: . Ny . '.. B e P A:ﬂ.'\‘\ ‘ ‘&
‘ N\ The 7t" Vulkan Developer Conference
vu I .(an ISed 2 O 2 5 Cambridge, UK | February 11-13, 2025

Practical Neural Texture Compression

Alexey Panteleev, NVIDIA

RTX Kit and Neural Rendering Initiative
Announced by NVIDIA at CES 2025

e

-
. - O

—
_ R o e i T T Tl
N

l*
PRSP —

Neural Radiance Cache Neural Faces Neural Materials

DLSS 4 Neural Texture Compression

<ANVIDIA

s

o~

-

N

-

Tuscan Villa.scene with NTC textures (970 MB VRAM)

LDOWNSCc

"f{ r?f";

1 Brisb¥

] .:.x\SiL'()

Neural vs Block Compression
How is it different?

Block Texture Compression (BC1-BC7) RTX Neural Texture Compression
Operates on 1-to 4-channel images » Operates on up to 16 channels at once
Fixed number of bits for each 4x4 block (1-2 bppc*) - Base color, Normal, Metalness, Roughness, Emission...

Most formats assume channels are correlated » Adjustable compression rate (1/32 ... 20 bppc)

« Assumes channels are correlated

..But modern materials have more than 4 channels

B - Trains a very small neural network per material
« Compression = training
- No large training dataset or foundation models
« No hallucinations
« Network is overfitted to the material

- Compressed data:
« Latent representation: 99% of space
- Network weights: 12 KB or so

https://www.reedbeta.com/blog/understandi
ng-bcn-texture-compression-formats/

*bppc = bits per pixel per channel

<ANVIDIA I

Neural Texture Compression

Research Recap

Random-Access Neural Compression of Material Textures

KARTHIK VAIDYANATHAN", NVIDIA, USA

MARCO SALVI*, NVIDIA, USA
BARTLOMIE] WRONSKI®, NVIDIA, USA
TOMAS AKENINE-MOLLER, NVIDIA, Sweden
PONTUS EBELIN, NVIDIA, Sweden

AARON LEFOHN, NVIDIA, USA

BC high. PNSR (T): 19.4 dB, LIP (]): 0.224 NTC. PSNR (T): 22.0 dB, LIP (]): 0.177 reference: not compressed
102.4 X l()Z4 at 5 3 MB. 4096 X 4096 at 3.8 MB. 4096 X 4096 at 256 MB.

‘\T@\ N T aeaaeas ‘S&&‘ o&ﬁ s SEESPSNEEI SR

t*" > <
R 2 &1

- - .’. i
’*rfﬁ”_- Pl
”
’-,’-"r’bd‘/
- ""od"' "3 P
y ’wl"rf’
"'.5_\:‘ ’f/‘ ", .

reference reference

<A NVIDIA. I

10

a) Feature pyramid

Decompressed texel

Feature level 0 (F°)

Neural Texture Compression

Algorithm Basics

Compression: Train the network and features based on the reference images

Random-Access Neural Compression of Material Textures

b) Simulated quantization ¢) Sampling and concatenation d) Network e) Predicted mip level
(training)

Two 64-channel hidden layers

Positional encoding

Decompression: Sample the features and pass them through the network

<A NVIDIA I

+

i

RTX Neural Texture Compression SDK

Key Component Overview

LIDNTC

cAwindows\System32\cmd.e X

W:\ntc\bin\windows-x6U>ntc-cli.exe —help
Usage: ntc—cli [input—files|input-directory] <actions...> [options...]

Neural texture compression and decompression tool.

Inputs can be specified as positional arguments, in one of four modes:

11

- Directory with image files (same as --loadImages)

- Individual image files (.png, .tga, .jpg, .jpeg, .exr)

- Manifest file with .json extension (same as --loadManifest)

- Compressed texture set with .ntc extension (same as —loadCompressed)

Actions:

—-c, ——compress

-D, ——decompress

-d, —--describe

-g, ——generateMips
—-loadCompressed=<str>
——LloadImages=<str>
—LloadManifest=<str>
——LloadMips
——optimizeBC

-0, ——saveCompressed=<str>
-i, ——saveImages=<str>
——savellips

——version

-h, —help

Basic compression options:

-b, —-bitsPerPixel=<flt>
——maxBitsPerPixel=<flt>
-p, ——targetPsnr=<flt>

For the manifest file schema, please refer to docs/Manifest.md in the SDK.

Perform NTC compression

Perform NTC decompression (implied when needed)

Describe the contents of a compressed texture set

Generate MIP level images before compression

Load compressed texture set from the specified file

Load channel images from the specified folder

Load channel images and their parameters using the specified JSON manifest file
Load MIP level images from <loadImages>/mips/<texture>.<mip>.<ext> before compression
Run slow BC compression and store acceleration info in the NTC package

Save compressed texture set into the specified file

Save channel images into the specified folder

Save MIP level images into <saveImages>/mips/ after decompression

Print version information and exit

show this help message and exit

Request an optimal compression configuration for the provided BPP value
Maximum BPP value to use in the compression parameter search
Perform compression parameter search to reach at least the provided PSNR value

<ANVIDIA

Algorithmic Improvements #1
Weighted Sampled Features

» Original paper:
« Hi-res features copied to input vector verbatim
« Low-res features go through bilinear interpolation

MLP Inputs

» |Improved version:
« Hi-res features are multiplied by their bilinear weights

« Benefit:
- No more blocky artifacts at 1/4 feature grid scale!

Hi-Res Features

RG channels of a normal map with enhanced contrast:

Low-Res Features - - -

e o= —_— 1 —_—- ¥
s o 4
Positional encoding I e e
Source texture Original NTC NTC w/weighted features
43.86 dB 44,04 dB

<A NVIDIA I

14

Normalize each texture channel to [0, 1] before compression
- Big quality improvement for channels with very small variance

Dither the results on output to RGBAS8 textures
« NTC output has higher precision than 8 bits per channel

Compress HDR images to Hybrid Log-Gamma color space

Use alpha mask to ignore regions where mask is O
« Let the network focus on learning important areas

Blended Texture

Algorithmic Improvements #2
Other things that improve image quality

42.2 dB

43.5 dB

NTC w/normalization
and dithering

<ANVIDIA I

15

Algorithmic Improvements #3
INT8 and FP8 Quantization Support

+ Original paper:
« hardGELU activation function

« |mproved version:
- hardGELU activation clamped to [-3/16, 3.0}

- Benefit:
- Can scale the layer inputs to fill the [-128, 127] range

- Quantized data flow:
- Layers 1-3 evaluated in FP8 for performance
- Layer 4 evaluated in INT8 for output precision
« All INT8 version available for GPUs that don't support FP8

X
max(x, 3) - clamp (§ + 1 0,1)

<A NVIDIA I

Compression Performance
Highly optimized CUDA kernels

¢ Entire NTC evaluation pipeline iS fused into One kernel NTC Qua“ty and Compression Performance vs. BPP
« No extra video memory round-trips 60 0.3
« One thread evaluates all channels of a single texel
- Forward and backprop in the same pass, optimizer is separate . ¢ ¢ ¢ —s oo® .
¢
.
. . . . ¢ **_ oo *)
- Compression has been optimized since the paper version a0 - o o®) SR 02 @
: o o0 & -
« 25-30x perf improvement 4 o0’ N 8
. . . 0 o0 @
+ 100k steps provides good compression quality 5 o ©@ . R -
© 30 & & 0.15 &
« Well under a minute on RTX 4090 = 2
I ¢ ¢ -
o < & RS,
5 * o &
. : : : o 20 ¢ 0.1 =
- Many optimizations combined, no single breakthrough 2
O
Q

« Optimized tensor core usage

» |mproved occupancy 10 005
« Custom RNG

 FP16 gradients .)

- Removed register indexing, ... 0.5 | 2 . F’ijel 8 16

® PSNR @ Step Time, ms

<A NVIDIA I

4

Compression Configuration Space

Lots of available “latent shapes” or BPP settings

- Available latent shape parameters:
- High-res latent grid size: 1/2 or 1/4 of the texture size
- High-res and low-res feature counts: 4,8, 12, 16
- High-res and low-res bits per feature: 1, 2, 4, 8
« Total 2*4*4*4*4 = 512 configurations — too many options

- Introducing a simple BPP setting
« A single number between 0.5 and 20.0 bits per pixel
« Optimal l[atent shape picked automatically

o
e
o
=
N
a

- Based on experimental data from all 512 configurations -

- Adaptive compression ratio mode
« User provides a target PSNR value
» Tool makes 4-5 compression runs to find the optimal BPP
- Can take a few minutes, depending on GPU and settings

- Use fixed BPP mode for quick iteration 20
0.250 0.500 1.000 2.000 4.000 8.000 16.000 32.000

Compressed Bits per Pixel

Experimental data from 5 materials compressed with every latent
shape. Black diamonds show the picked optimal configs.

<A NVIDIA I

19

Inference on Sample
The original NTC solution

Upload NTC latents and weights to the GPU

Decompress each texel when needed
* |Includes an evaluation of the MLP

Apply Stochastic Texture Filtering (STF) instead of
hardware filtering

» Direct evaluation of trilinear/aniso would be way too slow
« Enables higher-order filters like cubic or Gaussian for free

Benefits:
« Minimal VRAM footprint, up to 8x lower than BCn

» Adverse performance effects on more complex shaders
« MLP evaluation needs a lot of registers
« Cooperative Vectors and SER only help to a degree
» Could drop 20-30% of whole frame performance
« STF Is arequirement
« Need to filter the results with DLSS
« Denoising becomes more complicated
« Visuals will be different vs. HW filtering

#include "libntc/shaders/Inference.hlsli”
#include "STFSamplerState.hlsli”

typedef NtcNetworkParams<NETWORK VERSION> NtcParams;
ConstantBuffer<NtcTextureSetConstants> g NtcMaterial;
ByteAddressBuffer t InputFile;

ByteAddressBuffer t WeightBuffer;

// Sample the texture with STF
STF _SamplerState sampler = STF SamplerState::Create(randomVector);

float3 samplePos = sampler.Texture2DGetSamplePos(width, height, mipLevels, uv);

// Get the integer texel position and MIP level
int mipLevel = int(samplePos.z);
int2 texelPosition = int2(floor(samplePos.xy * mipSize));

// Decompress the texel and get all the channels
float channels[NtcParams: :OUTPUT_CHANNELS];

NtcSampleTextureSet<NETWORK VERSION>(g NtcMaterial, t InputFile, O,
t WeightBuffer, 0, texelPosition, mipLevel, true, channels);

// Use the decompressed color channels as needed
if (NtcTextureSetHasChannels(g NtcMaterial, CHANNEL BASE COLOR, 3))
{

float3 baseColor = float3(
channels[CHANNEL BASE COLOR + 9],
channels[CHANNEL BASE COLOR + 1],
channels[CHANNEL BASE COLOR + 2]);

/] ...

<ANVIDIA I

20

Inference on Load

Compatibility Mode

Decompress texture sets into color pixels at load time

Compress into BCn right after that

Why decompress on load?

« |nference on Sample is impractical on all but the latest NV GPUs
+ |[nference on Load works everywhere and it's not performance-critical
« Game can be shipped with NTC textures only and work on all GPUs

How fast is it?

« See chart on the right

« All textures for a 4K material decompressed in a few milliseconds

Decompression is done entirely on the GPU

« Minimal CPU parsing of NTC files and uploading of raw data
« Tiled decompression is possible but a bit more involved

CoopVec

DP4a

RTX 208

X 5090
90

RTX
RTX 3090
RTX 2080 Ti
AMD RX680
Intel A750

\ 572.16 drive

)

4090

OXT

rissues

5

10

15

20

Inference on Load performance, GPix/s (all channels)

Vulkan, Medium network size (64 inputs)

<ANVIDIA I

2 |

Transcoding to BCn

It's no longer slow

« LIbNTC provides HLSL-based GPU encoders for all BC modes:
« Custom, fast encoders for BC1-BC5
» BC6 encoder from knarkowicz/GPURealTimeBC6H
« Custom BC7 encoder with some tricks

« LIbODNTC BC7 encoder tricks:

« We know the texture contents ahead of time

« Pre-encode after NTC compression with all BC7 modes enabled

« Count the most frequently used modes and partitions

e Only use the necessary modes and partitions at transcoding time

- Encoding performance (on RTX 4090):

Performance Avg PSNR vs. NVTT3

BCI 60-70 GPix/s -0.3 dB
BC5 30-40 GPix/s +0.055 dB
BC7 (all modes) 1.5-1.8 GPix/s -0.055 dB

BC7 (optimized modes) 3-12x faster N/A (-0.2 dB for each)

NTC PSNR -NVTT3 PSNR, dB

Quality Difference between NTC and NVTT3 BC7 Encoders

80 S0

NVTT3 PSNR dB

Based on a set of 460 material textures

100

<ANVIDIA I

https://github.com/knarkowicz/GPURealTimeBC6H

22

Inference on Tiled Texture Streaming

Work in progress

Track which texture MIPs and tiles are needed

Upload NTC latents for those tiles to the GPU

Decompress the tiles and transcode them to BCn /_)\ Ty o \N{/\

Benefits compared to other NTC modes:
« No performance impact on the rendering passes

« No need for Stochastic Texture Filtering
« Extends existing texture streaming systems

Benefits compared to existing solutions:

- Reduced on-disk size of game assets

. Potentially faster streaming (depends on system specs) — ’“ Q =

Image: Streaming Virtual Texturing in Unreal Engine 5

« More VRAM needed for the same texel count

<ANVIDIA I

24

Contents of NTC Texture Sets

What to include and what to leave out

« BXDF inputs: include
 Thisis what NTC was made for

« Alpha mask: it's complicated

Too slow for inference in Z pre-pass or any-hit shaders

Too noisy for smooth gradients with alpha test -2

OK quality for leaves and similar cutouts

Can improve NTC compression quality

Overall: Include but transcode to a separate BC4 texture on load

+ Displacement:

Not needed at the same time as the other channels
Displacement precision could be critical

« Store separately as BC4 or BC6H

« BC6H wastes 2 channels but is 2 the size of FP16

Fuzzy alpha mask in the GLTF Alpha

lend Mode Test

<A NVIDIA. I

25

Integration Complexity

How difficult is NTC to implement in an engine?

We don't have much data about this yes

Asset pipeline: Easy to Difficult
« Texture conversion tools provided in the SDK

m_standard

- Easy for fixed material models like gITF

 Difficult to detect texture bundles in material graph systems

Inference on Load: Easy
 |njects a transcoding step into material loading phase

Inference on Sample: Moderate to Difficult
« Affects all shaders where materials are sampled

Inference on Tiled Streaming: Difficult i
- Tight integration into the streaming system

Bt @ ParPascn il Rna @

https://medium.com/engineering-joy/materials-in-unreal-
engine-4-28417504acd?2

~
- - 1 - - - > - -
L] ! L . L

https://www.tumblr.com/blueprintsfromhell

<ANVIDIA I

20

Tech and APl Readiness

When can | ship a game with NTC?

Compression: Ready

Inference on Load: Ready except...
« VK_NV_cooperative_vector extension is final and stable
- DP4a and other fallback versions are good

« Sometime mid-2025 maybe?

BCn transcoding: Ready

Inference on Sample: Ready except...
« Performance in complex shaders could be a challenge

<A NVIDIA I

2/

Conclusion

Let’s figure out the future of texture storage together!

- We provide basic tools for implementing NTC
« Compression tools and samples
+ Inference and BCn transcoding code that works everywhere

- There are open practical questions better addressed by engine
developers

 Inference on tiled texture streaming
- Texture bundles

» There are open research questions, too
« Can we use smaller MLPs to improve performance?
« Can we make Inference on Sample more efficient in complex shaders?
« Can we improve compression quality without sacrificing performance?
« Should we use a different quality metric instead of PSNR?

- ...But what we already have is quite impressive, try it out!

() nhttps://github.com/NVIDIA-RTX/RTXNTC

. '.p:*'
- ——

»
- -
)

ORK

A Few HARMLESS FLAKES WORKING TOGETHER CAN UNLEASH
AN AVALANCHE OF DESTRUCTION.

<ANVIDIA I

- AnvblIAE

. Questions? - |

alpanteleev@nvidia.com

@more_fps

	Default Section
	Slide 1: Practical Neural Texture Compression
	Slide 2: RTX Kit and Neural Rendering Initiative
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Neural vs Block Compression
	Slide 9: Neural Texture Compression
	Slide 10: Neural Texture Compression
	Slide 11: RTX Neural Texture Compression SDK
	Slide 12
	Slide 13: Algorithmic Improvements #1
	Slide 14: Algorithmic Improvements #2
	Slide 15: Algorithmic Improvements #3
	Slide 16: Compression Performance
	Slide 17: Compression Configuration Space
	Slide 18
	Slide 19: Inference on Sample
	Slide 20: Inference on Load
	Slide 21: Transcoding to BCn
	Slide 22: Inference on Tiled Texture Streaming
	Slide 23
	Slide 24: Contents of NTC Texture Sets
	Slide 25: Integration Complexity
	Slide 26: Tech and API Readiness
	Slide 27: Conclusion
	Slide 28

