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Background: What is an MLP?

Each neuron is a function of all neurons in prior layer

Size is often described as “LxN”, where L is the number of hidden

layers and N is number of neurons per layer

MLP

Computing each layer involves: Outputs

Cutput neural
layer

Optionally, add a bias vector

15! Hidden neural 2" Hidden neural
layer layer

Activation function (e.g. ReLU(x) = max(x,0))

Evaluate the entire MLP in each thread

da Silva, et al, Multilayer Perceptron Networks
Sizes like 2x16 up to 3x64 will be common
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Neural Texture Compression (NTC)

https://research.nvidia.com/labs/rtr/neural texture compression/

Random-Access Neural Compression of Material Textures

KARTHIK VAIDYANATHAN?, NVIDIA, USA
MARCO SALVI’, NVIDIA, USA

BARTLOMIE] WRONSKI*, NVIDIA, USA
TOMAS AKENINE-MOLLER, NVIDIA, Sweden
PONTUS EBELIN, NVIDIA, Sweden

AARON LEFOHN, NVIDIA, USA

BC high. PNSR (1): 194 dB,FILIP (}): 0224  NTC. PSNR (1): 22.0 dB, LIV (}): 0.177
1024 x 1024 at 5.3 MB. 4096 X 4096 at 3.3 MB.
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reference: not compressed
4096 X 4096 at 256 MB.

BC high BC high

Fig. 1. A rendered image of an inkwell. The cutouts demonstrate quality using, from lefl to right, GPU-based texture formats (BC high) at 1024 x 1024
resolution, our neural texture compression (NTC), and high-quality reference textures. Note that NTC provides a 4x higher resolution (16X texels) than BC
high, despite using 30% less memory. The PSNR and LIP quality metrics, computed for the cutouts, are shown above the respective images. The FILIP error
images are shown in the lower right corners, where brightness is proportional to error. Bottom row: two of the textures that were used for the renderings.
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https://research.nvidia.com/labs/rtr/neural_texture_compression/

Neural Materials

https://research.nvidia.com/labs/rtr/neural appearance models/
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TIZIAN ZELTNER®, FABRICE ROUSSELLE*, ANDREA WEIDLICH®, PETRIK CLARBERG’, JAN NOVAK",
BENEDIKT BITTERLI*, ALEX EVANS, TOMAS DAVIDOVIC, SIMON KALLWEIT, and AARON LEFOHN,

NVIDIA, Global

Fig. 1. Close-up renderings of a TEAroT asset with our neural BRDF. Our model learns the intricate details and complex multi-layered material behavior of the
ceramic, fingerprints, smudges, and dust which are responsible for the realism of the object while being faster to evaluate than traditional non-neural models
of similar complexity. The system we present allows us to include such high-fidelity objects in real time renderers in a scalable way.

3x64 + 3x32 MLPs
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https://research.nvidia.com/labs/rtr/neural_appearance_models/
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Neural Intersection

https://gpuopen.com/download/publications/HPG2023 NeurallntersectionFunction.pdf

Neural Intersection Function

S. Fujieda’™ C.C. Kao'™ T. Harada ">

Advanced Micro Devices, Inc.

(a) (b) (¢)

Figure 1: (a) A rendered image using Neural Intersection Function after 64 traiming samples per pixel. (b) A rendered image using ray tracing
with BVH. (¢) Difference x3 between (a) and (b). PSNR 15 39.11 dB. The scene has 30M tnangles rendered at 1920 x 1080 on AMD
Radeon  RX 7900 XT. Sccondary ray casting times are 4.54 ms and 5.27 ms n (a) and (b), respectively.

Abstract

The ray casting operation in the Monte Carlo ray tracing algorithm wusually adopts a bounding volume hierarchy (BVH) to
accelerate the process of finding intersections to evaluate visibility. However, its characteristics are irregular, with divergence
in memory access and branch execution, so it cannot achieve maximum efficiency on GPUs. This paper proposes a novel Neural
Intersection Function based on a multilayer perceptron whose core operation conlains only dense matrix multiplication with
predictable memory access. Our method is the first solution integrating the neural network-based approach and BVH-based ray
tracing pipeline into one unified rendering framework. We can evaluate the visibility and occlusion of secondary rays without
traversing the most irregular and time-consuming part of the BVH and thus accelerate ray casting. The experimenis show the
proposed method can reduce the secondary ray casting time for direct illumination by up to 35% compared to a BVH-based
implementation and stll preserve the image qualily.
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https://gpuopen.com/download/publications/HPG2023_NeuralIntersectionFunction.pdf

MobileNeRF
https://mobile-nerf.github.io/

T A S % Camera -,
. n e . . . . ",r : ."d; Y ‘.'(,. e a2 gy e poen j
MobileNeRF: Exploiting the Polygon Rasterization Pipeline R e ,
ph  hgeshy Ramto R ey N e e T |
v “ e . . . " ')’ ’-_‘ Ev i ' g - e R
for Efficient Neural Field Rendering on Mobile Architectures M TR | e
Zhigin Chen"**  Thomas Funkhouser'  Peter Hedman'  Andrea Tagliasacchi'** San S

Google Research’

Abstract

Neural Radiance Fields (NeRFs) have demonstrated
amazing ability to synthesize images of 3D scenes from
novel views. However, they rely upon specialized volumet-
ric rendering algorithms based on ray marching that are
mismatched to the capabilities of widely deployed graph-
ics hardware. This paper introduces a new NeRF repre-
sentation based on textured polygons that can synthesize
novel images efficiently with standard rendering pipelines.
The NeRF is represented as a set of polygons with lextures
representing binary opacities and feature vectors. Tradi-
tional rendering of the polygons with a z-buffer yields an
image with features at every pixel, which are interpreted
by a small, view-dependent MLP running in a fragment
shader to produce a final pixel color. This approach enables
NeRFs to be rendered with the traditional polygon rasteri-
zation pipeline, which provides massive pixel-level paral-
lelism, achieving interactive frame rates on a wide range of
compute platforms, including mobile phones.

. v . 2
Simon Fraser University”

University of Toronto®

{a) Triangle mesh {b) Texture image (features and opacity)

the corresponding output pixel color.

(c) Feature image

Figure 2. Overview (rendering) — We represent the scene as a triangle mesh textured by deep features. We first rasterize the mesh to a
deferred rendering buffer. For each visible fragment, we execute a neural deferred shader that converts the feature and view direction to

1. Downsampling for anti-aliasing

2. Running a small MLP for each pixel
~
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(d) Final output

_¥ Vulkan Example

maobile_nerf
Adreno (TM) 650
50.00 ms/frame (20 fps)

Chromebook: T-rex, 20 FPS
iIPhone XS: ficus, 60 FPS
Gaming laptop: bicycle, 187 FPS
Surface Pro 6: garden, 20 FPS —»

Figure 1. Teaser — We present a NeRF that can run on a vanety of
common devices at interactive frame rates.

algorithm that evaluates a large MLP at hundreds of sample
positions along the ray for each pixel in order to estimate
and integrate density and radiance. This rendering process

https://github.com/KhronosGroup/Vulkan-Samples/pull/849

for (int 7 = % J <« MUM_CHANNELS _ONE; ++j) {
if {(intermed®ate_one[j] <= @.8) {
continue;

¥
for (int 1 = @; i < NDW_CHANNELS_TWO; ++1) {
intermediate _two[i] ¥ intermediate _one[j] #

texelFetch{weightsOme, ivec2(j, i), @).x;

Actual MobileNeRF code

2x16 MLP
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https://mobile-nerf.github.io/
https://github.com/KhronosGroup/Vulkan-Samples/pull/849

Neural Shading

Evaluate MLP per-ray or per-pixel

* Research has shown:

1. These tiny networks work — they faithfully reproduce the effect they’'re trained on
2. They’re small enough to fit in a shader

3. They're fast enough to run in real-time — often more efficient than physically-based shading

* What’s missing is shading language support to accelerate these!

Texture Lights

Visibility &

1 Postprocessing

Lighting

Neural Shading Neural reconstruction
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Rendering a Scene with Neural Models

Neural Shape

10 < NVIDIA.




A Programming Model for Neural Shaders

Accelerate neural shaders using a programming model

Compatible with current shader programming models

Neural networks can be easily plugged into existing shaders

Enable optimizations for neural shaders in compiler and hardware

Enabling tensor cores, divergence handling, layer fusion, etc.

Developers should have no need for baking-in hardware specific decisions

Portability across current and future hardware

Can target a variety of matrix acceleration HW

Allow innovations for neural shaders in future hardware

Supported in shader stage -

11 NVIDIA.



A Programming Model for Neural Shaders
Arbitrary-sized vector types

Opaque number of threads (M)

void computelight(args)

{
coopvecNV<float16 t, 8> :

input[0] = args. nornal X ;
input[1] = args.normal.y;
input[2] = args.normal.z;

Per-thread Vector
coopvecNV<floatl16_t, 64> layer9;

:

coopVecMatMulNV(layero, , weightBuff, offset0);
layer® = max(layer®o, 0); // RelU

coopvecNV<float16_t, 64> layeri;
coopVecMatMulNV(layer1, layer@, weightBuff, offsetl);
layer1 = max(layerl1, ©0); // RelLU

coopvecNV<float16_t, 4> output;
coopVecMatMulNV(output, layerN, weightBuff, offsetN);
output = exp(output);

color.r = output[®] * args.lightColor;

color.g = output[1] * args.lightColor;

color.b = output[2] * args.lightColor;
!

12 <ANVIDIA. I



A Programming Model for Neural Shaders
Matrix-vector multiply intrinsics reference weight matrices in memory

Opaque number of threads (M)

void computelight(args)

{
coopvecNV<float16 t, 8> :

input[@] = args. normal. X ;
input[1] = args.normal.y;
input[2] = args.normal.z;

Per-thread Vector
coopvecNV<floatl16_t, 64> layer9;

:

coopVecMatMulNV(layer@, , weightBuff, offset0);
layerd = max(layer6, 8); // RelU Per-thread vector-matrix multiply
coopvecNV<float16_t, 64> layer1; (potentially divergent weights)

coopVecMatMulNV(layer1, layer@, weightBuff, offsetl);
layer1 = max(layer1, 9); // RelLU

coopvecNV<float16_t, 4> output;
coopVecMatMulNV(output, layerN, weightBuff, offsetN);
output = exp(output);

color.r = output[@] * args.lightColor;

color.g = output[1] * args.lightColor;

color.b = output[2] * args.lightColor;
}

13 <A NVIDIA. I



A Programming Model for Neural Shaders
Can apply element-wise operations to opaque vectors

Opaque number of threads (M)

void computelight(args)

{
coopvecNV<float16 t, 8> :

input[@] = args. normal. X ;
input[1] = args.normal.y;
input[2] = args.normal.z;

Per-thread Vector
coopvecNV<floatl16_t, 64> layer9;

:

coopVecMatMulNV(layero, , weightBuff, offset0);

layer® = max(layer®, 6); // RelU Per-thread vector-matrix multiply
coopvecNV<float16_t, 64> layerl; (potentially divergent weights)
coopVecMatMulNV(layer1, layer9, weightBuff, offsetl); , ,
layer1 = max(layer1, ©0); // RelLU ~Can apply element-wise operations

directly on vectors

coopvecNV<float16_t, 4> output;
coopVecMatMulNV(output, layerN, weightBuff, offsetN);
output = exp(output);

color.r = output[@] * args.lightColor;

color.g = output[1] * args.lightColor;

color.b = output[2] * args.lightColor;
}

14 <ANVIDIA. I



Vectors as A-Matrix

An implementation detail

K
N. | I I I I B I

32 NxK * Kx1
mat-vec mul

Combine to one
NxK * Kx32 mat-mat mul

- K

)
N
~ ©
®
5 .
S
i)

Internally, implemented
as 32xK * KxN mat-mat mul,
tensor core accelerated

15 < NVIDIA. I



Cooperative Vectors

New templated vector types
Arbitrary dimension, but known at compile-time
They opportunistically cooperate behind the scenes when performing matrix-vector multiply

May transparently switch between “SIMT” and “cooperative” layouts as needed, but programming model is
always SIMT

Compiler can optimize across sequences of vector ops
Fusion of back-to-back MMA ops - minimize switching between layouts
Individual element access can break fusion — prefer whole-vector ops

Support common unary and binary element-wise ops
Activation functions: ReLU, Tanh, etc. standard binary ops: +, -, *, /

16 NVIDIA.



Divergence and Disabled Threads

Matmul behavior well defined under control flow divergence and nonuniformity
Each thread sees the result of its own matrix-vector multiply

Implementation is responsible for handling control flow divergence and nonuniformity
Peeling loop?
Fall-back to per-thread math?
Something else?
Performance is expected to degrade gracefully as divergence increases

Coherence not required functionally, but still important for performance

Composable with VK EXT ray tracing invocation reorder
Sort threads by network

17 NVIDIA.




Contrast vs Cooperative Matrix

* CoopMat: Access to tensor core through compute shaders
* Explicitly defined to operate at group scope
* Uses a fixed set of power-of-two matrix shapes
* Targets kernel-scope MMAs
* Shader responsible for staging matrix loads from memory
* Results undefined under thread divergence

* CoopVec: Neural shaders need a “SIMT-friendly” version of MMA
* Support for shader stages w/o explicit concurrency
* Arbitrary matrix and vector sizes - IHV independent
* Can optimize matrix loads and divergence handling
» Support for fusion across layers

18 <A NVIDIA. I



GLSL Extension Details

void coopVecMatMul NV (

out coopvecNV<ResultTy, ResultComps> result, // output vector

coopvecNV<InputTy, InputComps> input, // input vector

uint inputInterpretation, // type to convert input to, before matmul
const MatrixTy[] matrix, // matrix array in SSBO memory

uint matrixOffset, // byte offset where matrix starts
uint matrixInterpretation, // type of matrix data

uint M, // number of elements in result wvector
uint K, // number of element in input vector
uint matrixLayout, // row-major, col-major, optimal

bool transpose, // transpose the matrix

uint matrixStride) ; // stride for row/col-major matrices

19 NVIDIA.



“Interpretation” Parameters
Serve multiple purposes

» Specify type of weight/bias values in memory

Activation functions (fp16)

i )ﬁ

Implicit Conversion (fp16->fp8)

* Allows type conversion of the input vector

* E.g. fp16 -> fp8 without real fp8 type

* “Fast path” type conversion and layout change

* Allow bitcast of the input vector for small types

* E.g. <N xi8>as<N/4 xi32>

* No need for native fp8 or sub-8b types in the shading

language

20 <A NVIDIA. I



Extension Details
VK NV cooperative vector

* Vulkan APl commands to convert matrix to “optimal” layout

* Host and device commands, meant to be used at load time

* Pre-shuffles matrix so the shader can do optimal memory access

* Pass in e.g. row-major layout, it writes out optimal layout

* Critical for best performance

* No need for a separate VkTensor resource, store in SSBO/ByteAddressBuffer

* Vulkan APl command to query supported type combinations (similar to coop matrix)

FP16 FP16 FP16 FP16 FP16
FP16 EAM3 EAM3 FP16 FP16
FP16 ES5SM2 ESM2 FP16 FP16
SINT8 SINTS SINT8 SINT32 SINT32
UINT32 SINT8 PACKED SINT8 SINT32 SINT32
FP32 SINT8 SINT8 SINT32 SINT32

21 <ANVIDIA. I



Training

How will game engines train the networks?

Some use cases like NTC can have a standalone tool O NVIDIA-RTX / RTXNTC

Some may be trained in PyTorch/SlangPy

Some may need to be trained in-engine (Slang w/autodiff)

Two additional intrinsics help with training in-engine:

Outer-product accumulate

Vector accumulate

22 NVIDIA.



Backpropagation

Biases are adjusted by derivative of activation function

Vector atomic reduction:

vold coopVecReduceSumAccumulateNV (const coopvecNVLT, N> v,

T[] buf, uint offset);

Weights are adjusted by outer product

oC  9C 0zf —
: : — chain rule
Outer product atomic reduction: owh  az! ow),
. m
volid coopVecOuterProductAccumulateNV (const coopvecNV<T, M> vl, '4==2;“ﬁafd+¢# by definition
const coopvecNV<T, N> v2, k=] |
m — number of neurons in l—1 layer
T[] buf, uint offset,
. . 07!
int matrixLayout); = J, =g by differentiation (calculating derivative)
Wi
JK
oC oC , ,
= —q, final value

v -1
Wi 0z

Equations for derivative of C in a single weight (w_jk)"l

23 NVIDIA.


https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

[***** Forward pass ****/

x0 = matvecmul (input, W0, bO)
x0 a = act(x0)

xl = matvecmul (x0 a, W1, bl)
xl a = act(x1)

x2 = matvecmul (x1 a, W2, b2)
x2 a = act(x2)

/***** L.oss ****/

loss = (x2 a - ref)”2

loss grad = 2 * (x2 a - ref)

Backpropagation

[*****x Backward Pass ***%*/

x2 g = act backward(loss grad, x2)
ReduceSumAccumulate (x2 g, bias2 grad)
OuterProductReduce (x2 g, x1 a, weight2 grad)

xl g = matvecmul (x2 g, W2, transpose)

xl g = act backward(xl g, x1)
ReduceSumAccumulate (x1 g, biasl grad)
OuterProductReduce (x1 g, x0 a, weightl grad)

x0 g = matvecmul (x1 g, W1, transpose)

x0 g = act backward(x0 g, xO0)
ReduceSumAccumulate (x0 g, bias0 grad)
OuterProductReduce (x0 g, input, weightO grad)

24
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Directed Test Performance

Peak measured performance

160

140

2X32 /3 43 85

3X32 79 59 121
2xXo64 84 102 141
3x64 85 119 150
SOL 90.5 181 181

120

Divergence (FP8, 3x64)

iNT 150
16k 149
4k 146
2K 144
1k 143
512 142
256 137
128 86

64 47

32 24

100

380

60

40

20

https://github.com/jeffbolznv/vk _cooperative_vector_perf/

RTX 4070 (46 SMs @ 1920MHz)

Perf vs Divergence with 3x64 (TFLOPS)

—fp8 —fpl6 —int8

inf

16k

4k

2k

1k 512

256 128

L1 cache misses

64

32
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https://github.com/jeffbolznv/vk_cooperative_vector_perf/

INT8 vs FP8 Learnings

Conversions and activation functions are expensive

Convert/Scale/Bias

2X32 /3 43 85

3x32 /9 59 121
2X64 84 102 141
3x64 85 119 150
SOL 90.5 181 181

INT8/FP8 2x peak rate of FP16, but INT8 can be slower than FP16

For small K, activation/conversion costs dominate

More complex activation functions will be slower

FP8 support is required and is emulated as FP16 on older GPUs

fI'-f

Activation functions (fp32)

Sy

4 A
'.llZf ' .i : ' .i

Activation fu

ctions (fp16)

-
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Neural Texture Compression Performance
https://github.com/NVIDIA-RTX/RTXNTC

RTx 4090
RTx 4090
RTx 4090
RTx 4090

R

A 4090

RTx 4050
Intel A750
Intel A750
AMD RXo300xXT Dx12
AMD RX6800XT WVk

Dx12
Vi
Dx12
Vi
Dx12
Vi
DxX12
Vi

* Inference-on-sample

MNo
No
Intd
Intad
FPE
FPE
MNo
No
MNo
No

» CoopVec is 5x faster than DP4A inference

6.95
b.95
1.45
1.45
1.28
1.25
4.3
>0.5
16.8
26.8

27

0.05
b
1.32
1.25
1.2
1.17
47
44.1

14.35

23.1
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https://github.com/NVIDIA-RTX/RTXNTC

Conclusion

Neural shading techniques moving from research to reality

Leveraging the speed of the tensor cores for graphics

The Vulkan/SPIR-V/GLSL/Slang extensions are available now

Supported in R570 drivers
Supported on all NVIDIA RTX GPUs

Tooling available on github and will be in next Vulkan SDK

DX support coming soon

28
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https://devblogs.microsoft.com/directx/enabling-neural-rendering-in-directx-cooperative-vector-support-coming-soon/
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