bokeh.plotting.figure.dash() function in Python
                                        
                                                                                    
                                                
                                                    Last Updated : 
                                                    15 Jul, 2025
                                                
                                                 
                                                 
                                             
                                                                             
                                                             
                            
                            
                                                                                    
                Bokeh is a data visualization library in Python that provides high-performance interactive charts and plots and the output can be obtained in various mediums like notebook, Html and server. Figure Class create a new Figure for plotting. It is a subclass of Plot that simplifies plot creation with default axes, grids, tools, etc. 
bokeh.plotting.figure.dash() function
The dash() function in the plotting module of bokeh library is used to Configure and add Dash glyphs to this Figure. 
 
Syntax: dash(x, y, size=4, angle=0.0, *, angle_units='rad', fill_alpha=1.0, fill_color='gray', line_alpha=1.0, line_cap='butt', line_color='black', line_dash=[], line_dash_offset=0, line_join='bevel', line_width=1, name=None, tags=[], **kwargs)
Parameters: This method accept the following parameters that are described below: 
 
- x: This parameter is the x-coordinates for the center of the markers.
- y: This parameter is the y-coordinates for the center of the markers.
- size: This parameter is the size (diameter) values for the markers in screen space units.
- angle: This parameter is the angles to rotate the markers.
- fill_color: This parameter is the fill color values for the markers.
- line_color: This parameter is the line color values for the markers with default value of black.
- line_width: This parameter is the line width values for the markers with default value of 1.
- name: This parameter is the user-supplied name for this model.
- tags: This parameter is the user-supplied values for this model.
Return: This method return the GlyphRenderer value. 
 
Below examples illustrate the bokeh.plotting.figure.dash() function in bokeh.plotting: 
Example 1: 
 
            Python3
    # Implementation of bokeh function 
   
import numpy as np  
from bokeh.plotting import figure, output_file, show 
   
plot = figure(plot_width = 300, plot_height = 300) 
plot.dash(x = [1, 2, 3], y = [3, 7, 5],  
            size = 20, color ="green", alpha = 0.9) 
   
show(plot) 
Output: 
 
 
Example 2: 
 
            Python3
    # Implementation of bokeh function 
   
import numpy as np  
from bokeh.plotting import figure, output_file, show 
   
x = [1, 2, 3, 4, 5] 
y = [6, 7, 8, 7, 3] 
  
output_file("geeksforgeeks.html") 
  
p = figure(plot_width = 300, plot_height = 300) 
  
# add both a line and circles on the  
# same plot 
p.line(x, y, line_width = 2) 
p.dash(x, y, fill_color ="red",  
         line_color ="green", size = 25) 
  
show(p)
Output: 
 
 
 
                                
                                
                            
                                                                                
                                                            
                                                    
                                                
                                                        
                            
                        
                                                
                        
                                                                                    
                                                                Explore
                                    
                                        Python Fundamentals
Python Data Structures
Advanced Python
Data Science with Python
Web Development with Python
Python Practice