numpy.true_divide() in Python
                                        
                                                                                    
                                                
                                                    Last Updated : 
                                                    29 Nov, 2018
                                                
                                                 
                                                 
                                             
                                                                             
                                                             
                            
                            
                                                                                    
                (arr1, arr22, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, ufunc 'true_divide') : 
Array element from first array is divided by the elements from second array(all happens element-wise). Both arr1 and arr2 must have same shape. Returns true division element-wise.
Python traditionally follow 'floor division'. Regardless of input type, true division adjusts answer to its best. 
"//" is floor division operator.
"/" is true division operator.
Parameters : 
arr1     : [array_like]Input array or object which works as numerator.
arr2     : [array_like]Input array or object which works as denominator. 
out      : [ndarray, None, optional]Output array with same dimensions as Input array, 
           placed with result.
**kwargs : allows you to pass keyword variable length of argument to a function. 
           It is used when we want to handle named argument in a function.
where    : [array_like, optional]True value means to calculate the universal 
           functions(ufunc) at that position, False value means to leave the  
           value in the output alone.
Return  : 
If inputs are scalar then scalar; otherwise array with arr1 / arr2(element- wise) 
i.e. true division
 
Code 1 : arr1 divided by arr2
            Python
    # Python program explaining
# true_divide() function
import numpy as np
# input_array
arr1 = [6, 7, 2, 9, 1]
arr2 = [2, 3, 4, 5, 6]
print ("arr1         : ", arr1)
print ("arr1         : ", arr2)
# output_array
out = np.true_divide(arr1, arr2)
print ("\nOutput array : \n", out)
arr1         :  [6, 7, 2, 9, 1]
arr1         :  [2, 3, 4, 5, 6]
Output array : 
 [ 3.          2.33333333  0.5         1.8         0.16666667]
 
Code 2 : elements of arr1 divided by divisor
            Python
    # Python program explaining
# true_divide() function
import numpy as np
# input_array
arr1 = [2, 7, 3, 11, 4]
divisor = 3
print ("arr1         : ", arr1)
# output_array
out = np.true_divide(arr1, divisor)
print ("\nOutput array : ", out)
arr1         :  [2, 7, 3, 11, 4]
Output array :  [ 0.66666667  2.33333333  1.          3.66666667  1.33333333]
 
Code 3 : Comparison between floor_division(//) and true-division(/) 
            Python
    # Python program explaining
# true_divide() function
import numpy as np
# input_array
arr1 = np.arange(5)
arr2 = [2, 3, 4, 5, 6]
print ("arr1         : ", arr1)
print ("arr1         : ", arr2)
# output_array
out = np.floor_divide(arr1, arr2)
out_arr = np.true_divide(arr1, arr2) 
print ("\nOutput array with floor divide : \n", out)
print ("\nOutput array with true divide  : \n", out_arr)
print ("\nOutput array with floor divide(//) : \n", arr1//arr2)
print ("\nOutput array with true divide(/)   : \n", arr1/arr2)
arr1         :  [0 1 2 3 4]
arr1         :  [2, 3, 4, 5, 6]
Output array with floor divide : 
 [0 0 0 0 0]
Output array with true divide  : 
 [ 0.          0.33333333  0.5         0.6         0.66666667]
Output array with floor divide(//) : 
 [0 0 0 0 0]
Output array with true divide(/)   : 
 [ 0.          0.33333333  0.5         0.6         0.66666667]
References : 
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.floor_divide.html
.                                
                                
                            
                                                                                
                                                            
                                                    
                                                
                                                        
                            
                        
                                                
                        
                                                                                    
                                                                Explore
                                    
                                        Python Fundamentals
Python Data Structures
Advanced Python
Data Science with Python
Web Development with Python
Python Practice