
The 7th Vulkan Developer Conference
Cambridge, UK  |  February 11-13, 20252025

Color Volume Transformations in Vulkan Shaders

Richard Everheart, AAD



OVERVIEW

● Preliminaries 
○ XYZ colorspace

● What is a color volume?
○ How color volumes differ from colorspaces

● What is tone mapping?
○ How to handle HDR metadata
○ How to get LDR source content displayed correctly on HDR sinks, and vise-versa 

● Our approach on Linux 
○ Gaining advanced color capabilities on Linux (X11, Wayland), without driver modification 



PHYSIOLOGY  

● The human eye contains cones which activate under certain 
wavelengths of light

○ They also contain rods, but we don’t care about these

● Cones for Long/Red (L), Medium/Green (M), and Short/Blue (S) 
wavelengths

● Cone cells are analog, and do not give an “all or nothing” response 
○ Tonically active, and continually release neurotransmitters
○ Wavelength and light intensity information is confounded in their output 

● Completely different waveforms of light may look the same (metameric)
○ Completely identical waveforms may look different  



LMS COLORSPACE

● A colorspace mathematically relates observed color phenomenon to physical 
color phenomenon 

● The activation of L, M, and S cones for waveforms of light form a colorspace
○ A waveform of light with wavelength of 420nm results in a normalized cone response of 0.5



CIE 1931 COLORSPACE

● Spectral sensitivities of cones were not available in 1931
○ Not available until 1983! (H. J. A. Dartnall, J. K. Bowmaker and J. D. Mollon, 1983)

● CIE 1931 colorspace was created from experimental data instead, involving 
exclusively male, British human observers   

○ William David Wright: 10 observers
○ John Guild: 7 observers



WRIGHT/GUILD COLOR EXPERIMENTS  

● Two boxes enclosing light sources, with slits for looking inside

● Left box: Three light sources
○ Emitted light at constant wavelengths 700nm, 546.1nm, 435.8nm, known as color 

primaries
○ Chosen because they could be accurately emitted using a mercury-arc lamp

● Right box: Target light source 
○ Emitted light at a constant wavelength, and constant energy level (brightness)

● Goal: Change the brightness of the three sources on the left to 
match the light source on the right 



CIE 1931 RGB COLORSPACE

● Experimental data measured how color primaries could be added together to form 
unique colors

● Three color matching functions (CMFs) were chosen to 
represent experimental data

○  
○               are not actually visible

● If we project the colorspace onto the RG plane, we get 
the CIE RG colorspace 



CIE 1931 XYZ COLORSPACE

● Problem: Red is not strictly additive, so the resultant functions were not non-negative 
○ The concern was this could mess up calculations 
○ Computers were not invented yet 

● Solution: Map CIE 1931 RGB CMFs to a strictly positive domain 

● This is CIE XYZ colorspace
○ X is chroma (red, green, blue), Y is luminance, Z is quasi-blue 
○ Normalized, we get CIE xyz colorspace, with 

● If we project to the xz plane, we get the CIE xy colorspace 
○ If we reintroduce the Y component we get CIE xyY colorspace 
○ Everything in the triangle (0, 0), (1, 0), (0. 1)

● Note: CIE XYZ, CIE xyz, CIE xyY are all used interchangeably to mean CIE xyz



WHAT IS A COLORSPACE?

● Most colorspaces are derived from the CIE xyz colorspace

● A colorspace includes 
○ Color primaries (triangle vertices), defining a gamut
○ White point 

● Example: SRGB 
○ Everything in the triangle, 
○ Whitepoint of D65 (6500K) 



WHITE POINT

● The location of the maximum color in the color space 
○ i.e. (255, 255, 255) 

● Plankian locus: The path the color of an incandescent black 
body would take, when heated, in a particular colorspace 

○ D65: Color of an incandescent black body at 6500K

● A change in white point is rotates the colorspace along the 
Plankian locus 



WHAT IS A COLOR VOLUME?

● Colorspaces do not specify how luminosity (Y) is interpreted 
○ What luminosity should a value of rgb(200, 200, 200) be displayed at on a monitor?
○ (200.0f / 255.0f) = 78% maximum display luminosity? Something else?

● A color volume includes an EOTF (gamma), and OETF (degamma) for 
mapping luminosity 

○ EOTF: Electric Optical Transfer Function (OETF^{-1})
○ OETF: Optical Electric Transfer Function (EOTF^{-1})

● An EOTF takes an input a normalized color, and outputs a brightness value  
○ This brightness value should be normalized to the brightness range of your monitor 



LINEAR VS NON-LINEAR COLOR VOLUMES

● A color volume is linear if it uses a linear EOTF/OETF
○ SRGB is non-linear, with low dynamic range (LDR)
○ Rec. 2100 is non-linear, with high dynamic range (HDR)

● A linear color volume is required for
○ Changing color primaries 
○ Whitepoint conversion
○ Texture filtering
○ Blending 

● A color volume can be made linear by applying its EOTF^{-1}
○ Known as “degamma”



DYNAMIC RANGE

● The ratio between min and max luminance 
○ HDR10/HDR10+ allows for 10,000 nits of luminance 

■ Practically, OLED HDR monitors have max luminance between 600 and 1600 
○ LDR (SDR) allows for 100 nits of luminance

● HDR images use either a PQ (great) or HLG (not nearly as great) EOTF
○ PQ: Perceptual Quantizer 
○ HLG: Hybrid Log Gamma

■ Most HDR applications use HLG, which is why no one is that impressed with HDR yet



EOTF COMPARISON 

The EOTFs for LDR and HDR data are different.

A value of {230,230,230} of LDR content will have 75% of the brightness of our monitor. 

● Assuming our LDR content is in Rec. 709

PQ  vs. REC709 EOTF PQ vs. REC709 EOTF^{-1}
rec709 rec709



EOTF COMPARISON 

The EOTFs for LDR and HDR data are different.

A value of {230,230,230} of HDR content will have 33% of the brightness of our monitor. 

● Assuming our HDR content is in PQ (Rec. 2100)

PQ  vs. REC709 EOTF PQ vs. REC709 EOTF^{-1}
rec709 rec709



EXAMPLES OF COLOR VOLUMES

SRGB

Rec. 709

Rec. 2100

        VkFormat, VkColorspaceKHR  

N/A
VK_COLOR_SPACE_BT709_NONLINEAR_EXT

VK_FORMAT_X_N_SRGB
VK_COLOR_SPACE_SRGB_NONLINEAR_KHR

N/A
VK_COLOR_SPACE_HDR10_ST2084_EXT



EXAMPLES OF COLOR VOLUMES

SRGB

Rec. 709

Rec. 2100

EOTF Inverse EOTF (OETF)



COLOR VOLUME CONVERSION 

Map colors from a source color volume to a sink color volume such that they look the same, or better 

HDR Metadata

Source image
Sink image

HDR ➞ LDR

 

LDR ➞ HDR

 

Inverse tone mapping

LALROP

DRTMO

Change Color Primaries

CTM

Whitepoint Conversion

Source ➞ LMS  

Scale Whitepoint

LMS ➞ Source  

GAMMA

DEGAMMA
Tone mapping

Inverse Display Model

iCAM06

Display Model



CHANGE COLOR PRIMARIES 

● Generate a Color Transformation Matrix (CTM) 

● Find a matrix               for converting source colorspace to xyz colorspace

● Find a matrix            for converting sink colorspace to xyz colorspace

●



CHANGE COLOR PRIMARIES

Let                                            be the color primaries of our RGB colorspace

● Calculate contribution of each color primary on X

● The contribution of each color primary on Y (luma) is 1 

● Calculate contribution of each color primary on Z



CHANGE COLOR PRIMARIES

Let                       be the white point of our RGB colorspace

● Convert white point separately, then create RGB to XYZ matrix

● Create CTM from source and sink RGB to XYZ matrices



WHITE POINT CONVERSION 

Generate a Chromatic Adaptation Matrix 

● Converts a source color in some XYZ colorspace with some whitepoint to a 
sink color in XYZ colorspace with a new whitepoint

● Let                        be a source color 
● Let                          be a sink color



WHITE POINT CONVERSION 

● Convert a source color                        to a sink color   
● Let                                    be the source white point  
● Let                                    be the destination white point

● Here          is the Bradford, Von Kries, or Hunt-Pointer-Estevez matrix



WHITE POINT CONVERSION 

● Let                                    be the source white point  
● Let                                      be the destination white point

● Here          is the Bradford, Von Kries, or Hunt-Pointer-Estevez matrix



TONE MAPPING (HDR ➡ LDR) 

● Tone: Gradient of luminosity 
● Tone Map: Transformation of higher dynamic luminosity gradient to lower 

dynamic luminosity gradient 
○  is our source image gradient 
○  is our mapped gradient

○                       is the divergence of our source and sink gradients



TONE MAPPING (HDR ➡ LDR) 

● We won’t have a detailed destination gradient 
● The human brain confabulates information

○ Helmholtz–Kohlrausch effect 
■ Hues with constant luma are not perceived with constant luma

○ Stevens effect 
■ Perceived contrast increases with luma

○ Hunt effect 
■ Perceived chroma increases with luma 

● iCAM06 is the standard for tone mapping
○ Though, there are others 
○ Histogram equalization, sigmoid matching, local average, etc.



SMPTE 2084 

● Tone mapping requires accounting for display discrepancies 
○ Mastering display is the display content was created on
○ Target display is the user’s display 

● Display/content properties provided as SMPTE 2084 metadata 
○ Standard for HDR10/HDR10+ metadata
○ EOTF: SMPTE ST 2084 (PQ, HLG)
○ Min, max resolution
○ Bit Depth in the range [10, 16]
○ Color primaries: ITU-R BT.2020 
○ Maximum luminosity of 10,000 cd/m2
○ Metadata: Mastering Display Color Volume Metadata 
○ Metadata: MaxCLL, MaxFALL



INVERSE DISPLAY MODEL

● Mastering Display Color Volume Metadata 
○ Chromaticity of whitepoint (CIE xyz)
○ Color primaries (CIE xyz)
○ Max/Min luminance in cd/m2

● MaxCLL : Maximum Content Light Level 
○          is ambience in lux (20,000 for midday)
○   is reflectance factor (0.01)
○           is MaxCLL of the mastering display

● MaxFLL : Maximum Frame Average Light Level
○ May be used in tone mapping algorithms



FORWARD DISPLAY MODEL 

● Target Display Color Volume Metadata 
○ Chromaticity of whitepoint (CIE xyz)
○ Color primaries (CIE xyz)
○ Max/Min luminance in cd/m2

● MaxCLL : Maximum Content Light Level 
○          is ambience in lux (20,000 for midday)
○   is reflectance factor (0.01)
○           is MaxCLL of the target display

● MaxFLL : Maximum Frame Average Light Level
○ May be used in tone mapping algorithms 



1. iCAM06 

RGB source XYZ

Chromatic Adaptation

Detail Adjustment

Whitepoint

IPTInverse Display Model

Bilateral Filter

Detail Layer

Base Layer

Inverse Bilateral Filter

Detail-combined

Enhancement

Surround Adjustment

Saturation Adjustment
Inverse Chromatic 

AdaptationXYZ

Tone Compression

Michaelis-Menten 
Equations*

CIECAM02*

RGB sink



INVERSE TONE MAPPING (LDR ➡ HDR) 

● Inverse Tone Map: Transformation of lower dynamic luminosity gradient to 
higher dynamic luminosity gradient

○ Requires generating new information (i.e. upsampling image luminosity gradient) 

● AI methodologies are effective, but not necessarily performant
○ DRTMO (CNN implementation in Cuda exceeds 1gb in size), DREIS, etc.

■ Paucity of training data, so clever supplementations (camera exposures) are used

● Realtime methods are not as effective, but are performant
○ LALROP, ITMLUTs, etc.



VULKAN 

● VK_FORMAT_X_N_UNORM
○ Don’t let the driver apply an incorrect EOTF/OETF to your color volume

● VkPipelineColorBlendAttachmentState::blendEnable = VK_FALSE
○ You must manually implement color blending in your shader

● VK_FILTER_NEAREST
○ You must manually implement (bilinear) filtering in your shader



VULKAN 

If your Vulkan application is not a direct renderer, then sink color volume is set by your WM or compositor

HDR Metadata

Source image
Degamma LUT

HDR ➞ LDR

 

LDR ➞ HDR

 

Inverse tone mapping

LALROP

DRTMO

Change Color Primaries

CTM (uniform)

Whitepoint Conversion

Source ➞ LMS  

CAM (uniform)

LMS ➞ Source  

Gamma LUT (uniform)

Degamma LUT (uniform)

Tone mapping

Inverse Display Model

iCAM06

Display Model

Uniforms

Degamma LUT

Gamma LUT

CTM

CAM

Gamma LUT

Blending, Filtering

Sink image



VULKAN 

Convert to sink (VkSwapchainCreateInfoKHR::imageColorSpace) colorspace

HDR Metadata

Source image
Degamma LUT

HDR ➞ LDR

 

LDR ➞ HDR

 

Inverse tone mapping

LALROP

DRTMO

Change Color Primaries

CTM (uniform)

Whitepoint Conversion

Source ➞ LMS  

CAM (uniform)

LMS ➞ Source  

Gamma LUT (uniform)

Degamma LUT (uniform)

Tone mapping

Inverse Display Model

iCAM06

Display Model

Uniforms

Degamma LUT

Gamma LUT

CTM

CAM

Gamma LUT

Blending, Filtering

Sink image



VULKAN 

Use 1D LUTs where possible

HDR Metadata

Source image
Degamma LUT

HDR ➞ LDR

 

LDR ➞ HDR

 

Inverse tone mapping

LALROP

DRTMO

Change Color Primaries

CTM (uniform)

Whitepoint Conversion

Source ➞ LMS  

CAM (uniform)

LMS ➞ Source  

Gamma LUT (uniform)

Degamma LUT (uniform)

Tone mapping

Inverse Display Model

iCAM06

Display Model

Uniforms

Degamma LUT

Gamma LUT

CTM

CAM

Gamma LUT

Blending, Filtering

Sink image



DIRECT RENDERERS (LINUX)

Driver

Application Pre-blending
(Plane→Connector)

Post-blending
(Connector→Sink)

Sink

Where do we handle color management?

The only apparent option is in the pre-blending phase.

● Modify the colorspace before blending
● Send info frames over wire describing your colorspace



DIRECT RENDERERS (LINUX)

Driver

Post-processor
(Framebuffer→Framebuffer)

Pre-blending
(Plane→Connector)

Post-blending
(Connector→Sink)

Sink

There is another option. 

Add a “just in time” post-processing layer. 

● Leverage driver features where available
● Otherwise, intercept the DMABUF as if we’re a zero copy video player
● Modify color volumes here, but remember to send info frames later

Application



METHODOLOGY

Plane Post processor (Vulkan)

Display

Change color primaries (PP→Display colorimetry)

CTMDegamma (Re)gamma

EOTF Conversion

Inverse Tone 
Mapping

Beautification

3D LUT (custom) 3D LUT (.icc)

Driver

DRM Mode Object Properties

“DEGAMMA” (CRTC)

“GAMMA” (CRTC)

“CTM” (CRTC)

“Colorspace” (Connector)

Change color primaries (Source→PP colorimetry)

CTMDegamma (Re)gamma

DRM, DC

Pre-blending Post-blending

DMABUFDMABUF

Dithering, etc.

Tone Mapping



METHODOLOGY

Plane Post processor (Vulkan)

Change color primaries (PP→Sink colorimetry)

CTMDegamma (Re)gamma

EOTF Conversion

Inverse Tone 
Mapping

Beautification

3D LUT (custom) 3D LUT (.icc)

Change color primaries (Source→PP colorimetry)

CTMDegamma (Re)gamma
VkImageVkImage

Dithering, etc.

Tone Mapping



METHODOLOGY (COMPUTE SHADER)

● VK_EXT_external_memory_dma_buf is used to import DMABUFs
○ NOTE: Linux has no userland API for DMABUF attachment synchronization on the same device 

● DRM format modifiers must be respected 
○ Y-tiling, CCS planes, etc.
○ DRM format modifier used for scanout buffers is (usually) optimal for compute shaders 
○ Mesa’s libraries for handling these are not userland facing

● A GLSL compute shader is used to do our post processing 
○ Ping pong rendering in a fragment shader is doable, but slower
○ Storage buffers are used, not storage images 

■ imageLoad() with DRM format modifiers is buggy 

● Convert from 8bit to 10bit, or 12bit color space, as needed 
○ HDR requires at least 10 bit color



METHODOLOGY (DRM / KMS)

● The minimally necessary DRM mode object properties are DEGAMMA,GAMMA,CTM
○ The driver should respect them for plane, CRTC blending 
○ Your monitor will not know it’s in HDR, even though it is
○ CTM does not use ieee754, nor two’s complement
○ DEGAMMA/GAMMA scaled to [0, 65536]

● Other (driver specific) DRM mode object properties are available 
○ NV_HDR_STATIC_METADATA,NV_INPUT_COLORSPACE (Nvidia)
○ HDR_OUTPUT_METADATA,HDR_SOURCE_METADATA (Rockchip)
○ All of the rainbow color map (AMD)

● If your imported/exported Vulkan buffer has incorrect memory size, padding, or offset then:
○ Modesetting causes a kernel panic on AMD Vega GPUs
○ Modesetting causes the system to hang indefinitely on NVIDIA RTX 30 series (and up) GPUs

■ NVIDIA requires buffers to be aligned to 1024, but doesn’t always return EINVAL 



LIBDRM INTEGRATION

● Integrated into a meta-implementation of libdrm

● Libdrm is effectively augmented with post processing capabilities
○ “drmModeAtomicCommit” performs our post processing, and its original functionality

int drmModeAtomicCommit(int fd, drmModeAtomicReqPtr req, uint32_t flags, void* user_data) {
for (int i = 0; i < req->plane_list_size; ++i) {

uint32_t plane_id = req->plane_list[i];
drmModePlanePtr plane = drmModeGetPlane(..., plane_id);
post_process(..., plane->fb_id);

}
return original_drmModeAtomicCommit(fd, req, flags, user_data);

}



LIBDRM INTEGRATION

● Now any application that uses libdrm has advanced color capabilities!
○ LDR content (everything) can be inverse tone mapped to HDR

● We have a unix domain socket for advanced configuration 
○ *_PLANE_SOURCE/SINK_COLOR_VOLUME: Specifying hardware plane source color volume 
○ *_SOURCE/SINK_COLOR_VOLUME: Specifying global sink color volume 
○ *_PLANE_3D_LUT: What 3D LUTs are applied to what hardware planes
○ *_INVTM_KIND: Specify inverse tone mapping algorithm

● Ideally, this should be handled internally by our window manager/compositor 



HDR CONTENT ON SDR WM/COMPOSITOR

Applications rendering HDR content can do so on SDR WMs and compositors.

Application (HDR)

Post processor

Source→bt709_eotf colorimetry

CTMDegamma (Re)gamma

Tone mapping

iCAM06

Beautification

Dithering, etc.3D LUT (custom)

Application buffer

VkImageDMABUF

WM/Compositor (LDR)

X11 WM Wayland Comp

Post processor (LDR→HDR)

Sink (HDR)



HDR CONTENT ON SDR WM/COMPOSITOR

Alternatively, duplicate our original buffer on a dedicated plane. 

Application (HDR)

Post processor

Source→bt709_eotf colorimetry

CTMDegamma (Re)gamma

Tone mapping

iCAM06

Beautification

Application buffer

3D LUT (custom) Dithering, etc.

VkImageDMABUF

WM/Compositor (LDR)
X11 WM Wayland Comp

Sink (HDR)

Post processor
Plane 0 

(HDR→ HDR)
Plane 2 

(LDR→ HDR)
Plane 1

(HDR→ HDR)



ADVANTAGES

● Surprisingly efficient after optimization 
○ < 1ms to do all of our post processing, modesetting on i915, AMD, NVIDIA

● Cross-platform
○ Not limited to driver specific features (i.e. driver specific 3D LUT size)
○ Anything that uses libdrm

● Can act as a post processor on any buffer, not just a buffer intended for direct rendering 
○ i.e. a Wayland client can use it
○ Anything that uses a VKImage with the correct image usage

● Even if your application content is LDR, we can make it look like it was made as HDR 













CONCLUSION

Color is complicated!

● Vulkan doesn’t support rendering images with PQ color volumes 
● Vulkan does support presenting images with PQ color volumes
● Ideal solution: Inverse tone map as a post processing effect

Doing post processing immediately before scanout provides plenty of perks!

● All content automatically looks like it was made in HDR
● “Bad” HDR implementations using HLG are corrected to use PQ
● Correcting VRR image artifacts on OLED monitors
● Color correction and beautification of media (custom 3D luts)
● Stereoscopic rendering 
● Xrandr for Wayland 



Thank you! Cheers.


