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INTRODUCTION 
 
USB (the Universal Serial Bus) is an example of a 
‘hidden clock’ data transfer scheme.  The clock isn’t 
present on the interconnecting link, but must be 
inferred and reconstructed from the time behaviour of 
the link’s information content. 
 
The latest tablets, handhelds and media players are 
built on sophisticated hardware platforms, running 
new operating systems that are increasingly 
standardizing on USB as the wired link of choice for a 
wide range of accessories and enhancements.  Some of 
these systems have combinations of requirements that 
aren’t met by existing USB audio chipsets. 
 
Following an overview of the various schemes used to 
move audio across a USB link, the paper describes an 
architecture for both the synchronization and the 
synthesis of high frequency clocks from information in 
a hidden-clock data transfer scheme, suitable for 
implementation on a modern Programmable System 
on Chip. The work was originally carried out to 
support the generation of multiple standard audio 
master clock frequencies from a local crystal clock, 
and to facilitate their exact synchronization to the 1ms 
USB packet interval coming from a mobile audio host.  
It has since found application in a wider range of 
communications systems. 

The use of the techniques described in this paper to 
create a high frequency master clock synchronized to 
repetitive low frequency signal is the subject of a 
Cypress patent application. 
 
 
USB AUDIO MODES 
 
A USB audio link connects a master unit, the ‘host’, 
with a slave unit, the ‘device’.  Audio can be moved in 
both directions across this link.  By the way, USB 
terminology means that one must be very careful when 
using the word ‘device’.  In this paper, it’s always 
used in the specific sense of this slave form of USB 
interface. 
 

 
figure 1: audio packets on the USB bus 

 
The audio-related traffic is in the form of packets of 
data, associated with a particular ‘endpoint’ of the 
USB link.  There may also be other traffic on the link 
as well.  Both the width and the location in time of 
these packets can vary, due to the dynamic load on the 
host’s processor and USB controller.  This is shown 
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diagrammatically in figure 1.  The one constant and 
reliable characteristic of the USB link is the timing of 
the start-of-frame (SOF) packets.  In a full-speed USB 
system, these packets appear on the link every 
millisecond, and both the frequency tolerance and the 
maximum positional jitter are tightly specified in the 
USB standards documents. 
 
In a correctly functioning link, there’s no question that 
each end will be able to recover the data in any packet 
that arrives from the other end.  In a bulk transfer 
application, that’s enough.  In audio replay 
applications, however, it’s critically important that 
audio samples are effectively reproduced at exactly the 
correct point in time.  If they aren’t, the resulting 
distortion can cause perceptible, or even serious, 
deterioration of sound quality. 
 
When playing back data from storage, there is of 
course no actual sample clock at the host, because 
there’s no ADC.  It’s implied by the file format, and 
the host calculates the rate to send sample data out 
onto the interface from its local timing reference. 
 
The two ends of the link each have their own local 
clock oscillator, and these oscillators define the 
timebases with which data is sent to, and taken from, 
the physical layer of the link.  The USB standard 
limits the maximum relative frequency tolerance of 
these oscillators.  Although the two ends of the link 
might agree (in a separate transaction) that the audio 
data has a nominal sample rate of exactly 48000 per 
second, the difference between their timebases mean 
that they will disagree on the duration of ‘one second’. 
 
Left unresolved, this disparity would result in the 
replay electronics trying to output either too many or 
too few samples in a given time period.  This would be 
completely unacceptable. 
 
 
TO FEED OR NOT TO FEED, BACK? 
 
To ensure that the average rate of audio sample output 
at one end of the link equals the average rate of sample 
input at the other, the ends of the link can adopt one of 
two strategies: feedback, or no feedback.  In feedback 
modes, the link ends communicate information that 
throttles the inbound sample rate to match what the 
replay rate is forced to be by the audio hardware.   
 
Alternatively, no feedback is employed, the receiving 
device just takes what it’s given, and fine-tunes its 
timebase to ensure that the audio replay rate matches 

exactly the rate that the data is being placed on the 
link by the host. 
 
Technically, another no-feedback option is to reduce 
the replay device’s timebase frequency far enough that 
you can guarantee to output samples more slowly than 
you receive them.  Excess samples are stored in a 
buffer that grows, in principle, to an unlimited length.  
This technique of ‘under-clocking’ the audio into a 
very long memory buffer is unusable in any system 
where video images (or even PowerPoint slides!) need 
to be time-aligned to the audio. 
 
This paper concentrates on a clock generation scheme 
to support the no-feedback case.  This is a more 
general, more ‘compatible’ and more economical 
approach, highly suited to the target market of 
consumer audio accessories.  A few comments on the 
feedback cases are in order, though, because they are 
growing in popularity at the higher end of the market. 
 
If the replay system is a USB host, it gets to define the 
replay sample rate, and it ensures that it gets the right 
number of samples by telling the USB device 
providing the audio samples to send fewer or more 
samples in the data packets.  This is quite an unusual 
configuration in modern audio systems, since the 
device providing the samples will often want to control 
other bus transactions itself.  Nearly always, the replay 
hardware is located in a USB device.  In that case, one 
of two feedback modes is employed: explicit, or 
implicit. 
 
In explicit feedback mode, the replaying device 
maintains a separate endpoint with information that 
enables the host to shape the traffic so that the rates 
match (usually through the host adjusting its data 
packets, though in principle the host could trim its 
own timebase).  This works well provided that you 
have a spare endpoint available in your USB 
hardware; this isn’t always possible because they get 
used up supporting other functions such as MIDI, 
volume control buttons, custom protocols and so on. 
 
An elegant scheme is used to bypass the need for an 
extra endpoint in implicit feedback mode.  Here, it’s 
assumed that the host and the device will be 
exchanging audio in both directions.  The audio 
hardware in the device uses the local timebase to 
create audio samples (possibly null samples, if no 
actual audio is needed) to uplink to the host, but it 
“keeps an eye on” the interval between the SOF 
packets, which is a proxy for the host’s own timebase.  
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It shapes the uplink packets to ensure that it is sending 
data to the host at the correct rate. 
 
Here’s the neat bit: the host then echoes the packet 
format for the replay sample data being sent back 
down to the device.  These packets have the correct 
format, by construction, to ensure that the replay 
samples will exactly match the available replay sample 
rate.  Because the clocks at the two ends of the link are 
never synchronized, this approach is called 
‘asynchronous mode with implicit feedback’.  It is 
becoming popular for high end audio DACs. 
 
 
DELTA-SIGMA BLUES 
 
In most USB audio replay systems, it’s up to the 
replaying device to adjust its timebase so that audio 
samples are reproduced at exactly the correct long 
term rate.  In a typical system, though, there is an 
additional requirement on the local timebase clock.  
Not only must it have exactly the right long term 
frequency value, but it must also be very ‘clean’, i.e. 
free from jitter.  The delta-sigma D-to-A converters 
(and digital amplifiers) used in modern audio systems 
need a high frequency master clock; low clock jitter 
levels are extra critical to achieving acceptable audio 
replay performance. 
 
An hour of CD-standard music contains 158.76 
million samples, requiring 40.64256 billion master 
clock cycles, all of which contribute to the output 
signal.  This high frequency master clock is usually 
256x or 384x the audio sample rate, and it is this clock 
that influences the audio SNR through the clockwork 
of the delta-sigma DAC.  Jitter on the master clock 
causes out-of-band noise from the delta-sigma 
modulator to mix back down into the audio band, 
degrading SNR.  If the jitter has dominant frequency 
components, so will the resulting audible signal, and 
this can be particularly objectionable. 
 
 
SYNCHRONIZE AND ADAPT 
 
The signal on the USB interface contains two forms of 
information that we might use to synchronize the 
replay timebase to conditions in the host: the data, and 
the link framing structure.  We don’t know exactly 
where each data packet will occur in time, or how 
many samples it will contain, but we do know the 
nominal rate at which the samples should be arriving.  
So the receiving device can keep a count of the 
incoming samples, and can adjust its local timebase so 

that it is outputting samples at exactly the same rate in 
the long term.  This is called ‘adaptive’ mode 
operation. 
 
The other approach is to examine the link framing 
structure, specifically the time interval between 
successive SOF packets.  This interval is supposed to 
be very close to 1 ms, and it gives the receiving device 
an insight into the transmitting host’s definition of a 
millisecond, which is in turn derived from the host’s 
own timebase.  This is called ‘synchronous’ mode. 
 
Early USB replay interfaces used synchronous mode 
but acquired a reputation for poor quality of the 
recovered clock (and resultant poor replay quality). 
This was primarily due to deficiencies of clocking 
implementation rather than inherent shortcomings of 
the approach.  Most dedicated USB replay ICs on the 
market now use adaptive mode operation, though. 
 
Audio samples arrive from the host at the replaying 
device in a rather irregular fashion, especially on a 
link that’s carrying other traffic and is being produced 
by a modestly-powered host.  The challenge of 
adaptive mode is the extraction of a stable long-term 
estimate of the sample rate that is not contaminated by 
this irregularity.  One very significant source of 
irregularity occurs when the most popular sample rate 
of 44.1ksps is used.  Because this rate isn’t a multiple 
of the 1kHz USB frame rate, the sample packet length 
has a systematic modulation on it, with nine packets of 
44 samples per channel followed by one of 45 samples.  
The resulting 100Hz modulation is a detectable 
consequence in many clock recovery products on the 
market. 
 
 
SYNCHRONOUS = SIMPLE 
 
The goal of this work was to create a robust, good-
quality device-mode USB replay system that would fit 
in a specific IC, the Cypress PSoC3.  PSoC3’s USB 
interface provides an accessible hardware trigger 
signal whenever a SOF packet is received, but doesn’t 
provide hardware decoding of the position or meaning 
of the data traffic on the bus.  This made synchronous 
mode the obvious choice for the design. 
 
In essence, then, the audio master clock generation 
problem in synchronous mode reduces to a simply-
stated goal: multiply up the 1kHz rate of SOF packet 
arrivals by the appropriate number that results in a 
clean audio master clock, equal to a specific multiple 
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of the exact sample rate needed to replay the received 
audio samples. 
 
To ensure a faster clock was available for the CPU and 
other hardware, it was decided to create a system clock 
of 1024Fs, and divide that down to produce the 256Fs 
audio master clock accepted by all the audio converters 
we considered. 
 
In addition, the system needed nominal-value master 
clocks to be available even when there was no USB 
synchronization available.  This permits stand-alone 
operation at both sample rates from a single crystal 
system clock, for instance when a mobile handset is 
removed from an accessory dock.  The processor also 
needed to support many housekeeping tasks in the 
finished product in which this audio subsystem would 
be embedded.  To summarize, a design was sought 
that was able to: 
 
• Implement clean output system and audio 
master clocks for both sample rate trees from a single 
local crystal clock; 
• Provide a competitive level of output jitter for 
use with switched-capacitor delta-sigma DACs, well 
under 1ns p-p with no severe sidebands; 
• Robustly synchronize the output clock to a 
repetitive input pulse at a frequency ~50000x lower, 
without an integer relationship; 
• Free-run at any of the exact nominal 
frequencies in the absence of a synchronization pulse 
train, and synchronize to the USB bus even when no 
audio traffic is present; 
• Stabilize to the correct output frequency 
within a few audio sample periods (<100us); 
• Be insensitive to the variable width and 
position of audio data bursts within the USB frame, on 
a highly loaded USB link from a modestly powered 
host; 
• Provide extra endpoints to support MIDI, 
HID and custom protocols for accessory support on 
mobile players; 
• Fit on a PSoC3. 
 
 
NOT JUST A PLL 
 
Having settled on synchronous mode to ensure the 
correct output sample rate, we need an adjustable clock 
generation method that can deliver the jitter and 
frequency resolution needed. 
 
The simplistic approach would be to build a PLL-
based frequency multiplier, directly converting the 

1kHz SOF frequency to our 1024Fs system clock, but 
this would be entirely inadequate on many counts.  
The phase noise – and hence jitter – from the VCO 
output would be horrendous due to the multiplication 
factor of ~50000, and the settling time would be 
excessive due to the very low bandwidth required to 
eliminate ripple from a 1kHz reference frequency. 
 
Worse than that, one of the system clocks required 
(45.1584MHz, which is 1024*44.1kHz) is not even an 
integer multiple of the 1kHz USB frame rate.  This 
rules out integer-N PLL techniques.  A two-stage PLL 
cascade is sometimes used to solve this problem, but 
even then, phase noise and settling time to a sample 
rate change are inadequate for this application.  
Specialized ICs using adaptation of loop time 
constants have found use in professional applications 
where the sample rate doesn’t often change and where 
slow settling time to final frequency accuracy is 
acceptable. 
 
 
FAST AND ACCURATE 
 
Closed-loop control methods ensure frequency 
accuracy by adjusting an oscillator’s output frequency 
so that it doesn’t change over time relative to some 
timing reference.  An FLL (frequency-locked loop) 
stabilizes the frequency over time but leaves an 
arbitrary phase relationship.  A conventional PLL 
stops the phase from changing with time, and this has 
the knock-on effect of keeping the frequency locked as 
well.  These loop methods rely on comparing some 
characteristic of the output waveform to that of an 
input waveform.  This is feedback, and it has its 
attendant loop dynamics. 
 
It’s also possible to frequency-lock using feedforward 
methods.  A slow input reference, such as our 1kHz 
SOF interval clock, can be used to gate a counter 
clocked by some convenient local high frequency 
clock.  The output of the counter tells you, to some 
given resolution, what number you needed to divide 
the local clock by to get the SOF interval clock.  This 
information is all you need in order to calculate 
another number, by which you need to divide the local 
clock in order to get the actual high frequency clock 
you require.  It can be constructed exactly, and there’s 
no need to compare it with anything, so there’s no 
loop and far fewer dynamics issues.  But of course the 
devil is in the details. 
 
Let’s look at a numerical example, with our USB SOF 
interval clock at ~1kHz and a local clock at ~24MHz.  
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Our counter will register  around 24000 at the end of 
each SOF period.  Let’s say that the counter reading is 
actually 24003.  This means that we know that if we 
divide our local clock by 24003, we’ll produce the 
frequency that the host considers to be 1kHz.  We can 
immediately say that to create a frequency that the host 
would think was 45.1584MHz (1024*44.1kHz), we 
would need to divide our local clock by 
(24003/45158400).  Now, whilst it might not yet be 
obvious how we would do that, we nevertheless know 
that if we can do it, we’ll get exactly the right output 
frequency. 
 
 
ONE STEP FORWARD, ONE STEP BACK 
 
The chosen implementation on the target PSoC3 IC 
was a two-stage approach exploiting the best 
characteristics of feedback and feedforward 
approaches.  In part, this was driven by the particular 
blocks of hardware available on the chip. 
 
The wanted 1024Fs clock is generated from a good 
quality PLL fitted as standard to the PSoC3.  This can 
take a reference clock frequency of between 1MHz and 
3MHz, and multiply it up by a programmable rational 
fraction to produce a clean output clock at up to 
67MHz.  The loop bandwidth of this PLL is around 
50kHz and its response to changes in the input 
reference frequency is more than fast enough for the 
application. 
 
The reference clock for the PLL is generated by a fast 
feedforward first stage, which calculates the fractional 
factor by which the local crystal source must be 
divided to generate the exact required reference clock, 
and then performs this division implicitly.  This is 
done with a dual modulus prescaler whose divide 
control input is driven from a delta-sigma modulator 
fed by an input representing the fractional divisor.  
The noise-shaping loop provides a two-level output 
that represents, over time, the fractional component of 
the number with which we need to divide the local 
clock in order to get the reference frequency needed.  
The fractional part is designed to be as close to 0.5 as 
feasible given other constraints, to maximize the ‘pull 
range’ of the synchronization. 
 
The modulus of the prescaler is continually being 
switched between two values by the output of the 
noise-shaper; this process is equivalent to FSK 
modulation.  It creates a main fundamental component 
whose frequency is equal to the input clock divided by 
the long-term average of the fractional modulus.  In 

addition, modulation sidebands are present.  The job of 
the second stage PLL is to multiply the reference clock 
by a suitable small rational number, while filtering out 
the higher frequency harmonics and sidebands.  The 
result should be a clean, accurate clock.  Low-offset 
sidebands from the prescaler output will get through 
the PLL; ideally, we would have liked a rather lower 
loop bandwidth, but this wasn’t available from the on-
chip PLL. 
 
The synthesizer has an option to support adaptive 
mode for those situations where the data is not actually 
arriving at a rate that can be correctly inferred from 
the SOF timing.  This can happen in some embedded 
systems where audio data synchronized to a remote 
source is being relayed across the USB interface.  To 
fix this, a separate input into the noise shaper allows 
adjustment of the free-run frequency in steps of 
~0.8ppm in the standard configuration.  This could 
also be used under processor control to implement the 
standard type of adaptive mode operation, but the extra 
CPU overhead and development time was not 
considered worth it for our project. 
 
Sidebands in the clock modulate the reproduced audio 
in the system, degrading fidelity.  The current design 
uses a first-order modulator, but it is straightforward 
to increase the order further.  As might be expected 
from a first-order modulator, spurious sidebands are 
present at a frequency that depends on the 
instantaneous counter output value. 
 
The ‘pull’ input can also be used as an additional 
‘dither’ path into the system.  Simulations show that 
dither can be effective at further reducing residual 
tonal components that can occur at particular 
frequency offsets in a first-order modulator system.  
No practical work has yet been done on this because 
the measured and auditioned system performance has 
been found satisfactory without it so far. 
 
 
OVERALL SYSTEM ARCHITECTURE 
 
The local clock for the system is derived from a 
24MHz crystal that is also used to time the USB data 
recovery process when audio playback is enabled.  
When audio is idle, the interface clock switches over 
to a lower power RC oscillator. 
 
The first stage is written in Verilog and implemented 
in programmable logic in the PSoC3.  It is designed so 
that if there isn’t any synchronization information 
available from the USB SOF packets, it free-runs at 
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the exact nominal sample rate programmed.  The 
parameters for this block set the frequency 
relationships in the system, and are detailed in the 
appendix. 
 
The second stage uses the standard PSoC3 PLL; it 
produces the clock that the CPU and most of the 
digital hardware runs on.  It wasn’t specifically 
designed for audio applications, but the chip is fully 
characterized to run off the clock that it produces.  The 
overall jitter of the generated audio master clock is 
around 600ps pk-pk at either common sample rate, 
and most of this is random phase noise from the VCO 
rather than tonal components from the synthesis. 
 
A 768 byte USB data buffer provides room for a 
maximum of 4 48 sample pair packets.  At 48ksps 
16bit operation it typically runs half-full, and 
somewhat less for 44.1ksps operation.  The replay 
latency through the USB interface is therefore of the 
order of 2ms, which is about as low as it is possible to 
go safely. 
 
The audio data is clocked out of the buffer into a 
standard I2S interface, implemented with the 
programmable digital blocks.  This interface can 
connect to a standard audio DAC, processor or ‘digital 
amplifier’.  S/PDIF retransmission of the data is also 
supported, again implemented in the programmable 
digital blocks. 
 
While S/PDIF receive wasn’t implemented in this 
work, it’s believed that the same synthesis process can 
be used to recover a suitable audio master clock from 
incoming coaxial or optical S/PDIF transmissions.  In 
that case, the frame boundaries are marked by 
intentional Manchester code violations, and these 
would be used to synchronize the synthesizer. 
 
The PSoC3 chosen for implementation has many 
additional capabilities that are attractive for mobile 
accessory development.  A Digital Filter Block enables 
the creation of extensive audio filtering and other 
audio effects.  This can post-process the recovered 
USB audio, for instance for response equalization and 
crossover filtering.  Sufficient performance is available 
to render additional digital processing ICs redundant; 
at least ten second order biquad filters can be 
implemented on each channel of a stereo pair, giving 
very fine control over frequency response. 
 
Other configurable analogue resources on the PsoC3 
allow programmable current limiting, the support for 
battery charging strategies, capacitative button 

sensing, biological signal detection and many other 
useful circuits. 
 
 
SYNCHRONOUS PLUS ASYNCHRONOUS 
 
It has already been mentioned that asynchronous mode 
is becoming popular at the ‘high end’.  A disadvantage 
of asynchronous mode in low-cost products is the 
requirement for three different stable clocks, one for 
each of the standard sample rate clock trees and one 
for the processing hardware itself. 
 
High-end purists might baulk at the idea that a 
synthesizer be used to create the audio clock in an 
asynchronous system.  However, a compromise 
implementation can deliver some of the benefits of 
both modes.  The delta-sigma synthesizer is versatile 
enough that it can support generation of one master 
clock rate from another.  If we use say a 24.576MHz 
local crystal, for instance, we can generate audio 
clocks for the 48ksps family of rates directly from the 
crystal, and employ asynchronous mode to ensure the 
highest possible quality audio clocking.  This might be 
used for ‘prosumer grade’ digital audio recording. 
 
At the same time, this local clock can also be used to 
synthesize the required clocks for 44.1kHz operation, 
allowing still-good playback performance of 44.1kHz 
material in asynchronous mode in the absence of a 
high quality sample rate converter. A simple 
configuration change will allow the device to operate 
in synchronous mode for either sample rate with no 
change in hardware, ensuring compatibility with 
systems that do not support asynchronous mode 
operation.  This is more versatile than any other USB 
audio interface currently on the market. 
 
 
FURTHER COMMENTS 
 
Some applications use different high frequency  
crystal-derived clocks.  In Ethernet systems, 25MHz is 
a common clock; in GSM-based systems 26MHz is 
ubiquitous, and in systems with standard resolution 
video outputs, 27MHz is the standard.  Exact-
frequency audio master clock generation with USB 
synchronization is possible from any of these 
frequencies with the technique described here. 
 
When the synchronization signal is present, the 
accuracy of the local oscillator does not affect output 
frequency accuracy.  This means that a crystal-based 
local oscillator is not mandatory purely on frequency 
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accuracy grounds if the synchronization signal is 
always present.  The PsoC3 Internal Main Oscillator 
(IMO) has also been tried as the local oscillator.  As 
long as the frequency error of the IMO is within the 
capture range of the set configuration, the long term 
frequency will be accurate.  The short-term jitter 
performance will be poorer, since this is set by the 
jitter of the IMO, which is an RC oscillator.  However, 
for some lower-end applications, ultimate jitter 
performance is not important, only long term 
frequency stability. 
 
 
CONCLUSIONS 
 
The two-stage clock synthesis process combines a fast-
responding feedforward front-end and a classical, 
well-understood feedback PLL back-end.  Arithmetic 
manipulation of the various clock frequencies leads 
immediately to the necessary small set of design 
parameters that optimize the bit depth required by the 
noise-shaped modulator driving the prescaler, and the 
frequency range over which the system will 
synchronize. 
 
The resulting highly designable block can effectively 
multiply a low-frequency synchronizing event by a 
large, non-integer factor to create a stable, low-jitter 
clock suitable for driving audio converters and other 
high dynamic range mixed signal circuit blocks.  It 
can be implemented in any PSoC3 (or PSoC5). 
 
The implementation has been widely used during 
development of Cypress’s USB audio reference design, 
on PC, Mac and mobile USB hosts, and performs 
extremely well.  The author is using a version in his 
domestic audio system and finds the sound quality to 
be excellent. 
 
Many Cypress colleagues were involved in 
implementing and testing portions of this design; 
Special thanks go to Brad Budlong and Isaac Sever. 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX:  THE SYNTHESIZER IN DETAIL 
 
A noise-shaped dual modulus prescaler is one whose 
divide-select input (which determines whether it 
divides by L or L+1) is driven from a noise shaper [see 
Bourdopoulos et al; ‘Delta-Sigma Modulators: 
Modeling, Design and Applications’; Imperial College 
Press].  The shaper creates a two-state output whose 
duty cycle encodes a higher resolution input word that 
represents the fractional part of the actual factor with 
which the input clock needs to be divided.  The basic 
idea is shown in figure 2. 
 
The core of a noise shaper is a transfer function block 
whose coefficients are calculated to give a lowpass 
response to the input signal and a highpass response to 
the inevitable quantization noise caused by the 
restricted number of possible output states. 

 
figure 2:  basic noise-shaped prescaler loop 

 
Commonly used in ADC designs, the same concept 
can be used in many domains.  Here, a noise-shaper is 
used on an input signal that can have many different 
values representing a desired fractional division ratio, 
to produce an output that can have one of only two 
values, realized by a dual modulus divider. 
 
Simple loop functions are used in this design for ease 
of implementation.  We define the Signal Transfer 
Function and Noise Transfer Function as usual in 
terms of the z-domain response of the sampled filters, 
which are clocked from the output of the filter: 
 

( ) 1
( ) ( ) ( ) (1)

1 ( ) 1 ( )

. . ( ) ( ) ( )

H z
out t in t e t

H z H z

i e out t STF in t NTF e t

   
 

   

 

 
The first and second order implementations of H(z) 
are shown in figure 3.  For the first application of this 
system, the simple first order solution was used, to 
economize on digital block usage in the PSoC3. 
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figure 3:  how 1st and 2nd order functions are implemented 

 
 
CALCULATIONS 
 
The division factor is a fraction of potentially arbitrary 
resolution, so an arithmetical analysis of the clock 
relationships was done in order to guarantee the bit 
depth of the implementation and therefore the amount 
of PSoC3 programmable digital hardware required. 
 
The signals present in the system have the following 
frequencies:  
 
fouti the ‘ith’ desired output clock frequency 
foutinom the nominal value of fouti  – not an actual 
signal 
fsync the low frequency to which we must sync the 
output clock 
fsyncnom the nominal value of fsync – not an actual 
signal 
fosc the high frequency local oscillator 
foscnom the nominal value of fosc  – not an actual 
signal 
frefi the reference frequency input to the PLL 
when generating the ‘ith’ desired output clock 
frequency 
frefinom the nominal value of frefi  – not an actual 
signal 
 
The relationships between these clocks and parameters 
are: 
 

fouti = Wi ∙ fsync always, i.e. foutinom = Wi ∙ fsyncnom 
 

where Wi is the desired exact rational constant 
multiplier relating the ‘ith’ desired output clock to the 
input synchronization frequency. 
 

fouti = frefi ∙ Pi/Qi always, i.e. foutinom = frefinom ∙ Pi/Qi 
 
where Pi and Qi are the integer constant values of the 
PLL’s feedback and reference divider ratios when 
generating the ‘ith’ desired output clock.  The choice 
of P and Q values will be limited by the available 
hardware (on PSoC3, 8 ≤ P ≤ 255 and 1 ≤ Q ≤ 16) and 
the ratio of these values is constrained by the valid 
reference frequency range of the PLL (on PSoC3, 
1MHz ≤ fref ≤ 3MHz) 
 

C = fosc / fsync 
with Cnom = foscnom / fsyncnom and ΔC = C-Cnom 

 
where C is the current measured ratio between the 
local oscillator and the incoming synchronization 
frequency; it is the integer output of a counter and 
varies over time.  Cnom is the integer constant value 
that would be measured with nominal values; it 
doesn’t depend on i. 
 

Li ≤ fosc / frefi ≤ Li +1 
 
where Li is the modulus parameter (i.e. the prescaler 
can divide by Li or Li +1 depending on whether the 
modulus input is low or high). This constraint says 
that the mean ratio between the input and output of the 
fractional divider is a number between Li and Li +1. 
The Li values may be the same or different for the 
various output frequencies required. 
 
Empirically, we might expect that lower values of L 
might cause more of a ‘shock’ to the PLL, as the input 
frequency will be jumping back and forth with a larger 
frequency ratio.  For a given set of PLL loop dynamics, 
this will lengthen the time during which significant 
activity will occur in the PLL charge pump.  This is an 
additional source of phase noise and reference 
modulation. 
  
The noise-shaped prescaler acts as a frequency divider, 
with an input frequency of fosc and output frequency of 
frefi.  The division ratio required in the nominal case is 
therefore: 

(2)osc osc i i
nom

refi sync i i i i

f f P P
division ratio C

f f Q W Q W


  

  
 

 
This is a number between Li and Li +1, say Li +Kinom.  
So the fractional part Kinom is 
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(3)i
inom nom i

i i

P
K C L

Q W
  



and we try to set up the parameters so that Kinom has a 
value of  around 0.5.  We can simplify this, by 
dividing out the greatest common divisor of the 
fractional part (remembering of course that Wi is 
rational, so the numerator and denominator must be 
explicitly included in the calculation), to get the input 
signal to the noise shaper: 

(4)i
inom nom i

i

N
K C L

M
  

We can’t easily perform the division in simple 
hardware, but we can scale both the input and the 
feedback in the noise-shaper by a factor of Mi.  now, 
when the output of the integrator exceeds the 
threshold, Mi is subtracted from the integrator (instead 
of unity): 
 

(5)

i
inom inom i nom i i

i

nom i i i

N
K K M C L M

M

C N L M

      

   

 
 
   

 
The base input word we have to add into the noise 
shaper’s input summer, K’inom, is precalculated from 
(5) and automatically added on every update cycle.  
When the actual loop is running and the counter value 
C differs from Cnom by an amount ΔC (which might be 
+ve or  ve), we simply have to add an additional input 
of NiΔC to the integrator.  Summing in an additional 
input value forces the loop to be slightly incorrect in a 
known way.  This path can be used for dither (mean 
value of zero) to break up idle tones, and for a ‘pull’ 
input when a specific small extra frequency shift is 
needed. 

 
figure 4:  final scaled noise shaper loop 

 
The operation of the final delta-sigma loop as shown 
in figure 4 is straightforward.  On every transition 
made at the output of the prescaler, NiΔC is added to 
the integrator, along with either K’inom or K’inom–Mi 

depending on whether the current output of the 
accumulator is below the preset threshold.  All we now 
need to do is determine the size of the registers needed 
to carry out the arithmetic, and the value of the 
decision threshold. 
 
Because Kinom is a fraction less than one, we know that 
K’inom<Mi and therefore Mi is the largest amount by 
which the integrator output can move in a single cycle 
when ΔC=0.  The number of bits in the integrator’s 
register must therefore be capable of representing Mi 
exactly.  Also, the range ‘left over’ between Mi and the 
size of the register should be distributed evenly 
between upper and lower limits to permit equal values 
of ΔC in both directions before saturation is reached. 
 
We therefore need a number of bits B=ceil(log2(Mi)).  
In the PSoC3 UDB implementations, it’s convenient to 
allow B to be a multiple of 8.  The threshold Ti for the 
output decision is 

12 (6)
2

B i
i inom

M
T K ceil     

 
 

 

 
and the maximum possible capture range Xi limited by 
this mechanism, ΔCmaxi/Cnom, turns out to be: 
 

1

max

2 int
1 2int (7)

B i

i
Ci

nomi nomi i

M
C

X
C C N








 

   
    

 
 

 

 
To maximize capture range, a set of parameters is 
selected that delivers the smallest value of Mi while 
meeting all other constraints. The ultimate limit for 
capture range is due to the finite division range 
available from the prescaler.  The local oscillator can 
be divided by a number that’s between Li and Li +1.  
This means that the ratio between maximum and 
minimum frequencies is (Li +1)/Li and the capture 
range limit from this mechanism is 
 

1
min , (8)i inom i

Li

i i inom

L K L
X

L L K

 




 
 
 

 

 
 
IMPLEMENTATION 
 
The parameters in the previous section are shown with 
subscripts because in typical USB audio systems we 
must be able to switch between several different 
multiplication ratios.  This block is required to 
generate system clocks of 49.152MHz (1024*48kHz) 
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or  45.1584MHz (1024*44.1kHz) from the standard 
24MHz crystal clock, synchronized to the 1kHz pulses 
from the 1USB SOF packet detector.  In other words, 
there are two values of Wi, which will require us to 
define two different sets of L, P and Q.  Eliminating 
the common divisors will result in two N,M pairs that 
define the operation of the noise shaper. 
 
Initially, it was decided to set the prescaler modulus as 
high as possible; the limit is set by the minimum 
allowed reference frequency for the PLL, which is 
1MHz.  A prescaler with Li=23 just meets this with the 
24MHz local oscillator.  This selection forced the 
reference divider ratio R to be unity.  P values of 44 
and 48 were chosen for the 44k1 and 48k cases 
respectively, with nominal division ratios (Li +Kinom) 
of 23.384 and 23.475 ensuring that the modulator’s 
ones-density level is reasonably high. 
 
Cancelling out common factors resulted in Ni/Mi 
fractions of 55/56448 and 1/1024 for these two cases.  
However, it was decided to force the value of N to be 
the same in both cases, just in case the implementation 
of widely varying parameters proved difficult.  So an 
Ni/Mi fraction of 55/56320 was used in the 48kHz 
case.  If the values of Ni and Mi are multiplied by the 
same factor, the operation of the modulator is 
unchanged, except that the capture range in this case 
becomes much narrower, eventually becoming limited 
by equation (7) instead of equation (8). 
 
The design equations can readily be incorporated into 
a spreadsheet.  Use of the Excel function GCD() is 
made, in order to carry out the factorization.  It is 
possible to automate the selection of optimal 
parameters by using the Excel ‘solver’ functionality to 
search the solution space.  When this was tried, the 
spreadsheet actually found a superior solution to the 
manually determined first generation set of 
parameters, with capture range of over ±1.5% instead 
of ±0.34% 
 
The spreadsheet-based design allows exploration of 
configurations with higher reference frequency, i.e. 
lower prescaler modulus. The trade-off is between the 
wider deviation of the prescaler output, and the better 
filtering of the reference spurs in the PLL. 
 
 
RESULTS 
 
Behavioural models of this process were created in 
both BASIC and SPICE, to study the dynamics of the 
synthesis process in the time and frequency domains, 

using the chosen setup parameters for the two output 
frequencies required in the audio application. 
 
A first-order modulator version of this architecture 
was implemented in PSoC3.  The simulated results for 
idle tone frequency and level were compared with 
baseband and output clock measurements, and 
quantitative agreement was observed on the cases 
tested.  There’s no such thing as a ‘typical’ simulation 
graph to show, since the performance varies so 
strongly with instantaneous frequency offset.  In the 
configurations built so far, simulated idle tone offsets, 
when they occur, are at around -70dBc.  They jump 
around significantly in frequency as the offset changes, 
so noise and jitter on the interface timing itself 
actually has a beneficial effect on the level of audible 
spurious components on the clock.  It was found that 
FFT lengths of between 1M and 16M points were 
necessary in order to dig out the detail of the 
synthesized spectrum. 
 
It’s expected that a second-order implementation will 
show a lower level of sidebands in simulation, and that 
dither will further improve matters.  It hasn’t yet been 
found necessary to resort to either of these 
enhancements. 


