
The 7th Vulkan Developer Conference
Cambridge, UK | February 11-13, 20252025

Swapchains Explained: How to manage them
effectively

Darius Bozek, Samsung

Contents

Swapchain1.

Pre-rotation 2.

Maintenance 3.

Frame Pacing4.

Swapchain
Just what is it?

Swapchain1.

How to get pixels on the screen
• Two separate processes use a shared resource

• Rendering Engine(RE) (e.g. Vulkan) renders an image to the window buffer- Communication

happens through swapchain

• Presentation Engine(PE) present windows buffer to the screen - Communication happens

outside of Graphics API jurisdiction

Rendering Engine Window Buffer

Queue(Release) For Present

Presentation Engine

Acquire Image For Rendering

Release Image For Use

Acquire Image For Present

Render Frame

Present To

Display (Scan-

out)

Swapchain1.

Swapchain – Glossary

Presentable Image - A VkImage object obtained from a VkSwapchainKHR used to present

to a VkSurfaceKHR object.

VkSwapchain - an abstraction for an array of presentable images that are associated with

a surface.

VkSurface - Abstracted native platform surface or window objects.

Retired Swapchain - A swapchain that has been used as the oldSwapchain parameter to

vkCreateSwapchainKHR. Images cannot be acquired from a retired swapchain, however

images that were acquired (but not presented) before the swapchain was retired can be

presented.

Swapchain1.

Swapchain – Memory Abstraction

vkCreateSwapchainKHR() doesn’t always allocate memory for the images

• Window memory is created/destroyed by PE – (e.g. in android: ANativeWindow)

• Both PE and RE can acquire read/write priority of the memory

• RE acquires priority through the use of swapchain

• The window memory may not be freed when destroying swapchain, it may be deferred

until after the presentation engine is no longer using it

• vkAcquireNextImageKHR() gets an index to an image and a sync point indicating when

it can be used

• Destroying the VkSwapchain doesn’t invalidate the VkSurfaceKHR

1.

Presentation Engine Composition
• Multiple processes will present their swapchains to Windowing Compositor

• Windowing Compositor will do D(isplay)PU composition and/or GPU composition

• DPU composition is pass through to DPU, GPU composition is done by Windowing

Compositor

Swapchain

Process 1

(Game)

Display Processing

Unit (DPU)
Windowing Compositor

Queue of Buffers

Process 2

(Navigation Bar)

Process 3

(Status Bar)

Queue of Buffers

Queue of Buffers

Swapchain Image

Swapchain Image

Swapchain Image

Window Buffer

Window Buffer

Window Buffer

Dequeue

(VkAcquireNextImage)

Enqueue

(VkQueuePresent)

Release

Acquire

Release

Acquire

Release

Acquire

Composed

Framebuffer

Present

Present

Compose

Compose

Dequeue

(VkAcquireNextImage)

Enqueue

(VkQueuePresent)

Enqueue

(VkQueuePresent)

Dequeue

(VkAcquireNextImage)

Presentation Engine
Rendering Engine

Swapchain1.

Presentation Engine Synchronisation
• Windowing Compositor will always* hold at least 1 image per app for composition (*on

Android)

Process Queue Of Buffers DPU

vkQueuePresentKHR

Compose and/or Present

Windowing Compositor

vkAcquireNextImageKHR

Release image1

Acquire image1

Dequeue image1

Enqueue image1

vkQueuePresentKHR

vkAcquireNextImageKHR

Dequeue image2

Enqueue image2

Acquire image2

Pre-Rotation
Is it worth it?

Pre-rotation2.

What is Pre-rotation and why should I care?
• Android devices support multiple rotations(Usually 4*)

• Surface orientation may be different than the device natural orientation

• The difference in orientation should be accounted for somewhere in the rendering pipeline

• If the rendering pipeline doesn’t account for it the presentation engine will - That may have

performance penalty

• Device natural orientation is not always Portrait mode!

• Some devices will have more than one natural orientation

how we hold the device

(framebuffer size: 1920x1080)

the device’s natural orientation

a rotation is required

(screen size: 1080x1920)

Pre-rotation2.

Which Transform is which?
Surface:

• VkSurfaceCapabilitiesKHR surfaceCapabilities.currentTransform

• This is the current transform of the surface, it describes what rotation is applied to the

surface from natural orientation

Swapchain:

• VkSwapchainCreateInfoKHR swapchainCreateInfo.preTransform

• This describes what rotation the application applied to the image, if it doesn’t match

surface current transform the presentation engine will have to perform rotation

Pre-rotation2.

Rotation Not Supported

Returns VK_SUBOPTIMAL_KHR

Rotation Supported

Returns VK_SUCCESS or VK_SUBOPTIMAL_KHR

Success is only returned when surface.currentTransform

== swapchain.preTransform

Suboptimal - Why is it returned?
• DPU units may or may not have HW support for all rotations (You can’t check for support)

• Vulkan calls* will return SUBOPTIMAL when Swapchain doesn’t match Surface rotation even if

DPU supports that rotation - Either way Suboptimal means the application should recreate

Application SurfaceFlinger HardwareComposer DPU

vkQueuePresentKHR

DPU support rotation?

assume: no

present buffer
ready for scan-out

GPU rotation

(via BufferQueue)

Application DPU

vkQueuePresentKHR

DPU support rotation?

assume: Yes

present buffer

ready for scan-out

(via BufferQueue)

SurfaceFlinger HardwareComposer

Pre-rotation2.

Just rewrite your whole code base lol

• Potentially having to rewrite most shaders + engine is not feasible

• There are not a lot of resources on how to pre-rotate correctly, just general advice to do

it

• Many resources that do explain how to do it usually have minor bugs or are not scalable

• Requires all shaders to have at least 4x variants or use uniforms – this can blow up pipeline

cache if specialization constants are used

• Fragment Shader Derivatives

• Compute shaders with pixel coordinates….

The consensus on best practice is to use pre-rotate – so why don’t developers do it?

Pre-rotation2.

Just in Time Pre-Rotate

• Instead of keeping track of all shaders and states it is possible to sacrifice some potential

performance gains for simplicity

• Rotate the final image before presenting, all it takes is one Renderpass - Can piggyback on the

final renderpass if possible

• Simple & Effective. Up to 9.1% performance improvement in benchmarks and games

2.0% 7.6%

6.9%

2.8% 2.6%

5.2% 7.4%

9.1%

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Effect of applying Just in Time Pre-Rotation

Original Optimisation

Maintenance
When and how to recreate Swapchain?

Maintenance 3.

When To Destroy?
When can swapchain be destroyed:

• “The application must not destroy a swapchain until after completion of all

outstanding operations on images that were acquired from the swapchain.”

How to wait on “all outstanding operations”:

• “vkQueueWaitIdle is equivalent to having submitted a valid fence to every previously

executed queue submission command that accepts a fence, then waiting for all of

those fences to signal using vkWaitForFences with an infinite timeout and waitAll set

to VK_TRUE”

• “vkDeviceWaitIdle is equivalent to calling vkQueueWaitIdle for all queues owned by

device.”

In reality calling vkDevice/QueueWaitIdle is fine on all* implementations when tearing the

application down. In case of recreation it is a bit more complicated…

Maintenance 3.

When To Recreate - Fail

When Creation, Acquisition or Presentation fails or…

vkAcquireNextImageKHRvkCreateSwapchainKHR vkQueuePresentKHR

Maintenance 3.

When To Recreate - Suboptimal

On Success those commands return:

• VK_SUCCESS

• VK_SUBOPTIMAL_KHR

VK_SUBOPTIMAL_KHR is a success return code, however it indicates that performance

could be improved. Any application that cares about performance should handle this.

Maintenance 3.

When To Recreate - Android Hooks
Possible entry points for android activity:

• onResume()

• onPause()

• onOrientationChanged()

• onNativeWindowResized()

However in our experience there are potential issues:

• Android synchronisation

• Knowing when hooks are called(i.e. onNativeWindowResized is not called when orientation

changes by 180°)

• Having to recreate the workflow in multiple places if other Vulkan platforms are supported

If swapchain is maintained with use of android hooks then foldable devices need

onNativeWindowResized() to be used. This is what is called when the screen is folded/unfolded.

Be careful as small screen uses portrait* as default orientation and big screen uses landscape*

Maintenance 3.

How To Recreate – Fail
• Straight forward

• Just recreate as soon as possible

Maintenance 3.

Common Mistakes When Recreating
Why is DeviceWaitIdle not enough:

• Swapchain images that were acquired before destruction but were submitted after

• Not being able to release swapchain image after acquiring other than by presenting*

• Multithreading…

No operations are allowed on

images from a destroyed

swapchain

Using old swapchain to create

new one is not reusing images.

Old Swapchain should* be

deleted after all acquired

images are presented

It’s not allowed to acquire

images from retired swapchain

Maintenance 3.

VK_EXT_swapchain_maintenance1

• Allows the release of an acquired swapchain image without presenting – Easier to

recreate

• Adds present fence – Allows the application to know when exactly to destroy

swapchain

• Allows the deferral of swapchain image memory allocation – Slightly helps with startup

times and can help with lower peak memory usage

• Introduced in 2023 - Only ~25% of android devices and ~20% of desktop GPUs use it

(vulkan.gpuinfo.org)

• For Android it was first added to Android 14 – You should always use it if you can

• But in case you target older devices you will have to do it the hard way…

• Finish recording, submit all pending commands and block

recording new ones

• VkDeviceWaitIdle

• VkDestroySwapchainKHR(currentSwapchain)

• VkCreateSwapchainKHR(oldSwapchain == nullptr)

• Unlock recording new commands

Maintenance 3.

Flush And Recreate

• VkCreateSwapchainKHR(oldSwapchain==currentSwapchain)

• Keep track of all current passes that are still using old

swapchain

• New passes to use new swapchain

• Wait for all old passes that acquired images from old

swapchain to present

• VkDestroySwapchainKHR(oldSwapchain)

Recreate and Check

How To Recreate – Suboptimal
Two possible approaches to recreate swapchain

Maintenance 3.

Flush And Recreate
Issues:

• Requires GPU to finish all pending work - This is very noticable when recreating multiple times

• Blocks recording on the CPU at the point of AcquireNextImage

• CreateSwapchain will fail if surface is still associated with old swapchain

• Any operation, on images acquired from a swapchain that was then deleted, will fail

• The sooner in the frame the AcquireNextImage is done the bigger the penalty – can be helped by

deferring acquisition until late

• VK_ERROR_NATIVE_WINDOW_IN_USE_KHR: Wrong “Fix”–> recreate the surface. Real fix -> keep

track of all swapchains and delete before creation

Benefits:

• Only one live swapchain at any given point – lower peak memory usage

• It has to be right or it won’t work – no leaks allowed

Maintenance 3.

Recreate and Check
Issues:

• VkImages from oldSwachain do not transfer to new swapchain - Application can't destroy old

swapchain until after completion of all outstanding operations on acquired images

• Can’t acquire more images from old swapchain. Already acquired images remain acquired

• Requires more bookkeeping to know when old swapchain can be destroyed

• Acquired images from old Swapchain can temporarily increase memory utilization

• Tutorials sometimes include bugs that will skip destroying old swapchain - use Vulkan-Samples

swapchain-recreation

• There is no simple way to know when a semaphore used for presentation can be reused*

Benefits:

• Able to create and use new swapchain straight away – lower latency

• Old images that have been acquired by application can still be presented

• Exclusive full-screen access will be transferred to new swapchain if used

• Internally the non-acquired VKImages associated with the old swapchain may be destroyed

immediately

Frame Pacing
zzz

Frame Pacing 4.

Presentation Modes
VK_PRESENT_MODE_IMMEDIATE_KHR:

• Doesn’t wait for Vsync

• May result in tearing

• No internal queue is used

VK_PRESENT_MODE_MAILBOX_KHR

• Waits for Vsync

• No tearing

• Single-entry internal queue is used. If full

then new request replace existing

• Users may perceive this as stutter

VK_PRESENT_MODE_FIFO_KHR:

• Waits for Vsync

• No tearing

• Internal queue is used. New requests are

appended to the back.

• The only mode that is required to be supported

VK_PRESENT_MODE_FIFO_RELAXED_KHR

• Waits for Vsync once per request

• May result in tearing

• Internal queue is used. New requests are

appended to the back

Frame Pacing 4.

Frame Stutter – Why does it happen?
• Frame Stutter happens because frames take different amount of time to render – Frame Pacing

helps

• Reported 60/30 doesn’t guarantee lack of frame stutter – FPS is an average

• Stutter means that frames are not presented for the same amount of time

• Note: Rendering engine can’t rely on main loop synchronization

Render

Display

VSync VSync VSync VSync VSync VSync VSync VSync VSync

Frame Pacing 4.

Single Slow Frame

If the next frame is too slow the previous frame has to be

displayed for multiple Vsyncs. This is not really stutter as

it means frame missed its VSync

Single Fast Frame

If the next frame is too fast previous frame can be

displayed for fewer Vsyncs

CPU Synchronisation – Why is it not the way to go
• CPU has no way of knowing how long the GPU will take to render

• GPU can’t render in advance

• CPU has no way of knowing when was the frame ready to be presented

Render

Display

VSync VSync VSync VSync VSync VSync VSync VSync VSyncVSync

Frame Sync Frame Sync Frame Sync Frame SyncFrame Sync

Render

Display

VSync VSync VSync VSync VSync VSync VSync VSync VSyncVSync

Frame Sync Frame Sync Frame Sync Frame SyncFrame Sync

Frame Pacing 4.

Single Slow Frame

Since we synchronise with presentation time and render as

soon as frame is available individual frames taking longer

are no longer an issue

Single Fast Frame

We specify when we want the frame to be presented so

even though its ready early we still present it at the right

time

GPU Synchronisation
• CPU can specify when every frame should be displayed

• GPU can render in advance

• CPU can query GPU when were frames ready to be presented

Render

Display

VSync VSync VSync VSync VSync VSync VSync VSync VSyncVSync

Frame Pacing

Point

Render

Display

VSync VSync VSync VSync VSync VSync VSync VSync VSyncVSync

Frame Pacing

Point

Frame Pacing 4.

WSI & VK_GOOGLE_display_timing – Use it
• Display Timing is being shipped as part of Window System Integration (WSI)

• Extends VkPresentInfoKHR to allow specify the earliest time each image should be

presented

• Get feedback from GPU on timings of a previously-presented images by using

vkGetPastPresentationTimingGOOGLE

• Bug with android – needs to call vkGetPastPresentationTimingGOOGLE with nullptr first

otherwise no results will be returned

Frame Pacing 4.

(Actual == Earliest) > Desired

Target FPS was not achieved – If this consistently happens

then application should consider lower target FPS

(Actual >= Desired) > Earliest

Frame Pacing working as indented – Frame Rendered in

advance but paced to be displayed later

GetPastPresentationTiming – What is what
• DesiredPresentTime – Time set by the application (you) to indicate that an image not be presented any sooner

than that time

• ActualPresentTime – Time when the frame was actually presented

• EarliestPresentTime – When the frame could have been presented. May be earlier than Actual if waiting on

Desired

Render

Display

VSync VSync VSync VSync VSyncVSync

desiredPresentTime ==

actualPresentTime
earliestPresentTime

Render

Display

VSync VSync VSync VSync VSyncVSync

desiredPresentTime
actualPresentTime ==

earliestPresentTime

Questions?

Contact info:

gpudev@samsung.com

Thank you

	Slide 1: Swapchains Explained: How to manage them effectively
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

