The 7" Vulkan Devel Conf
tVu n(anlsed 2025 Combridge, UK | February 11-13, 2025

Swapchains Explained: How to manage them
effectively

Darius Bozek, Samsung

Contents

1. Swapchain
Pre-rotation

Maintenance

W N

Frame Pacing

GPU + SAMSUNG

DevTech

Swapchain

Just what 1s it?

GPU +
DevTech SAMSUNG

1.Swapchain

How to get pixels on the screen

- Two separate processes use a shared resource

- Rendering Engine(RE) (e.g. Vulkan) renders an image to the window buffer- Communication
happens through swapchain

- Presentation Engine(PE) present windows buffer to the screen - Communication happens
outside of Graphics API jurisdiction

Rendering Engine Window Buffer Presentation Engine
Acquire Image For Rendering
—

Render Frame

Queue(Release) For Present Acquire Image For Present I

l |

I I Present To
Display (Scan-

I Release Image For Use out)

DevTech SAMSUNG

1.Swapchain

Swapchain - Glossary

Presentable Image - A Vkimage object obtained from a VkSwapchainKHR used to present
to a VkSurfaceKHR object.

VkSwapchain - an abstraction for an array of presentable images that are associated with
a surface.

VkSurface - Abstracted native platform surface or window objects.

Retired Swapchain - A swapchain that has been used as the oldSwapchain parameter to
vkCreateSwapchainKHR. Images cannot be acquired from a retired swapchain, however
images that were acquired (but not presented) before the swapchain was retired can be
presented.

<Dael\?Tlejc: SAMSUNG

1.Swapchain

Swapchain - Memory Abstraction

vkCreateSwapchainKHR() doesn’t always allocate memory for the images

- Window memory is created/destroyed by PE - (e.g. in android: ANativeWindow)

- Both PE and RE can acquire read/write priority of the memory

« RE acquires priority through the use of swapchain

- The window memory may not be freed when destroying swapchain, it may be deferred
until after the presentation engine is no longer using it

» VkAcquireNextlmageKHR() gets an index to an image and a sync point indicating when
it can be used

» Destroying the VkSwapchain doesn’t invalidate the VkSurfaceKHR

+
<D3e|\:l>Tlejch SAMSUNG

1.Swapchain

Presentation Engine Composition

« Multiple processes will present their swapchains to Windowing Compositor

» Windowing Compositor will do D(isplay)PU composition and/or GPU composition

« DPU composition is pass through to DPU, GPU composition is done by Windowing
Compositor

Rendering Engine Presentation Engine
Process 1 Windowing Compositor Display Processing
(Game) Dequeue Ehild Unit (DPU)

(VkAcquireNextimage)

Acquire
Ccompose
Enqueue Release
(VkQueuePresent) I
Process 2 > Present
(Navigation Bar) Dequeue ‘
(VkAcquireNextimage) Acquire I
Compose
Enqueue Release I
(VkQueuePresent)
Process 3
(Status Bar) Dequeue ; I
(VkAcquireNextImage) Acquire
Present
Enqueue Release I

GPU + (VkQueuePresent)
DevTech SAMSUNG

1.Swapchain

Presentation Engine Synchronisation
Windowing Compositor will always* hold at least 1 image per app for composition (*on

GPU +

DevTech

Android)

Process

vkAcquireNextImageKHR
Dequeue image1

vkQueuePresentKHR

Queue Of Buffers

Acquire image1
Enqueue image1

vkAcquireNextImageKHR

Dequeue image2

vkQueuePresentKHR

Enqueue image2

Acquire image2

"

Release image1

Windowing Compositor

Compose and/or Present

SAMSUNG

Pre-Rotation

Is 1t worth it?

(DzeTle!c: SAMSUNG

2.Pre-rotation

What is Pre-rotation and why should | care?

Android devices support multiple rotations(Usually 4¥)
Surface orientation may be different than the device natural orientation
The difference in orientation should be accounted for somewhere in the rendering pipeline

If the rendering pipeline doesn’t account for it the presentation engine will - That may have
performance penalty

Device natural orientation is not always Portrait mode!
Some devices will have more than one natural orientation

the device’s natural orientation

how we hold the device
(framebuffer size: 1920x1080)

\/ ﬁ' G ‘.' 2 . LN
GPU +
DevTech

2.Pre-rotation

Which Transform is which?

Surface:

« VkSurfaceCapabilitiesKHR surfaceCapabilities.currentTransform

« This is the current transform of the surface, it describes what rotation is applied to the
surface from natural orientation

Swapchain:

« VkSwapchainCreatelnfoKHR swapchainCreatelnfo.preTransform

« This describes what rotation the application applied to the image, if it doesn’t match
surface current transform the presentation engine will have to perform rotation

+
gzl\:I)Tlejch SAMSUNG

2.Pre-rotation

Suboptimal - Why is it returned?

« DPU units may or may not have HW support for all rotations (You can’t check for support)
« Vulkan calls* will return SUBOPTIMAL when Swapchain doesn’t match Surface rotation even if
DPU supports that rotation - Either way Suboptimal means the application should recreate

Rotation Not Supported Rotation Supported

Returns VK_SUBOPTIMAL_KHR Returns VK_SUCCESS or VK_SUBOPTIMAL_KHR
Success is only returned when surface.currentTransform
== swapchain.preTransform

Application SurfaceFlinger HardwareComposer “ Appllcatlon SurfaceFlinger HardwareComposer

vkQueuePresentKHR kaueuePresentKHR
I(v1a BufferQueue) I DPU support rotation? I I (via BufferQueue))I I

DPU support rotation?
I Lh assume: no I I

I r assume: Yes I I
present buffer
I GPU rotation I I I I

ready for scan-out

I present buffer

GPU + : . .

DevTech

)I ready for scan-out I

SAMSUNG

2.Pre-rotation

Just rewrite your whole code base lol

The consensus on best practice is to use pre-rotate - so why don’t developers do it?

» Potentially having to rewrite most shaders + engine is not feasible

- There are not a lot of resources on how to pre-rotate correctly, just general advice to do
it

« Many resources that do explain how to do it usually have minor bugs or are not scalable

« Requires all shaders to have at least 4x variants or use uniforms - this can blow up pipeline
cache if specialization constants are used

« Fragment Shader Derivatives

- Compute shaders with pixel coordinates....

<Dael\?Tlejc: SAMSUNG

2.Pre-rotation

Just in Time Pre-Rotate

« Instead of keeping track of all shaders and states it is possible to sacrifice some potential
performance gains for simplicity

- Rotate the final image before presenting, all it takes is one Renderpass - Can piggyback on the
final renderpass if possible

- Simple & Effective. Up to performance improvement in benchmarks and games

Effect of applying Just in Time Pre-Rotation

100.00 9.1%

90.00

6.9%

80.00
70.00
60.00
2.0% 7.6%
5.2% 7.4%

@ Original m@Optimisation

GPU +

DevTech

SAMSUNG

Maintenance

When and how to recreate Swapchain?

+
gzl\?Tlejch SAMSUNG

3.Maintenance

When To Destroy?

When can swapchain be destroyed:
« “The application must not destroy a swapchain until after completion of all
outstanding operations on images that were acquired from the swapchain.”

How to wait on “all outstanding operations”:

« “vkQueueWaitldle is equivalent to having submitted a valid fence to every previously
executed queue submission command that accepts a fence, then waiting for all of
those fences to signal using vkWaitForFences with an infinite timeout and waitAll set
to VK_TRUE”

« “vkDeviceWaitldle is equivalent to calling vkQueueWaitldle for all queues owned by
device.”

In reality calling vkDevice/QueueWaitldle is fine on all* implementations when tearing the
application down. In case of recreation it is a bit more complicated...

GPU +

DevTech SAMSUNG

3.Maintenance

When To Recreate - Fail

When Creation, Acquisition or Presentation fails or...

vkCreateSwapchainKHR vkAcquireNextimageKHR vkQueuePresentKHR
On failure, this command returns On failure, this command returns On failure, this command returns
* VK_ERROR_OUT_OF_HOST_MEMORY o VK_ERROR_OUT_OF HOST MEMORY o VK_ERROR_OUT OF HOST MEMORY
* VK_ERROR_OUT_OF_DEVICE_MEMORY * VK_ERROR_OUT OF DEVICE_MEMORY o VK_ERROR_OUT_OF_DEVICE_MEMORY
e VK_ERROR_DEVICE_LOST
o VK_ERROR_DEVICE_LOST o VK_ERROR_DEVICE_LOST
e VK_ERROR_SURFACE_LOST_KHR
o VK_ERROR_OUT OF DATE_KHR o VK_ERROR_OUT OF DATE_KHR
e VK_ERROR_NATIVE_WINDOW_IN_USE_KHR
o UK ERROR INITIALIZATION FATLED o VK_ERROR_SURFACE_LOST KHR o VK_ERROR_SURFACE_LOST KHR
« VK ERROR COMPRESSION EXHAUSTED EXT o VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST EXT o VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST EXT

(Dzl\?Tlejc: SAMSUNG

3.Maintenance

When To Recreate - Suboptimal

On Success those commands return:
« VK _SUCCESS
« VK _SUBOPTIMAL_KHR

VK_SUBOPTIMAL_KHR is a success return code, however it indicates that performance
could be improved. Any application that cares about performance should handle this.

+
g?al\:I)Tlejch SAMSUNG

3.Maintenance

When To Recreate - Android Hooks

Possible entry points for android activity:
» onResume()

« onPause()

» onOrientationChanged()

- onNativeWindowResized()

However in our experience there are potential issues:

« Android synchronisation

« Knowing when hooks are called(i.e. onNativeWindowResized is not called when orientation
changes by 180°)

» Having to recreate the workflow in multiple places if other Vulkan platforms are supported

If swapchain is maintained with use of android hooks then foldable devices need
onNativeWindowResized() to be used. This is what is called when the screen is folded/unfolded.
Be careful as small screen uses portrait* as default orientation and big screen uses landscape*

+
<D3e|\:l>Tlejch SAMSUNG

3.Maintenance

How To Recreate - Fail

« Straight forward
« Just recreate as soon as possible

(Dzl\?Tlejc: SAMSUNG

3.Maintenance

Common Mistakes When Recreating

Why is DeviceWaitldle not enough:

« Swapchain images that were acquired before destruction but were submitted after

« Not being able to release swapchain image after acquiring other than by presenting*
* Multithreading...

i VkAcquirel OldI .
VkAcquirelmage(Oldimage) SNSRI VkCreateSwapchain(oldSC = currentSC)
VkDeviceWaitldle VkCreateSwapchain(oldSC = currentSC)
VkDestroySwapchain VkDestroySwapchain(oldSC) VkAcquirelmage(oldSC)
) VkQueuePresent(Oldimage)
VkCreateSwapchain VkQueuePresent(Oldimage)

VkQueuePresent(Oldimage)]
(ge) Using old swapchain to create

No operations are allowed on new one is not reusing images. It’s not allowed to acquire
images from a destroyed Old Swapchain should* be images from retired swapchain
swapchain deleted after all acquired

images are presented

GPU +

DevTech SAMSUNG

3.Maintenance

VK_EXT_swapchain_maintenance1

« Allows the release of an acquired swapchain image without presenting - Easier to
recreate

« Adds present fence - Allows the application to know when exactly to destroy
swapchain

« Allows the deferral of swapchain image memory allocation - Slightly helps with startup
times and can help with lower peak memory usage

« Introduced in 2023 - Only ~25% of android devices and ~20% of desktop GPUs use it
(vulkan.gpuinfo.org)

« For Android it was first added to Android 14 - You should always use it if you can

« But in case you target older devices you will have to do it the hard way...

+
<D3e|\:l>Tlejch SAMSUNG

3.Maintenance

How To Recreate - Suboptimal
Two possible approaches to recreate swapchain

« Finish recording, submit all pending commands and block » VkCreateSwapchainKHR(oldSwapchain==currentSwapchain)
recording new ones - Keep track of all current passes that are still using old

» VkDeviceWaitldle swapchain

» VkDestroySwapchainKHR(currentSwapchain) » New passes to use new swapchain

» VkCreateSwapchainKHR (oldSwapchain == nullptr) - Wait for all old passes that acquired images from old

« Unlock recording new commands swapchain to present

» VkDestroySwapchainKHR(oldSwapchain)

<D2I\:/>TleJc: SAMSUNG

3.Maintenance

Issues:

« Requires GPU to finish all pending work - This is very noticable when recreating multiple times

« Blocks recording on the CPU at the point of AcquireNextlmage

« CreateSwapchain will fail if surface is still associated with old swapchain

« Any operation, on images acquired from a swapchain that was then deleted, will fail

- The sooner in the frame the AcquireNextlmage is done the bigger the penalty - can be helped by
deferring acquisition until late

« VK_ERROR_NATIVE_WINDOW_IN_USE_KHR: Wrong “Fix”-> recreate the surface. -> keep
track of all swapchains and delete before creation

Benefits:

« Only one live swapchain at any given point - lower peak memory usage

« It has to be right or it won’t work - no leaks allowed

+
<D3e|\:l>Tlejch SAMSUNG

3.Maintenance

Issues:

- Vklmages from oldSwachain do not transfer to new swapchain - Application can't destroy old
swapchain until after completion of all outstanding operations on acquired images

- Can’t acquire more images from old swapchain. Already acquired images remain acquired

» Requires more bookkeeping to know when old swapchain can be destroyed

« Acquired images from old Swapchain can temporarily increase memory utilization

« Tutorials sometimes include bugs that will skip destroying old swapchain -

- There is no simple way to know when a semaphore used for presentation can be reused*

Benefits:

« Able to create and use new swapchain straight away - lower latency

« Old images that have been acquired by application can still be presented

« Exclusive full-screen access will be transferred to new swapchain if used

- Internally the non-acquired VKImages associated with the old swapchain may be destroyed
immediately

<Dael\?Tlejc: SAMSUNG

Frame Pacing

L7

(DzeTle!c: SAMSUNG

4.Frame Pacing

Presentation Modes
VK_PRESENT_MODE_IMMEDIATE_KHR:

- Doesn’t wait for Vsync « Waits for Vsync
« May result in tearing * No tearing
« No internal queue is used - Internal queue is used. New requests are

appended to the back.
- The only mode that is required to be supported

VK_PRESENT_MODE_MAILBOX_KHR

» Waits for Vsync - Waits for Vsync once per request

* No tearing « May result in tearing

- Single-entry internal queue is used. If full - Internal queue is used. New requests are
then new request replace existing appended to the back

- Users may perceive this as stutter

+
g?al\:I)Tlejch SAMSUNG

4.Frame Pacing

Frame Stutter - Why does it happen?

Frame Stutter happens because frames take different amount of time to render - Frame Pacing
helps

» Reported 60/30 doesn’t guarantee lack of frame stutter - FPS is an average

» Stutter means that frames are not presented for the same amount of time

» Note: Rendering engine can’t rely on main loop synchronization

VSync

VSync VSync VSync VSync VSync VSync VSync VSync

GPU +

DevTech SAMSUNG

4.Frame Pacing

CPU Synchronisation - Why is it not the way to go

« CPU has no way of knowing how long the GPU will take to render

« GPU can’t render in advance
« CPU has no way of knowing when was the frame ready to be presented

Single Slow Frame Single Fast Frame
If the next frame is too slow the previous frame has to be If the next frame is too fast previous frame can be
displayed for multiple Vsyncs. This is not really stutter as displayed for fewer Vsyncs

it means frame missed its VSync

Frame Sync Frame Sync Frame Sync Frame Sync Frame Sync Frame Sync Frame Sync Frame Sync Frame Sync Frame Sync

= R =]

- -

VSync VSync VSync VSync VSync VSync VSync VSync VSync VSync

GPU ¢ SAMSUNG

DevTech

4.Frame Pacing

GPU Synchronisation

« CPU can specify when every frame should be displayed

« GPU can render in advance
« CPU can query GPU when were frames ready to be presented

Single Slow Frame Single Fast Frame
Since we synchronise with presentation time and render as We specify when we want the frame to be presented so
soon as frame is available individual frames taking longer even though its ready early we still present it at the right
are no longer an issue time

Er-mm .- - - .. -

Frame Pacing Frame Pacing
Point

Point ‘

VSync VSync VSync VSync VSync VSync VSync VSync VSync VSync VSync VSync VSync VSyn

GPu SAMSUNG

DevTech

4.Frame Pacing

WSI & VK_GOOGLE_display_timing - Use it

Display Timing is being shipped as part of Window System Integration (WSI)

« Extends VKkPresentInfoKHR to allow specify the earliest time each image should be
presented

« Get feedback from GPU on timings of a previously-presented images by using
vkGetPastPresentationTimingGOOGLE

» Bug with android - needs to call vkGetPastPresentationTimingGOOGLE with nullptr first

otherwise no results will be returned

GPU + SAMSUNG

DevTech

4.Frame Pacing

GetPastPresentationTiming - What is what

- DesiredPresentTime - Time set by the application (you) to indicate that an image not be presented any sooner
than that time

« ActualPresentTime - Time when the frame was actually presented
- EarliestPresentTime - When the frame could have been presented. May be earlier than Actual if waiting on

Desired
(Actual == Earliest) > Desired (Actual >= Desired) > Earliest
Target FPS was not achieved - If this consistently happens Frame Pacing working as indented - Frame Rendered in
then application should consider lower target FPS advance but paced to be displayed later

E-mmass - EEEa-- - .

actualPresentTime ==

desiredPresentTime earliestPresentTime earliestPresentTime desiredPresentTime ==

actualPresentTime

y

A 4 \ 4

VSync VSync VSync VSync VSync VSync Vsync Vsync Vs

GPU +

DevTech SAMSUNG

Questions?

SAMSUNG

Contact info:
gpudev@samsung.com
Thank you

+
gzl\?Tlejch SAMSUNG

	Slide 1: Swapchains Explained: How to manage them effectively
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

