d 2 02 5 The 7" Vulkan Developer Conference
(an ISe Cambridge, UK | February 11-13, 2025

3 = .
= . ; tat St P s
T of '_ i 5. & e
o , RCeterey s ' [
- Lol 3 Y

Update on HLSL
HLSL 202X, Clang, Vulkan & Inline SPIR-V

Nathan Gauér, Google

g7



HLSL today

Status & issues

HLSL tomorrow
Language, compiler & Vulkan support evolutions

Current status
Our progress so far

Challenges targeting graphical SPIR-V from LLVM-IR

Opaque pointers, address spaces & structured control flow.

Timeline
Clang release timeline.

Google 2




Google

HLSL Today

Status & Issues




Issues with HLSL

- HLSL specification was a mix of:

- hand-waving

- looking at the compiler output

- asking somebody at Microsoft if something is legal
- HLSL development was completely opaque:

- SPIR-V had to deal with new features as they came.
- Some features were simply badly designed (Yes, that’s you GetAttributeAtVertex)

The lack of proper specification and closed process didnt help HLSL to grow.



Issues with DirectXShaderCompiler

- DirectXShaderCompiler (DXC) forked from Clang/LLVM 10 years ago!

- Very few upstream fixes were backported.
DXC'’s Clang/LLVM is essentially stuck in 2017.

- The team supporting the SPIR-V backend is small.

Developing a new feature takes time, we were the bottleneck.



Issues with the SPIR-V backend

- Emits SPIR-V directly from the AST

- Takes a very different path from DXIL, leading to behavior divergences.

- Relies heavily on SPIRV-Tools

- Diagnostic was very limited once in spirv-tools, leading to hard-to-understand validation errors.

- Every new SPIR-V extension requires patching DXC & SPIRV-Tools.

- We had to develop & maintain those extensions, even niche vendor-specific extensions.



Google

HLSL Tomorrow

Language, compiler & Vulkan support evolutions




Open-sourcing the HLSL language

- HLSL specification is now public: https://github.com/microsoft/hisl-specs/

Not only the content, but the process.
Anyone can contribute, but it's under the Microsoft CLA.

- Design of the HLSL implementation in Clang is also public:
https://github.com/llvm/wg-his|



https://github.com/microsoft/hlsl-specs/
https://github.com/llvm/wg-hlsl

Open-sourcing the HLSL language

- The process is still new, and undergoing transformations.
- vk::BufferPointer was the first real proposal.
- The process took ~4 months (8 if we take the initial draft as start).
- More recently, vk::khr::CooperativeMatrix proposal took 1.5 months to be accepted! &5

- Language specification currently under the Microsoft CLA
- Raises IP questions.

- Specification of existing features is still in progress, but backlog is large!
- They are specified as they they are built in Clang. Steady progress so far!



HLSL 202X

- FXC, then DXC was the language specification.
- Compiler bugs became features, and we had to deal with them.

- Moving to Clang is a good occasion to start “fresh”.
- HLSL 202X will disallow some existing patterns and irregularities to make HLSL
more consistent.

- HLSL 202X will be the transition version from DXC to Clang.
This will be the last supported version on DXC.
- Transitioning to HLSL202X will ease the move to Clang.
- Saves us from inheriting issues dating back from FXC.
- Document listing the changes: https://clang.llvm.org/docs/HLSL/ExpectedDifferences.html

10


https://clang.llvm.org/docs/HLSL/ExpectedDifferences.html

Vulkan/SPIR-V support

- We aim to support Vulkan1.2 and later.

- For now, we need 2 extensions:

- VK _KHR shader_maximal_reconvergence to have a deterministic reconvergence.
- VK_KHR variable_pointers, allowing pointers to pointers (required for references).

- Vulkan extensions will be implemented as headers using inline SPIR-V
- We want to allow vendors to write/ship their own HLSL headers.
- This would allow them to move independently from Clang.
- We will implement initial extensions using inline SPIR-V to verify usability.
- VK_KHR_cooperative_matrix has already been implemented

(https://github.com/microsoft/DirectXShaderCompiler/blob/main/tools/clang/lib/Headers/hlisl/vk/
khr/cooperative_matrix.h)

11


https://github.com/microsoft/DirectXShaderCompiler/blob/main/tools/clang/lib/Headers/hlsl/vk/khr/cooperative_matrix.h
https://github.com/microsoft/DirectXShaderCompiler/blob/main/tools/clang/lib/Headers/hlsl/vk/khr/cooperative_matrix.h

Target profiles

- DXC required to select the ShaderModel version when targeting Vulkan.
- The former controlled features at the HLSL level (like wave intrinsics).
- The latter controlled implementation of said features in SPIR-V.
- There is also the HV flag to control the HLSL version.

- DXC also assumed every Vulkan extension was available by default.

- You could provide a list of allowed extensions, but you had to list them all.
- Not convenient.

- Plan to solve this: Vulkan profiles!
- Clang already dropped the ShaderModel from the Vulkan triple.

- For extensions, a flag would allow you to select a vulkan profile as baseline, like VP_ANDROID_15_minimums.

- Extensions missing from that profile would be considered forbidden.
- We still plan to keep a flag to manually specify an allowed/forbidden extension list.

12



Google

Current status

13



Clang

- Atrivial compute shader with RWBuffers can be compiled to DXIL.

- Atrivial compute shader can be compiled to graphical SPIR-V.
RWBuffers support is almost ready.

- Other resources & shader types are not supported.

14



Google

Challenges targeting graphical
SPIR-V from LLVM-IR

Opaque pointers, address spaces & structured control flow.

15



LLVM IR control flow

- LLVM IR allows irreducible control flow graphs.
- Graphical SPIR-V requires not only a reducible graph, but also a structured

control flow:
- no arbitrary goto
- for each divergence, the reconvergence location must be known.
- reconvergence has strict rules:
- Asingle exit per loop, except for X and Y
- Nested branch can exit one branch at a time, except when Z
- etc...

We have a custom structurizer in LLVM to transform the control flow into
something valid for SPIR-V.

16



HLSL address spaces vs SPIR-V storage classes

- HLSL local variables are in the same address space as static globals.

- Pointers to one are compatible with pointers to the other.

- LLVM IR default rules are similar.

- SPIR-V has 2 incompatible storage classes for those: Private & Function

All OpVariable are moved from the Function to the Private storage class.

- Brings a hard limit of 65k variables per module (vs 500k for local variables).
- Required because of the library target and "noinline" attribute.

17



LLVM has opaque pointers, SPIR-V types pointers.

- Since last year, LLVM has no typed pointers.

A pointer is just an address, the load result type defines the pointed type.

- Graphical SPIR-V only has typed pointers.

The backend has a “type scavenger”

- finds the load, and link each pointer to the loaded type.
- expects the LLVM-IR to avoid using the same pointer to load 2 types.

18



Google

Timeline

19



Timeline

Microsoft published a roadmap for HLSL to DXIL with Clang: https://qithub.com/orgs/llvm/projects/4/views/15
We try to follow the same rhythm for HLSL to SPIR-V.

You are here. 1st release

Jan m Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Clang compiles a Clang compiles a Pixel & vertex shader
trivial compute shader useful compute shader support

20


https://github.com/orgs/llvm/projects/4/views/15

Thank You!

Google




