-~
A l' o

N . The 7" Vulkan Devel Conf
(Vul Kanised 2025 Cambridge, UK | February 11-13, 2025

Integrating Bindless Vulkan with Ray
Tracing on Mobile Devices

Roman Kuznetsov, Meta
Sergey Kosarevsky, Meta

®

NOS

KHROS

Authors

Roman Kuznetsov

Software Engineer @ Meta

Formerly: Mapbox, Organic Maps (ex MAPS.ME), Alawar
GitHub: @rokuz

X (Twitter): @rokuz7

Sergey Kosarevsky

Software Engineer @ Meta

Formerly: Ubisoft RedLynx Rendering Lead
GitHub: @corporateshark

X (Twitter): @CorporateShark

This work is licensed under a Creative Commons Attribution 4.0 International License

Page 2

NOS

KHROS

Prerequisites

[Vulkanised 2024] Realistic Graphics with Ray Tracing on Mobile
lago Calvo Lista, Arm, Graphics Software Engineer.
https://youtu.be/jJyHzKWXEfY?si=DwH2 50 sAZe9LQr

[SIGGRAPH 2024] Designing Mobile Rendering Engines with "Bindless" Vulkan
Sergey Kosarevsky, Alexey Medvedev
https://doi.org/10.1145/3641233.3664326

This work is licensed under a Creative Commons Attribution 4.0 International License

Page 3

https://youtu.be/jJyHzkWXEfY?si=DwH2_5o_sAZe9LQr
https://doi.org/10.1145/3641233.3664326

Goals

- Demonstrate a practical approach to integrating Vulkan’s ray-tracing
with a “bindless” renderer

- Aim for GPUs designed for mobile devices

- Make it “lightweight” and open-source
(https://github.com/corporateshark/lightweightvk)

NOS

KHROS

This work is licensed under a Creative Commons Attribution 4.0 International License Page 4

https://github.com/corporateshark/lightweightvk

Reminder: What’s “bindless”?

VkDescriptorSetLayout + VkDescriptorPool Vkimage VkSampler

VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE [maxTextures]

VK_DESCRIPTOR_TYPE_SAMPLER [maxSamplers] ! !

VK_DESCR|PTOR_TYPE_STORAGE_|MAGE [maxTextures] | Descriptor index | | Descriptor index |
VKBuffer vkUpdateDescriptorSets()

vkGetBufferDeviceAddress() \

VkDeviceAddress VkDescriptorSet
vkAllocateDescriptorSets()
vkCmdPushConstants() / buffer data vkCmdBindDescriptorSets()
layout(std430, buffer_reference) readonly buffer VertexBuffer {
Vertex vertices([]; layout (set = 0, binding = 0) uniform texture2D kTextures2D[];
e 3 layout (set = 1, binding = 0) uniform texture3D kTextures3D[];
& layout(std430, buffer_reference) readonly buffer PerFrameBuffer { layout (set = 2, binding = 0) uniform textureCube kTexturesCubef];
=] mat4 viewProj; layout (set = 0, binding = 1) uniform sampler kSamplers][];
fo) 3 layout (set = 1, binding = 1) uniform samplerShadow kSamplersShadowf(];
~ layout(std430, buffer_reference) readonly buffer AddressBuffer { layout (set = 0, binding = 2, rgba8) uniform readonly image2D kTex2dIn[];
VertexBuffer vb; layout (set = 0, binding = 2, rgba8) uniform writeonly image2D kTex2dOut[];
Z © PerFrameBuffer perFrame;
vec4 textureBindless2D(uint textureid, uint samplerid, vec2 uv) {

};. i return texture(sampler2D(kTextures2D[textureid],
layout(push_constant) uniform constants { kSamplers[samplerid]), uv);
AddressBuffer ab; }

}pc;

KHR

This work is licensed under a Creative Commons Attribution 4.0 International License Page 5

Required extensions

VK_KHR_acceleration_structure (7% Android devices)
- VK_KHR_ray_query (7% Android devices)

- VK_KHR_ray_tracing_pipeline (0.7% of Android devices)

®

NOS

o Sources:

Extensions - Vulkan Hardware Database by Sascha Willems
VK_KHR_acceleration_structure - Vulkan Hardware Database by Sascha Willems
VK_KHR_ray_gquery - Vulkan Hardware Database by Sascha Willems

VK_KHR ray_tracing_pipeline - Vulkan Hardware Database by Sascha Willems

KHROS

This work is licensed under a Creative Commons Attribution 4.0 International License Page 6

https://vulkan.gpuinfo.org/listextensions.php?platform=android
https://vulkan.gpuinfo.org/listdevicescoverage.php?extension=VK_KHR_acceleration_structure&platform=android
https://vulkan.gpuinfo.org/listdevicescoverage.php?extension=VK_KHR_ray_query&platform=android
https://vulkan.gpuinfo.org/listdevicescoverage.php?extension=VK_KHR_ray_tracing_pipeline&platform=android

NOS

KHROS

What did we add to LightweightVK?

Acceleration structures (BLAS/TLAS) based on "handle-based
objects" to manage their lifecycle and enable access (specifically
TLAS) in shaders in a "bindless” way

The "Shader Binding Table" is hidden from users; instead, we use the
“ray-tracing pipeline” with shaders as the interface to ray-tracing

capabilities

Pipeline binding, descriptor set updates, and synchronization
barriers are all hidden from users

This work is licensed under a Creative Commons Attribution 4.0 International License

Ray query

Full ray-tracing pipeline

Page 7

Acceleration structures:

lvk: :Holder<lvk: :AccelStructHandle> lvk: :VulkanContext: :createAccelerationStructure (
const AccelStructDescé& desc,

Result* outResult) ;

// Example
res.BLAS = ctx ->createAccelerationStructure ({
.type = 1lvk::AccelStructType BLAS,
.geometryType 1lvk: :AccelStructGeomType Triangles,
.vertexFormat lvk: :VertexFormat: :Float3,
.vertexBuffer res.vertexBuffer, // NOTE! Reference to a handle
.numVertices = LVK ARRAY NUM ELEMENTS (vertices),
.indexFormat lvk::IndexFormat UI32,
.indexBuffer res.indexBuffer, // NOTE! Reference to a handle

.transformBuffer = transformBuffer, // NOTE'! Reference to a handle

.buildRange = {.primitiveCount = LVK ARRAY NUM ELEMENTS (indices) / 3},

This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: BLAS

.vertexBuffer = ctx ->createBuffer ({

.usage = lvk::BufferUsageBits AccelStructBuildInputReadOnly,
.storage = lvk::StorageType HostVisible,

.size sizeof (vertices),

.data vertices,

.indexBuffer = ctx ->createBuffer ({

.usage = lvk::BufferUsageBits AccelStructBuildInputReadOnly,
.storage = lvk::StorageType HostVisible,

.size sizeof (indices),

.data indices,

: :Holder<lvk: :BufferHandle> transformBuffer = ctx ->createBuffer ({

.usage = lvk::BufferUsageBits AccelStructBuildInputReadOnly,
.storage = lvk::StorageType HostVisible,
.size = sizeof (glm::mat3x4),

.data = &transformMatrix,

This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: BLAS

lvk: :AccelStructHandle 1lvk::VulkanContext: :createBLAS (const AccelStructDesc& desc, Result* outResult) {

const VkAccelerationStructureGeometryKHR accelerationStructureGeometry{

.geometry = ({

.triangles = {

.vertexData = {.deviceAddress = gpuAddress (desc.vertexBuffer)},

This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: BLAS

struct AccelerationStructure {
bool isTLAS = false;

VkAccelerationStructureBuildRangeInfoKHR buildRangeInfo
lvk: :AccelerationStructure accelStruct = {
VkAccelerationStructureKHR vkHandle = VK NULL HANDLE;

uint64 t deviceAddress = 0;
.buffer = createBuffer ({ -
1lvk: :Holder<lvk: :BufferHandle> buffer;
.usage = lvk::BufferUsageBits AccelStructStorage,

’

.storage = 1lvk::StorageType_ Device,
.size = accelerationStructureBuildSizesInfo.accelerationStructureSize,
.debugName = debugNameBuffer }),

}i

const VkAccelerationStructureCreateInfoKHR ciAccelerationStructure = {

.buffer = getVkBuffer (this, accelStruct.buffer),

¥

VK_ASSERT (vkCreateAccelerationStructureKHR (vkDevice , &ciAccelerationStructure,

nullptr, &accelStruct.vkHandle)) ;

This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: BLAS

lvk: :Holder<lvk: :BufferHandle> scratchBuffer = createBuffer ({
.usage = lvk::BufferUsageBits_ Storage,
.storage = lvk::StorageType Device,
.size = accelerationStructureBuildSizesInfo.buildScratchSize,
.overwrittenAlignment = props.minAccelerationStructureScratchOffsetAlignment,
.debugName = "Buffer: BLAS scratch",

}) s

const VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo{

.scratchData = {.deviceAddress = gpuAddress (scratchBuffer)},

};

lvk: :ICommandBuffer& buffer = acquireCommandBuffer() ;
vkCmdBuildAccelerationStructuresKHR (

lvk: :getVkCommandBuffer (buffer), 1, &accelerationBuildGeometryInfo, accelerationBuildStructureRangeInfos) ;

wait (submit (buffer, {}));

This work is licensed under a Creative Commons Attribution 4.0 International License

®

NOS

KHROS

Acceleration structures: BLAS

Validation Error: VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03710

Object 0: handle = 0xb4000077ba6e54d0, type = VK _OBJECT TYPE COMMAND BUFFER;
MessageID = 0x63£f£8904

vkCmdBuildAccelerationStructuresKHR() : pInfos[0].scratchData.deviceAddress (12887524100)
must be a multiple of minAccelerationStructureScratchOffsetAlignment (256).
The Vulkan spec states: For each element of pInfos, its scratchData.deviceAddress member

must be a multiple of
VkPhysicalDeviceAccelerationStructurePropertiesKHR: :minAccelerationStructureScratchOffset

Alignment

More details:
https://github.com/corporateshark/lightweightvk/pull/39

This work is licensed under a Creative Commons Attribution 4.0 International License

Page 13

https://github.com/corporateshark/lightweightvk/pull/39

Acceleration structures: BLAS

accelStruct.deviceAddress = vkGetAccelerationStructureDeviceAddressKHR (vkDevice ,

&accelerationDeviceAddressInfo) ;

return accelStructuresPool .create(std::move (accelStruct));

}

®

NQ

KHR

This work is licensed under a Creative Commons Attribution 4.0 International License Page 14

Acceleration structures: BLAS build error

You might exceed limits.maxStorageBufferRange for acceleration structures or scratch
buffer.

Mali-G715-Immortalis MC11 (v1.r38p1-01eac0.c1a71ccca2acf211eb87c5db5322f569) for Bistro mesh (2.8m primitives):
buildScratchSize = 7852992128 bytes (7.3GB)
accelerationStructureSize = 612837208 bytes (584.4MB)

maxStorageBufferSize = 268435456 bytes (256Mb)

®

8: It requires to subdivide BLAS at least into 30 parts to build on device!
o
Z © Samsung Xclipse 940 for the same mesh:
buildScratchSize = 601488316 bytes (573.6Mb)
accelerationStructureSize = 461519536 bytes (440.1MB)
More details:
maxStorageBufferSize = -1 (No limits) https://qithub.com/corporateshark/lightweightvk/pull/37

KHROS

This work is licensed under a Creative Commons Attribution 4.0 International License

Page 15

https://github.com/corporateshark/lightweightvk/pull/37

Acceleration structures: TLAS

res.instancesBuffer = ctx ->createBuffer (lvk::BufferDesc{
.usage = lvk::BufferUsageBits AccelStructBuildInputReadOnly,
.storage = lvk::StorageType HostVisible,
.size = sizeof (lvk: :AccelStructInstance),
.data = &instance,
.debugName = "instanceBuffer",

Y

res.TLAS = ctx ->createAccelerationStructure ({
.type = 1lvk::AccelStructType TLAS,
.geometryType = lvk::AccelStructGeomType Instances,
.instancesBuffer = res.instancesBuffer,
.buildRange = {.primitiveCount = 1},
.buildFlags = lvk::AccelStructBuildFlagBits PreferFastTrace |

lvk: :AccelStructBuildFlagBits AllowUpdate,

This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: TLAS

res.instancesBuffer = ctx ->createBuffer (lvk::BufferDesc{
.usage = lvk::BufferUsageBits AccelStructBuildInputReadOnly,
.storage = lvk::StorageType HostVisible,
.size = sizeof (lvk: :AccelStructInstance),
.data = &instance,
.debugName = "instanceBuffer",

Y

res.TLAS = ctx ->createAccelerationStructure ({
.type = 1lvk::AccelStructType TLAS,
.geometryType = lvk::AccelStructGeomType Instances,
.instancesBuffer = res.instancesBuffer,
.buildRange = {.primitiveCount = 1},
.buildFlags = lvk::AccelStructBuildFlagBits PreferFastTrace |

lvk: :AccelStructBuildFlagBits AllowUpdate,

This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: TLAS in ray-gen
shader

#extension GL_EXT ray tracing : require

#extension GL_EXT buffer reference : require
layout (set = 0, binding = 4) uniform accelerationStructureEXT kTLAS[];

layout (push_constant) uniform constants ({

uint tlas;

|

void main() {

traceRayEXT (kTLAS[tlas], gl _RayFlagsOpaqueEXT, Oxff, 0, 0, 0, origin.xyz, tmin, direction.xyz, tmax, 0);

This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: TLAS in fragment
shader for ray query

#extension GL_EXT ray query : require

layout(set = 0, binding = 4) uniform accelerationStructureEXT kTLAS[];

layout (push _constant) uniform constants {

uint tlas;

} pc;

float traceAO (rayQueryEXT rq, vec3 origin, vec3 dir) {

uint flags = pc.aoDistanceBased ? gl RayFlagsTerminateOnFirstHitEXT : gl RayFlagsNoneEXT;

rayQueryInitializeEXT (rq, kTLAS[pc.tlas], flags, OxFF, origin, 0.0f, dir, pc.aoRadius);
while (rayQueryProceedEXT (rqg)) {}

if (rayQueryGetIntersectionTypeEXT (rq, true) != gl RayQueryCommittedIntersectionNoneEXT) ({
if (pc.aoDistanceBased) return 1;
float length = 1.0 - (rayQueryGetIntersectionTEXT (rq, true) / pc.aoRadius) ;
return length;

}

return 0;

This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: TLAS in updating
descriptor sets

std: :vector<VkAccelerationStructureKHR> handlesAccelStructs;

handlesAccelStructs.reserve (accelStructuresPool .objects .size()) ;
VkAccelerationStructureKHR dummyTLAS = VK NULL HANDLE;
for (const auto& as : accelStructuresPool .objects) {

if (as.obj_.vkHandle && as.obj .isTLAS) {

dummyTLAS = as.obj_.vkHandle;

}

for (const auto& as : accelStructuresPool .objects_) ({

handlesAccelStructs.push back(as.obj_ .isTLAS ? as.obj_ .vkHandle : dummyTLAS) ;

VkWriteDescriptorSetAccelerationStructureKHR writeAccelStruct = {
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR,
.accelerationStructureCount = (uint32_t)handlesAccelStructs.size(),

.pAccelerationStructures = handlesAccelStructs.data(),

This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: set and update
TLAS

struct {
uint64_t camBuffer;
uint32_ t outTexture;
uint32_t tlas;
float time;

} pec = {

.tlas = res.TLAS.index(),

iy

buffer.cmdUpdateTLAS (res.TLAS, res.instancesBuffer);
buffer.cmdBindRayTracingPipeline (res.pipeline) ;
buffer.cmdPushConstants (pc) ;
buffer.cmdTraceRays ((uint32_t)width , (uint32_t)height , 1,

{.textures = {lvk::TextureHandle (res.storagelImage)}}) ;

buffer.cmdCopyImage (res.storageImage, ctx ->getCurrentSwapchainTexture(),

ctx ->getDimensions (ctx_->getCurrentSwapchainTexture())) ;

This work is licensed under a Creative Commons Attribution 4.0 International License

Ray-tracing pipeline

struct RayTracingPipelineDesc final {
ShaderModuleHandle smRayGen[LVK MAX RAY TRACING SHADER GROUP_SIZE] = {};
ShaderModuleHandle smAnyHit[LVK MAX RAY TRACING SHADER GROUP_SIZE] = {};
ShaderModuleHandle smClosestHit[LVK MAX RAY TRACING SHADER GROUP SIZE] = {};
ShaderModuleHandle smMiss[LVK MAX RAY TRACING SHADER GROUP_SIZE] = {};

ShaderModuleHandle smIntersection[LVK MAX RAY TRACING SHADER GROUP SIZE] = {};

ShaderModuleHandle smCallable[LVK MAX RAY TRACING SHADER GROUP_SIZE] = {};

SpecializationConstantDesc specInfo = {};

®

o const char* entryPoint = "main";

const char* debugName = "";

NQ

KHR

This work is licensed under a Creative Commons Attribution 4.0 International License Page 22

®

-
O
Z

(]

KHROS

Ray-tracing pipeline

RayTracingPipelineDesc

Pipeline layout and
VkPipeline for ray-tracing

Push constants mask

This work is licensed under a Creative Commons Attribution 4.0 International License

Shader binding table

(Ivk::Holder<Ivk::BufferHandle>)

Page 23

®

NOS

KHROS

Shader binding table

Shader groups and indexes defined by the order of shader modules in Ivk::RayTracingPipelineDesc

rayTracingPipeline = ctx ->createRayTracingPipeline (lvk::RayTracingPipelineDesc{

.smRayGen = {smRaygen },
.smClosestHit = {smHit },
.smMiss = {smMiss_ , smMissShadow },

});

In this example,

Group 0: [smRaygen_]
Group 1: [smMiss_]

Group 2: [smMissShadow_]
Group 3: [smHit_]

Note: corresponding any-hit, closest-hit and intersection shader will be put to the same group

This work is licensed under a Creative Commons Attribution 4.0 International License

Page 24

Shader binding table

To access specific miss shader by index in 1vk: :RayTracingPipelineDesc: : smMiss__ array, just use
missIndex parameter in traceRayEXT(...)

isShadowed = true;

vec3 hitPoint = gl WorldRayOriginEXT + gl WorldRayDirectionEXT * gl HitTEXT;

traceRayEXT (kTLAS[tlas],

gl RayFlagsTerminateOnFirstHitEXT | gl RayFlagsOpaqueEXT | gl RayFlagsSkipClosestHitShaderEXT,
oxff, 0, O, , hitPoint, tmin, lightDir.xyz, tmax, 1);

The access to the specific hit/intersections shaders may be a bit trickier depending on the your setup.

®

Oo Formula (see https://docs.vulkan.org/spec/latest/chapters/raytracing.html for details):

pHitShaderBindingTable->deviceAddress + pHitShaderBindingTable->stride x
(instanceShaderBindingTableRecordOffset + geometryIndex x sbtRecordStride + sbtRecordOffset)

In simple cases (if instanceShaderBindingTableRecordOffset == 0 and sbtRecordStride == 0),
sbtRecordOffset can be used the same way as missIndex.

KHR

This work is licensed under a Creative Commons Attribution 4.0 International License Page 25

https://docs.vulkan.org/spec/latest/chapters/raytracing.html

Ray-tracing pipeline state

struct RayTracingPipelineState final {

RayTracingPipelineDesc desc_;

VkDescriptorSetLayout lastVkDescriptorSetLayout = VK NULL HANDLE;
VkShaderStageFlags shaderstageFlags_ = 0;

VkPipelineLayout pipelineLayout = VK NULL HANDLE;

VkPipeline pipeline = VK NULL HANDLE;

void* specConstantDataStorage_ = nullptr;

lvk: :Holder<lvk: :BufferHandle> sbt;
VkStridedDeviceAddressRegionKHR sbtEntryRayGen = {};
VkStridedDeviceAddressRegionKHR sbtEntryMiss = {};

VkStridedDeviceAddressRegionKHR sbtEntryHit = {};

VkStridedDeviceAddressRegionKHR sbtEntryCallable = {};

This work is licensed under a Creative Commons Attribution 4.0 International License

Bind ray-tracing pipeline state

void lvk::CommandBuffer: :cmdBindRayTracingPipeline (lvk: :RayTracingPipelineHandle handle) ({
const lvk::RayTracingPipelineState* rtps = ctx ->rayTracingPipelinesPool .get (handle) ;

if (lastPipelineBound !'= pipeline) ({

lastPipelineBound = pipeline;

vkCmdBindPipeline (wrapper ->cmdBuf , VK PIPELINE BIND POINT RAY TRACING KHR, pipeline) ;

ctx ->checkAndUpdateDescriptorSets() ;

ctx ->bindDefaultDescriptorSets (wrapper ->cmdBuf ,

®

a VK_PIPELINE BIND POINT RAY TRACING KHR, rtps->pipelinelayout);

NOS

KHR

This work is licensed under a Creative Commons Attribution 4.0 International License Page 27

Bind ray-tracing pipeline state

void 1lvk::CommandBuffer: :cmdTraceRays (uint32 t width, uint32 t height, uint32 t depth,

const Dependenciesé& deps) ({
lvk: :RayTracingPipelineState* rtps =

ctx ->rayTracingPipelinesPool .get (currentPipelineRayTracing) ;

vkCmdTraceRaysKHR (
wrapper ->cmdBuf , &rtps->sbtEntryRayGen, &rtps->sbtEntryMiss, &rtps->sbtEntryHit,
&rtps->sbtEntryCallable, width, height, depth) ;

®

NOS

KHR

This work is licensed under a Creative Commons Attribution 4.0 International License Page 28

Synchronization: barriers for buffers and
transition layouts for images

void 1lvk::CommandBuffer: :cmdTraceRays (uint32 t width, uint32 t height, uint32 t depth,

const Dependencies& deps) ({

for (uint32_t i = 0; i !'= Dependencies::LVK MAX SUBMIT DEPENDENCIES && deps.textures[i]; i++) {

useComputeTexture (deps. textures[i], VK_PIPELINE STAGE_RAY TRACING SHADER BIT KHR);

}
for (uint32 t i = 0; i != Dependencies::LVK MAX SUBMIT DEPENDENCIES && deps.buffers[i]; i++) {

bufferBarrier (deps.buffers[i],
VK_PIPELINE STAGE_VERTEX INPUT BIT | VK _PIPELINE STAGE_FRAGMENT SHADER BIT,

VK_PIPELINE STAGE RAY TRACING SHADER BIT KHR);

vkCmdTraceRaysKHR (
wrapper ->cmdBuf , &rtps->sbtEntryRayGen, &rtps->sbtEntryMiss, &rtps->sbtEntryHit,
&rtps->sbtEntryCallable, width, height, depth);

This work is licensed under a Creative Commons Attribution 4.0 International License

Synchronization: barriers in updating TLAS

void lvk::CommandBuffer: :cmdUpdateTLAS (AccelStructHandle handle, BufferHandle instancesBuffer)
//
const VkBufferMemoryBarrier2 barriers[] = {
{
.sType = VK_STRUCTURE_TYPE BUFFER MEMORY BARRIER 2,
.srcStageMask = VK_PIPELINE_STAGE_RAY TRACING SHADER BIT KHR,
.srcAccessMask = VK_ACCESS_MEMORY READ BIT,
.dstStageMask = VK _PIPELINE STAGE ACCELERATION STRUCTURE BUILD BIT KHR,
.dstAccessMask = VK_ACCESS_MEMORY READ BIT | VK_ACCESS_MEMORY WRITE BIT,
.buffer = getVkBuffer(ctx , handle),
.size = VK_WHOLE_SIZE,

.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY BARRIER 2,

.srcStageMask = VK _PIPELINE STAGE TRANSFER BIT | VK _PIPELINE STAGE HOST BIT,
.srcAccessMask = VK _ACCESS MEMORY WRITE BIT,

.dstStageMask = VK_PIPELINE STAGE ACCELERATION STRUCTURE BUILD BIT KHR,
.dstAccessMask = VK_ACCESS MEMORY READ BIT,

.buffer = getVkBuffer(ctx , instancesBuffer),

.size = VK_WHOLE SIZE,

This work is licensed under a Creative Commons Attribution 4.0 International License

Synchronization: barriers in updating TLAS

const VkDependencyInfo dependencyInfo{
.sType = VK_STRUCTURE_TYPE DEPENDENCY INFO,
.bufferMemoryBarrierCount = LVK ARRAY NUM ELEMENTS (barriers),
.pBufferMemoryBarriers = barriers,

}i

vkCmdPipelineBarrier2 (wrapper ->cmdBuf , &dependencyInfo) ;

vkCmdBuildAccelerationStructuresKHR (wrapper ->cmdBuf , 1, &accelerationBuildGeometryInfo,
accelerationBuildStructureRangeInfos) ;

const VkBufferMemoryBarrier2 barrier = {

.sType = VK_STRUCTURE_TYPE BUFFER MEMORY BARRIER 2,

.srcStageMask = VK _PIPELINE STAGE ACCELERATION STRUCTURE BUILD BIT KHR,
.srcAccessMask = VK_ACCESS_MEMORY READ BIT | VK _ACCESS_MEMORY WRITE BIT,
.dstStageMask = VK_PIPELINE STAGE_RAY TRACING SHADER BIT KHR,
.dstAccessMask = VK_ACCESS_MEMORY READ BIT,

.buffer = getVkBuffer(ctx , handle),
.offset = 0, .size = VK WHOLE SIZE,
}7
const VkDependencyInfo dependencyInfo{.sType = VK _STRUCTURE TYPE DEPENDENCY INFO,
.bufferMemoryBarrierCount = 1, .pBufferMemoryBarriers = &barrier};

vkCmdPipelineBarrier2 (wrapper ->cmdBuf , &dependencyInfo) ;

This work is licensed under a Creative Commons Attribution 4.0 International License

®

NOS

KHROS

Synchronization: transition layouts during
copying image to a swapchain

buffer.cmdTraceRays ((ywidth , (Yheight , 1,

{.textures = {lvk::TextureHandle (res.storagelImage)}}) ;

buffer.cmdCopyImage (res.storageImage, ctx ->getCurrentSwapchainTexture(),

ctx ->getDimensions (ctx ->getCurrentSwapchainTexture())) ;

See implementation of cmdCopylmage() here:

https://qithub.com/corporateshark/lightweightvk/blob/c297911d8daefb26d4e0a9826a667c6e
a9807a46/Ivk/vulkan/VulkanClasses.cpp#L 2667

This work is licensed under a Creative Commons Attribution 4.0 International License

Page 32

https://github.com/corporateshark/lightweightvk/blob/c297911d8daefb26d4e0a9826a667c6ea9807a46/lvk/vulkan/VulkanClasses.cpp#L2667
https://github.com/corporateshark/lightweightvk/blob/c297911d8daefb26d4e0a9826a667c6ea9807a46/lvk/vulkan/VulkanClasses.cpp#L2667

®

NOS

KHROS

Demo: Ambient occlusion + shadows using
ray queries

1457 @G Fh 10('):’{0!

Ms :243

Resolution: ~720P, scene: 260K triangles, no MSAA

Samsung 524 (SM-5921B, GPU: Samsung Xclipse 940) Xiaomi 13T (GPU: Mali-G715-Immortalis MC11)
Frame time: 24.3ms Frame time: 493ms

This work is licensed under a Creative Commons Attribution 4.0 International License

Page 33

®

NO

KHR

o

R

Demo: Ambient occlusion + shadows using
ray queries

P L 2V U0 AL i

Resolution: ~720P, scene: 2.8M triangles, no MSAA

Samsung S24 (SM-S921B, GPU: Samsung Xclipse 940) Xiaomi 13T (GPU: Mali-G715-Immortalis MC11)
Frame time: 220ms Frame time: 550ms

This work is licensed under a Creative Commons Attribution 4.0 International License

Page 34

KHROS

Demo: Full ray-tracing pipeline

0935 @

Resolution: ~720P, scene: 260K triangles
Samsung S24 (SM-S921B, GPU: Samsung Xclipse 940)
Frame time: 12.1ms

This work is licensed under a Creative Commons Attribution 4.0 International License

Z% .l 100%8
¥PS: 82

Ms :12.1

Page 35

KHROS

Demo: Full ray-tracing pipeline

10:55 B @ ' | -

Resolution: ~720P, scene: 2.8M triangles
Samsung S24 (SM-S921B, GPU: Samsung Xclipse 940)
Frame time: 14.9ms

This work is licensed under a Creative Commons Attribution 4.0 International License

Page 36

NOS

KHROS

Outcomes

- Ray-tracing can be done “lightweight”, please refer to LVK repository
(https://github.com/corporateshark/lightweightvk)

- VK_KHR_ray_query is more common on the mass-market devices (7%) in
comparison with VK_KHR_ray_tracing_pipeline (0.7%).

- Some mobile GPUs demonstrate outstanding performance doing hardware
accelerated realtime ray-tracing, some are not yet

This work is licensed under a Creative Commons Attribution 4.0 International License

Page 37

https://github.com/corporateshark/lightweightvk

Q&A

®

NQ

KHR

This work is licensed under a Creative Commons Attribution 4.0 International License Page 38

