. - . r - L}
. - - - . iy . - w
i - - i " d 4
- ‘ .) . - ‘.\ .'
K - — " d - - ’
\\ \Q N, ¥ \‘J 3 - ’” . a - L -

(Vun(amsed 202

The 7t" Vulkan Developer Conference
Cambridge, UK | February 11-13, 2025

Machine Learning in Vulkan with
Cooperative Matrix 2

Jett Bolz, NVIDIA

Overview

Background

Cooperative Matrix 1 examples

Limitations of Cooperative Matrix 1

Motivating use cases from llama.cpp/ggml

New features in Cooperative Matrix 2 and how they help

Perf Results

stable-diffusion.cpp using Vulkan backend
https://github.com/leejet/stable-diffusion.cpp

sd --diffusion-model flux1-dev-Q3_K.gguf --vae ae.safetensors

--clip_I clip_l.safetensors --t5xx| t5xx|_fp16.safetensors

--cfg-scale 1.0 --sampling-method euler -v --diffusion-fa -W 640 -H 640
-p "an orange tabby cat typing on a laptop computer displaying the text
'Vulkan Machine Learning'”

2 <ANVIDIA. I

https://github.com/leejet/stable-diffusion.cpp

Goal / Motivation

- Goal: Accelerate machine learning
- Critical operation: accelerating large matrix multiplies

« Problem: SIMT was never the right programming model for large matrix multiplies
- Shader author over-prescribes how to perform the multiply

- Decomposed into tiny math ops, dominated by shepherding data between lanes or
reading from shared memory

- This decomposition is optimized for a particular HW platform

- New Functionality: Group-wide matrix multiply
« Uses the tensor cores
- Expose "medium size” matrix multiplies as a primitive that can be optimized
- All invocations in a (complete) group cooperate to compute the result
- Matrix is stored opaquely, spread across the group
- Shaders can build larger GEMMSs or other networks out of it

3 <ANVIDIA. I

Terminology

"Cooperative Matrix” —a new matrix type where the storage for and computations performed on the matrix are spread

across a set of invocations such as a subgroup (KHR_coopmat) or workgroup (NV_coopmat?)
KHR_cooperative_matrix (coopmat1): released summer 2023, widely supported today
NV_cooperative_matrix2: released October 2024, currently NVIDIA-only

‘D = A*B+C”
Matrix types are templated by component type, scope, dimensions, “Use” (A/B/Accumulator)
E.g. coopmat<float16_t, gl_ScopeSubgroup, M, K, gl_MatrixUseA> matA;

"MxNxK” matrix multiply K N
A = MxK, B=KxN, C,D=MxN (rows x columns)
Supported sizes queried from Vulkan extension K B
M A X
Precision

A=B=fp16, C=D={fp 16 or fp32} (precision of C and D must match)
A=B=(s/u)int8, C=D=(s/u)int32
Hopefully more in the future

C/D

4

NVIDIA.

Simple Cooperative Multiply

Straightforward application of coopmat1 types and
functions - sum(A, B,;) to accumulate one result tile

Memory bandwidth-limited, not designed to get
good reuse of memory

Tiles are too small!

1M
Co
Co
Co

uv
ul
ui

CcO

fo

}

CcO

= 16; IN = 8; 1K = 16;
opmat<float16_t, gl_ScopeSubgroup, 1M, 1K, UseA> matA;
opmat<float16_t, gl_ScopeSubgroup, 1K, 1N, UseB> matB;
opmat<float16_t, gl_ScopeSubgroup, 1M, 1IN, UseAcc> matC;

uvec2(gl_WorkGroupID);
matrixID.y;
matrixID.x;

ec2 matrixID
nt cRow 1M
nt cCol 1IN

* X

opMatLoad(matC, inputC.x, sC * cRow + cCol, sC, RowMajor);

r (uint k
uint aRow
uint aCol = k;

coopMatLoad(matA, inputA.x, sA * aRow + aCol, sA, RowMajor);

B: k < K;: k += lK) {
IM * matrixID.y;

uint bRow K
uint bCol = IN * matrixID.x;
coopMatLoad(matB, inputB.x, sB * bRow + bCol, sB, RowMajor);

matC = coopMatMulAdd(matA, matB, matC);

opMatStore(matC, outputD.x, sD * cRow + cCol, sD, RowMajor);

(RTX 4070 peak tensor core FP16 rate is around 116 TFLOPS)

~8 TFLOPS (RTX 4070) ®

5

NVIDIA.

Optimized Coopmat1 Multiply

Goal is to maximize the result tile size, which
minimizes how many times A/B are loaded

Subgroups cooperate to copy slivers of A/B from
global to shared, then load out of shared

Example (FP16): 8 subgroups split a 256x256 tile into
8 128x64 tiles (K=32)

Cooperate to copy A block (256x32) and B block
(32x256) into shared memory

Then each subgroup loads the portions it needs
from shared memory

Optimal sizes depend on HW

X
|

\

fetch A,B for tile k=0 into register file

for (uint k = 0; k < K; k += TILE_K) {

barrier() to wait for shmem loads in previous iteration

copy tile k from register file to shared memory
barrier() to wait for shmem stores to finish

fetch A,B for tile k+1 into register file

\

One iteration in 'k’

math loop {
load from shared memory
result[...] = coopMatMulAddNV(...);
}
}
Full source code available at
0,41,5(2,6/3,7| B
0-3 O| 1|23
4-7 4 | 5| 6|7
A Acc

(RTX 4070 peak tensor core FP16 rate is around 116 TFLOPS)

6

NVIDIA.

https://github.com/jeffbolznv/vk_cooperative_matrix_perf

Problems with Coopmat]

- GEMM wants large matrices split across a workgroup

- Decomposing larger sizes into implementation-dependent tiles is
something a compiler should do

Manual pipelining,
shared memory staging,
tiling,
bounds checking

- Manually staging through shared memory is clunky
- Get bogged down in addressing math
- Issues with type punning (want 16B loads, but elements are only 2B)

- Tensor isn't always a multiple of the HW matrix size
- Need bounds-checking on loads/stores

- Storing a matrix with bounds checking is surprisingly difficult

- No knowledge of (row,col) information, so you have to go through

shared memory . .
. - . Compiler does it for you
- The whole matrix may not fit in shared memory! Go one warp at a time?

- Workarounds on top of workarounds when you just want to say “store”

- Writing any non-trivial "fused” network needs matrix “Use”
conversion (Acc->A/B), reductions, etc.

7 <ANVIDIA. I

- A good level of abstraction

- Looks a lot like the “Simple Cooperative Multiply”

Triton Language

 https://triton-lang.org/main/getting-started/tutorials/03-

matrix-multiplication.html

. IL L L il | L Ll il | L I n
Iterate to compute a block of the C motrix
#

¥ We occumulate inte g [BLOCK _SIFE M, BLOCK SIFE NJ° block

of fp32 values for higher gccuracy.

"geecumulator” will be converted back to fpl6 after the Loop.
accumulator = tl.zeros((BLOCK _SIZE M, BLOCK _SIZE N), dtype=tl.float32)

for k in range(@, tl.cdiv(K, BLOCK SIZE K)):

Logd the next block of A and B, generate g mask by checking the K dimension.

If it 15 out of bounds, set it to @.

H O o

We accumulote along the K dimension.

accumulator = tl.dot{a, b, accumulator)
£ Advance the ptrs to the next K block.

a_ptrs += BLOCK_SIZE K #* stride _ak
b ptrs += BLOCK_SIZE K * stride bk
You can fuse arbitrary octivation functions here
while the occumulator is still in FP32!
if ACTIVATION == "leaky relu™:
accumulator = leaky relu(accumulator)
¢ = accumulator.tol(tl.floatls)

Memory Coalescing
Shared Memory Management

Scheduling (Within SMs)
Scheduling (Across SMs)

Compiler optimizations in CUDA vs Triton.

CUDA

Manual
Manual

Manual

Manual

TRITON (and coopmat?2!)

Automatic
Automatic

Automatic

Manual

= tl1.load(a_ptrs, mask=offs_k[MNone, :] <« K - k * BLOCK _SIZE K, other=8.8)
= tl.load(b_ptrs, mask=offs k[:, None] <« K - k * BLOCK SIfE K, other=8.8)

8 <ANVIDIA. I

https://triton-lang.org/main/getting-started/tutorials/03-matrix-multiplication.html
https://triton-lang.org/main/getting-started/tutorials/03-matrix-multiplication.html

Cooperative Matrix 2

IM = 256; 1IN = 256; 1K = 32;
coopmat<float16_t, gl_ScopeWorkgroup, 1M, 1K, UseA> matA;
coopmat<float16_t, gl_ScopeWorkgroup, 1K, 1N, UseB> matB;
coopmat<floati16_t, gl_ScopeWorkgroup, 1M, 1N, UseAcc> matC;
uvec2 matrixID = uvec2(gl_WorkGroupID);
uint row = 1IM * matrixID.y;
uint col = 1IN * matrixID.x;
Block loads tensorLayoutNV<2> tensorA = createTensorLayoutNV(2);
Reduct tensorLayoutNV<2> tensorB = createTensorLayoutNV(2);
eauctions tensorLayoutNV<2> tensorC = createTensorLayoutNV(2);
Conversions tensorA = setTensorlLayoutDimensionNV(tensorA, M, K);
D | t ti tensorB = setTensorLayoutDimensionNV(tensorB, K, N);
er-eiement operations tensorC = setTensorLayoutDimensionNV(tensorC, M, N);
coopMatLoadTensor(matC, inputC.x, slice(tensorC, row, 1M, col, 1N));
for (uint k = 0; k < K; k += 1K) {
coopMatLoadTensor(matA, inputA.x, slice(tensorA, row, 1M, k, 1K));
coopMatLoadTensor(matB, inputB.x, slice(tensorB, k, 1K, col, 1N));
matC = coopMatMulAdd(matA, matB, matC);
(RTX 4070 peak tensor core FP16 rate is around 116 TFLOPS) }
coopMatStoreTensor(matC, outputD.x, slice(tensorC, row, 1M, col, 1N));

9 NVIDIA.

Tensor Layout
What?

Tensor layout is a software structure constructed in the shader
- A convenient, extensible way to specify addressing calculations

- coopMatLoadTensorNV(coopmat, T[] buf, uint element, tensorlLayout[, tensorView]|[, decodeFunc]);

Tensor layout describes the shape of the tensor in memory

Tensor layouts can be up to 5D. Each dimension has size, stride, offset, span, that define the shape of the region and

layout iIn memory

- Defines the tensor size for bounds-checking

Tensor layout logically maps:

- matrix (row,col) -> 1D index -> ND coordinate -> address

M (row,col)

row*N+col

\

Div/mod by
slice dimensions

1D index

/

dimensions

10 <ANVIDIA. I

Tensor Layout
Why?

- Accesses all come from the slice, even if addressing is complex
- Loading through shared memory only needs to load the slice

- These layouts are amenable to compiler optimization and HW acceleration
- Often, parts of the calculations can be easily optimized away
- E.g. for 2D rowmajor, ND coordinate == (row,col) because matrix dim == span dim
- “Pay for what you use”

- Considered an alternative with “address calculation callback”
- Not practical to optimize
- Tensor layout/view are expressive and optimizable

N
Optimized away
If (M,N) equal
span dimensions
o
M (row,col)

dimensions

11 <ANVIDIA. I

struct tensorlLayout<uint32_t Dim,

Tensor Layout

TensorClampMode Mode = TensorClampModeUndefined>

static constexpr uint32_t LDim = Dim;
static constexpr TensorClampMode clampMode
uint32_t blockSize[LDim];

uint32_t layoutDimension[LDim];

uint32_t stride[LDim];

int32_t offset[LDim];

uint32_t span[LDim];

uint32_t clampValue;

Mode;

nintid t computelndex(tensorlayout t, uintid t row,
] nintid t col, uintdd t H)

nintid t index = row * H 4+ col;
return computelndex(t, i1ndex):

h

nintid t computelndexitensorlayout t, uintiZ t i1ndex)
d
nintidd t coord[t.LDim];
for (intidZd t dim = t.LDim-1; daim »= 0; ——dim) {
coord[dim] = index ¥ t.span[dim];
index = t.=span[dim]:

¥

index = 0;
nint3id t coordInBlock[t . LDim];
nint3id t blockCoord[t.LDim];

for (uintadd t dim = 0O; dim <= t.LDim—-1; ++dim)
int3d t o = coord[dim] + t.off=set[dim];

if (o <« 0 || o = t.layvoutDimension[dim]) {
< handle Q0B
r

coordInBloclk[dim]
blockCoord[dim] =

= = 4 t. blockSize[dim]:
o < t. blockSize[dim]:

index += blockCoord[dim] * t. =tride[dim];:

¥

return index:

B

12

NVIDIA.

Tensor View

Tensor view is optionally applied in addition to a layout. View can reinterpret layout and dimensionality, and permute
coordinates

Similar to torch.view/permute/reshape/transpose/etc

Tensor view logically maps:
(row, col) -> 1D index -> ND coord -> permute -> 1D index
Then continue on with the tensor layout calculation

Tensor view is needed when you want to permute coordinates or change the number of dimensions
transpose
space_to_depth/depth_to_space

13 NVIDIA.

Tensor View

uint3? t computelndex{tenszorlayout t. tensorView w, uinti? t index)

struct tensorView<uint Dim, bool hasDimensions, 1
anto ddimension=s = v hasDimnension=s Y w.wiewlDimension ;| t.=span;
uint32 t p0, ..., uint3Z2 t p<Dim-1>> | | |
— — nintiz t =stride[w. VDim];
{ 1t (v hasDimen=sion=s) A
=ztride = wv.wviewstride;
. . . . + el=e |
static constexpr uint32 t VDim = Dim; /7 =et stride to match t.span
| | | | =tride[v. VDim—-1] = 1;
static constexpr bool hasDim = hasDimensions; for (int3?2 t dim = w VDim—2: dim >= 0; ——dim) {
=tride[dim] = =tride[dim+l] * t . =pan[dim+l];
static constexpr uint32 t permutation[VDim] = ¥
B ¥
{p0, ..., pP<Dim-1>};

nintid t result = 0;
for (intidZ t dim = . VDim—-1; dim »= 0; ——dim) {
nintid t 1 = w.permatation[dim];

ulnt32 t viewDimension [VDim];

Ay

nintid t coord = index ¥ dimension=s[1]:;

| | | | index = dimen=sion=[1]:
uint32 t viewStride[VDim];

result += coord *® =stride[1]:
uilnt32 t clipRowOffset, clipRowSpan, r

clipColOffset, clipColSpan; return computelnde=xi(t. result);

by

14 NVIDIA.

llama.cpp/ggml

https://qithub.com/ggerganov/llama.cpp https://github.com/ggerganov/ggml

Description

The main goal of 1lama.cpp Is to enable LLM inference with minimal setup and state-of-the-art performance on a
wide variety of hardware - locally and in the cloud.

¢ Plain C/C++ implementation without any dependencies

e Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks

e AVX, AVX2 and AVX512 support for x86 architectures

e 1.5-bit,

2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use

e Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP)

e Vulkan

and SYCL backend support

e CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity

- Key use cases to accelerate:

- Where we are today:
- Matrix-matrix multiply
- Mixture-of-Experts mat-mat mul

; stable-
llama.cpp whisper.cpp diffusion.cpp
gogml API
ggml- || ggml- || ggml- || ggml- ggml-
cpu cuda || vulkan sycl metal

- Flash Attention - Flash Attention has an NV_coopmat?2 path

- Quantization Formats

- Quantization Formats supported in all paths

- Vulkan backend works “everywhere” (needs basic vk1.2 support)
- Mat-mat mul has scalar, KHR_coopmat, NV_coopmat?2 paths

15 <ANVIDIA. I

https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/ggml

Quantization Formats

Dequantization Example

- Job #1 is fitting the model in vidmem

- Mat-vec mul is bandwidth-limited, so this is good

for perf, too

#iF defined(DATA A IOQ4 NL)

#extension GL_EXT _shader lebit storage

#define QUANT K 32
#define QUANT R 2

struct block _i1gd4 nl

1
floatle t d;

uintd t qs[QUANT K/ 27;
I3

#define A _TYPE block_ig4 nl

const int8 t kwvalues igdnl[le] = {

D require

fendif

const uint 1dx = pos_a + (loadc_ a + 1) * p.stride_a / LOAD VEC A + loadr_a;

const

const

const

const
const

const

#elif defined(DATA_A_TOQ4 NL)

uint buf idx

= (loadc_ a + 1) *# (BK+1) + loadr_a;

uint ib = idx J/ 16;

uint igs = 1dx & @xF;

float d = fleoati{data_a[ib]l.d);

uint wui = uintidata _a[ib]l.qs[1igs]);

vec?2 v = vec2ikvalues igdnl[wvul & @xF], kvalues _igdnl[wvul >» 4]) * d;

buf a[buf idx]
buf a[buf idx + 16]

FLOAT _TYPE(wv.x):
FLOAT TYPE(w.y):

- |Q4 NL: ~4-bit/elem -> LUT -> scale

(not all formats use a LUT)

- Usually 32 or 256 elements per block

int8_t(-127), intd_t(-1@4), ints_t(-83), ints_t(-65), ints_t(-43), ints_t(-35), ints_t(-22), inta_t(-18), | * Usually ~2 to ~8 bits/element
int8 t(1), ints t(13), int8 t(25), int8 t(38), int8 t(53), int8 t(63), int8 t(89), int8 t(113)

13
#endif

https://qithub.com/ggerganov/llam

https://github.corr

a.cpp/blob/rr

aster/qgmr

/agergar

ov/llam

a.cpp/blob/mr

|/src/ggmr

aster/qgmr

Ulkan/vulkan

- Stored in memory as tensor-of-blocks

-shaders/types.comp#L301

|/src/gamr

|-v
|l-vulkan/vulkar

-shaders/mul_mm.comp#L443

16 <ANVIDIA. I

https://github.com/ggerganov/llama.cpp/blob/master/ggml/src/ggml-vulkan/vulkan-shaders/types.comp#L301
https://github.com/ggerganov/llama.cpp/blob/master/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp#L443

Quantization Formats

#elif defined(DATA_A_TOQ4 NL)

Block Address

const uint 1dx = pos_a + (loadc_ a + 1) * p.stride_a / LOAD VEC A + loadr_a;

const uint buf 1dx

(loadc a + 1) * (BK+1) + loadr_a;

const uint ib = idwx / 16;

#i+ defined(DATA_A IQ4 ML)

#extension GL_EXT _shader lebit storage
#define QUANT K 32

#define QUANT R 2

struct block _i1gd4 nl

1
floatle t d;

uintd t qs[QUANT K/ 27;
I3

#define A _TYPE block_ig4 nl

const int8 t kwvalues igdnl[le] = {

int8 t(-127), int8 t(-184), int8 t(-83), int8 t(-65), int8 t(-49), intd t(-35), int8 t(-22), ints8 t(-1@),
intd t(1), intd t(13), intd t(25), int8 t(38), int8 t(53), ints8 t(69), ints t(89), ints t(113)

13
#endif

require

Coord in block const uint igs = idx & @xF;

const float d = float(data_a[ib]l.d);

Dequantize element const uint wul = uinti{data_a[ib].qgs[1gs]);

const wec?2 v = vec2(kvalues_igdnl[wvul & @xF], kvalues igdnl[wvul >> 4]) * d;

buf a[buf idx]
buf a[buf idx + 16]

fendif

FLOAT _TYPE(wv.x):
FLOAT TYPE(w.y):

17 <ANVIDIA. I

Dequantization Callback

Implementation computes block coordinate, coordinate in block, and pointer to start of the block

Passes these to shader-supplied callback function -> return value populates the matrix
This works well with compiler-implemented staging through shared memory

Generic, composable way to support dequantization
Mat-mul and FlashAttention kernels just plug in a different callback function for each format

Consider decoding two or in some cases four elements at a time, for performance

¥elif defined(DATA A IQ)4 HL)
floatle t decodeFuncicon=t i1n decodeBut bl, const in uint blockCoords=s[{]. const i1n uint coordInBlock[Z])
d
con=st floatle ¢ d = bl . block . d;
con=st uint 1dx = coordInBlock[1];
con=t uint i1g= = 1dx & O=xF;
con=t uint =shift = {(1d=x & Oxl0) »>»> 2;
unintid t g= = bl . block. g=[1g=];
o= »r»= =hitt;
q= &= O=xF;
floatle t ret = tloatle tikvalue=s 1gdnl[g=s]) * d;
return ret;
I
¥endait

coopMatLoadTensorHVimat _a, data_a. pos a,. =liceltensorlayoutd, 1r # BM, BM., bloclk k., BE).

decodebFuanc) ;

18

NVIDIA.

Mixture of Experts

Matrix B loads are indirected through a table to select the row

con=st uint row 1 = 1c *# BH + loado b + 1;
1t (row_ 1 < nel) {
const ulevecd row _i1dx = row 1ds[row _1]:
buf b[{load= b + 13 #= (BE+1) + loadr bh] = FLOAT TV¥PE(data b[pos b + row id=x.v * p.batch stride b + (rov idx. = ¥ p.nell) # p.stride b + loadr bl
T el==
but b[({loadz_ b + 1) # (BE+1) + loadr b] = FLOAT TYPE(O. Of);
¥
EBE TYPE decodebFuncB{con=st in decodeButB bl, con=st in uint blockCoord=s[¢]. const in uint coordInBlock[Z])
d
const uint row 1 = blockCoord=s[0];
1t (row_ 1 *>= _nel) {
return B TYPE(OD.0):
¥
con=st ulevecd row 1dx = row 1ds[row _1]:
BE TYPE ret = data_bl[row i1dx.v # p.batch =stride b + (rowv 1d=x.®x ¥ p.nell) * p.=tride b + blockCoord=[1]]:
return ret;
¥

Storing D matrix also requires remapping, use per-element operation

con=st 1n uint3d t o1r. const 1n uintdd to1c)

' TYPE perElemlplicon=t in uintid t ¥, con=st i1n uinti? t o, const in D TYPE =len,
d
nint dr = 1r * BM + 1
nint dc = i1z * BN + o
1t (dr <« p.M &é& do ¢ _nel) |
nint row 1 = dc;
const ulevecd row _1dx = row 1ds[row _1]:
data_d[row_1d=.v * p.batch =stride d + rov_1dx.= *# p.=tride d + dr] = =len;
¥
return elem;
¥
coopMatPerElementNVi{imat d. mat _d. perBElemOpl, 1. 1co);

19

NVIDIA.

Flash Attention 2

Attention formula (from Wikipedia): Softmax formula:
Attention(Q, K, V) = softmax V € R E K .
Jd;, D i €7

Softmax is “just” a component-wise exp() and per-row scale (normalization)

FlashAttention trick is to pretend you can compute the denominator during each K step, and then readjust it on the next step
when you have more information

OK, there’s a bit more to it than that, but that’s the key insight

Needs the following coopmat?2 features:
Row reductions (for softmax)
Matrix Use conversions (convert QKA t from Accumulator to A matrix)
Per-element operations (to clear padding elements)

20 NVIDIA.

Flash Attention 2

coopMatReduceNV supports a callback function to combine a pair of values:

AL THYPE mazHeduce(const in ACC TYPE =,
return maE(E, Vo
¥

coopMatEeduced Vi rowmnax .,

con=st 1n ACC TYPE w1 1

S5, gl CooperativeMatrizHeduceHowHY, maxzFeduce)

Need to fill padding elements with —inf, before doing max-reduce:

A« Heplace matrix element=s = numbBow=s or nuanCol=s with 'replace’
AT TYPE replacePadding{con=st in uwint3d & row, const i1n unintdd t col, const in ACC TYPE =lem.

const 1n uint3dd t numbBow=s, const i1n uintdd ¢ nuamCols=s)
if {row »= numFows || col »= numCols) {

return replace;
¥

return elem:

con=t 1n ACC TYPE replace,

¥

coopMatPerElementNVis, 5, replacePadding, ACC TYPE(-1.0-0.0)., K, ©C);

21 NVIDIA.

Cooperative Matrix 2

Seven New Features

Workgroup scope matrices
Flexible dimensions
Reductions

Conversions

Per-element operations
TensorAddressing

Block Loads

(And performance heavily relies on workgroup scope, flexible dimensions, and tensor addressing)

22 <ANVIDIA. I

Tokens/s

Performance

RTX 4070 - PromptProcessing - 512 Tokens

9000

8000

/7000
6000
5000
4000
3000
2000

1000

ﬁ,ﬁ- s ﬁﬂ' s QE:EM H:{:?-}f %’E'E;f ﬁd},f Ql?f
a3 3 N & o N &
4 4 Q¥ i A ""'-..""}
_ & qﬁﬁ S & ;ﬁh N o
Q & <§P fEF & & &
oy 2 < el & 4 \&
2
&
{::*E‘%Q
Model

B Vulkan(none)] MVulkan(KHR coopmat) M Vulkan(NV_coopmat2) ™ CUDA

23 <ANVIDIA. I

Performance

RTX40/0- Token Generation- 128 Tokens

160
140
120
100

80

Tokens/s

60

40

20

Model

B \Vulkan(none) M Vulkan(KHR coopmat) ®BVulkan(NV_coopmat2) ®CUDA

24 <ANVIDIA. I

Tokens/s

Performance

RTX 6000 Ada - Prompt Processing - 512 Tokens

18000
16000
14000
12000
10000

8000

6000

4000

. i B I I I B I u I B I I o I I I I I I R I i
%) 1'.::‘;{::- " D D LN hf:: ‘9 %) % &:@ %] N N D D o %)
{f‘f &'}: {:L.-’ C-%}f ﬁ'.—" ":'Lf #4;-_-‘} {:'E;. ‘:Pf &}.—* "’ ':‘1.; CEJ.—* {:L.-’ Q}?f {:E}.—" \k_f ‘-:lf
A & 5 & o o o & & & & N N o N & > &
| o <8 @‘:’1 {Lﬂ o " qﬁi‘“ﬁ & < <5 & q;"’”ﬁ {° R & & ® &
¥ & P ¥ ¢ & N N & & & ; 2 & N A N &
& 8 O o o P & & & i G % <@ A® N &
4£} qﬁ;gp ‘ﬁp {ﬂP ﬁﬁl ﬁﬂh rﬁw fﬁb oY ;ﬁb r{} é§§“ dﬁ} }E” ﬁﬁ éFP Cﬁx iﬁél
O N ° & = & i3 o 2 & % & AV o & N &°
oD s &'b {p*a- {g:a & & & @ S R
N ? G \? N J e © Q Fb
& Y O L ?3"‘ q,_“‘.r E‘:lr
L
5 v 2 &
N & {:}mﬁﬁ
< @
< Q
Model

B Vulkan(none) MVulkan(KHB coopmat) M Vulkan(NV_coopmat2] ® CUDA

25 <@ANVIDIA. I

Tokens/s

300

250

200

1350

100

20

Performance

RTX 6000 Ada - Token Generation- 128 Tokens

Model

B Vulkan(none) M Vulkan(KHR coopmat) MW Vulkan(NV_coopmat2] M CUDA

26 <ANVIDIA. I

Conclusion

Machine learning acceleration is possible in Vulkan today

llama.cpp -> ggml -> Vulkan w/Cooperative Matrix(2)

The Vulkan/SPIR-V/GLSL NV_coopmat?2 extensions are available now

In the Vulkan 1.4.304 SDK

Supported in developer drivers at

Will be in next major release (R575)

Supported on all NVIDIA RTX GPUs

Try it yourself In |

2/ NVIDIA.

https://developer.nvidia.com/vulkan-driver
https://github.com/ggerganov/llama.cpp

	Slide 1: Machine Learning in Vulkan with Cooperative Matrix 2
	Slide 2: Overview
	Slide 3: Goal / Motivation
	Slide 4: Terminology
	Slide 5: Simple Cooperative Multiply
	Slide 6: Optimized Coopmat1 Multiply
	Slide 7: Problems with Coopmat1
	Slide 8: Triton Language
	Slide 9: Cooperative Matrix 2
	Slide 10: Tensor Layout
	Slide 11: Tensor Layout
	Slide 12: Tensor Layout
	Slide 13: Tensor View
	Slide 14: Tensor View
	Slide 15: llama.cpp/ggml
	Slide 16: Quantization Formats
	Slide 17: Quantization Formats
	Slide 18: Dequantization Callback
	Slide 19: Mixture of Experts
	Slide 20: Flash Attention 2
	Slide 21: Flash Attention 2
	Slide 22: Cooperative Matrix 2
	Slide 23: Performance
	Slide 24: Performance
	Slide 25: Performance
	Slide 26: Performance
	Slide 27: Conclusion
	Slide 28

