
XDC 2024 – October 10 - Montreal

Device-Generated Commands in Vulkan
(VK_EXT_device_generated_commands)

1 / 26

Ricardo Garcia

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

2 / 26

About me
● Part of the Graphics team at Igalia since 2019.
● Focused on Vulkan CTS work for Valve.
● Main author of tests for mesh shading and device-

generated commands.

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

3 / 26

What are Device-Generated Commands?
● One step ahead of indirect draws and dispatches.
● One step behind work graphs.
● Allows drivers to read command sequences from a regular

buffer instead of a command buffer.
● That buffer could be filled from the GPU to achieve GPU-

driven rendering.
● Better translation of DX12’s ExecuteIndirect.

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

4 / 26

Naïve CPU-based Approach
1) vkCmdPushConstants(layout, stageFlags, offset, size, pValues)

2) vkCmdDispatch(x, y, z)

Token
(Cmd ID)

Push
Constants

Layout
Stage Flags

Offset
Size

*pValues
Token

(Cmd ID)
Dispatch

(X,Y,Z)

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

5 / 26

VK_EXT_device_generated_commands
● VkIndirectCommandsLayoutEXT

1) vkCmdPushConstants

2)vkCmdDispatch

● Buffer contains a number of fixed-size sequences and each follows the layout

Token
(Cmd ID)

Push
Constants

Layout
Stage Flags

Offset
Size

*pValues

Token
(Cmd ID)
Dispatch

(X,Y,Z) *pValues (X,Y,Z) *pValues (X,Y,Z) ...

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

6 / 26

Restriced Command Selection
VK_INDIRECT_COMMANDS_TOKEN_TYPE_EXECUTION_SET_EXT
VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_EXT
VK_INDIRECT_COMMANDS_TOKEN_TYPE_SEQUENCE_INDEX_EXT

VK_INDIRECT_COMMANDS_TOKEN_TYPE_INDEX_BUFFER_EXT
VK_INDIRECT_COMMANDS_TOKEN_TYPE_VERTEX_BUFFER_EXT
VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_INDEXED_EXT
VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_EXT
VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_INDEXED_COUNT_EXT
VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_COUNT_EXT

VK_INDIRECT_COMMANDS_TOKEN_TYPE_DISPATCH_EXT

VK_INDIRECT_COMMANDS_TOKEN_TYPE_TRACE_RAYS2_EXT

VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_MESH_TASKS_NV_EXT
VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_MESH_TASKS_COUNT_NV_EXT
VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_MESH_TASKS_EXT
VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_MESH_TASKS_COUNT_EXT

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

7 / 26

Indirect Commands Layout
● Backbone of the extension.
● Specifies the layout of each sequence in the buffer.
● Must specify exactly one token to dispatch work at the

last position.
● [Optional] Allows you to switch shaders for each

sequence.

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

8 / 26

Indirect Commands Layout
struct VkIndirectCommandsLayoutCreateInfoEXT
{
 VkStructureType sType;
 const void* pNext;
 VkIndirectCommandsLayoutUsageFlagsEXT flags;
 VkShaderStageFlags shaderStages;
 uint32_t indirectStride;
 VkPipelineLayout pipelineLayout;
 uint32_t tokenCount;
 const VkIndirectCommandsLayoutTokenEXT* pTokens;
};

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

9 / 26

Indirect Commands Layout
struct VkIndirectCommandsLayoutCreateInfoEXT
{
 VkStructureType sType;
 const void* pNext;
 VkIndirectCommandsLayoutUsageFlagsEXT flags;
 VkShaderStageFlags shaderStages;
 uint32_t indirectStride;
 VkPipelineLayout pipelineLayout;
 uint32_t tokenCount;
 const VkIndirectCommandsLayoutTokenEXT* pTokens;
};

struct VkIndirectCommandsLayoutTokenEXT
{
 VkStructureType sType;
 const void* pNext;
 VkIndirectCommandsTokenTypeEXT type;
 VkIndirectCommandsTokenDataEXT data;
 uint32_t offset;
};

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

10 / 26

Indirect Commands Layout
struct VkIndirectCommandsLayoutCreateInfoEXT
{
 VkStructureType sType;
 const void* pNext;
 VkIndirectCommandsLayoutUsageFlagsEXT flags;
 VkShaderStageFlags shaderStages;
 uint32_t indirectStride;
 VkPipelineLayout pipelineLayout;
 uint32_t tokenCount;
 const VkIndirectCommandsLayoutTokenEXT* pTokens;
};

struct VkIndirectCommandsLayoutTokenEXT
{
 VkStructureType sType;
 const void* pNext;
 VkIndirectCommandsTokenTypeEXT type;
 VkIndirectCommandsTokenDataEXT data;
 uint32_t offset;
};

union VkIndirectCommandsTokenDataEXT
{
 const VkIndirectCommandsPushConstantTokenEXT* pPushConstant;
 const VkIndirectCommandsVertexBufferTokenEXT* pVertexBuffer;
 const VkIndirectCommandsIndexBufferTokenEXT* pIndexBuffer;
 const VkIndirectCommandsExecutionSetTokenEXT* pExecutionSet;
};

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

11 / 26

● A group of similar pipelines or shader objects.
● All state must be identical (only shaders change).
● Each pipeline/shader has an index in the set.
● The IES is specified beforehand and the DGC buffer

contains indices into the set.

Indirect Execution Sets

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

12 / 26

Indirect Execution Sets
struct VkIndirectExecutionSetCreateInfoEXT
{
 VkStructureType sType;
 const void* pNext;
 VkIndirectExecutionSetInfoTypeEXT type;
 VkIndirectExecutionSetInfoEXT info;
};

struct VkIndirectExecutionSetPipelineInfoEXT
{
 VkStructureType sType;
 const void* pNext;
 VkPipeline initialPipeline;
 uint32_t maxPipelineCount;
};

union VkIndirectExecutionSetInfoEXT
{
 const VkIndirectExecutionSetPipelineInfoEXT* pPipelineInfo;
 const VkIndirectExecutionSetShaderInfoEXT* pShaderInfo;
};

struct VkIndirectExecutionSetShaderInfoEXT
{
 VkStructureType sType;
 const void* pNext;
 uint32_t shaderCount;
 const VkShaderEXT* pInitialShaders;
 const VkIndirectExecutionSetShaderLayoutInfoEXT* pSetLayoutInfos;
 uint32_t maxShaderCount;
 uint32_t pushConstantRangeCount;
 const VkPushConstantRange* pPushConstantRanges;
};

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

13 / 26

● Pipelines and shaders in the set can be updated after creation with
vkUpdateIndirectExecutionSetPipelineEXT and
vkUpdateIndirectExecutionSetShaderEXT

● Pipelines and shaders have to be created with a special flag:
VK_PIPELINE_CREATE_2_INDIRECT_BINDABLE_BIT_EXT or
VK_SHADER_CREATE_INDIRECT_BINDABLE_BIT_EXT.

● The IES token, if present, must appear only once and it must be the
first one.

Indirect Execution Sets

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

14 / 26

1) The DGC buffer is divided into small chunks called
sequences.

2)Each sequence follows a template called Indirect
Commands Layout.

3)Each sequence must dispatch work once.
4)You may be able to switch the set of shaders used with

each sequence with an Indirect Execution Set (check
device properties).

Recap so far

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

15 / 26

Executing Work with DGC
● Before executing the contents of a DGC buffer, apps need

to have bound all the needed state to run those
commands.

● That includes the initial pipeline state and shader state
(even if they will use an IES!).

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

16 / 26

Executing Work with DGC
void vkCmdExecuteGeneratedCommandsEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 isPreprocessed,
 const VkGeneratedCommandsInfoEXT* pGeneratedCommandsInfo);

typedef struct VkGeneratedCommandsInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkShaderStageFlags shaderStages;
 VkIndirectExecutionSetEXT indirectExecutionSet;
 VkIndirectCommandsLayoutEXT indirectCommandsLayout;
 VkDeviceAddress indirectAddress;
 VkDeviceSize indirectAddressSize;
 VkDeviceAddress preprocessAddress;
 VkDeviceSize preprocessSize;
 uint32_t maxSequenceCount;
 VkDeviceAddress sequenceCountAddress;
 uint32_t maxDrawCount;
} VkGeneratedCommandsInfoEXT;

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

17 / 26

Executing Work with DGC
void vkCmdExecuteGeneratedCommandsEXT(
 VkCommandBuffer commandBuffer,
 VkBool32 isPreprocessed,
 const VkGeneratedCommandsInfoEXT* pGeneratedCommandsInfo);

typedef struct VkGeneratedCommandsInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkShaderStageFlags shaderStages;
 VkIndirectExecutionSetEXT indirectExecutionSet;
 VkIndirectCommandsLayoutEXT indirectCommandsLayout;
 VkDeviceAddress indirectAddress;
 VkDeviceSize indirectAddressSize;
 VkDeviceAddress preprocessAddress;
 VkDeviceSize preprocessSize;
 uint32_t maxSequenceCount;
 VkDeviceAddress sequenceCountAddress;
 uint32_t maxDrawCount;
} VkGeneratedCommandsInfoEXT;

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

18 / 26

● Some drivers need auxiliary space when processing DGC
buffers.

● The amount of space can be queried with
vkGetGeneratedCommandsMemoryRequirementsEXT.

● Apps need to allocate a buffer with a special flag:
VK_BUFFER_USAGE_2_PREPROCESS_BUFFER_BIT_EXT

● Apps need to pass that buffer when executing indirect
commands.

Preprocess Buffer

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

19 / 26

● Key for performance with some drivers.
● Launched with vkCmdPreprocessGeneratedCommandsEXT before

executing those same indirect commands.
● Typically submitted in a separate command buffer before the one that

contains the execution.
● Layout needs to be created with

VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EXPLICIT_PREPROCESS_BIT_
EXT.

● Needs the same VkGeneratedCommandsInfoEXT contents, input buffer
contents and state between preprocessing and execution.

Explicit Preprocessing

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

20 / 26

Explicit Preprocessing (cont.)
void vkCmdPreprocessGeneratedCommandsEXT(
 VkCommandBuffer commandBuffer,
 const VkGeneratedCommandsInfoEXT* pGeneratedCommandsInfo,
 VkCommandBuffer stateCommandBuffer);

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

21 / 26

Explicit Preprocessing (cont.)
void vkCmdPreprocessGeneratedCommandsEXT(
 VkCommandBuffer commandBuffer,
 const VkGeneratedCommandsInfoEXT* pGeneratedCommandsInfo,
 VkCommandBuffer stateCommandBuffer);

Using a command buffer as state
for another command… WHAT?!

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

22 / 26

Explicit Preprocessing (cont.)
vkCmdBeginRenderPass(cmdBuffer, …);
vkCmdBindDescriptorSets(cmdBuffer, …);
vkCmdBindPipeline(cmdBuffer, …);
vkCmdSetSomeDynamicState(cmdBuffer, …);
vkCmdPushConstants(cmdBuffer, …);

vkCmdExecuteGeneratedCommands(cmdBuffer,
 VK_TRUE,
 &genCmdsInfo);
...

vkBeginCommandBuffer(preprocessCmdBuffer, …);
vkCmdPreprocessGeneratedCommandsEXT(
 preprocessCmdBuffer,
 &genCmdsInfo,
 cmdBuffer);
<synchronization commands>
vkEndCommandBuffer(preprocessCmdBuffer,…);

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

23 / 26

● From preparing (filling) the DGC buffer to executing the commands stored in it.
● Source Stage: whichever fills the buffer.
● Source Access: some kind of write.
● Destination Stage:

● VK_PIPELINE_STAGE_COMMAND_PREPROCESS_BIT_EXT or
● VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT.

● Destination Access:
● VK_ACCESS_COMMAND_PREPROCESS_READ_BIT_EXT or
● VK_ACCESS_INDIRECT_COMMAND_READ_BIT

Synchronization

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

24 / 26

● From preprocessing to execution.
● Source Stage: VK_PIPELINE_STAGE_COMMAND_PREPROCESS_BIT_EXT
● Source Access: VK_ACCESS_COMMAND_PREPROCESS_WRITE_BIT_EXT
● Destination Stage: VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT

● Destination Access: VK_ACCESS_INDIRECT_COMMAND_READ_BIT

Synchronization (cont.)

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

25 / 26

1) Create the commands layout, and IES if needed (VkIndirectCommandsLayoutEXT,
VkIndirectExecutionSetEXT)

2) Establish the maximum number of sequences

3) Query the required preprocess buffer size (vkGetGeneratedCommandsMemoryRequirementsEXT)

4) Allocate DGC buffer and preprocess buffer

5) Record commands and state almost normally (including work that fills the DGC buffer)

6) Dispatch work with vkCmdExecuteGeneratedCommandsEXT

7) If using explicit preprocessing (e.g. Proton does it to improve performance):

a) Use a separate command buffer for it

b) Pass the main command buffer in as state

c) Call vkCmdPreprocessGeneratedCommandsEXT and submit this work first, synchronizing with
vkCmdExecuteGeneratedCommandsEXT

Quick How-To

Vulkanised 2025 – Ricardo Garcia
Device-Generated Commands in Vulkan

26 / 26

Thanks for watching!

Join us!

https://www.igalia.com/jobs

https://www.igalia.com/jobs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

