
THE INS AND OUTS OF AUDIO – AES 24 th UK CONFERENCE 2011

1

INTRODUCTION

USB (the Universal Serial Bus) is an example of a
‘hidden clock’ data transfer scheme. The clock isn’t
present on the interconnecting link, but must be
inferred and reconstructed from the time behaviour of
the link’s information content.

The latest tablets, handhelds and media players are
built on sophisticated hardware platforms, running
new operating systems that are increasingly
standardizing on USB as the wired link of choice for a
wide range of accessories and enhancements. Some of
these systems have combinations of requirements that
aren’t met by existing USB audio chipsets.

Following an overview of the various schemes used to
move audio across a USB link, the paper describes an
architecture for both the synchronization and the
synthesis of high frequency clocks from information in
a hidden-clock data transfer scheme, suitable for
implementation on a modern Programmable System
on Chip. The work was originally carried out to
support the generation of multiple standard audio
master clock frequencies from a local crystal clock,
and to facilitate their exact synchronization to the 1ms
USB packet interval coming from a mobile audio host.
It has since found application in a wider range of
communications systems.

The use of the techniques described in this paper to
create a high frequency master clock synchronized to
repetitive low frequency signal is the subject of a
Cypress patent application.

USB AUDIO MODES

A USB audio link connects a master unit, the ‘host’,
with a slave unit, the ‘device’. Audio can be moved in
both directions across this link. By the way, USB
terminology means that one must be very careful when
using the word ‘device’. In this paper, it’s always
used in the specific sense of this slave form of USB
interface.

figure 1: audio packets on the USB bus

The audio-related traffic is in the form of packets of
data, associated with a particular ‘endpoint’ of the
USB link. There may also be other traffic on the link
as well. Both the width and the location in time of
these packets can vary, due to the dynamic load on the
host’s processor and USB controller. This is shown

PROGRAMMABLE CLOCK GENERATION AND
SYNCHRONIZATION FOR USB AUDIO SYSTEMS

KENDALL CASTOR-PERRY

Cypress Semiconductor, San Diego, CA, USA

A USB audio link transports packets of sample data, but provides no associated sample clock. To
reproduce samples at the right points in time, the two ends of the link must synchronize their sample rates
without exchanging clocks. The paper reviews data transfer modes used in USB audio. In many of these
modes an accurate master clock, on whose ‘cleanliness’ the audio SNR depends, must be generated at the
receive end. The flexibility of recent programmable systems-on-chip (PSoC) delivers an effective clocking
scheme usable for all modes and sample rates. The frequency synthesizer at its core is described in detail.

CASTOR-PERRY

THE INS AND OUTS OF AUDIO – AES 24 th UK CONFERENCE 2011

2

diagrammatically in figure 1. The one constant and
reliable characteristic of the USB link is the timing of
the start-of-frame (SOF) packets. In a full-speed USB
system, these packets appear on the link every
millisecond, and both the frequency tolerance and the
maximum positional jitter are tightly specified in the
USB standards documents.

In a correctly functioning link, there’s no question that
each end will be able to recover the data in any packet
that arrives from the other end. In a bulk transfer
application, that’s enough. In audio replay
applications, however, it’s critically important that
audio samples are effectively reproduced at exactly the
correct point in time. If they aren’t, the resulting
distortion can cause perceptible, or even serious,
deterioration of sound quality.

When playing back data from storage, there is of
course no actual sample clock at the host, because
there’s no ADC. It’s implied by the file format, and
the host calculates the rate to send sample data out
onto the interface from its local timing reference.

The two ends of the link each have their own local
clock oscillator, and these oscillators define the
timebases with which data is sent to, and taken from,
the physical layer of the link. The USB standard
limits the maximum relative frequency tolerance of
these oscillators. Although the two ends of the link
might agree (in a separate transaction) that the audio
data has a nominal sample rate of exactly 48000 per
second, the difference between their timebases mean
that they will disagree on the duration of ‘one second’.

Left unresolved, this disparity would result in the
replay electronics trying to output either too many or
too few samples in a given time period. This would be
completely unacceptable.

TO FEED OR NOT TO FEED, BACK?

To ensure that the average rate of audio sample output
at one end of the link equals the average rate of sample
input at the other, the ends of the link can adopt one of
two strategies: feedback, or no feedback. In feedback
modes, the link ends communicate information that
throttles the inbound sample rate to match what the
replay rate is forced to be by the audio hardware.

Alternatively, no feedback is employed, the receiving
device just takes what it’s given, and fine-tunes its
timebase to ensure that the audio replay rate matches

exactly the rate that the data is being placed on the
link by the host.

Technically, another no-feedback option is to reduce
the replay device’s timebase frequency far enough that
you can guarantee to output samples more slowly than
you receive them. Excess samples are stored in a
buffer that grows, in principle, to an unlimited length.
This technique of ‘under-clocking’ the audio into a
very long memory buffer is unusable in any system
where video images (or even PowerPoint slides!) need
to be time-aligned to the audio.

This paper concentrates on a clock generation scheme
to support the no-feedback case. This is a more
general, more ‘compatible’ and more economical
approach, highly suited to the target market of
consumer audio accessories. A few comments on the
feedback cases are in order, though, because they are
growing in popularity at the higher end of the market.

If the replay system is a USB host, it gets to define the
replay sample rate, and it ensures that it gets the right
number of samples by telling the USB device
providing the audio samples to send fewer or more
samples in the data packets. This is quite an unusual
configuration in modern audio systems, since the
device providing the samples will often want to control
other bus transactions itself. Nearly always, the replay
hardware is located in a USB device. In that case, one
of two feedback modes is employed: explicit, or
implicit.

In explicit feedback mode, the replaying device
maintains a separate endpoint with information that
enables the host to shape the traffic so that the rates
match (usually through the host adjusting its data
packets, though in principle the host could trim its
own timebase). This works well provided that you
have a spare endpoint available in your USB
hardware; this isn’t always possible because they get
used up supporting other functions such as MIDI,
volume control buttons, custom protocols and so on.

An elegant scheme is used to bypass the need for an
extra endpoint in implicit feedback mode. Here, it’s
assumed that the host and the device will be
exchanging audio in both directions. The audio
hardware in the device uses the local timebase to
create audio samples (possibly null samples, if no
actual audio is needed) to uplink to the host, but it
“keeps an eye on” the interval between the SOF
packets, which is a proxy for the host’s own timebase.

PROGRAMMABLE CLOCK GENERATION AND SYNCHRONIZATION FOR USB AUDIO SYSTEMS

THE INS AND OUTS OF AUDIO – AES 24 th UK CONFERENCE 2011

3

It shapes the uplink packets to ensure that it is sending
data to the host at the correct rate.

Here’s the neat bit: the host then echoes the packet
format for the replay sample data being sent back
down to the device. These packets have the correct
format, by construction, to ensure that the replay
samples will exactly match the available replay sample
rate. Because the clocks at the two ends of the link are
never synchronized, this approach is called
‘asynchronous mode with implicit feedback’. It is
becoming popular for high end audio DACs.

DELTA-SIGMA BLUES

In most USB audio replay systems, it’s up to the
replaying device to adjust its timebase so that audio
samples are reproduced at exactly the correct long
term rate. In a typical system, though, there is an
additional requirement on the local timebase clock.
Not only must it have exactly the right long term
frequency value, but it must also be very ‘clean’, i.e.
free from jitter. The delta-sigma D-to-A converters
(and digital amplifiers) used in modern audio systems
need a high frequency master clock; low clock jitter
levels are extra critical to achieving acceptable audio
replay performance.

An hour of CD-standard music contains 158.76
million samples, requiring 40.64256 billion master
clock cycles, all of which contribute to the output
signal. This high frequency master clock is usually
256x or 384x the audio sample rate, and it is this clock
that influences the audio SNR through the clockwork
of the delta-sigma DAC. Jitter on the master clock
causes out-of-band noise from the delta-sigma
modulator to mix back down into the audio band,
degrading SNR. If the jitter has dominant frequency
components, so will the resulting audible signal, and
this can be particularly objectionable.

SYNCHRONIZE AND ADAPT

The signal on the USB interface contains two forms of
information that we might use to synchronize the
replay timebase to conditions in the host: the data, and
the link framing structure. We don’t know exactly
where each data packet will occur in time, or how
many samples it will contain, but we do know the
nominal rate at which the samples should be arriving.
So the receiving device can keep a count of the
incoming samples, and can adjust its local timebase so

that it is outputting samples at exactly the same rate in
the long term. This is called ‘adaptive’ mode
operation.

The other approach is to examine the link framing
structure, specifically the time interval between
successive SOF packets. This interval is supposed to
be very close to 1 ms, and it gives the receiving device
an insight into the transmitting host’s definition of a
millisecond, which is in turn derived from the host’s
own timebase. This is called ‘synchronous’ mode.

Early USB replay interfaces used synchronous mode
but acquired a reputation for poor quality of the
recovered clock (and resultant poor replay quality).
This was primarily due to deficiencies of clocking
implementation rather than inherent shortcomings of
the approach. Most dedicated USB replay ICs on the
market now use adaptive mode operation, though.

Audio samples arrive from the host at the replaying
device in a rather irregular fashion, especially on a
link that’s carrying other traffic and is being produced
by a modestly-powered host. The challenge of
adaptive mode is the extraction of a stable long-term
estimate of the sample rate that is not contaminated by
this irregularity. One very significant source of
irregularity occurs when the most popular sample rate
of 44.1ksps is used. Because this rate isn’t a multiple
of the 1kHz USB frame rate, the sample packet length
has a systematic modulation on it, with nine packets of
44 samples per channel followed by one of 45 samples.
The resulting 100Hz modulation is a detectable
consequence in many clock recovery products on the
market.

SYNCHRONOUS = SIMPLE

The goal of this work was to create a robust, good-
quality device-mode USB replay system that would fit
in a specific IC, the Cypress PSoC3. PSoC3’s USB
interface provides an accessible hardware trigger
signal whenever a SOF packet is received, but doesn’t
provide hardware decoding of the position or meaning
of the data traffic on the bus. This made synchronous
mode the obvious choice for the design.

In essence, then, the audio master clock generation
problem in synchronous mode reduces to a simply-
stated goal: multiply up the 1kHz rate of SOF packet
arrivals by the appropriate number that results in a
clean audio master clock, equal to a specific multiple

CASTOR-PERRY

THE INS AND OUTS OF AUDIO – AES 24 th UK CONFERENCE 2011

4

of the exact sample rate needed to replay the received
audio samples.

To ensure a faster clock was available for the CPU and
other hardware, it was decided to create a system clock
of 1024Fs, and divide that down to produce the 256Fs
audio master clock accepted by all the audio converters
we considered.

In addition, the system needed nominal-value master
clocks to be available even when there was no USB
synchronization available. This permits stand-alone
operation at both sample rates from a single crystal
system clock, for instance when a mobile handset is
removed from an accessory dock. The processor also
needed to support many housekeeping tasks in the
finished product in which this audio subsystem would
be embedded. To summarize, a design was sought
that was able to:

• Implement clean output system and audio
master clocks for both sample rate trees from a single
local crystal clock;
• Provide a competitive level of output jitter for
use with switched-capacitor delta-sigma DACs, well
under 1ns p-p with no severe sidebands;
• Robustly synchronize the output clock to a
repetitive input pulse at a frequency ~50000x lower,
without an integer relationship;
• Free-run at any of the exact nominal
frequencies in the absence of a synchronization pulse
train, and synchronize to the USB bus even when no
audio traffic is present;
• Stabilize to the correct output frequency
within a few audio sample periods (<100us);
• Be insensitive to the variable width and
position of audio data bursts within the USB frame, on
a highly loaded USB link from a modestly powered
host;
• Provide extra endpoints to support MIDI,
HID and custom protocols for accessory support on
mobile players;
• Fit on a PSoC3.

NOT JUST A PLL

Having settled on synchronous mode to ensure the
correct output sample rate, we need an adjustable clock
generation method that can deliver the jitter and
frequency resolution needed.

The simplistic approach would be to build a PLL-
based frequency multiplier, directly converting the

1kHz SOF frequency to our 1024Fs system clock, but
this would be entirely inadequate on many counts.
The phase noise – and hence jitter – from the VCO
output would be horrendous due to the multiplication
factor of ~50000, and the settling time would be
excessive due to the very low bandwidth required to
eliminate ripple from a 1kHz reference frequency.

Worse than that, one of the system clocks required
(45.1584MHz, which is 1024*44.1kHz) is not even an
integer multiple of the 1kHz USB frame rate. This
rules out integer-N PLL techniques. A two-stage PLL
cascade is sometimes used to solve this problem, but
even then, phase noise and settling time to a sample
rate change are inadequate for this application.
Specialized ICs using adaptation of loop time
constants have found use in professional applications
where the sample rate doesn’t often change and where
slow settling time to final frequency accuracy is
acceptable.

FAST AND ACCURATE

Closed-loop control methods ensure frequency
accuracy by adjusting an oscillator’s output frequency
so that it doesn’t change over time relative to some
timing reference. An FLL (frequency-locked loop)
stabilizes the frequency over time but leaves an
arbitrary phase relationship. A conventional PLL
stops the phase from changing with time, and this has
the knock-on effect of keeping the frequency locked as
well. These loop methods rely on comparing some
characteristic of the output waveform to that of an
input waveform. This is feedback, and it has its
attendant loop dynamics.

It’s also possible to frequency-lock using feedforward
methods. A slow input reference, such as our 1kHz
SOF interval clock, can be used to gate a counter
clocked by some convenient local high frequency
clock. The output of the counter tells you, to some
given resolution, what number you needed to divide
the local clock by to get the SOF interval clock. This
information is all you need in order to calculate
another number, by which you need to divide the local
clock in order to get the actual high frequency clock
you require. It can be constructed exactly, and there’s
no need to compare it with anything, so there’s no
loop and far fewer dynamics issues. But of course the
devil is in the details.

Let’s look at a numerical example, with our USB SOF
interval clock at ~1kHz and a local clock at ~24MHz.

PROGRAMMABLE CLOCK GENERATION AND SYNCHRONIZATION FOR USB AUDIO SYSTEMS

THE INS AND OUTS OF AUDIO – AES 24 th UK CONFERENCE 2011

5

Our counter will register around 24000 at the end of
each SOF period. Let’s say that the counter reading is
actually 24003. This means that we know that if we
divide our local clock by 24003, we’ll produce the
frequency that the host considers to be 1kHz. We can
immediately say that to create a frequency that the host
would think was 45.1584MHz (1024*44.1kHz), we
would need to divide our local clock by
(24003/45158400). Now, whilst it might not yet be
obvious how we would do that, we nevertheless know
that if we can do it, we’ll get exactly the right output
frequency.

ONE STEP FORWARD, ONE STEP BACK

The chosen implementation on the target PSoC3 IC
was a two-stage approach exploiting the best
characteristics of feedback and feedforward
approaches. In part, this was driven by the particular
blocks of hardware available on the chip.

The wanted 1024Fs clock is generated from a good
quality PLL fitted as standard to the PSoC3. This can
take a reference clock frequency of between 1MHz and
3MHz, and multiply it up by a programmable rational
fraction to produce a clean output clock at up to
67MHz. The loop bandwidth of this PLL is around
50kHz and its response to changes in the input
reference frequency is more than fast enough for the
application.

The reference clock for the PLL is generated by a fast
feedforward first stage, which calculates the fractional
factor by which the local crystal source must be
divided to generate the exact required reference clock,
and then performs this division implicitly. This is
done with a dual modulus prescaler whose divide
control input is driven from a delta-sigma modulator
fed by an input representing the fractional divisor.
The noise-shaping loop provides a two-level output
that represents, over time, the fractional component of
the number with which we need to divide the local
clock in order to get the reference frequency needed.
The fractional part is designed to be as close to 0.5 as
feasible given other constraints, to maximize the ‘pull
range’ of the synchronization.

The modulus of the prescaler is continually being
switched between two values by the output of the
noise-shaper; this process is equivalent to FSK
modulation. It creates a main fundamental component
whose frequency is equal to the input clock divided by
the long-term average of the fractional modulus. In

addition, modulation sidebands are present. The job of
the second stage PLL is to multiply the reference clock
by a suitable small rational number, while filtering out
the higher frequency harmonics and sidebands. The
result should be a clean, accurate clock. Low-offset
sidebands from the prescaler output will get through
the PLL; ideally, we would have liked a rather lower
loop bandwidth, but this wasn’t available from the on-
chip PLL.

The synthesizer has an option to support adaptive
mode for those situations where the data is not actually
arriving at a rate that can be correctly inferred from
the SOF timing. This can happen in some embedded
systems where audio data synchronized to a remote
source is being relayed across the USB interface. To
fix this, a separate input into the noise shaper allows
adjustment of the free-run frequency in steps of
~0.8ppm in the standard configuration. This could
also be used under processor control to implement the
standard type of adaptive mode operation, but the extra
CPU overhead and development time was not
considered worth it for our project.

Sidebands in the clock modulate the reproduced audio
in the system, degrading fidelity. The current design
uses a first-order modulator, but it is straightforward
to increase the order further. As might be expected
from a first-order modulator, spurious sidebands are
present at a frequency that depends on the
instantaneous counter output value.

The ‘pull’ input can also be used as an additional
‘dither’ path into the system. Simulations show that
dither can be effective at further reducing residual
tonal components that can occur at particular
frequency offsets in a first-order modulator system.
No practical work has yet been done on this because
the measured and auditioned system performance has
been found satisfactory without it so far.

OVERALL SYSTEM ARCHITECTURE

The local clock for the system is derived from a
24MHz crystal that is also used to time the USB data
recovery process when audio playback is enabled.
When audio is idle, the interface clock switches over
to a lower power RC oscillator.

The first stage is written in Verilog and implemented
in programmable logic in the PSoC3. It is designed so
that if there isn’t any synchronization information
available from the USB SOF packets, it free-runs at

CASTOR-PERRY

THE INS AND OUTS OF AUDIO – AES 24 th UK CONFERENCE 2011

6

the exact nominal sample rate programmed. The
parameters for this block set the frequency
relationships in the system, and are detailed in the
appendix.

The second stage uses the standard PSoC3 PLL; it
produces the clock that the CPU and most of the
digital hardware runs on. It wasn’t specifically
designed for audio applications, but the chip is fully
characterized to run off the clock that it produces. The
overall jitter of the generated audio master clock is
around 600ps pk-pk at either common sample rate,
and most of this is random phase noise from the VCO
rather than tonal components from the synthesis.

A 768 byte USB data buffer provides room for a
maximum of 4 48 sample pair packets. At 48ksps
16bit operation it typically runs half-full, and
somewhat less for 44.1ksps operation. The replay
latency through the USB interface is therefore of the
order of 2ms, which is about as low as it is possible to
go safely.

The audio data is clocked out of the buffer into a
standard I2S interface, implemented with the
programmable digital blocks. This interface can
connect to a standard audio DAC, processor or ‘digital
amplifier’. S/PDIF retransmission of the data is also
supported, again implemented in the programmable
digital blocks.

While S/PDIF receive wasn’t implemented in this
work, it’s believed that the same synthesis process can
be used to recover a suitable audio master clock from
incoming coaxial or optical S/PDIF transmissions. In
that case, the frame boundaries are marked by
intentional Manchester code violations, and these
would be used to synchronize the synthesizer.

The PSoC3 chosen for implementation has many
additional capabilities that are attractive for mobile
accessory development. A Digital Filter Block enables
the creation of extensive audio filtering and other
audio effects. This can post-process the recovered
USB audio, for instance for response equalization and
crossover filtering. Sufficient performance is available
to render additional digital processing ICs redundant;
at least ten second order biquad filters can be
implemented on each channel of a stereo pair, giving
very fine control over frequency response.

Other configurable analogue resources on the PsoC3
allow programmable current limiting, the support for
battery charging strategies, capacitative button

sensing, biological signal detection and many other
useful circuits.

SYNCHRONOUS PLUS ASYNCHRONOUS

It has already been mentioned that asynchronous mode
is becoming popular at the ‘high end’. A disadvantage
of asynchronous mode in low-cost products is the
requirement for three different stable clocks, one for
each of the standard sample rate clock trees and one
for the processing hardware itself.

High-end purists might baulk at the idea that a
synthesizer be used to create the audio clock in an
asynchronous system. However, a compromise
implementation can deliver some of the benefits of
both modes. The delta-sigma synthesizer is versatile
enough that it can support generation of one master
clock rate from another. If we use say a 24.576MHz
local crystal, for instance, we can generate audio
clocks for the 48ksps family of rates directly from the
crystal, and employ asynchronous mode to ensure the
highest possible quality audio clocking. This might be
used for ‘prosumer grade’ digital audio recording.

At the same time, this local clock can also be used to
synthesize the required clocks for 44.1kHz operation,
allowing still-good playback performance of 44.1kHz
material in asynchronous mode in the absence of a
high quality sample rate converter. A simple
configuration change will allow the device to operate
in synchronous mode for either sample rate with no
change in hardware, ensuring compatibility with
systems that do not support asynchronous mode
operation. This is more versatile than any other USB
audio interface currently on the market.

FURTHER COMMENTS

Some applications use different high frequency
crystal-derived clocks. In Ethernet systems, 25MHz is
a common clock; in GSM-based systems 26MHz is
ubiquitous, and in systems with standard resolution
video outputs, 27MHz is the standard. Exact-
frequency audio master clock generation with USB
synchronization is possible from any of these
frequencies with the technique described here.

When the synchronization signal is present, the
accuracy of the local oscillator does not affect output
frequency accuracy. This means that a crystal-based
local oscillator is not mandatory purely on frequency

PROGRAMMABLE CLOCK GENERATION AND SYNCHRONIZATION FOR USB AUDIO SYSTEMS

THE INS AND OUTS OF AUDIO – AES 24 th UK CONFERENCE 2011

7

accuracy grounds if the synchronization signal is
always present. The PsoC3 Internal Main Oscillator
(IMO) has also been tried as the local oscillator. As
long as the frequency error of the IMO is within the
capture range of the set configuration, the long term
frequency will be accurate. The short-term jitter
performance will be poorer, since this is set by the
jitter of the IMO, which is an RC oscillator. However,
for some lower-end applications, ultimate jitter
performance is not important, only long term
frequency stability.

CONCLUSIONS

The two-stage clock synthesis process combines a fast-
responding feedforward front-end and a classical,
well-understood feedback PLL back-end. Arithmetic
manipulation of the various clock frequencies leads
immediately to the necessary small set of design
parameters that optimize the bit depth required by the
noise-shaped modulator driving the prescaler, and the
frequency range over which the system will
synchronize.

The resulting highly designable block can effectively
multiply a low-frequency synchronizing event by a
large, non-integer factor to create a stable, low-jitter
clock suitable for driving audio converters and other
high dynamic range mixed signal circuit blocks. It
can be implemented in any PSoC3 (or PSoC5).

The implementation has been widely used during
development of Cypress’s USB audio reference design,
on PC, Mac and mobile USB hosts, and performs
extremely well. The author is using a version in his
domestic audio system and finds the sound quality to
be excellent.

Many Cypress colleagues were involved in
implementing and testing portions of this design;
Special thanks go to Brad Budlong and Isaac Sever.

APPENDIX: THE SYNTHESIZER IN DETAIL

A noise-shaped dual modulus prescaler is one whose
divide-select input (which determines whether it
divides by L or L+1) is driven from a noise shaper [see
Bourdopoulos et al; ‘Delta-Sigma Modulators:
Modeling, Design and Applications’; Imperial College
Press]. The shaper creates a two-state output whose
duty cycle encodes a higher resolution input word that
represents the fractional part of the actual factor with
which the input clock needs to be divided. The basic
idea is shown in figure 2.

The core of a noise shaper is a transfer function block
whose coefficients are calculated to give a lowpass
response to the input signal and a highpass response to
the inevitable quantization noise caused by the
restricted number of possible output states.

figure 2: basic noise-shaped prescaler loop

Commonly used in ADC designs, the same concept
can be used in many domains. Here, a noise-shaper is
used on an input signal that can have many different
values representing a desired fractional division ratio,
to produce an output that can have one of only two
values, realized by a dual modulus divider.

Simple loop functions are used in this design for ease
of implementation. We define the Signal Transfer
Function and Noise Transfer Function as usual in
terms of the z-domain response of the sampled filters,
which are clocked from the output of the filter:

() 1
() () () (1)

1 () 1 ()

. . () () ()

H z
out t in t e t

H z H z

i e out t STF in t NTF e t

   
 

   

The first and second order implementations of H(z)
are shown in figure 3. For the first application of this
system, the simple first order solution was used, to
economize on digital block usage in the PSoC3.

CASTOR-PERRY

THE INS AND OUTS OF AUDIO – AES 24 th UK CONFERENCE 2011

8

figure 3: how 1st and 2nd order functions are implemented

CALCULATIONS

The division factor is a fraction of potentially arbitrary
resolution, so an arithmetical analysis of the clock
relationships was done in order to guarantee the bit
depth of the implementation and therefore the amount
of PSoC3 programmable digital hardware required.

The signals present in the system have the following
frequencies:

fouti the ‘ith’ desired output clock frequency
foutinom the nominal value of fouti – not an actual
signal
fsync the low frequency to which we must sync the
output clock
fsyncnom the nominal value of fsync – not an actual
signal
fosc the high frequency local oscillator
foscnom the nominal value of fosc – not an actual
signal
frefi the reference frequency input to the PLL
when generating the ‘ith’ desired output clock
frequency
frefinom the nominal value of frefi – not an actual
signal

The relationships between these clocks and parameters
are:

fouti = Wi ∙ fsync always, i.e. foutinom = Wi ∙ fsyncnom

where Wi is the desired exact rational constant
multiplier relating the ‘ith’ desired output clock to the
input synchronization frequency.

fouti = frefi ∙ Pi/Qi always, i.e. foutinom = frefinom ∙ Pi/Qi

where Pi and Qi are the integer constant values of the
PLL’s feedback and reference divider ratios when
generating the ‘ith’ desired output clock. The choice
of P and Q values will be limited by the available
hardware (on PSoC3, 8 ≤ P ≤ 255 and 1 ≤ Q ≤ 16) and
the ratio of these values is constrained by the valid
reference frequency range of the PLL (on PSoC3,
1MHz ≤ fref ≤ 3MHz)

C = fosc / fsync
with Cnom = foscnom / fsyncnom and ΔC = C-Cnom

where C is the current measured ratio between the
local oscillator and the incoming synchronization
frequency; it is the integer output of a counter and
varies over time. Cnom is the integer constant value
that would be measured with nominal values; it
doesn’t depend on i.

Li ≤ fosc / frefi ≤ Li +1

where Li is the modulus parameter (i.e. the prescaler
can divide by Li or Li +1 depending on whether the
modulus input is low or high). This constraint says
that the mean ratio between the input and output of the
fractional divider is a number between Li and Li +1.
The Li values may be the same or different for the
various output frequencies required.

Empirically, we might expect that lower values of L
might cause more of a ‘shock’ to the PLL, as the input
frequency will be jumping back and forth with a larger
frequency ratio. For a given set of PLL loop dynamics,
this will lengthen the time during which significant
activity will occur in the PLL charge pump. This is an
additional source of phase noise and reference
modulation.

The noise-shaped prescaler acts as a frequency divider,
with an input frequency of fosc and output frequency of
frefi. The division ratio required in the nominal case is
therefore:

(2)osc osc i i
nom

refi sync i i i i

f f P P
division ratio C

f f Q W Q W


  

  

This is a number between Li and Li +1, say Li +Kinom.
So the fractional part Kinom is

PROGRAMMABLE CLOCK GENERATION AND SYNCHRONIZATION FOR USB AUDIO SYSTEMS

THE INS AND OUTS OF AUDIO – AES 24 th UK CONFERENCE 2011

9

(3)i
inom nom i

i i

P
K C L

Q W
  



and we try to set up the parameters so that Kinom has a
value of around 0.5. We can simplify this, by
dividing out the greatest common divisor of the
fractional part (remembering of course that Wi is
rational, so the numerator and denominator must be
explicitly included in the calculation), to get the input
signal to the noise shaper:

(4)i
inom nom i

i

N
K C L

M
  

We can’t easily perform the division in simple
hardware, but we can scale both the input and the
feedback in the noise-shaper by a factor of Mi. now,
when the output of the integrator exceeds the
threshold, Mi is subtracted from the integrator (instead
of unity):

(5)

i
inom inom i nom i i

i

nom i i i

N
K K M C L M

M

C N L M

      

   

 
 
 

The base input word we have to add into the noise
shaper’s input summer, K’inom, is precalculated from
(5) and automatically added on every update cycle.
When the actual loop is running and the counter value
C differs from Cnom by an amount ΔC (which might be
+ve or ve), we simply have to add an additional input
of NiΔC to the integrator. Summing in an additional
input value forces the loop to be slightly incorrect in a
known way. This path can be used for dither (mean
value of zero) to break up idle tones, and for a ‘pull’
input when a specific small extra frequency shift is
needed.

figure 4: final scaled noise shaper loop

The operation of the final delta-sigma loop as shown
in figure 4 is straightforward. On every transition
made at the output of the prescaler, NiΔC is added to
the integrator, along with either K’inom or K’inom–Mi

depending on whether the current output of the
accumulator is below the preset threshold. All we now
need to do is determine the size of the registers needed
to carry out the arithmetic, and the value of the
decision threshold.

Because Kinom is a fraction less than one, we know that
K’inom<Mi and therefore Mi is the largest amount by
which the integrator output can move in a single cycle
when ΔC=0. The number of bits in the integrator’s
register must therefore be capable of representing Mi
exactly. Also, the range ‘left over’ between Mi and the
size of the register should be distributed evenly
between upper and lower limits to permit equal values
of ΔC in both directions before saturation is reached.

We therefore need a number of bits B=ceil(log2(Mi)).
In the PSoC3 UDB implementations, it’s convenient to
allow B to be a multiple of 8. The threshold Ti for the
output decision is

12 (6)
2

B i
i inom

M
T K ceil     

 
 

and the maximum possible capture range Xi limited by
this mechanism, ΔCmaxi/Cnom, turns out to be:

1

max

2 int
1 2int (7)

B i

i
Ci

nomi nomi i

M
C

X
C C N








 

   
    

 
 

To maximize capture range, a set of parameters is
selected that delivers the smallest value of Mi while
meeting all other constraints. The ultimate limit for
capture range is due to the finite division range
available from the prescaler. The local oscillator can
be divided by a number that’s between Li and Li +1.
This means that the ratio between maximum and
minimum frequencies is (Li +1)/Li and the capture
range limit from this mechanism is

1
min , (8)i inom i

Li

i i inom

L K L
X

L L K

 




 
 
 

IMPLEMENTATION

The parameters in the previous section are shown with
subscripts because in typical USB audio systems we
must be able to switch between several different
multiplication ratios. This block is required to
generate system clocks of 49.152MHz (1024*48kHz)

CASTOR-PERRY

THE INS AND OUTS OF AUDIO – AES 24 th UK CONFERENCE 2011

10

or 45.1584MHz (1024*44.1kHz) from the standard
24MHz crystal clock, synchronized to the 1kHz pulses
from the 1USB SOF packet detector. In other words,
there are two values of Wi, which will require us to
define two different sets of L, P and Q. Eliminating
the common divisors will result in two N,M pairs that
define the operation of the noise shaper.

Initially, it was decided to set the prescaler modulus as
high as possible; the limit is set by the minimum
allowed reference frequency for the PLL, which is
1MHz. A prescaler with Li=23 just meets this with the
24MHz local oscillator. This selection forced the
reference divider ratio R to be unity. P values of 44
and 48 were chosen for the 44k1 and 48k cases
respectively, with nominal division ratios (Li +Kinom)
of 23.384 and 23.475 ensuring that the modulator’s
ones-density level is reasonably high.

Cancelling out common factors resulted in Ni/Mi
fractions of 55/56448 and 1/1024 for these two cases.
However, it was decided to force the value of N to be
the same in both cases, just in case the implementation
of widely varying parameters proved difficult. So an
Ni/Mi fraction of 55/56320 was used in the 48kHz
case. If the values of Ni and Mi are multiplied by the
same factor, the operation of the modulator is
unchanged, except that the capture range in this case
becomes much narrower, eventually becoming limited
by equation (7) instead of equation (8).

The design equations can readily be incorporated into
a spreadsheet. Use of the Excel function GCD() is
made, in order to carry out the factorization. It is
possible to automate the selection of optimal
parameters by using the Excel ‘solver’ functionality to
search the solution space. When this was tried, the
spreadsheet actually found a superior solution to the
manually determined first generation set of
parameters, with capture range of over ±1.5% instead
of ±0.34%

The spreadsheet-based design allows exploration of
configurations with higher reference frequency, i.e.
lower prescaler modulus. The trade-off is between the
wider deviation of the prescaler output, and the better
filtering of the reference spurs in the PLL.

RESULTS

Behavioural models of this process were created in
both BASIC and SPICE, to study the dynamics of the
synthesis process in the time and frequency domains,

using the chosen setup parameters for the two output
frequencies required in the audio application.

A first-order modulator version of this architecture
was implemented in PSoC3. The simulated results for
idle tone frequency and level were compared with
baseband and output clock measurements, and
quantitative agreement was observed on the cases
tested. There’s no such thing as a ‘typical’ simulation
graph to show, since the performance varies so
strongly with instantaneous frequency offset. In the
configurations built so far, simulated idle tone offsets,
when they occur, are at around -70dBc. They jump
around significantly in frequency as the offset changes,
so noise and jitter on the interface timing itself
actually has a beneficial effect on the level of audible
spurious components on the clock. It was found that
FFT lengths of between 1M and 16M points were
necessary in order to dig out the detail of the
synthesized spectrum.

It’s expected that a second-order implementation will
show a lower level of sidebands in simulation, and that
dither will further improve matters. It hasn’t yet been
found necessary to resort to either of these
enhancements.

