

Vulkanised 2025

The 7th Vulkan Developer Conference
Cambridge, UK | February 11-13, 2025

Machine Learning in Vulkan with Cooperative Matrix 2

Jeff Bolz, NVIDIA

Overview

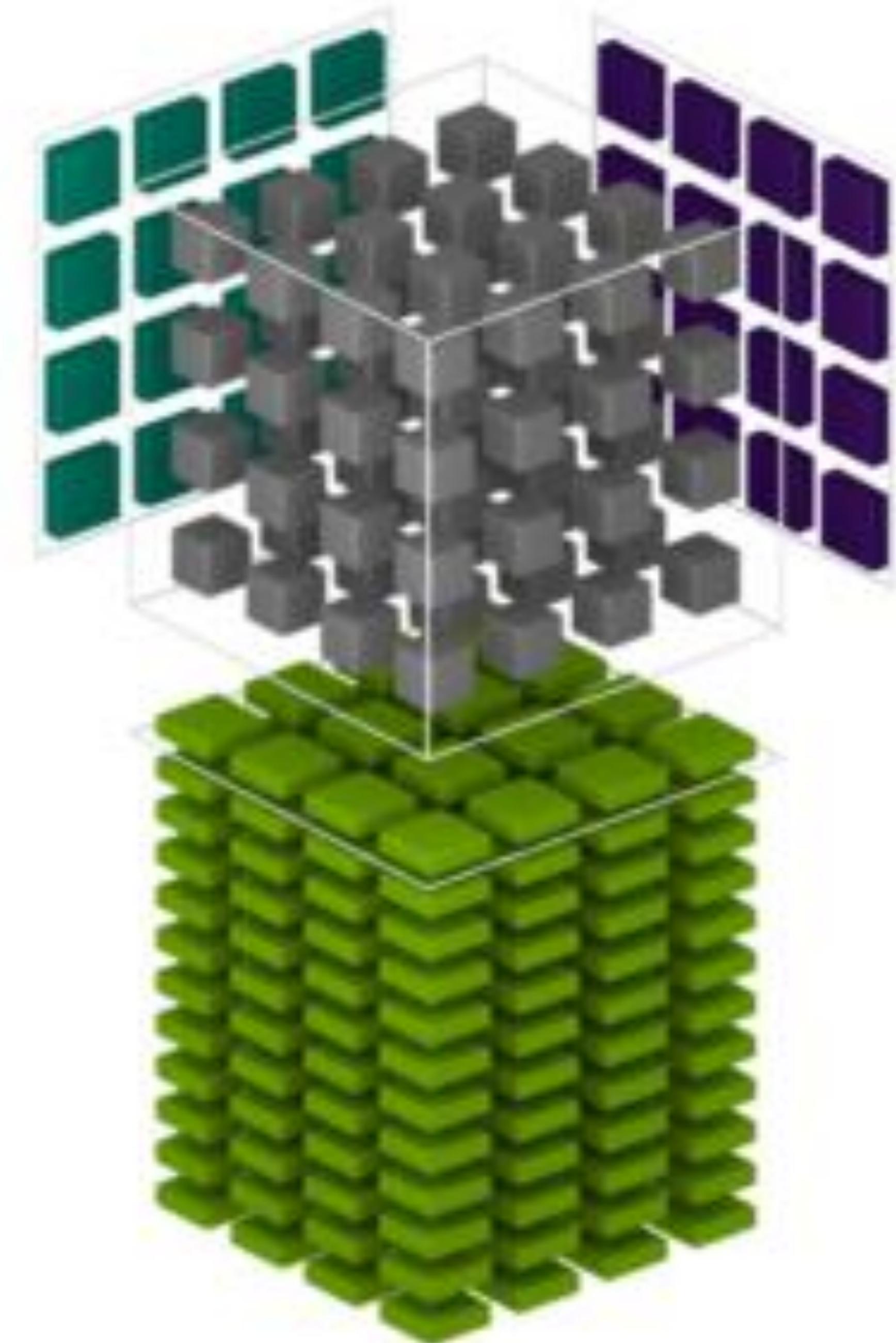
- Background
- Cooperative Matrix 1 examples
- Limitations of Cooperative Matrix 1
- Motivating use cases from llama.cpp/ggml
- New features in Cooperative Matrix 2 and how they help
- Perf Results

stable-diffusion.cpp using Vulkan backend
<https://github.com/leejet/stable-diffusion.cpp>

```
sd --diffusion-model flux1-dev-Q3_K.gguf --vae ae.safetensors
--clip_l clip_l.safetensors --t5xxl t5xxl_fp16.safetensors
--cfg-scale 1.0 --sampling-method euler -v --diffusion-fa -W 640 -H 640
-p "an orange tabby cat typing on a laptop computer displaying the text
'Vulkan Machine Learning'"
```

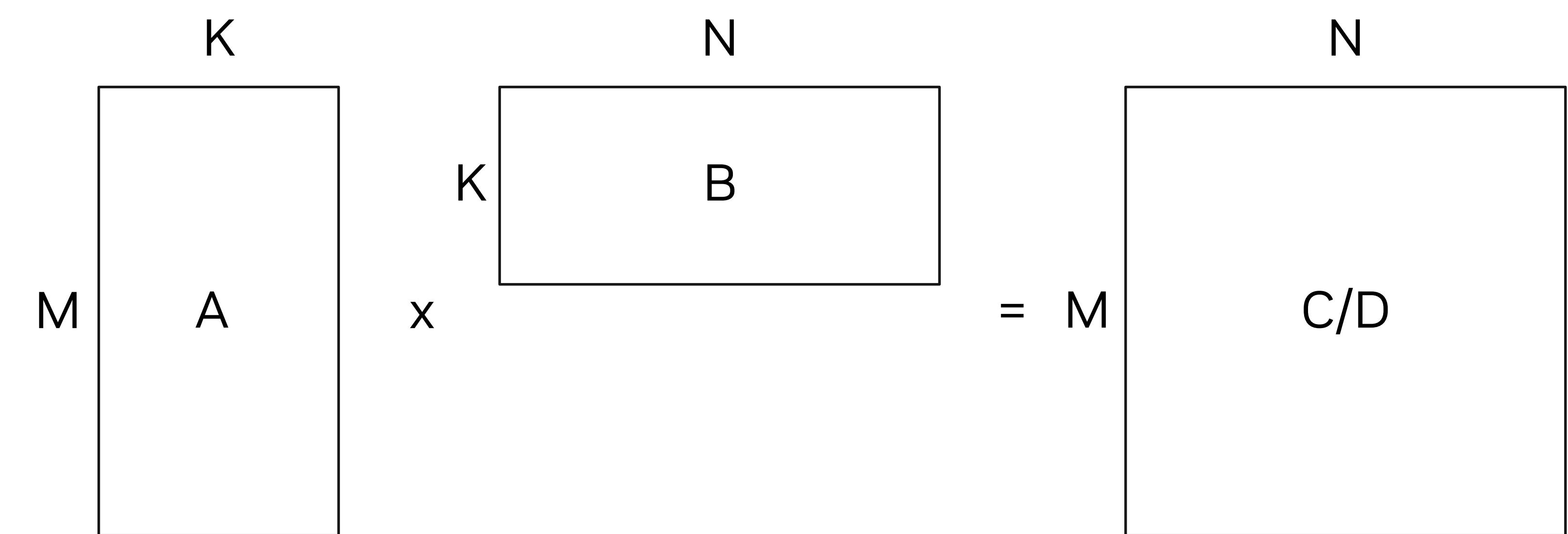
Goal / Motivation

- Goal: Accelerate machine learning
 - Critical operation: accelerating large matrix multiplies
- Problem: SIMD was never the right programming model for large matrix multiplies
 - Shader author over-prescribes how to perform the multiply
 - Decomposed into tiny math ops, dominated by shepherding data between lanes or reading from shared memory
 - This decomposition is optimized for a particular HW platform
- New Functionality: *Group-wide matrix multiply*
 - **Uses the tensor cores**
 - Expose “medium size” matrix multiplies as a primitive that can be optimized
 - All invocations in a (complete) group cooperate to compute the result
 - Matrix is stored opaquely, spread across the group
 - Shaders can build larger GEMMs or other networks out of it



Terminology

- “Cooperative Matrix” – a new matrix type where the storage for and computations performed on the matrix are spread across a set of invocations such as a subgroup (KHR_coopmat) or workgroup (NV_coopmat2)
 - KHR_cooperative_matrix (coopmat1): released summer 2023, widely supported today
 - NV_cooperative_matrix2: released October 2024, currently NVIDIA-only
- “ $D = A^*B+C$ ”
 - Matrix types are templated by component type, scope, dimensions, “Use” (A/B/Accumulator)
 - E.g. `coopmat<float16_t, gl_ScopeSubgroup, M, K, gl_MatrixUseA> matA;`
- “ $M \times N \times K$ ” matrix multiply
 - $A = M \times K$, $B = K \times N$, $C, D = M \times N$ (rows x columns)
 - Supported sizes queried from Vulkan extension
- Precision
 - $A=B=\text{fp16}$, $C=D=\{\text{fp16 or fp32}\}$ (precision of C and D must match)
 - $A=B=(\text{s/u})\text{int8}$, $C=D=(\text{s/u})\text{int32}$
 - Hopefully more in the future



Simple Cooperative Multiply

- Straightforward application of coopmat1 types and functions - $\sum(A_{ik}B_{kj})$ to accumulate one result tile
- Memory bandwidth-limited, not designed to get good reuse of memory
 - Tiles are too small!

$$\begin{matrix} & \times & & = & \end{matrix}$$

```
lM = 16; lN = 8; lK = 16;
coopmat<float16_t, gl_ScopeSubgroup, lM, lK, UseA> matA;
coopmat<float16_t, gl_ScopeSubgroup, lK, lN, UseB> matB;
coopmat<float16_t, gl_ScopeSubgroup, lM, lN, UseAcc> matC;

uvec2 matrixID = uvec2(gl_WorkGroupID);
uint cRow = lM * matrixID.y;
uint cCol = lN * matrixID.x;

coopMatLoad(matC, inputC.x, sC * cRow + cCol, sC, RowMajor);

for (uint k = 0; k < K; k += lK) {
    uint aRow = lM * matrixID.y;
    uint aCol = k;
    coopMatLoad(matA, inputA.x, sA * aRow + aCol, sA, RowMajor);

    uint bRow = k;
    uint bCol = lN * matrixID.x;
    coopMatLoad(matB, inputB.x, sB * bRow + bCol, sB, RowMajor);

    matC = coopMatMulAdd(matA, matB, matC);
}

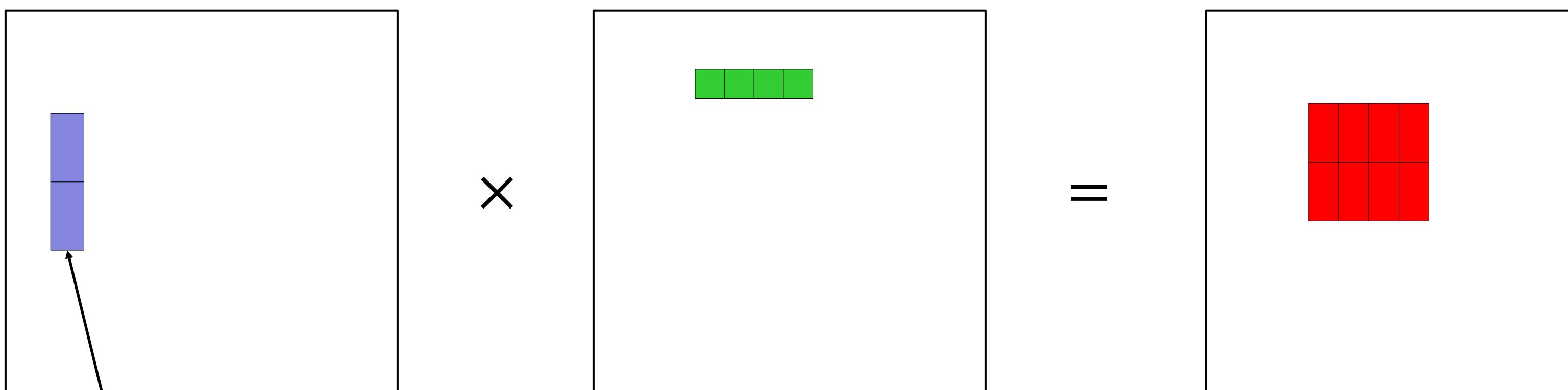
coopMatStore(matC, outputD.x, sD * cRow + cCol, sD, RowMajor);
```

~8 TFLOPS (RTX 4070) ☺

(RTX 4070 peak tensor core FP16 rate is around 116 TFLOPS)

Optimized Coopmat1 Multiply

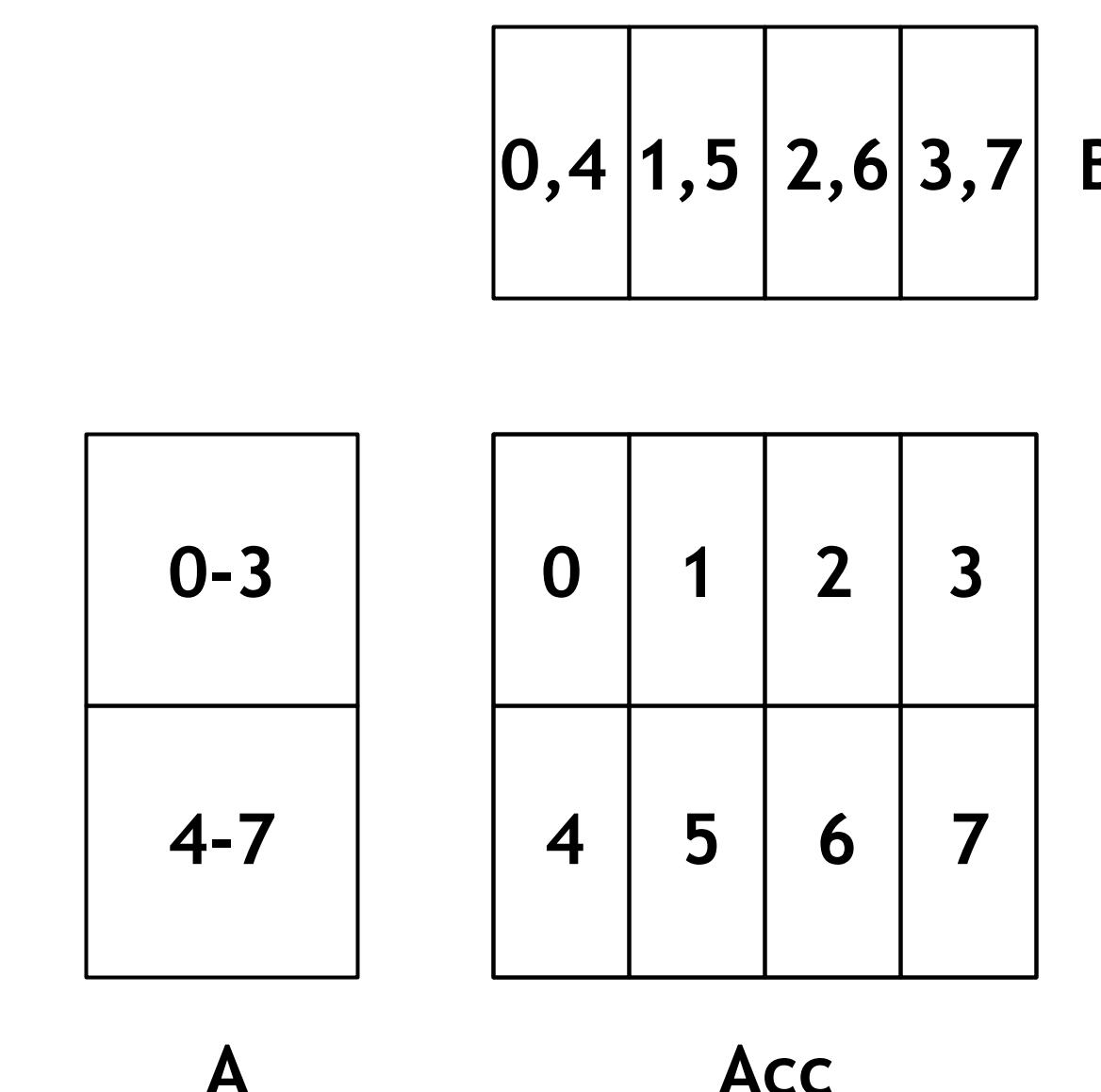
- Goal is to maximize the result tile size, which minimizes how many times A/B are loaded
- Subgroups cooperate to copy slivers of A/B from global to shared, then load out of shared
- Example (FP16): 8 subgroups split a 256x256 tile into 8 128x64 tiles (K=32)
 - Cooperate to copy A block (256x32) and B block (32x256) into shared memory
 - Then each subgroup loads the portions it needs from shared memory
- Optimal sizes depend on HW



One iteration in 'k'

```
fetch A,B for tile k=0 into register file
for (uint k = 0; k < K; k += TILE_K) {
    barrier() to wait for shmem loads in previous iteration
    copy tile k from register file to shared memory
    barrier() to wait for shmem stores to finish
    fetch A,B for tile k+1 into register file
    math loop {
        load from shared memory
        result[...] = coopMatMulAddNV(...);
    }
}
```

Full source code available at
https://github.com/jeffbolz/vk_cooperative_matrix_perf



~98 TFLOPS (RTX 4070) ☺

(RTX 4070 peak tensor core FP16 rate is around 116 TFLOPS)

Problems with Coopmat1

- GEMM wants large matrices split across a workgroup
 - Decomposing larger sizes into implementation-dependent tiles is something a compiler should do
- Manually staging through shared memory is clunky
 - Get bogged down in addressing math
 - Issues with type punning (want 16B loads, but elements are only 2B)
- Tensor isn't always a multiple of the HW matrix size
 - Need bounds-checking on loads/stores
 - Storing a matrix with bounds checking is surprisingly difficult
 - No knowledge of (row,col) information, so you have to go through shared memory
 - The whole matrix may not fit in shared memory! Go one warp at a time?
 - Workarounds on top of workarounds when you just want to say "store"
- Writing any non-trivial "fused" network needs matrix "Use" conversion (Acc->A/B), reductions, etc.

Manual pipelining,
shared memory staging,
tiling,
bounds checking

Compiler does it for you

Triton Language

- A good level of abstraction
- Looks a lot like the “Simple Cooperative Multiply”
- <https://triton-lang.org/main/getting-started/tutorials/03-matrix-multiplication.html>

```
# -----
# Iterate to compute a block of the C matrix.
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
# of fp32 values for higher accuracy.
# `accumulator` will be converted back to fp16 after the loop.
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
```

Load the next block of A and B, generate a mask by checking the K dimension.
If it is out of bounds, set it to 0.
a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
We accumulate along the K dimension.
accumulator = tl.dot(a, b, accumulator)
Advance the ptrs to the next K block.
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
You can fuse arbitrary activation functions here
while the accumulator is still in FP32!
if ACTIVATION == "leaky_relu":
 accumulator = leaky_relu(accumulator)
c = accumulator.to(tl.float16)

	CUDA	TRITON (and coopmat2!)
Memory Coalescing	Manual	Automatic
Shared Memory Management	Manual	Automatic
Scheduling (Within SMs)	Manual	Automatic
Scheduling (Across SMs)	Manual	Manual

Compiler optimizations in CUDA vs Triton.

Cooperative Matrix 2

Seven New Features

- Flexible dimensions
- Workgroup scope matrices
- Tensor addressing
- Block loads
- Reductions
- Conversions
- Per-element operations

~97 TFLOPS (RTX 4070) ☺

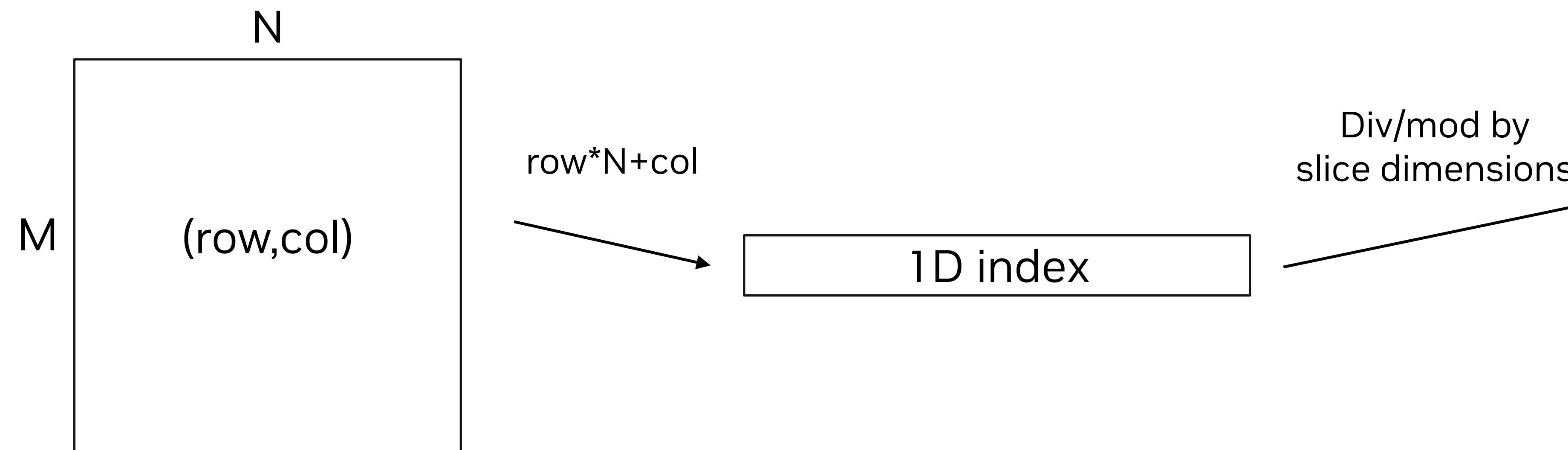
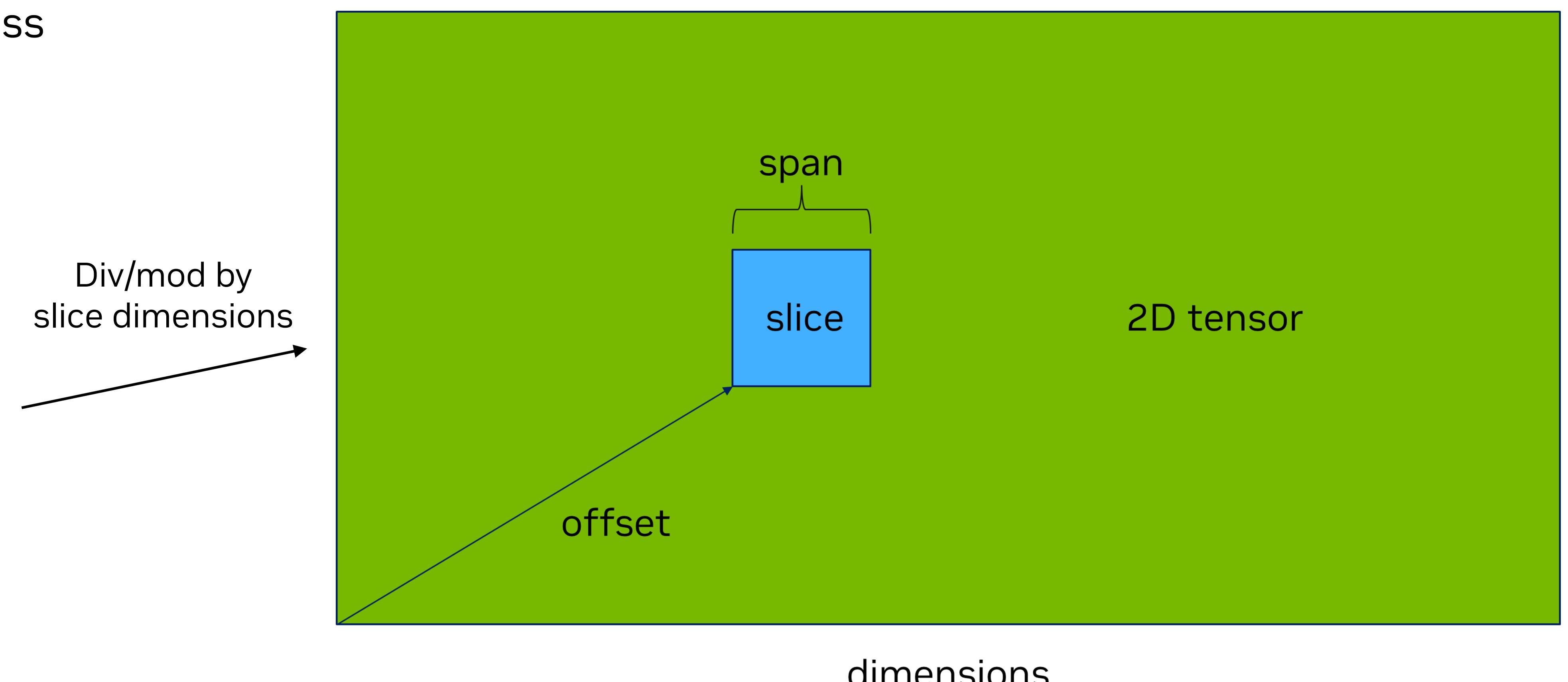
(RTX 4070 peak tensor core FP16 rate is around 116 TFLOPS)

```
1M = 256; 1N = 256; 1K = 32;  
coopmat<float16_t, gl_ScopeWorkgroup, 1M, 1K, UseA> matA;  
coopmat<float16_t, gl_ScopeWorkgroup, 1K, 1N, UseB> matB;  
coopmat<float16_t, gl_ScopeWorkgroup, 1M, 1N, UseAcc> matC;  
  
uvec2 matrixID = uvec2(gl_WorkGroupID);  
uint row = 1M * matrixID.y;  
uint col = 1N * matrixID.x;  
  
tensorLayoutNV<2> tensorA = createTensorLayoutNV(2);  
tensorLayoutNV<2> tensorB = createTensorLayoutNV(2);  
tensorLayoutNV<2> tensorC = createTensorLayoutNV(2);  
  
tensorA = setTensorLayoutDimensionNV(tensorA, M, K);  
tensorB = setTensorLayoutDimensionNV(tensorB, K, N);  
tensorC = setTensorLayoutDimensionNV(tensorC, M, N);  
  
coopMatLoadTensor(matC, inputC.x, slice(tensorC, row, 1M, col, 1N));  
  
for (uint k = 0; k < K; k += 1K) {  
    coopMatLoadTensor(matA, inputA.x, slice(tensorA, row, 1M, k, 1K));  
    coopMatLoadTensor(matB, inputB.x, slice(tensorB, k, 1K, col, 1N));  
  
    matC = coopMatMulAdd(matA, matB, matC);  
}  
  
coopMatStoreTensor(matC, outputD.x, slice(tensorC, row, 1M, col, 1N));
```

Tensor Layout

What?

- Tensor layout is a *software structure* constructed in the shader
 - A convenient, *extensible* way to specify addressing calculations
 - `coopMatLoadTensorNV(coopmat, T[] buf, uint element, tensorLayout[, tensorView][, decodeFunc]);`
- Tensor layout describes the shape of the *tensor in memory*
- Tensor layouts can be up to 5D. Each dimension has size, stride, offset, span, that define the shape of the region and layout in memory
 - Defines the tensor size for bounds-checking
- Tensor layout logically maps:
 - matrix (row,col) \rightarrow 1D index \rightarrow ND coordinate \rightarrow address

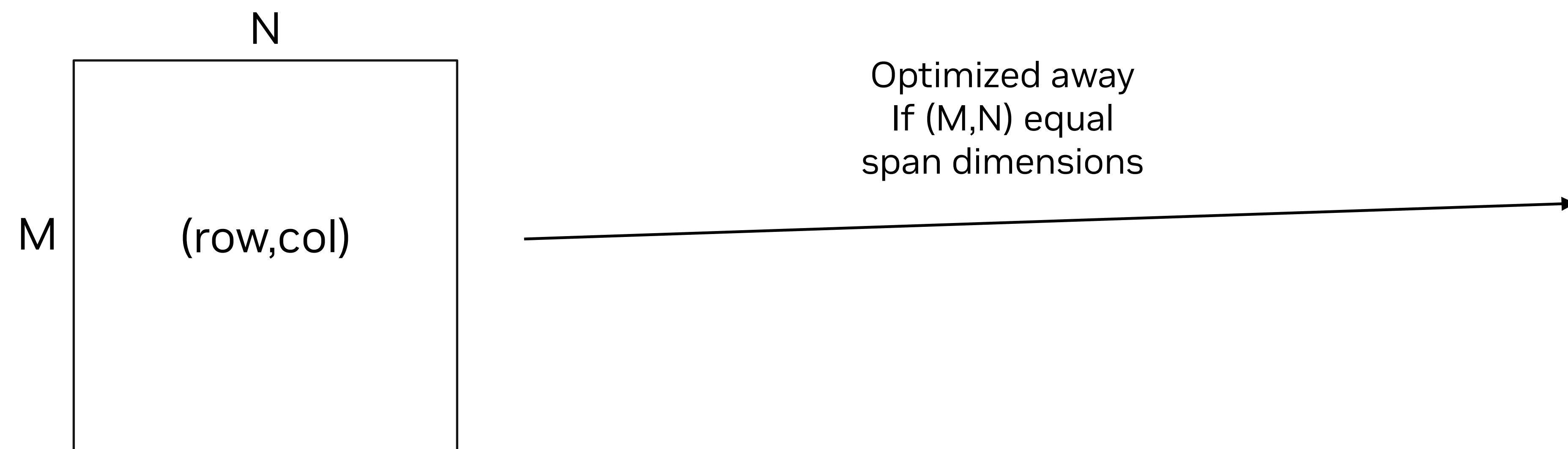
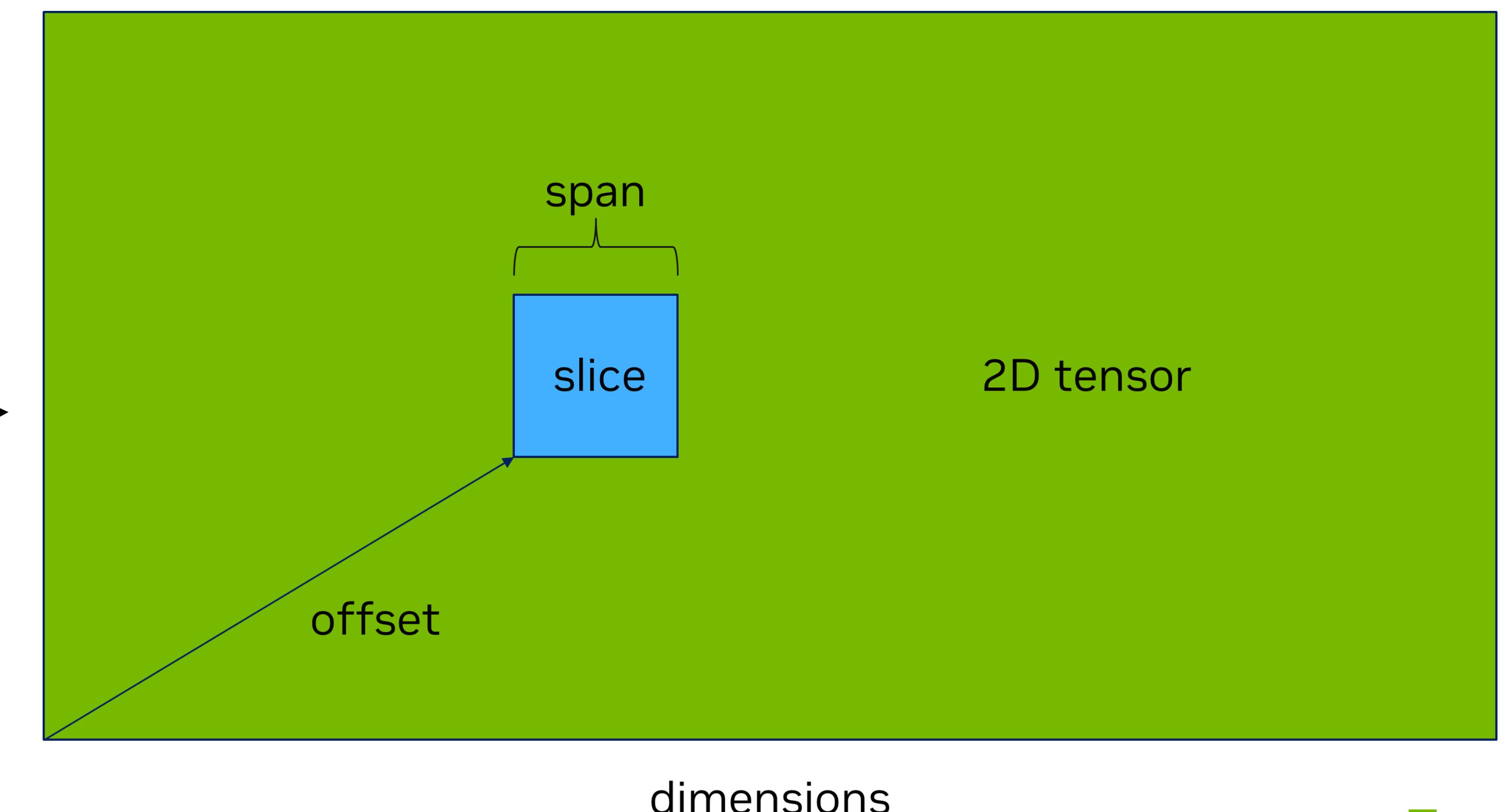


dimensions

Tensor Layout

Why?

- Accesses all come from the slice, even if addressing is complex
 - Loading through shared memory only needs to load the slice
- These layouts are amenable to compiler optimization and HW acceleration
 - Often, parts of the calculations can be easily optimized away
 - E.g. for 2D rowmajor, ND coordinate == (row,col) because matrix dim == span dim
 - “Pay for what you use”
- Considered an alternative with “address calculation callback”
 - Not practical to optimize
 - Tensor layout/view are **expressive** and **optimizable**



Tensor Layout

Logical Definition in the Specification

```
struct tensorLayout<uint32_t Dim,  
    TensorClampMode Mode = TensorClampModeUndefined>  
{  
    static constexpr uint32_t LDim = Dim;  
    static constexpr TensorClampMode clampMode = Mode;  
    uint32_t blockSize[LDim];  
    uint32_t layoutDimension[LDim];  
    uint32_t stride[LDim];  
    int32_t offset[LDim];  
    uint32_t span[LDim];  
    uint32_t clampValue;  
};
```

```
uint32_t computeIndex(tensorLayout t, uint32_t row,  
                      uint32_t col, uint32_t N)  
{  
    uint32_t index = row * N + col;  
    return computeIndex(t, index);  
}  
  
uint32_t computeIndex(tensorLayout t, uint32_t index)  
{  
    uint32_t coord[t.LDim];  
    for (int32_t dim = t.LDim-1; dim >= 0; --dim) {  
        coord[dim] = index % t.span[dim];  
        index /= t.span[dim];  
    }  
  
    index = 0;  
    uint32_t coordInBlock[t.LDim];  
    uint32_t blockCoord[t.LDim];  
  
    for (uint32_t dim = 0; dim <= t.LDim-1; ++dim) {  
        int32_t c = coord[dim] + t.offset[dim];  
        if (c < 0 || c >= t.layoutDimension[dim]) {  
            // handle OOB  
        }  
  
        coordInBlock[dim] = c % t.blockSize[dim];  
        blockCoord[dim] = c / t.blockSize[dim];  
        index += blockCoord[dim] * t.stride[dim];  
    }  
    return index;  
}
```

Tensor View

Why?

- Tensor view is optionally applied in addition to a layout. View can reinterpret layout and dimensionality, and permute coordinates
 - Similar to `torch.view/permute/reshapetranspose/etc`
- Tensor view logically maps:
 - (row, col) -> 1D index -> ND coord -> permute -> 1D index
 - Then continue on with the tensor layout calculation
- Tensor view is needed when you want to permute coordinates or change the number of dimensions
 - transpose
 - `space_to_depth/depth_to_space`

Tensor View

Logical Definition in the Specification

```
struct tensorView<uint Dim, bool hasDimensions,
    uint32_t p0, ..., uint32_t p<Dim-1>>
{
    static constexpr uint32_t VDim = Dim;
    static constexpr bool hasDim = hasDimensions;
    static constexpr uint32_t permutation[VDim] =
        {p0, ..., p<Dim-1>};
    uint32_t viewDimension[VDim];
    uint32_t viewStride[VDim];
    uint32_t clipRowOffset, clipRowSpan,
        clipColOffset, clipColSpan;
};
```

```
uint32_t computeIndex(tensorLayout t, tensorView v, uint32_t index)
{
    auto &dimensions = v.hasDimensions ? v.viewDimension : t.span;
    uint32_t stride[v.VDim];
    if (v.hasDimensions) {
        stride = v.viewStride;
    } else {
        // set stride to match t.span
        stride[v.VDim-1] = 1;
        for (int32_t dim = v.VDim-2; dim >= 0; --dim) {
            stride[dim] = stride[dim+1] * t.span[dim+1];
        }
    }
    uint32_t result = 0;
    for (int32_t dim = v.VDim-1; dim >= 0; --dim) {
        uint32_t i = v.permutation[dim];
        uint32_t coord = index % dimensions[i];
        index /= dimensions[i];
        result += coord * stride[i];
    }
    return computeIndex(t, result);
}
```

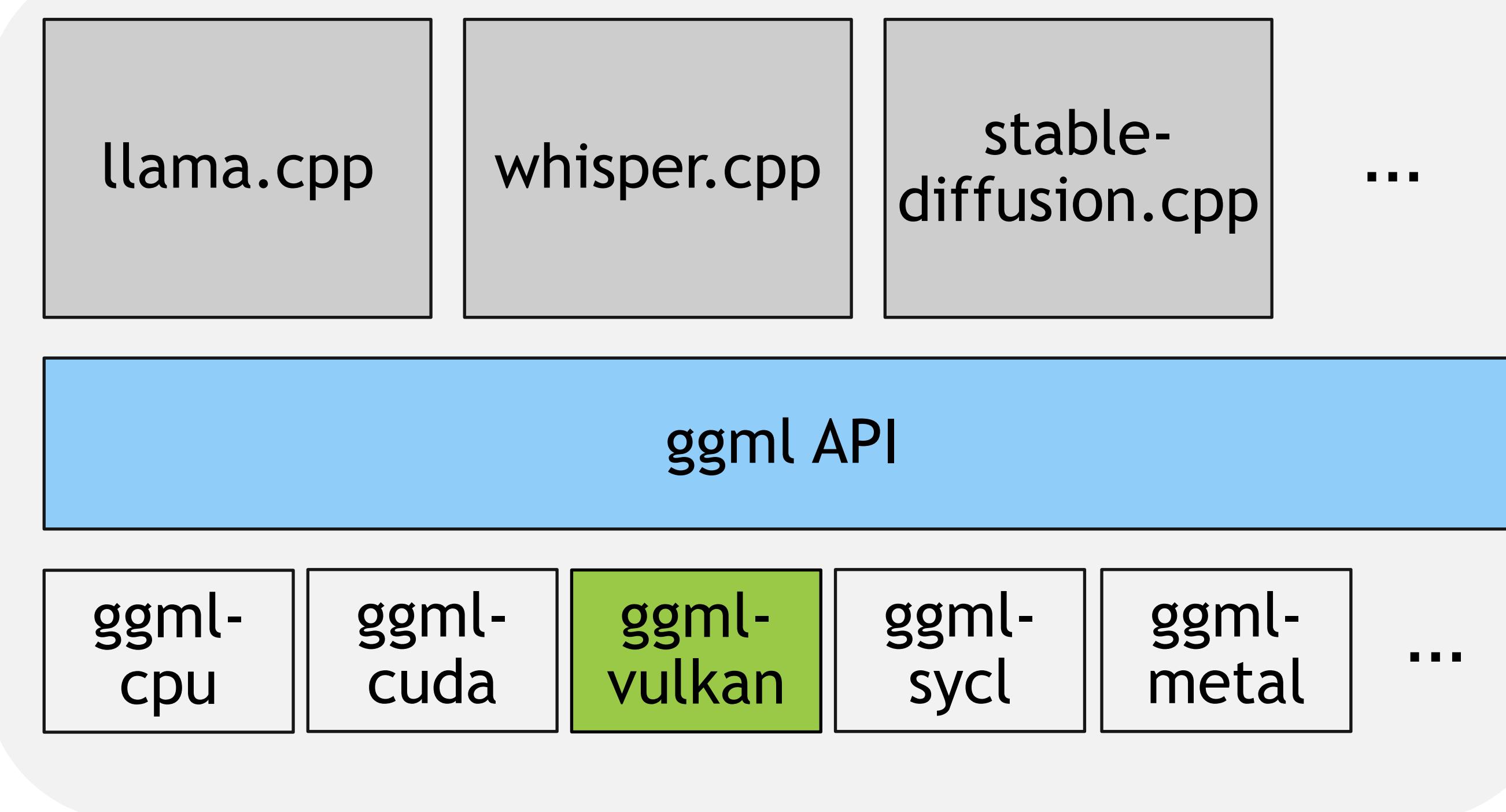
llama.cpp/ggml

<https://github.com/ggerganov/llama.cpp> <https://github.com/ggerganov/ggml>

Description

The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide variety of hardware - locally and in the cloud.

- Plain C/C++ implementation without any dependencies
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- AVX, AVX2 and AVX512 support for x86 architectures
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP)
- Vulkan and SYCL backend support
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity



- Key use cases to accelerate:
 - Matrix-matrix multiply
 - Mixture-of-Experts mat-mat mul
 - Flash Attention
 - Quantization Formats
- Where we are today:
 - Vulkan backend works “everywhere” (needs basic vk1.2 support)
 - Mat-mat mul has scalar, KHR_coopmat, NV_coopmat2 paths
 - Flash Attention has an NV_coopmat2 path
 - Quantization Formats supported in all paths

Quantization Formats

Dequantization Example

- Job #1 is fitting the model in vidmem
- Mat-vec mul is bandwidth-limited, so this is good for perf, too

```
#if defined(DATA_A_IQ4_NL)
#extension GL_EXT_shader_16bit_storage : require
#define QUANT_K 32
#define QUANT_R 2

struct block_iq4_nl
{
    float16_t d;
    uint8_t qs[QUANT_K/2];
};

#define A_TYPE block_iq4_nl

const int8_t kvalues_iq4nl[16] = {
    int8_t(-127), int8_t(-104), int8_t(-83), int8_t(-65), int8_t(-49), int8_t(-35), int8_t(-22), int8_t(-10),
    int8_t(1), int8_t(13), int8_t(25), int8_t(38), int8_t(53), int8_t(69), int8_t(89), int8_t(113)
};
```

```
#elif defined(DATA_A_IQ4_NL)
    const uint idx = pos_a + (loadc_a + 1) * p.stride_a / LOAD_VEC_A + loadr_a;
    const uint buf_idx = (loadc_a + 1) * (BK+1) + loadr_a;

    const uint ib = idx / 16;
    const uint iqs = idx & 0xF;

    const float d = float(data_a[ib].d);
    const uint vui = uint(data_a[ib].qs[iqs]);
    const vec2 v = vec2(kvalues_iq4nl[vui & 0xF], kvalues_iq4nl[vui >> 4]) * d;

    buf_a[buf_idx] = FLOAT_TYPE(v.x);
    buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
#endif
```

- IQ4_NL: ~4-bit/elem -> LUT -> scale
 - (not all formats use a LUT)
- Usually 32 or 256 elements per block
- Usually ~2 to ~8 bits/element
- Stored in memory as tensor-of-blocks

<https://github.com/ggerganov/llama.cpp/blob/master/ggml/src/ggml-vulkan/vulkan-shaders/types.comp#L301>

https://github.com/ggerganov/llama.cpp/blob/master/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp#L443

Quantization Formats

```
#if defined(DATA_A_IQ4_NL)
#extension GL_EXT_shader_16bit_storage : require
#define QUANT_K 32
#define QUANT_R 2

struct block_iq4_nl
{
    float16_t d;
    uint8_t qs[QUANT_K/2];
};

#define A_TYPE block_iq4_nl

const int8_t kvalues_iq4nl[16] = {
    int8_t(-127), int8_t(-104), int8_t(-83), int8_t(-65), int8_t(-49), int8_t(-35), int8_t(-22), int8_t(-10),
    int8_t(1), int8_t(13), int8_t(25), int8_t(38), int8_t(53), int8_t(69), int8_t(89), int8_t(113)
};

#endif
```

Block Address

Coord in block

Dequantize element

```
#elif defined(DATA_A_IQ4_NL)
    const uint idx = pos_a + (loadc_a + 1) * p.stride_a / LOAD_VEC_A + loadr_a;
    const uint buf_idx = (loadc_a + 1) * (BK+1) + loadr_a;

    const uint ib = idx / 16;
    const uint iqs = idx & 0xF;

    const float d = float(data_a[ib].d);
    const uint vui = uint(data_a[ib].qs[iqs]);
    const vec2 v = vec2(kvalues_iq4nl[vui & 0xF], kvalues_iq4nl[vui >> 4]) * d;

    buf_a[buf_idx] = FLOAT_TYPE(v.x);
    buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
#endif
```

Dequantization Callback

- Implementation computes block coordinate, coordinate in block, and pointer to start of the block
 - Passes these to shader-supplied callback function -> return value populates the matrix
- This works well with compiler-implemented staging through shared memory
- Generic, composable way to support dequantization
 - Mat-mul and FlashAttention kernels just plug in a different callback function for each format
- Consider decoding two or in some cases four elements at a time, for performance

```
#elif defined(DATA_A_IQ4_NL)

float16_t decodeFunc(const in decodeBuf bl, const in uint blockCoords[2], const in uint coordInBlock[2])
{
    const float16_t d = bl.block.d;
    const uint idx = coordInBlock[1];
    const uint iqs = idx & 0xF;
    const uint shift = (idx & 0x10) >> 2;
    uint32_t qs = bl.block.qs[iqs];
    qs >>= shift;
    qs &= 0xF;
    float16_t ret = float16_t(kvalues_iq4nl[qs]) * d;
    return ret;
}

#endif
```

```
coopMatLoadTensorNV(mat_a, data_a, pos_a, slice(tensorLayoutA, ir * BM, BM, block_k, BK), decodeFunc);
```

Mixture of Experts

- Matrix B loads are indirectioned through a table to select the row

```
const uint row_i = ic * BN + loadc_b + 1;
if (row_i < _ne1) {
    const u16vec2 row_idx = row_ids[row_i];
    buf_b[(loadc_b + 1) * (BK+1) + loadr_b] = FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]);
} else {
    buf_b[(loadc_b + 1) * (BK+1) + loadr_b] = FLOAT_TYPE(0.0f);
}
```

```
B_TYPE decodeFuncB(const in decodeBufB bl, const in uint blockCoords[2], const in uint coordInBlock[2])
{
    const uint row_i = blockCoords[0];
    if (row_i >= _ne1) {
        return B_TYPE(0.0);
    }
    const u16vec4 row_idx = row_ids[row_i];
    B_TYPE ret = data_b[row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + blockCoords[1]];
    return ret;
}
```

- Storing D matrix also requires remapping, use per-element operation

```
D_TYPE perElemOpD(const in uint32_t r, const in uint32_t c, const in D_TYPE elem, const in uint32_t ir, const in uint32_t ic)
{
    uint dr = ir * BM + r;
    uint dc = ic * BN + c;
    if (dr < p.M && dc < _ne1) {
        uint row_i = dc;
        const u16vec4 row_idx = row_ids[row_i];
        data_d[row_idx.y * p.batch_stride_d + row_idx.z * p.stride_d + dr] = elem;
    }
    return elem;
}
coopMatPerElementNV(mat_d, mat_d, perElemOpD, ir, ic);
```

Flash Attention 2

Overview of the Algorithm

- Attention formula (from Wikipedia):

$$\text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax} \left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}} \right) \mathbf{V} \in \mathbb{R}^{m \times d_v}$$

Softmax formula:

$$\sigma(\mathbf{z})_i = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

- Softmax is “just” a component-wise $\exp()$ and per-row scale (normalization)
 - FlashAttention trick is to pretend you can compute the denominator during each K step, and then readjust it on the next step when you have more information
 - OK, there’s a bit more to it than that, but that’s the key insight
- Needs the following coopmat2 features:
 - Row reductions (for softmax)
 - Matrix Use conversions (convert $\mathbf{Q}\mathbf{K}^T$ from Accumulator to A matrix)
 - Per-element operations (to clear padding elements)

Flash Attention 2

- coopMatReduceNV supports a callback function to combine a pair of values:

```
ACC_TYPE maxReduce(const in ACC_TYPE x, const in ACC_TYPE y) {
    return max(x, y);
}

coopMatReduceNV(rowmax, S, gl_CooperativeMatrixReduceRowNV, maxReduce);
```

- Need to fill padding elements with -inf, before doing max-reduce:

```
// Replace matrix elements >= numRows or numCols with 'replace'
ACC_TYPE replacePadding(const in uint32_t row, const in uint32_t col, const in ACC_TYPE elem, const in ACC_TYPE replace,
                        const in uint32_t numRows, const in uint32_t numCols) {
    if (row >= numRows || col >= numCols) {
        return replace;
    }
    return elem;
}

coopMatPerElementNV(S, S, replacePadding, ACC_TYPE(-1.0f/0.0f), R, C);
```

Cooperative Matrix 2

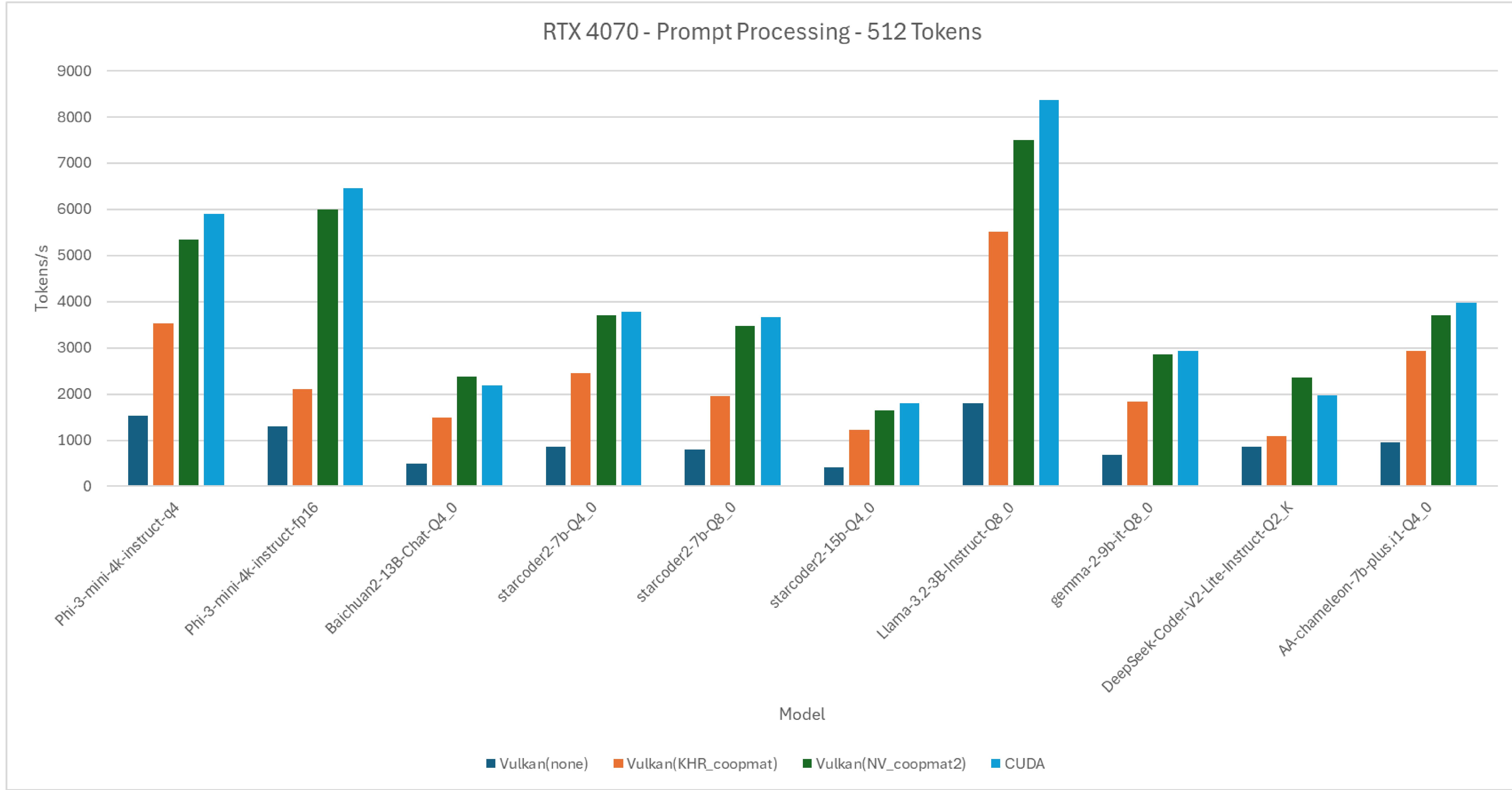
Seven New Features

- Workgroup scope matrices
- Flexible dimensions
- Reductions
- Conversions
- Per-element operations
- TensorAddressing
- Block Loads

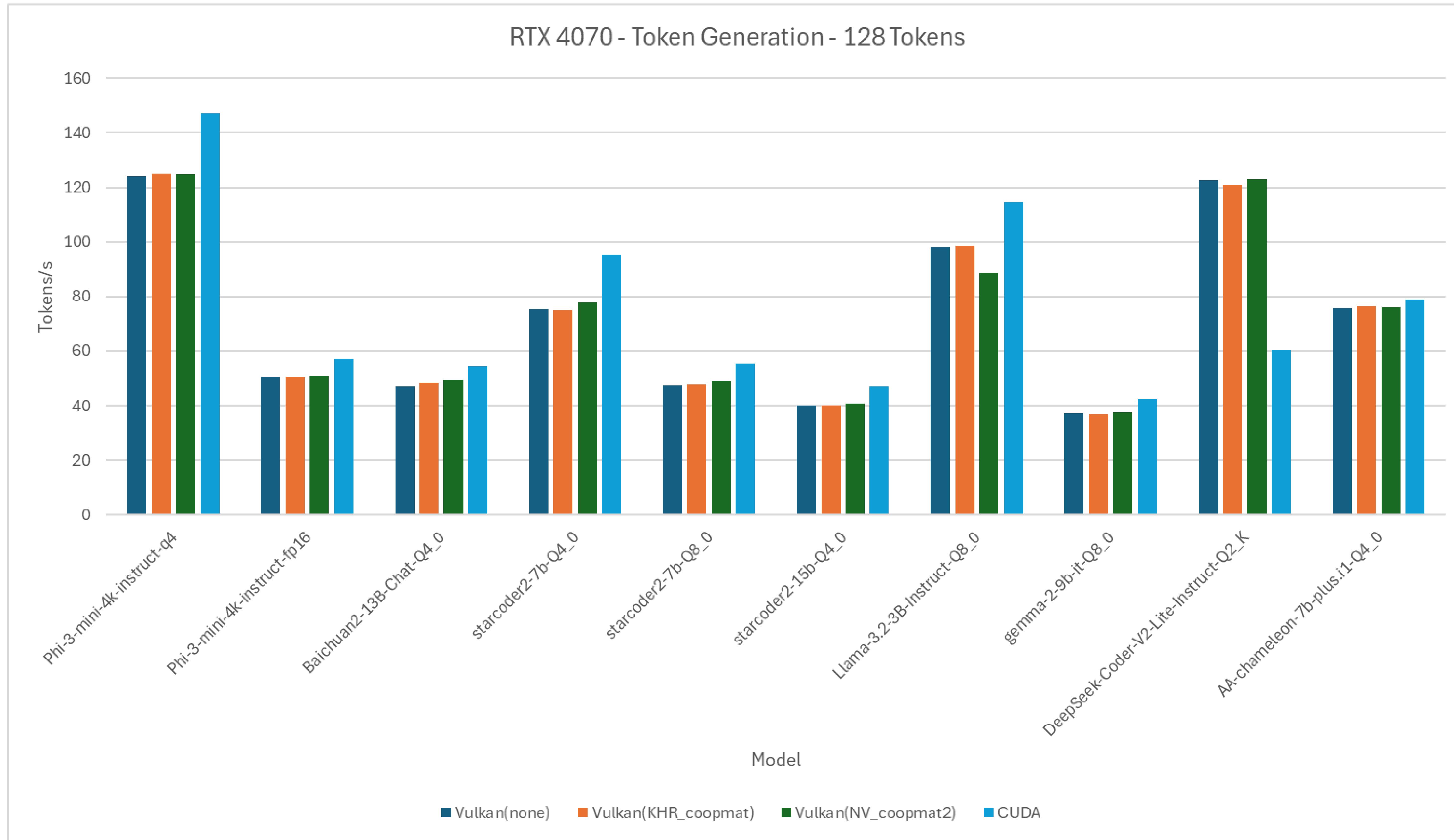
	WG scope	Flex dim	Reduction	Conversion	Per-elem op	Tensor Addressing	Block Loads
MatMul	✓	✓				✓	✓
MoE	✓	✓			✓	✓	✓
FA2	✓	✓	✓	✓	✓	✓	✓

- (And performance heavily relies on workgroup scope, flexible dimensions, and tensor addressing)

Performance

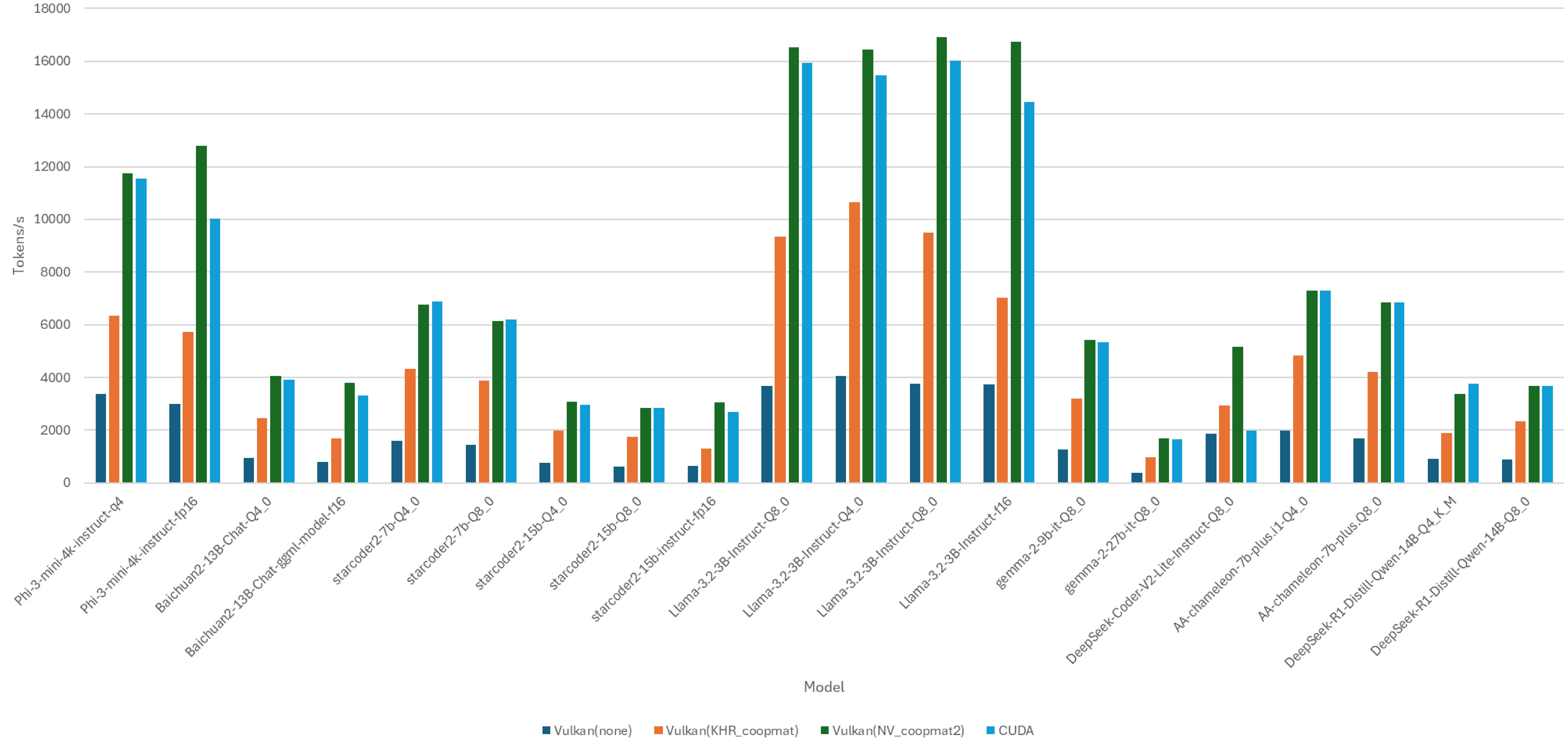


Performance

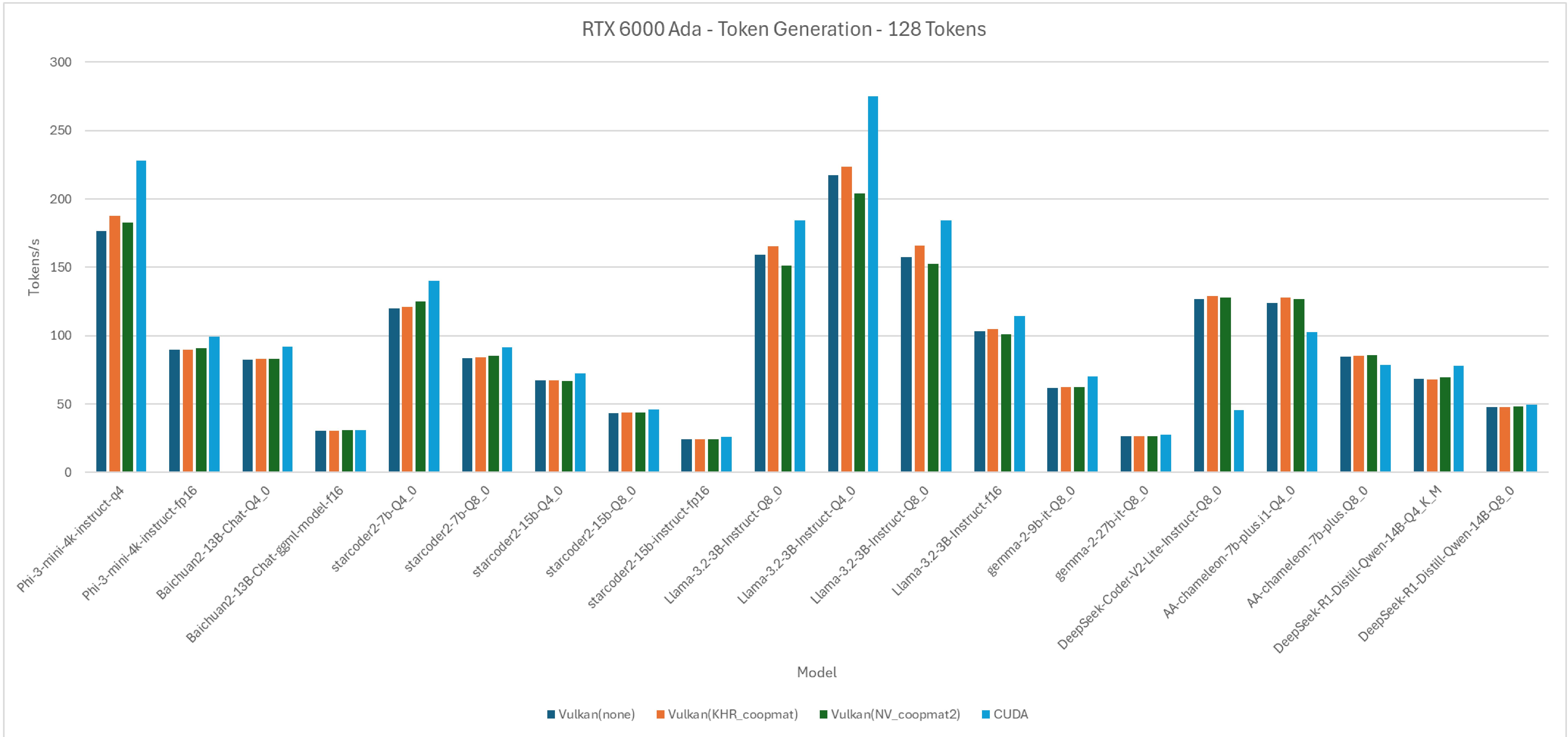


Performance

RTX 6000 Ada - Prompt Processing - 512 Tokens



Performance



Conclusion

- Machine learning acceleration is possible in Vulkan today
 - llama.cpp -> ggml -> Vulkan w/Cooperative Matrix(2)
- The Vulkan/SPIR-V/GLSL NV_coopmat2 extensions are available now
 - In the Vulkan 1.4.304 SDK
- Supported in developer drivers at <https://developer.nvidia.com/vulkan-driver>
 - Will be in next major release (R575)
 - Supported on all NVIDIA RTX GPUs
- Try it yourself in <https://github.com/ggerganov/llama.cpp>!

