
The 7th Vulkan Developer Conference
Cambridge, UK | February 11-13, 20252025

libGPULayers:
Diagnostic Vulkan layers for Android

Pete Harris, Arm

2 © 2025 Arm

Topics …

What are layer drivers?

What is libGPULayers?

What can it do?

Layer development thoughts

Layer API thoughts

© 2025 Arm3

Layer driver
essentials

4 © 2025 Arm

Vulkan layers

Standard mechanism to inject tooling
• Orchestrated by the Vulkan loader

Can monitor application calls
• E.g., Khronos validation layer

Can emulate new functionality
• E.g., Khronos timeline semaphore layer

Can modify application behavior
• E.g., most developer tools

Application

Driver

Layer

Layer

5 © 2025 Arm

We layer drivers

Layers are very useful tools!

We don’t build applications

We don’t build production drivers

Layers let us investigate closed systems
• *Android device must be in developer mode
• *Android application must be debuggable

Application

Driver

Layer

Layer

6 © 2025 Arm

Why libGPULayers?

Experimental layers are great for tech support
• Investigate what an app does
• Build a layer to test hypothesis
• Build a layer to test a fix

… but making layers by hand is tedious
• Many lines of boilerplate code
• Debugging is a pain when they don’t work

Goal #1: Provide tools to automate layer creation

Goal #2: Provide developers with off-the-shelf layers for remote support

© 2025 Arm7

Layer types

8 © 2025 Arm

Wrapping layers

Layer wraps all API objects
• Application gets layer handles

Pros:
• Can do 1:N object mapping
• Dispatch is more efficient

Cons:
• MUST intercept every use of handles
• More code to write
• More fragile

Application

Layer

Driver

Layer struct

Layer handle

Driver struct

Driver handle

9 © 2025 Arm

Forwarding layers

Layer allocates sideband object data
• Application gets driver handles
• Layer uses dispatchable handle for lookup

Pros:
• Can intercept API subset
• More robust to API updates

Cons:
• Dispatch is less efficient
• 1:N object mapping is harder

Application

Layer

Driver

Layer data

Driver struct

Driver handle

Driver handle

© 2025 Arm10

Generating
skeleton
no-op layer

11 © 2025 Arm

Generating code

Layer creation is ideal problem for automation
• Thousands of lines of boiler plate
• Machine readable XML specification

Goal #1: Developers write C++ code

Goal #2: Easy to merge Vulkan API updates

Goal #3: Prioritize developer iteration time over run-time

12 © 2025 Arm

Generating code

Vulkan XML
Generated

common code

Generated
per-layer code

Common framework
generator tool

New layer
generator tool

Manually authored
common code

Manually authored
per-layer code

13 © 2025 Arm

Building code

Generated
common code

Generated
per-layer code

Manually authored
common code

Manually authored
per-layer code

14 © 2025 Arm

Generating intercept tables

Function tables are generated from spec XML
• Need updating when Vulkan API changes

… but also need modifying per layer
• Need updating to reflect layer-specific intercepts

Risk: Merge pain!

Solution: C++ templates with tag dispatch
• Common code provides default implementation
• Layer code provides specialized implementation
• Linker does the heavy lifting

struct user_tag {};

struct dispatch_table {
 .vkFoo = vkFoo<user_tag>()
}

template <typename T>
void vkFoo(…) {
 // Pass-through to driver
}

template <>
void vkFoo<user_tag>(…) {
 // Layer implementation
}

Common code

Per-layer code

15 © 2025 Arm

Standard Android support utilities

Android build script provided
• Just set path to your NDK install

Android configure script provided
• Installs layers
• Configures Android loader
• Capture logcat (optional)
• Capture a Perfetto trace (optional)

Automate the build and platform setup too!

© 2025 Arm16

Arm provided
layers

17 © 2025 Arm

#1: GPU support layer

Layer designed to help with support cases
• Rendering artefacts
• DEVICE_LOST errors

Configurable set of common “does this help?” experiments
• Force serialize queue and command buffers
• Force strip shader relaxed precision
• Force enable/disable framebuffer compression

Expect to grow over time
• We will package up things we find useful

18 © 2025 Arm

#2: GPU timeline layer

Layer designed to annotate Perfetto Render Stages traces
• For example, our Unreal Engine-based tech demo
• 253 API workloads per frame, 302 hardware workloads per frame
• What are they? What are they doing?

19 © 2025 Arm

#2: GPU timeline layer

Layer exports semantic metadata via side-channel
• Tags workloads with a unique debug label
• Emits metadata packet associated with each tag
• Experiential viewer is included!

20 © 2025 Arm

#3: GPU performance layer

Layer designed to help with performance measurement
• Per frame performance counters
• Per workload performance counters
• Per workload timer queries

Serializes around measurement points
• Aim to measure the workload cost
• Need to stop tile-based rendering overlapping things!

Future: On-screen per-frame metrics overlay
• Live overlay for common performance measures

(WORK IN PROGRESS)

© 2025 Arm21

Development
thoughts

22 © 2025 Arm

Layers are an odd fit for Vulkan

Vulkan: “I am an application API”

Layer: “… but …”

I am
implementation

I am
application

23 © 2025 Arm

Resource lifetime gotchas

Ideal pattern for layer developers is an onion

… but it’s exceptionally hard to build in practice
• Must virtualize every GPU-to-CPU synch
• Must provide software implementations of most of them

Common use case is to instrument submits

GPU ProcessingApp
Layer

Preflight
Layer

Cleanup
App

Cleanup

vkQueueSubmit() Layer sync signal App sync signal

24 © 2025 Arm

Layers are an odd fit for Vulkan

Vulkan: “You know your resource lifecycle …”

Layer: “… but …”

I am
implementation

I am
application

25 © 2025 Arm

Resource lifetime gotchas

Easy implementation is therefore a forked cleanup

… but cleanup is now racy!
• Don’t tie layer resources to the application resource lifetime!
• Ref-count layer resources like you are an OpenGL ES driver …

Common use case is to instrument submits

GPU ProcessingApp
Layer

Preflight

Layer
Cleanup

App
Cleanup

vkQueueSubmit()

Sync signal

26 © 2025 Arm

Layers are an odd fit for Vulkan

Vulkan: “You know your workloads …”

Layer: “… but …”

I am
implementation

I am
application

27 © 2025 Arm

Workload instrumentation

Not all workload state is pre-recorded in the command buffer
• Dynamic render passes resolved at submit time
• Debug marker label stack resolved at submit time
• Indirect parameters resolved at runtime

… but what the layer needs to do is defined by the command buffer

Design pattern: Software command buffers
• Recorded alongside API command buffer
• Preflight command stream executed before vkQueueSubmit()
• Resolve command stream executed asynchronously based on API sync triggers

© 2025 Arm28

Development
API niggles

29 © 2025 Arm

Android loader is basic

Ideally a layer can query what is available beneath it!
• Is the API version new enough for the layer?
• Are the necessary extensions available?

Android loader implements the v0 loader interface
• Does not support chain calling pre-instance functions
• No vkEnumerateInstanceVersion() for API version
• No vkEnumerateInstanceExtensionProperties() for instance extensions

It will work if you are bottom layer in the stack
• … but not if there are other layers beneath you

30 © 2025 Arm

Command buffer instrumentation pain points

We want to instrument specific workloads
• Must identify individual workloads inside a command buffer

Inject debug markers in the command buffer

Command buffer instrumentation is fixed at record time
• Problem: Multi-submit command buffers make tools sad

Workload identification

Command buffer

Workload Workload WorkloadLabel Label Label

31 © 2025 Arm

We want to instrument specific workloads
• Not all our tooling is accessible from the command stream

Proper solution:
• Split command buffers into one per workload
• Complex, with a high software cost

CPU-side tooling

Command buffer instrumentation pain points
CPU traps

Command buffer

Workload Workload

Tool Tool

Workload

Tool Tool

32 © 2025 Arm

Our current nasty hack …
• (Yes, it’s out of spec)

CPU-side tooling

Command buffer instrumentation pain points
CPU traps

Command buffer

Workload Workload

Tool Tool

Workload

Tool ToolTool
Wait
Event

Set
Event Tool

Wait
Event

Set
Event Tool

Wait
Event

Set
Event Tool

Wait
Event

Set
Event

Set
Event

Wait
Event

Set
Event

Wait
Event

Set
Event

Wait
Event

Set
Event

Wait
Event

33 © 2025 Arm

Find out more on GitHub

Make your own layers quickly!

Use our off-the-shelf layers to diagnose common problems quickly!

Use our off-the-shelf layers to customize data visualization in other Arm tools
• (Future looking statement …)

github.com/ARM-Software/libGPULayers

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ

תודה
© 2024 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2024 Arm

	Default Section
	Slide 1: libGPULayers: Diagnostic Vulkan layers for Android
	Slide 2: Topics …

	Layer 101
	Slide 3: Layer driver essentials
	Slide 4: Vulkan layers
	Slide 5: We layer drivers
	Slide 6: Why libGPULayers?

	Layer types
	Slide 7: Layer types
	Slide 8: Wrapping layers
	Slide 9: Forwarding layers

	Layer generation
	Slide 10: Generating skeleton no-op layer
	Slide 11: Generating code
	Slide 12: Generating code
	Slide 13: Building code
	Slide 14: Generating intercept tables
	Slide 15: Standard Android support utilities

	Standard layers
	Slide 16: Arm provided layers
	Slide 17: #1: GPU support layer
	Slide 18: #2: GPU timeline layer
	Slide 19: #2: GPU timeline layer
	Slide 20: #3: GPU performance layer

	Development thoughts
	Slide 21: Development thoughts
	Slide 22: Layers are an odd fit for Vulkan
	Slide 23: Resource lifetime gotchas
	Slide 24: Layers are an odd fit for Vulkan
	Slide 25: Resource lifetime gotchas
	Slide 26: Layers are an odd fit for Vulkan
	Slide 27: Workload instrumentation
	Slide 28: Development API niggles
	Slide 29: Android loader is basic
	Slide 30: Command buffer instrumentation pain points
	Slide 31: Command buffer instrumentation pain points
	Slide 32: Command buffer instrumentation pain points
	Slide 33: Find out more on GitHub
	Slide 34
	Slide 35

