
The 7th Vulkan Developer Conference
Cambridge, UK | February 11-13, 20252025

Using Neural Networks in Shaders

Jeff Bolz, NVIDIA

The 7th Vulkan Developer Conference
Cambridge, UK | February 11-13, 20252025

Using Neural Networks in Shaders

Jeff Bolz, NVIDIA

3

da Silva, et al, Multilayer Perceptron Networks

Background: What is an MLP?
Multi-Layer Perceptron aka Fully-Connected Network

• Each neuron is a function of all neurons in prior layer

• Size is often described as “LxN”, where L is the number of hidden

layers and N is number of neurons per layer

• Computing each layer involves:

• A matrix-vector multiply (e.g. NxN * Nx1)

• Optionally, add a bias vector

• Activation function (e.g. ReLU(x) = max(x,0))

• Evaluate the entire MLP in each thread

• Sizes like 2x16 up to 3x64 will be common

4

Neural Texture Compression (NTC)
https://research.nvidia.com/labs/rtr/neural_texture_compression/

2x64 MLP

https://research.nvidia.com/labs/rtr/neural_texture_compression/

5

Neural Materials
https://research.nvidia.com/labs/rtr/neural_appearance_models/

3x64 + 3x32 MLPs

https://research.nvidia.com/labs/rtr/neural_appearance_models/

6

7

Neural Intersection
https://gpuopen.com/download/publications/HPG2023_NeuralIntersectionFunction.pdf

2x64 + 3x48 MLPs

https://gpuopen.com/download/publications/HPG2023_NeuralIntersectionFunction.pdf

8

MobileNeRF
https://mobile-nerf.github.io/

2x16 MLP

https://github.com/KhronosGroup/Vulkan-Samples/pull/849

Actual MobileNeRF code

https://mobile-nerf.github.io/
https://github.com/KhronosGroup/Vulkan-Samples/pull/849

9

Neural Shading
Evaluate MLP per-ray or per-pixel

• Research has shown:

1. These tiny networks work – they faithfully reproduce the effect they’re trained on

2. They’re small enough to fit in a shader

3. They’re fast enough to run in real-time – often more efficient than physically-based shading

• What’s missing is shading language support to accelerate these!

Visibility &
Lighting

DLSS Postprocessing

Texture Lights

Material Shape

Neural Shading Neural reconstruction

10

Rendering a Scene with Neural Models

Neural Shape

Neural Material

Neural Lighting

11

A Programming Model for Neural Shaders
Goals

• Accelerate neural shaders using a thread-based/SIMT programming model

• Compatible with current shader programming models

• Neural networks can be easily plugged into existing shaders

• Enable optimizations for neural shaders in compiler and hardware

• Enabling tensor cores, divergence handling, layer fusion, etc.

• Developers should have no need for baking-in hardware specific decisions

• Portability across current and future hardware

• Can target a variety of matrix acceleration HW

• Allow innovations for neural shaders in future hardware

• Supported in every shader stage - with tensor cores!

12

A Programming Model for Neural Shaders
Arbitrary-sized vector types

void computelight(args)
{
 coopvecNV<float16_t, 8> input;
 input[0] = args.normal.x;
 input[1] = args.normal.y;
 input[2] = args.normal.z;

 ...

 coopvecNV<float16_t, 64> layer0;

 coopVecMatMulNV(layer0, input, weightBuff, offset0);
 layer0 = max(layer0, 0); // ReLU

 coopvecNV<float16_t, 64> layer1;
 coopVecMatMulNV(layer1, layer0, weightBuff, offset1);
 layer1 = max(layer1, 0); // ReLU
 ...

 coopvecNV<float16_t, 4> output;
 coopVecMatMulNV(output, layerN, weightBuff, offsetN);
 output = exp(output);

 color.r = output[0] * args.lightColor;
 color.g = output[1] * args.lightColor;
 color.b = output[2] * args.lightColor;

 …
}

N
e
u
ra

l
N

e
tw

o
rk

Opaque number of threads (M)

8 8 8 8

Per-thread Vector

64 64 64 64
Per-thread Vector

13

A Programming Model for Neural Shaders
Matrix-vector multiply intrinsics reference weight matrices in memory

void computelight(args)
{
 coopvecNV<float16_t, 8> input;
 input[0] = args.normal.x;
 input[1] = args.normal.y;
 input[2] = args.normal.z;

 ...

 coopvecNV<float16_t, 64> layer0;

 coopVecMatMulNV(layer0, input, weightBuff, offset0);
 layer0 = max(layer0, 0); // ReLU

 coopvecNV<float16_t, 64> layer1;
 coopVecMatMulNV(layer1, layer0, weightBuff, offset1);
 layer1 = max(layer1, 0); // ReLU
 ...

 coopvecNV<float16_t, 4> output;
 coopVecMatMulNV(output, layerN, weightBuff, offsetN);
 output = exp(output);

 color.r = output[0] * args.lightColor;
 color.g = output[1] * args.lightColor;
 color.b = output[2] * args.lightColor;

 …
}

Per-thread Vector

N
e
u
ra

l
N

e
tw

o
rk

Opaque number of threads (M)

8 8 8 8

Per-thread Vector

Weights

64x8

(in SSBO)

Per-thread vector-matrix multiply
(potentially divergent weights)

64 64 64 64
Per-thread Vector

14

A Programming Model for Neural Shaders
Can apply element-wise operations to opaque vectors

void computelight(args)
{
 coopvecNV<float16_t, 8> input;
 input[0] = args.normal.x;
 input[1] = args.normal.y;
 input[2] = args.normal.z;

 ...

 coopvecNV<float16_t, 64> layer0;

 coopVecMatMulNV(layer0, input, weightBuff, offset0);
 layer0 = max(layer0, 0); // ReLU

 coopvecNV<float16_t, 64> layer1;
 coopVecMatMulNV(layer1, layer0, weightBuff, offset1);
 layer1 = max(layer1, 0); // ReLU
 ...

 coopvecNV<float16_t, 4> output;
 coopVecMatMulNV(output, layerN, weightBuff, offsetN);
 output = exp(output);

 color.r = output[0] * args.lightColor;
 color.g = output[1] * args.lightColor;
 color.b = output[2] * args.lightColor;

 …
}

Weights

64x8

(in SSBO)

Per-thread vector-matrix multiply
(potentially divergent weights)

Opaque number of threads (M)

8 8 8 8

Per-thread Vector

64 64 64 64
Per-thread Vector

N
e
u
ra

l
N

e
tw

o
rk

Can apply element-wise operations

directly on vectors

15

Vectors as A-Matrix
An implementation detail

…
(32/warp)

…
(3

2
/
w

a
rp

)

X

X

32 NxK * Kx1

mat-vec mul

Combine to one

NxK * Kx32 mat-mat mul

Internally, implemented

as 32xK * KxN mat-mat mul,

tensor core accelerated

N

K

N

K

16

Cooperative Vectors
Implementation aspects

• New templated vector types

• Arbitrary dimension, but known at compile-time

• They opportunistically cooperate behind the scenes when performing matrix-vector multiply

• May transparently switch between “SIMT” and “cooperative” layouts as needed, but programming model is
always SIMT

• Compiler can optimize across sequences of vector ops
• Fusion of back-to-back MMA ops - minimize switching between layouts

• Individual element access can break fusion – prefer whole-vector ops

• Support common unary and binary element-wise ops
• Activation functions: ReLU, Tanh, etc. standard binary ops: +, -, *, /

17

Divergence and Disabled Threads
Implementation aspects

• Matmul behavior well defined under control flow divergence and nonuniformity

• Each thread sees the result of its own matrix-vector multiply

• Implementation is responsible for handling control flow divergence and nonuniformity

• Peeling loop?

• Fall-back to per-thread math?

• Something else?

• Performance is expected to degrade gracefully as divergence increases

• Coherence not required functionally, but still important for performance

• Composable with VK_EXT_ray_tracing_invocation_reorder

• Sort threads by network

18

Contrast vs Cooperative Matrix

• CoopMat: Access to tensor core through compute shaders

• Explicitly defined to operate at group scope

• Uses a fixed set of power-of-two matrix shapes

• Targets kernel-scope MMAs

• Shader responsible for staging matrix loads from memory

• Results undefined under thread divergence

• CoopVec: Neural shaders need a “SIMT-friendly” version of MMA

• Support for shader stages w/o explicit concurrency

• Arbitrary matrix and vector sizes - IHV independent

• Can optimize matrix loads and divergence handling

• Support for fusion across layers

19

GLSL Extension Details
GL_NV_cooperative_vector

void coopVecMatMulAddNV(

 out coopvecNV<ResultTy, ResultComps> result, // output vector

 coopvecNV<InputTy, InputComps> input, // input vector

 uint inputInterpretation, // type to convert input to, before matmul

 const MatrixTy[] matrix, // matrix array in SSBO memory

 uint matrixOffset, // byte offset where matrix starts

 uint matrixInterpretation, // type of matrix data

 const BiasTy[] bias, // bias array in SSBO memory (added to matmul result)

 uint biasOffset, // byte offset where bias starts

 uint biasInterpretation, // type of bias data

 uint M, // number of elements in result vector

 uint K, // number of element in input vector

 uint matrixLayout, // row-major, col-major, optimal

 bool transpose, // transpose the matrix

 uint matrixStride); // stride for row/col-major matrices

20

“Interpretation” Parameters
Serve multiple purposes

• Specify type of weight/bias values in memory

• Allows type conversion of the input vector

• E.g. fp16 -> fp8 without real fp8 type

• “Fast path” type conversion and layout change

• Allow bitcast of the input vector for small types

• E.g. <N x i8> as <N/4 x i32>

• No need for native fp8 or sub-8b types in the shading

language

fp16 fp8 matrix

Activation functions (fp16)

fp16 fp8 matrix fp16 fp8 matrix fp16

Implicit Conversion (fp16->fp8)

21

Extension Details
VK_NV_cooperative_vector

• Vulkan API commands to convert matrix to “optimal” layout

• Host and device commands, meant to be used at load time

• Pre-shuffles matrix so the shader can do optimal memory access

• Pass in e.g. row-major layout, it writes out optimal layout

• Critical for best performance

• No need for a separate VkTensor resource, store in SSBO/ByteAddressBuffer

• Vulkan API command to query supported type combinations (similar to coop matrix)

inputType inputInterpretation matrixInterpretation biasInterpretation resultType

FP16 FP16 FP16 FP16 FP16

FP16 E4M3 E4M3 FP16 FP16

FP16 E5M2 E5M2 FP16 FP16

SINT8 SINT8 SINT8 SINT32 SINT32

UINT32 SINT8_PACKED SINT8 SINT32 SINT32

FP32 SINT8 SINT8 SINT32 SINT32

22

Training

• How will game engines train the networks?

• Some use cases like NTC can have a standalone tool

• Some may be trained in PyTorch/SlangPy

• Some may need to be trained in-engine (Slang w/autodiff)

• Two additional intrinsics help with training in-engine:

• Outer-product accumulate

• Vector accumulate

23

Backpropagation
New Training Intrinsics

• Biases are adjusted by derivative of activation function

• Vector atomic reduction:

void coopVecReduceSumAccumulateNV(const coopvecNV<T, N> v,

 T[] buf, uint offset);

• Weights are adjusted by outer product

• Outer product atomic reduction:

void coopVecOuterProductAccumulateNV(const coopvecNV<T, M> v1,

 const coopvecNV<T, N> v2,

 T[] buf, uint offset,

 int matrixLayout);

https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

24

Backpropagation

/***** Forward pass ****/

x0 = matvecmul(input, W0, b0)

x0_a = act(x0)

x1 = matvecmul(x0_a, W1, b1)

x1_a = act(x1)

x2 = matvecmul(x1_a, W2, b2)

x2_a = act(x2)

/***** Loss ****/

loss = (x2_a - ref)^2

loss_grad = 2 * (x2_a - ref)

/***** Backward Pass ****/

x2_g = act_backward(loss_grad, x2)

ReduceSumAccumulate(x2_g, bias2_grad)

OuterProductReduce(x2_g, x1_a, weight2_grad)

x1_g = matvecmul(x2_g, W2, transpose)

x1_g = act_backward(x1_g, x1)

ReduceSumAccumulate(x1_g, bias1_grad)

OuterProductReduce(x1_g, x0_a, weight1_grad)

x0_g = matvecmul(x1_g, W1, transpose)

x0_g = act_backward(x0_g, x0)

ReduceSumAccumulate(x0_g, bias0_grad)

OuterProductReduce(x0_g, input, weight0_grad)

25

Directed Test Performance
RTX 4070 (46 SMs @ 1920MHz)

Peak measured performance

Divergence (FP8, 3x64)

0

20

40

60

80

100

120

140

160

inf 16k 4k 2k 1k 512 256 128 64 32

Perf vs Divergence with 3x64 (TFLOPS)

fp8 fp16 int8

L1 cache misses

https://github.com/jeffbolznv/vk_cooperative_vector_perf/

https://github.com/jeffbolznv/vk_cooperative_vector_perf/

26

INT8 vs FP8 Learnings
Conversions and activation functions are expensive

• INT8/FP8 2x peak rate of FP16, but INT8 can be slower than FP16

• For small K, activation/conversion costs dominate

• More complex activation functions will be slower

• FP8 support is required and is emulated as FP16 on older GPUs

fp32 int8 matrix

Activation functions (fp32)

fp32 int8 matrix int8 matrix int32int32 fp32int32

Convert/Scale/Bias

fp32

fp16 fp8 matrix

Activation functions (fp16)

fp16 fp8 matrix fp16 fp8 matrix fp16

27

• Inference-on-sample

• CoopVec is 5x faster than DP4A inference

Neural Texture Compression Performance
https://github.com/NVIDIA-RTX/RTXNTC

https://github.com/NVIDIA-RTX/RTXNTC

28

Conclusion

• Neural shading techniques moving from research to reality

• Leveraging the speed of the tensor cores for graphics

• The Vulkan/SPIR-V/GLSL/Slang extensions are available now

• Supported in R570 drivers

• Supported on all NVIDIA RTX GPUs

• Tooling available on github and will be in next Vulkan SDK

• DX support coming soon

• https://devblogs.microsoft.com/directx/enabling-neural-rendering-in-directx-cooperative-vector-support-coming-soon/

https://devblogs.microsoft.com/directx/enabling-neural-rendering-in-directx-cooperative-vector-support-coming-soon/

29

	Slide 1: Using Neural Networks in Shaders
	Slide 2: Using Neural Networks in Shaders
	Slide 3: Background: What is an MLP?
	Slide 4: Neural Texture Compression (NTC)
	Slide 5: Neural Materials
	Slide 6
	Slide 7: Neural Intersection
	Slide 8: MobileNeRF
	Slide 9: Neural Shading
	Slide 10: Rendering a Scene with Neural Models
	Slide 11: A Programming Model for Neural Shaders
	Slide 12: A Programming Model for Neural Shaders
	Slide 13: A Programming Model for Neural Shaders
	Slide 14: A Programming Model for Neural Shaders
	Slide 15: Vectors as A-Matrix
	Slide 16: Cooperative Vectors
	Slide 17: Divergence and Disabled Threads
	Slide 18: Contrast vs Cooperative Matrix
	Slide 19: GLSL Extension Details
	Slide 20: “Interpretation” Parameters
	Slide 21: Extension Details
	Slide 22: Training
	Slide 23: Backpropagation
	Slide 24: Backpropagation
	Slide 25: Directed Test Performance
	Slide 26: INT8 vs FP8 Learnings
	Slide 27: Neural Texture Compression Performance
	Slide 28: Conclusion
	Slide 29

