
The 7th Vulkan Developer Conference
Cambridge, UK | February 11-13, 20252025

Machine Learning in Vulkan with
Cooperative Matrix 2

Jeff Bolz, NVIDIA

2

Overview

• Background

• Cooperative Matrix 1 examples

• Limitations of Cooperative Matrix 1

• Motivating use cases from llama.cpp/ggml

• New features in Cooperative Matrix 2 and how they help

• Perf Results

sd --diffusion-model flux1-dev-Q3_K.gguf --vae ae.safetensors

--clip_l clip_l.safetensors --t5xxl t5xxl_fp16.safetensors

--cfg-scale 1.0 --sampling-method euler -v --diffusion-fa -W 640 -H 640

-p "an orange tabby cat typing on a laptop computer displaying the text

'Vulkan Machine Learning'"

stable-diffusion.cpp using Vulkan backend

https://github.com/leejet/stable-diffusion.cpp

https://github.com/leejet/stable-diffusion.cpp

3

Goal / Motivation

• Goal: Accelerate machine learning

• Critical operation: accelerating large matrix multiplies

• Problem: SIMT was never the right programming model for large matrix multiplies

• Shader author over-prescribes how to perform the multiply

• Decomposed into tiny math ops, dominated by shepherding data between lanes or
reading from shared memory

• This decomposition is optimized for a particular HW platform

• New Functionality: Group-wide matrix multiply

• Uses the tensor cores

• Expose “medium size” matrix multiplies as a primitive that can be optimized

• All invocations in a (complete) group cooperate to compute the result

• Matrix is stored opaquely, spread across the group

• Shaders can build larger GEMMs or other networks out of it

4

Terminology

• “Cooperative Matrix” – a new matrix type where the storage for and computations performed on the matrix are spread
across a set of invocations such as a subgroup (KHR_coopmat) or workgroup (NV_coopmat2)

• KHR_cooperative_matrix (coopmat1): released summer 2023, widely supported today

• NV_cooperative_matrix2: released October 2024, currently NVIDIA-only

• “D = A*B+C”

• Matrix types are templated by component type, scope, dimensions, “Use” (A/B/Accumulator)

• E.g. coopmat<float16_t, gl_ScopeSubgroup, M, K, gl_MatrixUseA> matA;

• “MxNxK” matrix multiply

• A = MxK, B = KxN, C,D=MxN (rows x columns)

• Supported sizes queried from Vulkan extension

• Precision

• A=B=fp16, C=D={fp16 or fp32} (precision of C and D must match)

• A=B=(s/u)int8, C=D=(s/u)int32

• Hopefully more in the future

M M

K

K

N N

x =A C/D

B

5

Simple Cooperative Multiply

• Straightforward application of coopmat1 types and
functions - sum(AikBkj) to accumulate one result tile

• Memory bandwidth-limited, not designed to get
good reuse of memory

• Tiles are too small!

=×

lM = 16; lN = 8; lK = 16;
coopmat<float16_t, gl_ScopeSubgroup, lM, lK, UseA> matA;
coopmat<float16_t, gl_ScopeSubgroup, lK, lN, UseB> matB;
coopmat<float16_t, gl_ScopeSubgroup, lM, lN, UseAcc> matC;

uvec2 matrixID = uvec2(gl_WorkGroupID);
uint cRow = lM * matrixID.y;
uint cCol = lN * matrixID.x;

coopMatLoad(matC, inputC.x, sC * cRow + cCol, sC, RowMajor);

for (uint k = 0; k < K; k += lK) {
 uint aRow = lM * matrixID.y;
 uint aCol = k;
 coopMatLoad(matA, inputA.x, sA * aRow + aCol, sA, RowMajor);

 uint bRow = k;
 uint bCol = lN * matrixID.x;
 coopMatLoad(matB, inputB.x, sB * bRow + bCol, sB, RowMajor);

 matC = coopMatMulAdd(matA, matB, matC);
}

coopMatStore(matC, outputD.x, sD * cRow + cCol, sD, RowMajor);

(RTX 4070 peak tensor core FP16 rate is around 116 TFLOPS)

~8 TFLOPS (RTX 4070) 

6

Optimized Coopmat1 Multiply

• Goal is to maximize the result tile size, which
minimizes how many times A/B are loaded

• Subgroups cooperate to copy slivers of A/B from
global to shared, then load out of shared

• Example (FP16): 8 subgroups split a 256x256 tile into
8 128x64 tiles (K=32)

• Cooperate to copy A block (256x32) and B block
(32x256) into shared memory

• Then each subgroup loads the portions it needs
from shared memory

• Optimal sizes depend on HW

fetch A,B for tile k=0 into register file

for (uint k = 0; k < K; k += TILE_K) {
 barrier() to wait for shmem loads in previous iteration

 copy tile k from register file to shared memory
 barrier() to wait for shmem stores to finish

 fetch A,B for tile k+1 into register file

 math loop {
 load from shared memory
 result[...] = coopMatMulAddNV(...);
 }
}

=×

One iteration in ‘k’

Full source code available at

https://github.com/jeffbolznv/vk_cooperative_matrix_perf

~98 TFLOPS (RTX 4070) ☺

10 2 3

54 6 7

1,50,4 2,6 3,7

0-3

4-7

A

B

Acc

(RTX 4070 peak tensor core FP16 rate is around 116 TFLOPS)

https://github.com/jeffbolznv/vk_cooperative_matrix_perf

7

Problems with Coopmat1

• GEMM wants large matrices split across a workgroup

• Decomposing larger sizes into implementation-dependent tiles is
something a compiler should do

• Manually staging through shared memory is clunky

• Get bogged down in addressing math

• Issues with type punning (want 16B loads, but elements are only 2B)

• Tensor isn’t always a multiple of the HW matrix size

• Need bounds-checking on loads/stores

• Storing a matrix with bounds checking is surprisingly difficult

• No knowledge of (row,col) information, so you have to go through
shared memory

• The whole matrix may not fit in shared memory! Go one warp at a time?

• Workarounds on top of workarounds when you just want to say “store”

• Writing any non-trivial “fused” network needs matrix “Use”
conversion (Acc->A/B), reductions, etc.

Manual pipelining,

shared memory staging,

tiling,

bounds checking

Compiler does it for you

8

Triton Language

• A good level of abstraction

• Looks a lot like the “Simple Cooperative Multiply”

• https://triton-lang.org/main/getting-started/tutorials/03-
matrix-multiplication.html

(and coopmat2!)

https://triton-lang.org/main/getting-started/tutorials/03-matrix-multiplication.html
https://triton-lang.org/main/getting-started/tutorials/03-matrix-multiplication.html

9

Cooperative Matrix 2
Seven New Features

• Flexible dimensions

• Workgroup scope matrices

• Tensor addressing

• Block loads

• Reductions

• Conversions

• Per-element operations

lM = 256; lN = 256; lK = 32;
coopmat<float16_t, gl_ScopeWorkgroup, lM, lK, UseA> matA;
coopmat<float16_t, gl_ScopeWorkgroup, lK, lN, UseB> matB;
coopmat<float16_t, gl_ScopeWorkgroup, lM, lN, UseAcc> matC;

uvec2 matrixID = uvec2(gl_WorkGroupID);
uint row = lM * matrixID.y;
uint col = lN * matrixID.x;

tensorLayoutNV<2> tensorA = createTensorLayoutNV(2);
tensorLayoutNV<2> tensorB = createTensorLayoutNV(2);
tensorLayoutNV<2> tensorC = createTensorLayoutNV(2);

tensorA = setTensorLayoutDimensionNV(tensorA, M, K);
tensorB = setTensorLayoutDimensionNV(tensorB, K, N);
tensorC = setTensorLayoutDimensionNV(tensorC, M, N);

coopMatLoadTensor(matC, inputC.x, slice(tensorC, row, lM, col, lN));

for (uint k = 0; k < K; k += lK) {
 coopMatLoadTensor(matA, inputA.x, slice(tensorA, row, lM, k, lK));
 coopMatLoadTensor(matB, inputB.x, slice(tensorB, k, lK, col, lN));

 matC = coopMatMulAdd(matA, matB, matC);
}

coopMatStoreTensor(matC, outputD.x, slice(tensorC, row, lM, col, lN));

~97 TFLOPS (RTX 4070) ☺

(RTX 4070 peak tensor core FP16 rate is around 116 TFLOPS)

10

Tensor Layout
What?

• Tensor layout is a software structure constructed in the shader

• A convenient, extensible way to specify addressing calculations

• coopMatLoadTensorNV(coopmat, T[] buf, uint element, tensorLayout[, tensorView][, decodeFunc]);

• Tensor layout describes the shape of the tensor in memory

• Tensor layouts can be up to 5D. Each dimension has size, stride, offset, span, that define the shape of the region and
layout in memory

• Defines the tensor size for bounds-checking

• Tensor layout logically maps:

• matrix (row,col) -> 1D index -> ND coordinate -> address

(row,col)
1D index

M

N

row*N+col
Div/mod by

slice dimensions

11

Tensor Layout
Why?

• Accesses all come from the slice, even if addressing is complex

• Loading through shared memory only needs to load the slice

• These layouts are amenable to compiler optimization and HW acceleration

• Often, parts of the calculations can be easily optimized away

• E.g. for 2D rowmajor, ND coordinate == (row,col) because matrix dim == span dim

• “Pay for what you use”

• Considered an alternative with “address calculation callback”

• Not practical to optimize

• Tensor layout/view are expressive and optimizable

(row,col)M

N
Optimized away

If (M,N) equal

span dimensions

12

Tensor Layout
Logical Definition in the Specification

struct tensorLayout<uint32_t Dim,

 TensorClampMode Mode = TensorClampModeUndefined>

{

 static constexpr uint32_t LDim = Dim;

 static constexpr TensorClampMode clampMode = Mode;

 uint32_t blockSize[LDim];

 uint32_t layoutDimension[LDim];

 uint32_t stride[LDim];

 int32_t offset[LDim];

 uint32_t span[LDim];

 uint32_t clampValue;

};

13

Tensor View
Why?

• Tensor view is optionally applied in addition to a layout. View can reinterpret layout and dimensionality, and permute
coordinates

• Similar to torch.view/permute/reshape/transpose/etc

• Tensor view logically maps:

• (row, col) -> 1D index -> ND coord -> permute -> 1D index

• Then continue on with the tensor layout calculation

• Tensor view is needed when you want to permute coordinates or change the number of dimensions

• transpose

• space_to_depth/depth_to_space

14

Tensor View
Logical Definition in the Specification

struct tensorView<uint Dim, bool hasDimensions,

 uint32_t p0, ..., uint32_t p<Dim-1>>

{

 static constexpr uint32_t VDim = Dim;

 static constexpr bool hasDim = hasDimensions;

 static constexpr uint32_t permutation[VDim] =

 {p0, ..., p<Dim-1>};

 uint32_t viewDimension[VDim];

 uint32_t viewStride[VDim];

 uint32_t clipRowOffset, clipRowSpan,

 clipColOffset, clipColSpan;

};

15

llama.cpp/ggml
https://github.com/ggerganov/llama.cpp https://github.com/ggerganov/ggml

• Key use cases to accelerate:

• Matrix-matrix multiply

• Mixture-of-Experts mat-mat mul

• Flash Attention

• Quantization Formats

• Where we are today:

• Vulkan backend works “everywhere” (needs basic vk1.2 support)

• Mat-mat mul has scalar, KHR_coopmat, NV_coopmat2 paths

• Flash Attention has an NV_coopmat2 path

• Quantization Formats supported in all paths

llama.cpp whisper.cpp
stable-

diffusion.cpp

ggml API

ggml-
cpu

ggml-
cuda

ggml-
vulkan

ggml-
sycl

ggml-
metal

…

…

https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/ggml

16

Quantization Formats
Dequantization Example

• Job #1 is fitting the model in vidmem

• Mat-vec mul is bandwidth-limited, so this is good
for perf, too

https://github.com/ggerganov/llama.cpp/blob/master/ggml/src/ggml-vulkan/vulkan-shaders/types.comp#L301

https://github.com/ggerganov/llama.cpp/blob/master/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp#L443

• IQ4_NL: ~4-bit/elem -> LUT -> scale

• (not all formats use a LUT)

• Usually 32 or 256 elements per block

• Usually ~2 to ~8 bits/element

• Stored in memory as tensor-of-blocks

https://github.com/ggerganov/llama.cpp/blob/master/ggml/src/ggml-vulkan/vulkan-shaders/types.comp#L301
https://github.com/ggerganov/llama.cpp/blob/master/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp#L443

17

Quantization Formats

Block Address

Coord in block

Dequantize element

18

Dequantization Callback

• Implementation computes block coordinate, coordinate in block, and pointer to start of the block

• Passes these to shader-supplied callback function -> return value populates the matrix

• This works well with compiler-implemented staging through shared memory

• Generic, composable way to support dequantization

• Mat-mul and FlashAttention kernels just plug in a different callback function for each format

• Consider decoding two or in some cases four elements at a time, for performance

19

Mixture of Experts

• Matrix B loads are indirected through a table to select the row

• Storing D matrix also requires remapping, use per-element operation

20

Flash Attention 2
Overview of the Algorithm

• Attention formula (from Wikipedia):

• Softmax is “just” a component-wise exp() and per-row scale (normalization)

• FlashAttention trick is to pretend you can compute the denominator during each K step, and then readjust it on the next step
when you have more information

• OK, there’s a bit more to it than that, but that’s the key insight

• Needs the following coopmat2 features:

• Row reductions (for softmax)

• Matrix Use conversions (convert QK^t from Accumulator to A matrix)

• Per-element operations (to clear padding elements)

Softmax formula:

21

Flash Attention 2

• coopMatReduceNV supports a callback function to combine a pair of values:

• Need to fill padding elements with –inf, before doing max-reduce:

22

Cooperative Matrix 2
Seven New Features

• Workgroup scope matrices

• Flexible dimensions

• Reductions

• Conversions

• Per-element operations

• TensorAddressing

• Block Loads

• (And performance heavily relies on workgroup scope, flexible dimensions, and tensor addressing)

WG scope Flex dim Reduction Conversion Per-elem op Tensor

Addressing

Block Loads

MatMul ✓ ✓ ✓ ✓

MoE ✓ ✓ ✓ ✓ ✓

FA2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

23

Performance

24

Performance

25

Performance

26

Performance

27

Conclusion

• Machine learning acceleration is possible in Vulkan today

• llama.cpp -> ggml -> Vulkan w/Cooperative Matrix(2)

• The Vulkan/SPIR-V/GLSL NV_coopmat2 extensions are available now

• In the Vulkan 1.4.304 SDK

• Supported in developer drivers at https://developer.nvidia.com/vulkan-driver

• Will be in next major release (R575)

• Supported on all NVIDIA RTX GPUs

• Try it yourself in https://github.com/ggerganov/llama.cpp!

https://developer.nvidia.com/vulkan-driver
https://github.com/ggerganov/llama.cpp

28

	Slide 1: Machine Learning in Vulkan with Cooperative Matrix 2
	Slide 2: Overview
	Slide 3: Goal / Motivation
	Slide 4: Terminology
	Slide 5: Simple Cooperative Multiply
	Slide 6: Optimized Coopmat1 Multiply
	Slide 7: Problems with Coopmat1
	Slide 8: Triton Language
	Slide 9: Cooperative Matrix 2
	Slide 10: Tensor Layout
	Slide 11: Tensor Layout
	Slide 12: Tensor Layout
	Slide 13: Tensor View
	Slide 14: Tensor View
	Slide 15: llama.cpp/ggml
	Slide 16: Quantization Formats
	Slide 17: Quantization Formats
	Slide 18: Dequantization Callback
	Slide 19: Mixture of Experts
	Slide 20: Flash Attention 2
	Slide 21: Flash Attention 2
	Slide 22: Cooperative Matrix 2
	Slide 23: Performance
	Slide 24: Performance
	Slide 25: Performance
	Slide 26: Performance
	Slide 27: Conclusion
	Slide 28

