-
| e _~
-

.\. " \rv.,lz_f !

. > e N o A " ; X : p
(N\ " The 7t Vulkan Devel Conference
Vu I .(an I Sed 2 O 2 5 Camebridgelf UaKn | eFveeb(r)lljaerry 101n-1e?:,e2025

libGPULayers:
Diagnostic Vulkan layers for Android

Pete Harris, Arm

£

Topics ...

-~ What are layer drivers?
. What is libGPULayers?

- What can it do?
-~ Layer development thoughts

- Layer API thoughts

MY

— arm>

arm

Layer driver
essentials

4

Vulkan layers

- Standard mechanism to inject tooling
Orchestrated by the Vulkan loader

- Can monitor application calls
E.g., Khronos validation layer

-+ Can emulate new functionality
E.g., Khronos timeline semaphore layer

- Can modify application behavior
E.g., most developer tools

© 2025 Arm

Application

Layer

Vv @

arm

>0

5

We

© 2025 Arm

- We don’t build applications

- We don’t build production drivers

-~ Layers let us investigate closed systems

layer drivers

-~ Layers are very useful tools!

*Android device must be in developer mode
*Android application must be debuggable

Why libGPULayers?

-~ Experimental layers are great for tech support
Investigate what an app does

Build a layer to test hypothesis

Build a layer to test a fix

... but making layers by hand is tedious
Many lines of boilerplate code
Debugging is a pain when they don’t work

-~ Goal #1: Provide tools to automate layer creation

- Goal #2: Provide developers with off-the-shelf layers for remote support

MY

- arm>

arm

Layer types

Wrapping layers

- Layer wraps all API objects Application
- Application gets layer handles

Layer handle

-+ Pros: I
- Cando 1:N object mapping

- Dispatch is more efficient
Driver handle

- Cons:
« MUST intercept every use of handles
- More code to write

- More fragile

8 © 2025 Arm

Forwarding layers

- Layer allocates sideband object data Application
- Application gets driver handles

- Layer uses dispatchable handle for lookup
I

- Pros:
- Can intercept APl subset

- More robust to APl updates Driver handle »

- Cons:
- Dispatch is less efficient

- 1:N object mapping is harder

9 © 2025 Arm

arm

Generating
skeleton
no-op layer

Generating code

-~ Layer creation is ideal problem for automation
Thousands of lines of boiler plate
Machine readable XML specification

-~ Goal #1: Developers write C++ code

-~ Goal #2: Easy to merge Vulkan APl updates

-~ Goal #3: Prioritize developer iteration time over run-time

MY

— arm>

Generating code

12 © 2025 Arm

Vulkan XML]

Common framework
generator tool

New layer
generator tool

—)

—

Manually authored
common code

Generated
common code

Generated
per-layer code

Manually authored

per-layer code

arm

Building code

13 © 2025 Arm

Manually authored
common code

Generated
common code

Generated
per-layer code

Manually authored
per-layer code

arm

Generating intercept tables

-~ Function tables are generated from spec XML Common code
Need updating when Vulkan API changes struct user_tag {};

struct dispatch_table {

- ... but also need modifying per layer } -vkFoo = vkFoocuser_tag>()
Need updating to reflect layer-specific intercepts

template <typename T>
void vkFoo(..) {

- Risk: Merge pain! // Pass-through to driver
}
- Solution: C++ templates with tag dispatch Per-layer code
Common code provides default implementation template <>
Layer code provides specialized implementation vEale. UdFORRUSEr_EEE ()

// Layer implementation

Linker does the heavy lifting }

MY

— arm>

Standard Android support utilities

Automate the build and platform setup too!

-~ Android build script provided
Just set path to your NDK install

-~ Android configure script provided
IS EUSEVES

Configures Android loader

Capture logcat (optional)

Capture a Perfetto trace (optional)

15 © 2025 Arm

MY

arm->

arm

Arm provided
layers

#1: GPU support layer

-~ Layer designed to help with support cases

Rendering artefacts
DEVICE _LOST errors

- Configurable set of common “does this help?” experiments
Force serialize queue and command buffers

Force strip shader relaxed precision

Force enable/disable framebuffer compression

. Expect to grow over time
We will package up things we find useful

MY

p— arm>

#2: GPU timeline layer

- Layer designed to annotate Perfetto Render Stages traces
For example, our Unreal Engine-based tech demo

253 API workloads per frame, 302 hardware workloads per frame
What are they? What are they doing?

Compute

Binning

HMaln

Transfer

o
T— qrm>

19

#2: GPU timeline layer

- Layer exports semantic metadata via side-channel
Tags workloads with a unique debug label

°
- Emits metadata packet associated with each tag
- Experiential viewer is included!
Active workload runtime:
API workloads: 253
Hardware workloads: 382
Compute stream: 5.55 ms
Binning stream: 3.89 ms
Compute Main stream: 18.75 ms
Transfer stream: 1.95 ms
Top 5 workload runtimes:
Lights.DpirectLighting. BatchedLights.peferredsimpleLights
.. Einning stream: @.24 ms
e Main stream: 1.78 ms
BasePass
Einning stream: @.638 ms
Main stream: 1.14 ms
Lights.DirectLighting.Unbatche.. .SpotLightPlayerEntry .Clearguad
Main Einning stream: @.82 ms
Main stream: 1.61 ms
PostProcessing.MotionBlur.FullResFilter.Filter
Compute stream: 1.48 ms
PostProcessing.MoticnBlur.Velocity Flatten
= £ a_aa
© 2025 Arm

%

arm>

#3: GPU performance layer
(WORK IN PROGRESS)

-~ Layer designed to help with performance measurement
Per frame performance counters

Per workload performance counters

Per workload timer queries

-~ Serializes around measurement points
Aim to measure the workload cost
Need to stop tile-based rendering overlapping things!

-~ Future: On-screen per-frame metrics overlay
Live overlay for common performance measures

20 © 2025 Arm

MY

arm->

arm

Development
thoughts

Layers are an odd fit for Vulkan

| “I am an application API”

I am I am
implementation application

- L : “..but..”
ayer u >§>
- arm>

Resource lifetime gotchas
Common use case is to instrument submits

- ldeal pattern for layer developers is an onion

i vkQueueSubmit() i Layer sync signal i App sync signal

Layer Layer App

.. but it’s exceptionally hard to build in practice
- Must virtualize every GPU-to-CPU synch
- Must provide software implementations of most of them

23 © 2025 Arm

arm

Layers are an odd fit for Vulkan

| “You know your resource lifecycle ...”

I am I am
implementation application

- L : “..but..”
ayer u >§>
- arm>

Resource lifetime gotchas
Common use case is to instrument submits

- Easy implementation is therefore a forked cleanup

i Sync signal

i vkQueueSubmit()

Layer
- Preflight GPU Processing

.. but cleanup is now racy!
- Don’t tie layer resources to the application resource lifetime!
- Ref-count layer resources like you are an OpenGL ES driver ...

Layer
Cleanup
I

25 © 2025 Arm

arm

Layers are an odd fit for Vulkan

| “You know your workloads ...”

I am I am
implementation application

- L : “..but..”
ayer u >§>
p— arm>

Workload instrumentation

-~ Not all workload state is pre-recorded in the command buffer
Dynamic render passes resolved at submit time

Debug marker label stack resolved at submit time

Indirect parameters resolved at runtime

... but what the layer needs to do is defined by the command buffer

- Design pattern: Software command buffers

Recorded alongside API command buffer

Preflight command stream executed before vkQueueSubmit()

Resolve command stream executed asynchronously based on API sync triggers

MY

— arm>

arm

Development
API niggles

Android loader is basic

-~ ldeally a layer can query what is available beneath it!
Is the API version new enough for the layer?
Are the necessary extensions available?

-~ Android loader implements the vO loader interface

Does not support chain calling pre-instance functions

No vkEnumeratelnstanceVersion() for APl version

No vkEnumeratelnstanceExtensionProperties() for instance extensions

It will work if you are bottom layer in the stack
... but not if there are other layers beneath you

MY

— arm>

Command buffer instrumentation pain points
Workload identification

1 We want to instrument specific workloads
Must identify individual workloads inside a command buffer

- Inject debug markers in the command buffer

Command buffer

-+ Command buffer instrumentation is fixed at record time
Problem: Multi-submit command buffers make tools sad

30 © 2025 Arm

arm

Command buffer instrumentation pain points
CPU traps

-+ We want to instrument specific workloads
Not all our tooling is accessible from the command stream

Command buffer

CPU-side tooling

- Proper solution:
Split command buffers into one per workload
Complex, with a high software cost

31 © 2025 Arm

arm

Command buffer instrumentation pain points
CPU traps

- Our current nasty hack ...
« (Yes, it’s out of spec)

Command buffer

[
Set ° Wait Set
: Workload

Workload Workload

Wait Tool Set
Event Event

CPU-side tooling

32 © 2025 Arm

Set
Event

arm

Find out more on GitHub

-~ Make your own layers quickly!

-~ Use our off-the-shelf layers to diagnose common problems quickly!

-~ Use our off-the-shelf layers to customize data visualization in other Arm tools
(Future looking statement ...)

<[github.com/ARM-Software/libGPULayers]

o

33 © 2025 Arm

arm >

© 2024 Arm

Thank You
BELE
Gracias
Grazie

15 157
HLYheED
Asante
Merci

A AR L T

Ygdiq
Kiitos
SRIRIL
NTIN

© 2024 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

	Default Section
	Slide 1: libGPULayers: Diagnostic Vulkan layers for Android
	Slide 2: Topics …

	Layer 101
	Slide 3: Layer driver essentials
	Slide 4: Vulkan layers
	Slide 5: We layer drivers
	Slide 6: Why libGPULayers?

	Layer types
	Slide 7: Layer types
	Slide 8: Wrapping layers
	Slide 9: Forwarding layers

	Layer generation
	Slide 10: Generating skeleton no-op layer
	Slide 11: Generating code
	Slide 12: Generating code
	Slide 13: Building code
	Slide 14: Generating intercept tables
	Slide 15: Standard Android support utilities

	Standard layers
	Slide 16: Arm provided layers
	Slide 17: #1: GPU support layer
	Slide 18: #2: GPU timeline layer
	Slide 19: #2: GPU timeline layer
	Slide 20: #3: GPU performance layer

	Development thoughts
	Slide 21: Development thoughts
	Slide 22: Layers are an odd fit for Vulkan
	Slide 23: Resource lifetime gotchas
	Slide 24: Layers are an odd fit for Vulkan
	Slide 25: Resource lifetime gotchas
	Slide 26: Layers are an odd fit for Vulkan
	Slide 27: Workload instrumentation
	Slide 28: Development API niggles
	Slide 29: Android loader is basic
	Slide 30: Command buffer instrumentation pain points
	Slide 31: Command buffer instrumentation pain points
	Slide 32: Command buffer instrumentation pain points
	Slide 33: Find out more on GitHub
	Slide 34
	Slide 35

