriting ability and automated services, to achieve high-performance data query and flexible data governance. Write real-time data in seconds, and synchronize flow data from databases and data streams. Data storage engine for real-time update, real-time addition, and real-time pre-polymerization.Starting Price: $0.22 per hour -
13
Kylo
Teradata
Kylo is an open source enterprise-ready data lake management software platform for self-service data ingest and data preparation with integrated metadata management, governance, security and best practices inspired by Think Big's 150+ big data implementation projects. Self-service data ingest with data cleansing, validation, and automatic profiling. Wrangle data with visual sql and an interactive transform through a simple user interface. Search and explore data and metadata, view lineage, and profile statistics. Monitor health of feeds and services in the data lake. Track SLAs and troubleshoot performance. Design batch or streaming pipeline templates in Apache NiFi and register with Kylo to enable user self-service. Organizations can expend significant engineering effort moving data into Hadoop yet struggle to maintain governance and data quality. Kylo dramatically simplifies data ingest by shifting ingest to data owners through a simple guided UI. -
14
Openbridge
Openbridge
Uncover insights to supercharge sales growth using code-free, fully-automated data pipelines to data lakes or cloud warehouses. A flexible, standards-based platform to unify sales and marketing data for automating insights and smarter growth. Say goodbye to messy, expensive manual data downloads. Always know what you’ll pay and only pay for what you use. Fuel your tools with quick access to analytics-ready data. As certified developers, we only work with secure, official APIs. Get started quickly with data pipelines from popular sources. Pre-built, pre-transformed, and ready-to-go data pipelines. Unlock data from Amazon Vendor Central, Amazon Seller Central, Instagram Stories, Facebook, Amazon Advertising, Google Ads, and many others. Code-free data ingestion and transformation processes allow teams to realize value from their data quickly and cost-effectively. Data is always securely stored directly in a trusted, customer-owned data destination like Databricks, Amazon Redshift, etc.Starting Price: $149 per month -
15
IBM watsonx.data
IBM
Put your data to work, wherever it resides, with the open, hybrid data lakehouse for AI and analytics. Connect your data from anywhere, in any format, and access through a single point of entry with a shared metadata layer. Optimize workloads for price and performance by pairing the right workloads with the right query engine. Embed natural-language semantic search without the need for SQL, so you can unlock generative AI insights faster. Manage and prepare trusted data to improve the relevance and precision of your AI applications. Use all your data, everywhere. With the speed of a data warehouse, the flexibility of a data lake, and special features to support AI, watsonx.data can help you scale AI and analytics across your business. Choose the right engines for your workloads. Flexibly manage cost, performance, and capability with access to multiple open engines including Presto, Presto C++, Spark Milvus, and more. -
16
Lyftrondata
Lyftrondata
Whether you want to build a governed delta lake, data warehouse, or simply want to migrate from your traditional database to a modern cloud data warehouse, do it all with Lyftrondata. Simply create and manage all of your data workloads on one platform by automatically building your pipeline and warehouse. Analyze it instantly with ANSI SQL, BI/ML tools, and share it without worrying about writing any custom code. Boost the productivity of your data professionals and shorten your time to value. Define, categorize, and find all data sets in one place. Share these data sets with other experts with zero codings and drive data-driven insights. This data sharing ability is perfect for companies that want to store their data once, share it with other experts, and use it multiple times, now and in the future. Define dataset, apply SQL transformations or simply migrate your SQL data processing logic to any cloud data warehouse. -
17
Delta Lake
Delta Lake
Delta Lake is an open-source storage layer that brings ACID transactions to Apache Spark™ and big data workloads. Data lakes typically have multiple data pipelines reading and writing data concurrently, and data engineers have to go through a tedious process to ensure data integrity, due to the lack of transactions. Delta Lake brings ACID transactions to your data lakes. It provides serializability, the strongest level of isolation level. Learn more at Diving into Delta Lake: Unpacking the Transaction Log. In big data, even the metadata itself can be "big data". Delta Lake treats metadata just like data, leveraging Spark's distributed processing power to handle all its metadata. As a result, Delta Lake can handle petabyte-scale tables with billions of partitions and files at ease. Delta Lake provides snapshots of data enabling developers to access and revert to earlier versions of data for audits, rollbacks or to reproduce experiments. -
18
The Qlik Data Integration platform for managed data lakes automates the process of providing continuously updated, accurate, and trusted data sets for business analytics. Data engineers have the agility to quickly add new sources and ensure success at every step of the data lake pipeline from real-time data ingestion, to refinement, provisioning, and governance. A simple and universal solution for continually ingesting enterprise data into popular data lakes in real-time. A model-driven approach for quickly designing, building, and managing data lakes on-premises or in the cloud. Deliver a smart enterprise-scale data catalog to securely share all of your derived data sets with business users.
-
19
DataLakeHouse.io
DataLakeHouse.io
DataLakeHouse.io (DLH.io) Data Sync provides replication and synchronization of operational systems (on-premise and cloud-based SaaS) data into destinations of their choosing, primarily Cloud Data Warehouses. Built for marketing teams and really any data team at any size organization, DLH.io enables business cases for building single source of truth data repositories, such as dimensional data warehouses, data vault 2.0, and other machine learning workloads. Use cases are technical and functional including: ELT, ETL, Data Warehouse, Pipeline, Analytics, AI & Machine Learning, Data, Marketing, Sales, Retail, FinTech, Restaurant, Manufacturing, Public Sector, and more. DataLakeHouse.io is on a mission to orchestrate data for every organization particularly those desiring to become data-driven, or those that are continuing their data driven strategy journey. DataLakeHouse.io (aka DLH.io) enables hundreds of companies to managed their cloud data warehousing and analytics solutions.Starting Price: $99 -
20
Archon Data Store
Platform 3 Solutions
Archon Data Store is a next-generation enterprise data archiving platform designed to help organizations manage rapid data growth, reduce legacy application costs, and meet global compliance standards. Built on a modern Lakehouse architecture, Archon Data Store unifies data lakes and data warehouses to deliver secure, scalable, and analytics-ready archival storage. The platform supports on-premise, cloud, and hybrid deployments with AES-256 encryption, audit trails, metadata governance, and role-based access control. Archon Data Store offers intelligent storage tiering, high-performance querying, and seamless integration with BI tools. It enables efficient application decommissioning, cloud migration, and digital modernization while transforming archived data into a strategic asset. With Archon Data Store, organizations can ensure long-term compliance, optimize storage costs, and unlock AI-driven insights from historical data. -
21
BryteFlow
BryteFlow
BryteFlow builds the most efficient automated environments for analytics ever. It converts Amazon S3 into an awesome analytics platform by leveraging the AWS ecosystem intelligently to deliver data at lightning speeds. It complements AWS Lake Formation and automates the Modern Data Architecture providing performance and productivity. You can completely automate data ingestion with BryteFlow Ingest’s simple point-and-click interface while BryteFlow XL Ingest is great for the initial full ingest for very large datasets. No coding is needed! With BryteFlow Blend you can merge data from varied sources like Oracle, SQL Server, Salesforce and SAP etc. and transform it to make it ready for Analytics and Machine Learning. BryteFlow TruData reconciles the data at the destination with the source continually or at a frequency you select. If data is missing or incomplete you get an alert so you can fix the issue easily. -
22
A data lakehouse is a modern, open architecture that enables you to store, understand, and analyze all your data. It combines the power and richness of data warehouses with the breadth and flexibility of the most popular open source data technologies you use today. A data lakehouse can be built from the ground up on Oracle Cloud Infrastructure (OCI) to work with the latest AI frameworks and prebuilt AI services like Oracle’s language service. Data Flow is a serverless Spark service that enables our customers to focus on their Spark workloads with zero infrastructure concepts. Oracle customers want to build advanced, machine learning-based analytics over their Oracle SaaS data, or any SaaS data. Our easy- to-use data integration connectors for Oracle SaaS, make creating a lakehouse to analyze all data with your SaaS data easy and reduces time to solution.
-
23
Apache Druid
Druid
Apache Druid is an open source distributed data store. Druid’s core design combines ideas from data warehouses, timeseries databases, and search systems to create a high performance real-time analytics database for a broad range of use cases. Druid merges key characteristics of each of the 3 systems into its ingestion layer, storage format, querying layer, and core architecture. Druid stores and compresses each column individually, and only needs to read the ones needed for a particular query, which supports fast scans, rankings, and groupBys. Druid creates inverted indexes for string values for fast search and filter. Out-of-the-box connectors for Apache Kafka, HDFS, AWS S3, stream processors, and more. Druid intelligently partitions data based on time and time-based queries are significantly faster than traditional databases. Scale up or down by just adding or removing servers, and Druid automatically rebalances. Fault-tolerant architecture routes around server failures. -
24
Hydrolix
Hydrolix
Hydrolix is a streaming data lake that combines decoupled storage, indexed search, and stream processing to deliver real-time query performance at terabyte-scale for a radically lower cost. CFOs love the 4x reduction in data retention costs. Product teams love 4x more data to work with. Spin up resources when you need them and scale to zero when you don’t. Fine-tune resource consumption and performance by workload to control costs. Imagine what you can build when you don’t have to sacrifice data because of budget. Ingest, enrich, and transform log data from multiple sources including Kafka, Kinesis, and HTTP. Return just the data you need, no matter how big your data is. Reduce latency and costs, eliminate timeouts, and brute force queries. Storage is decoupled from ingest and query, allowing each to independently scale to meet performance and budget targets. Hydrolix’s high-density compression (HDX) typically reduces 1TB of stored data to 55GB.Starting Price: $2,237 per month -
25
Upsolver
Upsolver
Upsolver makes it incredibly simple to build a governed data lake and to manage, integrate and prepare streaming data for analysis. Define pipelines using only SQL on auto-generated schema-on-read. Easy visual IDE to accelerate building pipelines. Add Upserts and Deletes to data lake tables. Blend streaming and large-scale batch data. Automated schema evolution and reprocessing from previous state. Automatic orchestration of pipelines (no DAGs). Fully-managed execution at scale. Strong consistency guarantee over object storage. Near-zero maintenance overhead for analytics-ready data. Built-in hygiene for data lake tables including columnar formats, partitioning, compaction and vacuuming. 100,000 events per second (billions daily) at low cost. Continuous lock-free compaction to avoid “small files” problem. Parquet-based tables for fast queries. -
26
Azure Data Lake
Microsoft
Azure Data Lake includes all the capabilities required to make it easy for developers, data scientists, and analysts to store data of any size, shape, and speed, and do all types of processing and analytics across platforms and languages. It removes the complexities of ingesting and storing all of your data while making it faster to get up and running with batch, streaming, and interactive analytics. Azure Data Lake works with existing IT investments for identity, management, and security for simplified data management and governance. It also integrates seamlessly with operational stores and data warehouses so you can extend current data applications. We’ve drawn on the experience of working with enterprise customers and running some of the largest scale processing and analytics in the world for Microsoft businesses like Office 365, Xbox Live, Azure, Windows, Bing, and Skype. Azure Data Lake solves many of the productivity and scalability challenges that prevent you from maximizing the -
27
iomete
iomete
Modern lakehouse built on top of Apache Iceberg and Apache Spark. Includes: Serverless lakehouse, Serverless Spark Jobs, SQL editor, Advanced data catalog and built-in BI (or connect 3rd party BI e.g. Tableau, Looker). iomete has an extreme value proposition with compute prices is equal to AWS on-demand pricing. No mark-ups. AWS users get our platform basically for free.Starting Price: Free -
28
Lentiq
Lentiq
Lentiq is a collaborative data lake as a service environment that’s built to enable small teams to do big things. Quickly run data science, machine learning and data analysis at scale in the cloud of your choice. With Lentiq, your teams can ingest data in real time and then process, clean and share it. From there, Lentiq makes it possible to build, train and share models internally. Simply put, data teams can collaborate with Lentiq and innovate with no restrictions. Data lakes are storage and processing environments, which provide ML, ETL, schema-on-read querying capabilities and so much more. Are you working on some data science magic? You definitely need a data lake. In the Post-Hadoop era, the big, centralized data lake is a thing of the past. With Lentiq, we use data pools, which are multi-cloud, interconnected mini-data lakes. They work together to give you a stable, secure and fast data science environment. -
29
Qubole
Qubole
Qubole is a simple, open, and secure Data Lake Platform for machine learning, streaming, and ad-hoc analytics. Our platform provides end-to-end services that reduce the time and effort required to run Data pipelines, Streaming Analytics, and Machine Learning workloads on any cloud. No other platform offers the openness and data workload flexibility of Qubole while lowering cloud data lake costs by over 50 percent. Qubole delivers faster access to petabytes of secure, reliable and trusted datasets of structured and unstructured data for Analytics and Machine Learning. Users conduct ETL, analytics, and AI/ML workloads efficiently in end-to-end fashion across best-of-breed open source engines, multiple formats, libraries, and languages adapted to data volume, variety, SLAs and organizational policies. -
30
Cribl Lake
Cribl
Storage that doesn’t lock data in. Get up and running fast with a managed data lake. Easily store, access, and retrieve data, without being a data expert. Cribl Lake keeps you from drowning in data. Easily store, manage, enforce policy on, and access data when you need. Dive into the future with open formats and unified retention, security, and access control policies. Let Cribl handle the heavy lifting so data can be usable and valuable to the teams and tools that need it. Minutes, not months to get up and running with Cribl Lake. Zero configuration with automated provisioning and out-of-the-box integrations. Streamline workflows with Stream and Edge for powerful data ingestion and routing. Cribl Search unifies queries no matter where data is stored, so you can get value from data without delays. Take an easy path to collect and store data for long-term retention. Comply with legal and business requirements for data retention by defining specific retention periods. -
31
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker. -
32
e6data
e6data
Limited competition due to deep barriers to entry, specialized know-how, massive capital needs, and long time-to-market. Existing platforms are indistinguishable in price, and performance reducing the incentive to switch. Migrating from one engine’s SQL dialect to another engine’s SQL involves months of effort. Truly format-neutral computing, interoperable with all major open standards. Enterprise data leaders are hit by an unprecedented explosion in computing demand for data intelligence. They are surprised to find that 10% of their heavy, compute-intensive use cases consume 80% of the cost, engineering effort and stakeholder complaints. Unfortunately, such workloads are also mission-critical and non-discretionary. e6data amplifies ROI on enterprises' existing data platforms and architecture. e6data’s truly format-neutral compute has the unique distinction of being equally efficient and performant across leading data lakehouse table formats. -
33
Talend Data Fabric
Qlik
Talend Data Fabric’s suite of cloud services efficiently handles all your integration and integrity challenges — on-premises or in the cloud, any source, any endpoint. Deliver trusted data at the moment you need it — for every user, every time. Ingest and integrate data, applications, files, events and APIs from any source or endpoint to any location, on-premise and in the cloud, easier and faster with an intuitive interface and no coding. Embed quality into data management and guarantee ironclad regulatory compliance with a thoroughly collaborative, pervasive and cohesive approach to data governance. Make the most informed decisions based on high quality, trustworthy data derived from batch and real-time processing and bolstered with market-leading data cleaning and enrichment tools. Get more value from your data by making it available internally and externally. Extensive self-service capabilities make building APIs easy— improve customer engagement. -
34
Data Lakes on AWS
Amazon
Many Amazon Web Services (AWS) customers require a data storage and analytics solution that offers more agility and flexibility than traditional data management systems. A data lake is a new and increasingly popular way to store and analyze data because it allows companies to manage multiple data types from a wide variety of sources, and store this data, structured and unstructured, in a centralized repository. The AWS Cloud provides many of the building blocks required to help customers implement a secure, flexible, and cost-effective data lake. These include AWS managed services that help ingest, store, find, process, and analyze both structured and unstructured data. To support our customers as they build data lakes, AWS offers the data lake solution, which is an automated reference implementation that deploys a highly available, cost-effective data lake architecture on the AWS Cloud along with a user-friendly console for searching and requesting datasets. -
35
NewEvol
Sattrix Software Solutions
NewEvol is the technologically advanced product suite that uses data science for advanced analytics to identify abnormalities in the data itself. Supported by visualization, rule-based alerting, automation, and responses, NewEvol becomes a more compiling proposition for any small to large enterprise. Machine Learning (ML) and security intelligence feed makes NewEvol a more robust system to cater to challenging business demands. NewEvol Data Lake is super easy to deploy and manage. You don’t require a team of expert data administrators. As your company’s data need grows, it automatically scales and reallocates resources accordingly. NewEvol Data Lake has extensive data ingestion to perform enrichment across multiple sources. It helps you ingest data from multiple formats such as delimited, JSON, XML, PCAP, Syslog, etc. It offers enrichment with the help of a best-of-breed contextually aware event analytics model. -
36
Kinetica
Kinetica
A scalable cloud database for real-time analysis on large and streaming datasets. Kinetica is designed to harness modern vectorized processors to be orders of magnitude faster and more efficient for real-time spatial and temporal workloads. Track and gain intelligence from billions of moving objects in real-time. Vectorization unlocks new levels of performance for analytics on spatial and time series data at scale. Ingest and query at the same time to act on real-time events. Kinetica's lockless architecture and distributed ingestion ensures data is available to query as soon as it lands. Vectorized processing enables you to do more with less. More power allows for simpler data structures, which lead to lower storage costs, more flexibility and less time engineering your data. Vectorized processing opens the door to amazingly fast analytics and detailed visualization of moving objects at scale. -
37
Electrik.Ai
Electrik.Ai
Automatically ingest marketing data into any data warehouse or cloud file storage of your choice such as BigQuery, Snowflake, Redshift, Azure SQL, AWS S3, Azure Data Lake, Google Cloud Storage with our fully managed ETL pipelines in the cloud. Our hosted marketing data warehouse integrates all your marketing data and provides ad insights, cross-channel attribution, content insights, competitor Insights, and more. Our customer data platform performs identity resolution in real-time across data sources thus enabling a unified view of the customer and their journey. Electrik.AI is a cloud-based marketing analytics software and full-service platform. Electrik.AI’s Google Analytics Hit Data Extractor enriches and extracts the un-sampled hit level data sent to Google Analytics from the website or application and periodically ships it to your desired destination database/data warehouse or file/data lake.Starting Price: $49 per month -
38
Cloudera Data Warehouse
Cloudera
Cloudera Data Warehouse is a cloud-native, self-service analytics solution that lets IT rapidly deliver query capabilities to BI analysts, enabling users to go from zero to query in minutes. It supports all data types, structured, semi-structured, unstructured, real-time, and batch, and scales cost-effectively from gigabytes to petabytes. It is fully integrated with streaming, data engineering, and AI services, and enforces a unified security, governance, and metadata framework across private, public, or hybrid cloud deployments. Each virtual warehouse (data warehouse or mart) is isolated and automatically configured and optimized, ensuring that workloads do not interfere with each other. Cloudera leverages open source engines such as Hive, Impala, Kudu, and Druid, along with tools like Hue and more, to handle diverse analytics, from dashboards and operational analytics to research and discovery over vast event or time-series data. -
39
Tabular
Tabular
Tabular is an open table store from the creators of Apache Iceberg. Connect multiple computing engines and frameworks. Decrease query time and storage costs by up to 50%. Centralize enforcement of data access (RBAC) policies. Connect any query engine or framework, including Athena, BigQuery, Redshift, Snowflake, Databricks, Trino, Spark, and Python. Smart compaction, clustering, and other automated data services reduce storage costs and query times by up to 50%. Unify data access at the database or table. RBAC controls are simple to manage, consistently enforced, and easy to audit. Centralize your security down to the table. Tabular is easy to use plus it features high-powered ingestion, performance, and RBAC under the hood. Tabular gives you the flexibility to work with multiple “best of breed” compute engines based on their strengths. Assign privileges at the data warehouse database, table, or column level.Starting Price: $100 per month -
40
Amazon MSK
Amazon
Amazon Managed Streaming for Apache Kafka (Amazon MSK) is a fully managed service that makes it easy for you to build and run applications that use Apache Kafka to process streaming data. Apache Kafka is an open-source platform for building real-time streaming data pipelines and applications. With Amazon MSK, you can use native Apache Kafka APIs to populate data lakes, stream changes to and from databases, and power machine learning and analytics applications. Apache Kafka clusters are challenging to setup, scale, and manage in production. When you run Apache Kafka on your own, you need to provision servers, configure Apache Kafka manually, replace servers when they fail, orchestrate server patches and upgrades, architect the cluster for high availability, ensure data is durably stored and secured, setup monitoring and alarms, and carefully plan scaling events to support load changes.Starting Price: $0.0543 per hour -
41
FutureAnalytica
FutureAnalytica
Ours is the world’s first & only end-to-end platform for all your AI-powered innovation needs — right from data cleansing & structuring, to creating & deploying advanced data-science models, to infusing advanced analytics algorithms with built-in Recommendation AI, to deducing the outcomes with easy-to-deduce visualization dashboards, as well as Explainable AI to backtrack how the outcomes were derived, our no-code AI platform can do it all! Our platform offers a holistic, seamless data science experience. With key features like a robust Data Lakehouse, a unique AI Studio, a comprehensive AI Marketplace, and a world-class data-science support team (on a need basis), FutureAnalytica is geared to reduce your time, efforts & costs across your data-science & AI journey. Initiate discussions with the leadership, followed by a quick technology assessment in 1–3 days. Build ready-to-integrate AI solutions using FA's fully automated data science & AI platform in 10–18 days. -
42
Alibaba Cloud Data Lake Formation
Alibaba Cloud
A data lake is a centralized repository used for big data and AI computing. It allows you to store structured and unstructured data at any scale. Data Lake Formation (DLF) is a key component of the cloud-native data lake framework. DLF provides an easy way to build a cloud-native data lake. It seamlessly integrates with a variety of compute engines and allows you to manage the metadata in data lakes in a centralized manner and control enterprise-class permissions. Systematically collects structured, semi-structured, and unstructured data and supports massive data storage. Uses an architecture that separates computing from storage. You can plan resources on demand at low costs. This improves data processing efficiency to meet the rapidly changing business requirements. DLF can automatically discover and collect metadata from multiple engines and manage the metadata in a centralized manner to solve the data silo issues. -
43
R2 SQL
Cloudflare
R2 SQL is Cloudflare’s serverless, distributed analytics query engine (currently in open beta) that enables you to run SQL queries over Apache Iceberg tables stored in R2 Data Catalog without needing to manage your own compute clusters. It is built to efficiently query large volumes of data by leveraging metadata pruning, partition-level statistics, file and row-group filtering, and Cloudflare’s globally distributed compute infrastructure to parallelize execution. The system works by integrating with R2 object storage and an Iceberg catalog layer, so you can ingest data via Cloudflare Pipelines into Iceberg tables, and then query that data with minimal overhead. Queries can be issued via the Wrangler CLI or HTTP API (with an API token granting permissions across R2 SQL, Data Catalog, and storage). During the open beta period, using R2 SQL itself is not billed, only storage and standard R2 operations incur charges.Starting Price: Free -
44
iceDQ
iceDQ
iceDQ is the #1 data reliability platform offering powerful, unified capabilities for Data Testing, Data Monitoring, and Data Observability. Designed for modern data environments, iceDQ automates complex data pipelines and data migration testing to ensure accuracy, integrity, and trust in your data systems. Its AI-based observability engine continuously monitors data in real-time, quickly detecting anomalies and minimizing business risks. With robust cross-platform connectivity, iceDQ supports seamless data validation, data profiling, and data reconciliation across diverse sources — including databases, files, data lakes, SaaS applications, and cloud environments. Whether you're migrating data, ensuring ETL/ELT process quality, or monitoring live data streams, iceDQ helps enterprises deliver high-quality, reliable data at scale. From financial services to healthcare and beyond, organizations rely on iceDQ to make confident, data-driven decisions backed by trusted data pipelines.Starting Price: $1000 -
45
Apache Hudi
Apache Corporation
Hudi is a rich platform to build streaming data lakes with incremental data pipelines on a self-managing database layer, while being optimized for lake engines and regular batch processing. Hudi maintains a timeline of all actions performed on the table at different instants of time that helps provide instantaneous views of the table, while also efficiently supporting retrieval of data in the order of arrival. A Hudi instant consists of the following components. Hudi provides efficient upserts, by mapping a given hoodie key consistently to a file id, via an indexing mechanism. This mapping between record key and file group/file id, never changes once the first version of a record has been written to a file. In short, the mapped file group contains all versions of a group of records. -
46
Azure Synapse Analytics
Microsoft
Azure Synapse is Azure SQL Data Warehouse evolved. Azure Synapse is a limitless analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless or provisioned resources—at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs. -
47
Cloudera DataFlow
Cloudera
Cloudera DataFlow for the Public Cloud (CDF-PC) is a cloud-native universal data distribution service powered by Apache NiFi that lets developers connect to any data source anywhere with any structure, process it, and deliver to any destination. CDF-PC offers a flow-based low-code development paradigm that aligns best with how developers design, develop, and test data distribution pipelines. With over 400+ connectors and processors across the ecosystem of hybrid cloud services—including data lakes, lakehouses, cloud warehouses, and on-premises sources—CDF-PC provides indiscriminate data distribution. These data distribution flows can then be version-controlled into a catalog where operators can self-serve deployments to different runtimes. -
48
Amazon Security Lake
Amazon
Amazon Security Lake automatically centralizes security data from AWS environments, SaaS providers, on-premises, and cloud sources into a purpose-built data lake stored in your account. With Security Lake, you can get a more complete understanding of your security data across your entire organization. You can also improve the protection of your workloads, applications, and data. Security Lake has adopted the Open Cybersecurity Schema Framework (OCSF), an open standard. With OCSF support, the service normalizes and combines security data from AWS and a broad range of enterprise security data sources. Use your preferred analytics tools to analyze your security data while retaining complete control and ownership over that data. Centralize data visibility from cloud and on-premises sources across your accounts and AWS Regions. Streamline your data management at scale by normalizing your security data to an open standard.Starting Price: $0.75 per GB per month -
49
Informatica Data Engineering Streaming
Informatica
AI-powered Informatica Data Engineering Streaming enables data engineers to ingest, process, and analyze real-time streaming data for actionable insights. Advanced serverless deployment option with integrated metering dashboard cuts admin overhead. Rapidly build intelligent data pipelines with CLAIRE®-powered automation, including automatic change data capture (CDC). Ingest thousands of databases and millions of files, and streaming events. Efficiently ingest databases, files, and streaming data for real-time data replication and streaming analytics. Find and inventory all data assets throughout your organization. Intelligently discover and prepare trusted data for advanced analytics and AI/ML projects. -
50
Infor Data Lake
Infor
Solving today’s enterprise and industry challenges requires big data. The ability to capture data from across your enterprise—whether generated by disparate applications, people, or IoT infrastructure–offers tremendous potential. Infor’s Data Lake tools deliver schema-on-read intelligence along with a fast, flexible data consumption framework to enable new ways of making key decisions. With leveraged access to your entire Infor ecosystem, you can start capturing and delivering big data to power your next generation analytics and machine learning strategies. Infinitely scalable, the Infor Data Lake provides a unified repository for capturing all of your enterprise data. Grow with your insights and investments, ingest more content for better informed decisions, improve your analytics profiles, and provide rich data sets to build more powerful machine learning processes.