kmeans_segmentation.py
import cv2
import numpy as np
import matplotlib.pyplot as plt
import sys
# read the image
image = cv2.imread(sys.argv[1])
# convert to RGB
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# reshape the image to a 2D array of pixels and 3 color values (RGB)
pixel_values = image.reshape((-1, 3))
# convert to float
pixel_values = np.float32(pixel_values)
# define stopping criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
# number of clusters (K)
k = 3
compactness, labels, (centers) = cv2.kmeans(pixel_values, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
# convert back to 8 bit values
centers = np.uint8(centers)
# flatten the labels array
labels = labels.flatten()
# convert all pixels to the color of the centroids
segmented_image = centers[labels]
# reshape back to the original image dimension
segmented_image = segmented_image.reshape(image.shape)
# show the image
plt.imshow(segmented_image)
plt.show()
# disable only the cluster number 2 (turn the pixel into black)
masked_image = np.copy(image)
# convert to the shape of a vector of pixel values
masked_image = masked_image.reshape((-1, 3))
# color (i.e cluster) to disable
cluster = 2
masked_image[labels == cluster] = [0, 0, 0]
# convert back to original shape
masked_image = masked_image.reshape(image.shape)
# show the image
plt.imshow(masked_image)
plt.show()refactored_kmeans_segmentation.py
import cv2
import numpy as np
import matplotlib.pyplot as plt
import sys
def read_image(file_path):
    """Read the image and convert it to RGB."""
    image = cv2.imread(file_path)
    return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
def preprocess_image(image):
    """Reshape the image to a 2D array of pixels and 3 color values (RGB) and convert to float."""
    pixel_values = image.reshape((-1, 3))
    return np.float32(pixel_values)
def perform_kmeans_clustering(pixel_values, k=3):
    """Perform k-means clustering on the pixel values."""
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
    compactness, labels, centers = cv2.kmeans(pixel_values, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
    return compactness, labels, np.uint8(centers)
def create_segmented_image(pixel_values, labels, centers):
    """Create a segmented image using the cluster centroids."""
    segmented_image = centers[labels.flatten()]
    return segmented_image.reshape(image.shape)
def create_masked_image(image, labels, cluster_to_disable):
    """Create a masked image by disabling a specific cluster."""
    masked_image = np.copy(image).reshape((-1, 3))
    masked_image[labels.flatten() == cluster_to_disable] = [0, 0, 0]
    return masked_image.reshape(image.shape)
def display_image(image):
    """Display the image using matplotlib."""
    plt.imshow(image)
    plt.show()
if __name__ == "__main__":
    image_path = sys.argv[1]
    k = int(sys.argv[2])
    # read the image
    image = read_image(image_path)
    # preprocess the image
    pixel_values = preprocess_image(image)
    # compactness is the sum of squared distance from each point to their corresponding centers
    compactness, labels, centers = perform_kmeans_clustering(pixel_values, k)
    # create the segmented image
    segmented_image = create_segmented_image(pixel_values, labels, centers)
    # display the image
    display_image(segmented_image)
    # disable only the cluster number 2 (turn the pixel into black)
    cluster_to_disable = 2
    # create the masked image
    masked_image = create_masked_image(image, labels, cluster_to_disable)
    display_image(masked_image)
live_kmeans_segmentation.py (using live cam)
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
k = 5
# define stopping criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
while True:
    # read the image
    _, image = cap.read()
    # reshape the image to a 2D array of pixels and 3 color values (RGB)
    pixel_values = image.reshape((-1, 3))
    # convert to float
    pixel_values = np.float32(pixel_values)
    # number of clusters (K)
    _, labels, (centers) = cv2.kmeans(pixel_values, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
    # convert back to 8 bit values
    centers = np.uint8(centers)
    # convert all pixels to the color of the centroids
    segmented_image = centers[labels.flatten()]
    # reshape back to the original image dimension
    segmented_image = segmented_image.reshape(image.shape)
    # reshape labels too
    labels = labels.reshape(image.shape[0], image.shape[1])
    cv2.imshow("segmented_image", segmented_image)
    # visualize each segment
    if cv2.waitKey(1) == ord("q"):
        break
cap.release()
cv2.destroyAllWindows()