
The 7th Vulkan Developer Conference
Cambridge, UK | February 11-13, 20252025

Integrating Bindless Vulkan with Ray
Tracing on Mobile Devices

Roman Kuznetsov, Meta
Sergey Kosarevsky, Meta

Page 2This work is licensed under a Creative Commons Attribution 4.0 International License

Authors
Roman Kuznetsov

Software Engineer @ Meta
Formerly: Mapbox, Organic Maps (ex MAPS.ME), Alawar
GitHub: @rokuz
X (Twitter): @rokuz7

Sergey Kosarevsky

Software Engineer @ Meta
Formerly: Ubisoft RedLynx Rendering Lead
GitHub: @corporateshark
X (Twitter): @CorporateShark

oman Kuznetsov

Page 3This work is licensed under a Creative Commons Attribution 4.0 International License

Prerequisites

- [Vulkanised 2024] Realistic Graphics with Ray Tracing on Mobile
Iago Calvo Lista, Arm, Graphics Software Engineer.
https://youtu.be/jJyHzkWXEfY?si=DwH2_5o_sAZe9LQr

- [SIGGRAPH 2024] Designing Mobile Rendering Engines with "Bindless" Vulkan
Sergey Kosarevsky, Alexey Medvedev
https://doi.org/10.1145/3641233.3664326

https://youtu.be/jJyHzkWXEfY?si=DwH2_5o_sAZe9LQr
https://doi.org/10.1145/3641233.3664326

Page 4This work is licensed under a Creative Commons Attribution 4.0 International License

Goals

- Demonstrate a practical approach to integrating Vulkan’s ray-tracing
with a “bindless” renderer

- Aim for GPUs designed for mobile devices

- Make it “lightweight” and open-source
(https://github.com/corporateshark/lightweightvk)

https://github.com/corporateshark/lightweightvk

Page 5This work is licensed under a Creative Commons Attribution 4.0 International License

Reminder: What’s “bindless”?

VkBuffer

VkDeviceAddress

vkGetBufferDeviceAddress()

layout(std430, buffer_reference) readonly buffer VertexBuffer {
 Vertex vertices[];
};
layout(std430, buffer_reference) readonly buffer PerFrameBuffer {
 mat4 viewProj;
};
layout(std430, buffer_reference) readonly buffer AddressBuffer {
 VertexBuffer vb;
 PerFrameBuffer perFrame;
 …
};
layout(push_constant) uniform constants {
 AddressBuffer ab;
} pc;

vkCmdPushConstants() / buffer data

VkDescriptorSetLayout + VkDescriptorPool
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE [maxTextures]
VK_DESCRIPTOR_TYPE_SAMPLER [maxSamplers]
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE [maxTextures]

VkDescriptorSet
vkAllocateDescriptorSets()

vkCmdBindDescriptorSets()

vkUpdateDescriptorSets()

VkImage VkSampler

Descriptor index Descriptor index

layout (set = 0, binding = 0) uniform texture2D kTextures2D[];
layout (set = 1, binding = 0) uniform texture3D kTextures3D[];
layout (set = 2, binding = 0) uniform textureCube kTexturesCube[];
layout (set = 0, binding = 1) uniform sampler kSamplers[];
layout (set = 1, binding = 1) uniform samplerShadow kSamplersShadow[];
layout (set = 0, binding = 2, rgba8) uniform readonly image2D kTex2dIn[];
layout (set = 0, binding = 2, rgba8) uniform writeonly image2D kTex2dOut[];

vec4 textureBindless2D(uint textureid, uint samplerid, vec2 uv) {
 return texture(sampler2D(kTextures2D[textureid],
 kSamplers[samplerid]), uv);
}

Page 6This work is licensed under a Creative Commons Attribution 4.0 International License

Required extensions

- VK_KHR_acceleration_structure (7% Android devices)

- VK_KHR_ray_query (7% Android devices)

- VK_KHR_ray_tracing_pipeline (0.7% of Android devices)

Sources:
Extensions - Vulkan Hardware Database by Sascha Willems
VK_KHR_acceleration_structure - Vulkan Hardware Database by Sascha Willems
VK_KHR_ray_query - Vulkan Hardware Database by Sascha Willems
VK_KHR_ray_tracing_pipeline - Vulkan Hardware Database by Sascha Willems

https://vulkan.gpuinfo.org/listextensions.php?platform=android
https://vulkan.gpuinfo.org/listdevicescoverage.php?extension=VK_KHR_acceleration_structure&platform=android
https://vulkan.gpuinfo.org/listdevicescoverage.php?extension=VK_KHR_ray_query&platform=android
https://vulkan.gpuinfo.org/listdevicescoverage.php?extension=VK_KHR_ray_tracing_pipeline&platform=android

Page 7This work is licensed under a Creative Commons Attribution 4.0 International License

What did we add to LightweightVK?

- Acceleration structures (BLAS/TLAS) based on "handle-based
objects" to manage their lifecycle and enable access (specifically
TLAS) in shaders in a "bindless" way

- The "Shader Binding Table" is hidden from users; instead, we use the
"ray-tracing pipeline" with shaders as the interface to ray-tracing
capabilities

- Pipeline binding, descriptor set updates, and synchronization
barriers are all hidden from users

Ra
y

qu
er

y

Fu
ll

ra
y-

tr
ac

in
g

pi
pe

lin
e

Page 8This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: BLAS
lvk::Holder<lvk::AccelStructHandle> lvk::VulkanContext::createAccelerationStructure(

 const AccelStructDesc& desc,

 Result* outResult);

// Example

res.BLAS = ctx_->createAccelerationStructure({

 .type = lvk::AccelStructType_BLAS,

 .geometryType = lvk::AccelStructGeomType_Triangles,

 .vertexFormat = lvk::VertexFormat::Float3,

 .vertexBuffer = res.vertexBuffer, // NOTE! Reference to a handle

 .numVertices = LVK_ARRAY_NUM_ELEMENTS(vertices),

 .indexFormat = lvk::IndexFormat_UI32,

 .indexBuffer = res.indexBuffer, // NOTE! Reference to a handle

 .transformBuffer = transformBuffer, // NOTE! Reference to a handle

 .buildRange = {.primitiveCount = LVK_ARRAY_NUM_ELEMENTS(indices) / 3},

 });

Page 9This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: BLAS
 res.vertexBuffer = ctx_->createBuffer({

 .usage = lvk::BufferUsageBits_AccelStructBuildInputReadOnly,

 .storage = lvk::StorageType_HostVisible,

 .size = sizeof(vertices),

 .data = vertices,

 });

 res.indexBuffer = ctx_->createBuffer({

 .usage = lvk::BufferUsageBits_AccelStructBuildInputReadOnly,

 .storage = lvk::StorageType_HostVisible,

 .size = sizeof(indices),

 .data = indices,

 });

 lvk::Holder<lvk::BufferHandle> transformBuffer = ctx_->createBuffer({

 .usage = lvk::BufferUsageBits_AccelStructBuildInputReadOnly,

 .storage = lvk::StorageType_HostVisible,

 .size = sizeof(glm::mat3x4),

 .data = &transformMatrix,

 });

Page 10This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: BLAS
lvk::AccelStructHandle lvk::VulkanContext::createBLAS(const AccelStructDesc& desc, Result* outResult) {

 // 1. Convert handles to GPU addresses

 // ...

 const VkAccelerationStructureGeometryKHR accelerationStructureGeometry{

 // ...

 .geometry = {

 .triangles = {

 // ...

 .vertexData = {.deviceAddress = gpuAddress(desc.vertexBuffer)},

 // ...

 },

 },

 // ...

 };

 // ...

Page 11This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: BLAS
// 2. Create acceleration structure

lvk::AccelerationStructure accelStruct = {

 // ...

 .buffer = createBuffer({

 .usage = lvk::BufferUsageBits_AccelStructStorage,

 .storage = lvk::StorageType_Device,

 .size = accelerationStructureBuildSizesInfo.accelerationStructureSize,

 .debugName = debugNameBuffer }),

};

const VkAccelerationStructureCreateInfoKHR ciAccelerationStructure = {

 // ...

 .buffer = getVkBuffer(this, accelStruct.buffer),

 // ...

};

VK_ASSERT(vkCreateAccelerationStructureKHR(vkDevice_, &ciAccelerationStructure,

 nullptr, &accelStruct.vkHandle));

struct AccelerationStructure {

 bool isTLAS = false;

 VkAccelerationStructureBuildRangeInfoKHR buildRangeInfo = {};

 VkAccelerationStructureKHR vkHandle = VK_NULL_HANDLE;

 uint64_t deviceAddress = 0;

 lvk::Holder<lvk::BufferHandle> buffer;

};

Page 12This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: BLAS
 // 3. Create scratch buffer and build acceleration structure using command buffer

 lvk::Holder<lvk::BufferHandle> scratchBuffer = createBuffer({

 .usage = lvk::BufferUsageBits_Storage,

 .storage = lvk::StorageType_Device,

 .size = accelerationStructureBuildSizesInfo.buildScratchSize,

 .overwrittenAlignment = props.minAccelerationStructureScratchOffsetAlignment,

 .debugName = "Buffer: BLAS scratch",

 });

 const VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo{

 // ...

 .scratchData = {.deviceAddress = gpuAddress(scratchBuffer)},

 };

 // ...

 lvk::ICommandBuffer& buffer = acquireCommandBuffer();

 vkCmdBuildAccelerationStructuresKHR(

 lvk::getVkCommandBuffer(buffer), 1, &accelerationBuildGeometryInfo, accelerationBuildStructureRangeInfos);

 wait(submit(buffer, {}));

Page 13This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: BLAS
Validation Error: VUID-vkCmdBuildAccelerationStructuresKHR-pInfos-03710

Object 0: handle = 0xb4000077ba6e54d0, type = VK_OBJECT_TYPE_COMMAND_BUFFER;
MessageID = 0x63ff8904

vkCmdBuildAccelerationStructuresKHR(): pInfos[0].scratchData.deviceAddress (12887524100)
must be a multiple of minAccelerationStructureScratchOffsetAlignment (256).
The Vulkan spec states: For each element of pInfos, its scratchData.deviceAddress member

must be a multiple of

VkPhysicalDeviceAccelerationStructurePropertiesKHR::minAccelerationStructureScratchOffset

Alignment

More details:
https://github.com/corporateshark/lightweightvk/pull/39

https://github.com/corporateshark/lightweightvk/pull/39

Page 14This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: BLAS
 // 4. Extract physical device address and put acceleration structure to a pool accessing by handle

 // ...

 accelStruct.deviceAddress = vkGetAccelerationStructureDeviceAddressKHR(vkDevice_,

 &accelerationDeviceAddressInfo);

 return accelStructuresPool_.create(std::move(accelStruct));

}

Page 15This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: BLAS build error

You might exceed limits.maxStorageBufferRange for acceleration structures or scratch
buffer.

Mali-G715-Immortalis MC11 (v1.r38p1-01eac0.c1a71ccca2acf211eb87c5db5322f569) for Bistro mesh (2.8m primitives):
buildScratchSize = 7852992128 bytes (7.3GB)
accelerationStructureSize = 612837208 bytes (584.4MB)

maxStorageBufferSize = 268435456 bytes (256Mb)

It requires to subdivide BLAS at least into 30 parts to build on device!

Samsung Xclipse 940 for the same mesh:
buildScratchSize = 601488316 bytes (573.6Mb)
accelerationStructureSize = 461519536 bytes (440.1MB)

maxStorageBufferSize = -1 (No limits)
More details:
https://github.com/corporateshark/lightweightvk/pull/37

https://github.com/corporateshark/lightweightvk/pull/37

Page 16This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: TLAS
 // Initialize TLAS in a similar way referencing to BLAS in instance buffer

res.instancesBuffer = ctx_->createBuffer(lvk::BufferDesc{

 .usage = lvk::BufferUsageBits_AccelStructBuildInputReadOnly,

 .storage = lvk::StorageType_HostVisible,

 .size = sizeof(lvk::AccelStructInstance),

 .data = &instance,

 .debugName = "instanceBuffer",

});

res.TLAS = ctx_->createAccelerationStructure({

 .type = lvk::AccelStructType_TLAS,

 .geometryType = lvk::AccelStructGeomType_Instances,

 .instancesBuffer = res.instancesBuffer,

 .buildRange = {.primitiveCount = 1},

 .buildFlags = lvk::AccelStructBuildFlagBits_PreferFastTrace |

 lvk::AccelStructBuildFlagBits_AllowUpdate,

});

Page 17This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: TLAS
 // Initialize TLAS in a similar way referencing to BLAS in instance buffer

res.instancesBuffer = ctx_->createBuffer(lvk::BufferDesc{

 .usage = lvk::BufferUsageBits_AccelStructBuildInputReadOnly,

 .storage = lvk::StorageType_HostVisible,

 .size = sizeof(lvk::AccelStructInstance),

 .data = &instance,

 .debugName = "instanceBuffer",

});

res.TLAS = ctx_->createAccelerationStructure({

 .type = lvk::AccelStructType_TLAS,

 .geometryType = lvk::AccelStructGeomType_Instances,

 .instancesBuffer = res.instancesBuffer,

 .buildRange = {.primitiveCount = 1},

 .buildFlags = lvk::AccelStructBuildFlagBits_PreferFastTrace |

 lvk::AccelStructBuildFlagBits_AllowUpdate,

});

Page 18This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: TLAS in ray-gen
shader
#extension GL_EXT_ray_tracing : require

#extension GL_EXT_buffer_reference : require

// ...

layout (set = 0, binding = 4) uniform accelerationStructureEXT kTLAS[];

// ...

layout(push_constant) uniform constants {

 // ...

 uint tlas;

};

// ...

void main() {

 // ...

 traceRayEXT(kTLAS[tlas], gl_RayFlagsOpaqueEXT, 0xff, 0, 0, 0, origin.xyz, tmin, direction.xyz, tmax, 0);

 // ...

}

Page 19This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: TLAS in fragment
shader for ray query
#extension GL_EXT_ray_query : require

// ...

layout(set = 0, binding = 4) uniform accelerationStructureEXT kTLAS[];

layout(push_constant) uniform constants {

 // ...

 uint tlas;

} pc;

float traceAO(rayQueryEXT rq, vec3 origin, vec3 dir) {

 uint flags = pc.aoDistanceBased ? gl_RayFlagsTerminateOnFirstHitEXT : gl_RayFlagsNoneEXT;

 rayQueryInitializeEXT(rq, kTLAS[pc.tlas], flags, 0xFF, origin, 0.0f, dir, pc.aoRadius);

 while (rayQueryProceedEXT(rq)) {}

 if (rayQueryGetIntersectionTypeEXT(rq, true) != gl_RayQueryCommittedIntersectionNoneEXT) {

 if (pc.aoDistanceBased) return 1;

 float length = 1.0 - (rayQueryGetIntersectionTEXT(rq, true) / pc.aoRadius);

 return length;

 }

 return 0;

}

Page 20This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: TLAS in updating
descriptor sets
 std::vector<VkAccelerationStructureKHR> handlesAccelStructs;

 handlesAccelStructs.reserve(accelStructuresPool_.objects_.size());

 VkAccelerationStructureKHR dummyTLAS = VK_NULL_HANDLE;

 // use the first valid TLAS as a dummy

 for (const auto& as : accelStructuresPool_.objects_) {

 if (as.obj_.vkHandle && as.obj_.isTLAS) {

 dummyTLAS = as.obj_.vkHandle;

 }

 }

 for (const auto& as : accelStructuresPool_.objects_) {

 handlesAccelStructs.push_back(as.obj_.isTLAS ? as.obj_.vkHandle : dummyTLAS);

 }

 VkWriteDescriptorSetAccelerationStructureKHR writeAccelStruct = {

 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR,

 .accelerationStructureCount = (uint32_t)handlesAccelStructs.size(),

 .pAccelerationStructures = handlesAccelStructs.data(),

 };

Page 21This work is licensed under a Creative Commons Attribution 4.0 International License

Acceleration structures: set and update
TLAS
struct {

 uint64_t camBuffer;

 uint32_t outTexture;

 uint32_t tlas;

 float time;

 } pc = {

 // ...

 .tlas = res.TLAS.index(),

 };

 buffer.cmdUpdateTLAS(res.TLAS, res.instancesBuffer);

 buffer.cmdBindRayTracingPipeline(res.pipeline);

 buffer.cmdPushConstants(pc);

 buffer.cmdTraceRays((uint32_t)width_, (uint32_t)height_, 1,

 {.textures = {lvk::TextureHandle(res.storageImage)}});

 buffer.cmdCopyImage(res.storageImage, ctx_->getCurrentSwapchainTexture(),

 ctx_->getDimensions(ctx_->getCurrentSwapchainTexture()));

Page 22This work is licensed under a Creative Commons Attribution 4.0 International License

Ray-tracing pipeline

// Ray-tracing pipeline descriptor contains LightweightVK handles of shader modules

struct RayTracingPipelineDesc final {

 ShaderModuleHandle smRayGen[LVK_MAX_RAY_TRACING_SHADER_GROUP_SIZE] = {};

 ShaderModuleHandle smAnyHit[LVK_MAX_RAY_TRACING_SHADER_GROUP_SIZE] = {};

 ShaderModuleHandle smClosestHit[LVK_MAX_RAY_TRACING_SHADER_GROUP_SIZE] = {};

 ShaderModuleHandle smMiss[LVK_MAX_RAY_TRACING_SHADER_GROUP_SIZE] = {};

 ShaderModuleHandle smIntersection[LVK_MAX_RAY_TRACING_SHADER_GROUP_SIZE] = {};

 ShaderModuleHandle smCallable[LVK_MAX_RAY_TRACING_SHADER_GROUP_SIZE] = {};

 SpecializationConstantDesc specInfo = {};

 const char* entryPoint = "main";

 const char* debugName = "";

};

Page 23This work is licensed under a Creative Commons Attribution 4.0 International License

Ray-tracing pipeline

RayTracingPipelineDesc

Pipeline layout and
VkPipeline for ray-tracing Push constants mask Shader binding table

(lvk::Holder<lvk::BufferHandle>)

Page 24This work is licensed under a Creative Commons Attribution 4.0 International License

Shader binding table

rayTracingPipeline_ = ctx_->createRayTracingPipeline(lvk::RayTracingPipelineDesc{

 .smRayGen = {smRaygen_},

 .smClosestHit = {smHit_},

 .smMiss = {smMiss_, smMissShadow_},

});

Shader groups and indexes defined by the order of shader modules in lvk::RayTracingPipelineDesc

In this example,
Group 0: [smRaygen_]
Group 1: [smMiss_]
Group 2: [smMissShadow_]
Group 3: [smHit_]

Note: corresponding any-hit, closest-hit and intersection shader will be put to the same group

Page 25This work is licensed under a Creative Commons Attribution 4.0 International License

Shader binding table
To access specific miss shader by index in lvk::RayTracingPipelineDesc::smMiss_ array, just use
missIndex parameter in traceRayEXT(...)

 isShadowed = true;

 vec3 hitPoint = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT;

 traceRayEXT(kTLAS[tlas],

 gl_RayFlagsTerminateOnFirstHitEXT | gl_RayFlagsOpaqueEXT | gl_RayFlagsSkipClosestHitShaderEXT,

 0xff, 0, 0, 1, hitPoint, tmin, lightDir.xyz, tmax, 1);

The access to the specific hit/intersections shaders may be a bit trickier depending on the your setup.

Formula (see https://docs.vulkan.org/spec/latest/chapters/raytracing.html for details):

pHitShaderBindingTable->deviceAddress + pHitShaderBindingTable->stride ×
(instanceShaderBindingTableRecordOffset + geometryIndex × sbtRecordStride + sbtRecordOffset)

In simple cases (if instanceShaderBindingTableRecordOffset == 0 and sbtRecordStride == 0),
sbtRecordOffset can be used the same way as missIndex.

https://docs.vulkan.org/spec/latest/chapters/raytracing.html

Page 26This work is licensed under a Creative Commons Attribution 4.0 International License

Ray-tracing pipeline state

struct RayTracingPipelineState final {

 RayTracingPipelineDesc desc_;

 VkDescriptorSetLayout lastVkDescriptorSetLayout_ = VK_NULL_HANDLE;

 VkShaderStageFlags shaderStageFlags_ = 0;

 VkPipelineLayout pipelineLayout_ = VK_NULL_HANDLE;

 VkPipeline pipeline_ = VK_NULL_HANDLE;

 void* specConstantDataStorage_ = nullptr;

 lvk::Holder<lvk::BufferHandle> sbt;

 VkStridedDeviceAddressRegionKHR sbtEntryRayGen = {};

 VkStridedDeviceAddressRegionKHR sbtEntryMiss = {};

 VkStridedDeviceAddressRegionKHR sbtEntryHit = {};

 VkStridedDeviceAddressRegionKHR sbtEntryCallable = {};

};

Page 27This work is licensed under a Creative Commons Attribution 4.0 International License

Bind ray-tracing pipeline state

void lvk::CommandBuffer::cmdBindRayTracingPipeline(lvk::RayTracingPipelineHandle handle) {

 // ...

 const lvk::RayTracingPipelineState* rtps = ctx_->rayTracingPipelinesPool_.get(handle);

 // ...

 if (lastPipelineBound_ != pipeline) {

 lastPipelineBound_ = pipeline;

 vkCmdBindPipeline(wrapper_->cmdBuf_, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline);

 ctx_->checkAndUpdateDescriptorSets();

 ctx_->bindDefaultDescriptorSets(wrapper_->cmdBuf_,

 VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, rtps->pipelineLayout_);

 }

}

Page 28This work is licensed under a Creative Commons Attribution 4.0 International License

Bind ray-tracing pipeline state

void lvk::CommandBuffer::cmdTraceRays(uint32_t width, uint32_t height, uint32_t depth,

 const Dependencies& deps) {

 lvk::RayTracingPipelineState* rtps =

 ctx_->rayTracingPipelinesPool_.get(currentPipelineRayTracing_);

 // ...

 vkCmdTraceRaysKHR(

 wrapper_->cmdBuf_, &rtps->sbtEntryRayGen, &rtps->sbtEntryMiss, &rtps->sbtEntryHit,

 &rtps->sbtEntryCallable, width, height, depth);

}

Page 29This work is licensed under a Creative Commons Attribution 4.0 International License

Synchronization: barriers for buffers and
transition layouts for images
void lvk::CommandBuffer::cmdTraceRays(uint32_t width, uint32_t height, uint32_t depth,

 const Dependencies& deps) {

 // ...

 for (uint32_t i = 0; i != Dependencies::LVK_MAX_SUBMIT_DEPENDENCIES && deps.textures[i]; i++) {

 useComputeTexture(deps.textures[i], VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR);

 }

 for (uint32_t i = 0; i != Dependencies::LVK_MAX_SUBMIT_DEPENDENCIES && deps.buffers[i]; i++) {

 bufferBarrier(deps.buffers[i],

 VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,

 VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR);

 }

 vkCmdTraceRaysKHR(

 wrapper_->cmdBuf_, &rtps->sbtEntryRayGen, &rtps->sbtEntryMiss, &rtps->sbtEntryHit,

 &rtps->sbtEntryCallable, width, height, depth);

}

Page 30This work is licensed under a Creative Commons Attribution 4.0 International License

Synchronization: barriers in updating TLAS
void lvk::CommandBuffer::cmdUpdateTLAS(AccelStructHandle handle, BufferHandle instancesBuffer) {

 // ...

 const VkBufferMemoryBarrier2 barriers[] = {

 {

 .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2,

 .srcStageMask = VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR,

 .srcAccessMask = VK_ACCESS_MEMORY_READ_BIT,

 .dstStageMask = VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,

 .dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,

 .buffer = getVkBuffer(ctx_, handle),

 .size = VK_WHOLE_SIZE,

 },

 {

 .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2,

 .srcStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT | VK_PIPELINE_STAGE_HOST_BIT,

 .srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,

 .dstStageMask = VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,

 .dstAccessMask = VK_ACCESS_MEMORY_READ_BIT,

 .buffer = getVkBuffer(ctx_, instancesBuffer),

 .size = VK_WHOLE_SIZE,

 },

 };

Page 31This work is licensed under a Creative Commons Attribution 4.0 International License

Synchronization: barriers in updating TLAS
 const VkDependencyInfo dependencyInfo{

 .sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,

 .bufferMemoryBarrierCount = LVK_ARRAY_NUM_ELEMENTS(barriers),

 .pBufferMemoryBarriers = barriers,

 };

 vkCmdPipelineBarrier2(wrapper_->cmdBuf_, &dependencyInfo);

 vkCmdBuildAccelerationStructuresKHR(wrapper_->cmdBuf_, 1, &accelerationBuildGeometryInfo,

 accelerationBuildStructureRangeInfos);

 const VkBufferMemoryBarrier2 barrier = {

 .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER_2,

 .srcStageMask = VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,

 .srcAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,

 .dstStageMask = VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR,

 .dstAccessMask = VK_ACCESS_MEMORY_READ_BIT,

 .buffer = getVkBuffer(ctx_, handle),

 .offset = 0, .size = VK_WHOLE_SIZE,

 };

 const VkDependencyInfo dependencyInfo{.sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,

 .bufferMemoryBarrierCount = 1, .pBufferMemoryBarriers = &barrier};

 vkCmdPipelineBarrier2(wrapper_->cmdBuf_, &dependencyInfo);

}

Page 32This work is licensed under a Creative Commons Attribution 4.0 International License

Synchronization: transition layouts during
copying image to a swapchain
buffer.cmdTraceRays((uint32_t)width_, (uint32_t)height_, 1,

 {.textures = {lvk::TextureHandle(res.storageImage)}});

buffer.cmdCopyImage(res.storageImage, ctx_->getCurrentSwapchainTexture(),

 ctx_->getDimensions(ctx_->getCurrentSwapchainTexture()));

See implementation of cmdCopyImage() here:

https://github.com/corporateshark/lightweightvk/blob/c297911d8daefb26d4e0a9826a667c6e
a9807a46/lvk/vulkan/VulkanClasses.cpp#L2667

https://github.com/corporateshark/lightweightvk/blob/c297911d8daefb26d4e0a9826a667c6ea9807a46/lvk/vulkan/VulkanClasses.cpp#L2667
https://github.com/corporateshark/lightweightvk/blob/c297911d8daefb26d4e0a9826a667c6ea9807a46/lvk/vulkan/VulkanClasses.cpp#L2667

Page 33This work is licensed under a Creative Commons Attribution 4.0 International License

Demo: Ambient occlusion + shadows using
ray queries

Samsung S24 (SM-S921B, GPU: Samsung Xclipse 940)
Frame time: 24.3ms

Resolution: ~720P, scene: 260K triangles, no MSAA

Xiaomi 13T (GPU: Mali-G715-Immortalis MC11)
Frame time: 493ms

Page 34This work is licensed under a Creative Commons Attribution 4.0 International License

Demo: Ambient occlusion + shadows using
ray queries

Samsung S24 (SM-S921B, GPU: Samsung Xclipse 940)
Frame time: 220ms

Resolution: ~720P, scene: 2.8M triangles, no MSAA

Xiaomi 13T (GPU: Mali-G715-Immortalis MC11)
Frame time: 550ms

Page 35This work is licensed under a Creative Commons Attribution 4.0 International License

Demo: Full ray-tracing pipeline

Resolution: ~720P, scene: 260K triangles
Samsung S24 (SM-S921B, GPU: Samsung Xclipse 940)
Frame time: 12.1ms

Page 36This work is licensed under a Creative Commons Attribution 4.0 International License

Demo: Full ray-tracing pipeline

Resolution: ~720P, scene: 2.8M triangles
Samsung S24 (SM-S921B, GPU: Samsung Xclipse 940)
Frame time: 14.9ms

Page 37This work is licensed under a Creative Commons Attribution 4.0 International License

Outcomes
- Ray-tracing can be done “lightweight”, please refer to LVK repository

(https://github.com/corporateshark/lightweightvk)

- VK_KHR_ray_query is more common on the mass-market devices (7%) in
comparison with VK_KHR_ray_tracing_pipeline (0.7%).

- Some mobile GPUs demonstrate outstanding performance doing hardware
accelerated realtime ray-tracing, some are not yet

https://github.com/corporateshark/lightweightvk

Page 38This work is licensed under a Creative Commons Attribution 4.0 International License

Q & A

