Python: Operations on Numpy Arrays
Last Updated :
12 Jul, 2025
NumPy is a Python package which means 'Numerical Python'. It is the library for logical computing, which contains a powerful n-dimensional array object, gives tools to integrate C, C++ and so on. It is likewise helpful in linear based math, arbitrary number capacity and so on. NumPy exhibits can likewise be utilized as an effective multi-dimensional compartment for generic data. NumPy Array: Numpy array is a powerful N-dimensional array object which is in the form of rows and columns. We can initialize NumPy arrays from nested Python lists and access it elements. A Numpy array on a structural level is made up of a combination of:
- The Data pointer indicates the memory address of the first byte in the array.
- The Data type or dtype pointer describes the kind of elements that are contained within the array.
- The shape indicates the shape of the array.
- The strides are the number of bytes that should be skipped in memory to go to the next element.
Operations on Numpy Array
Arithmetic Operations:
Python3
# Python code to perform arithmetic
# operations on NumPy array
import numpy as np
# Initializing the array
arr1 = np.arange(4, dtype = np.float_).reshape(2, 2)
print('First array:')
print(arr1)
print('\nSecond array:')
arr2 = np.array([12, 12])
print(arr2)
print('\nAdding the two arrays:')
print(np.add(arr1, arr2))
print('\nSubtracting the two arrays:')
print(np.subtract(arr1, arr2))
print('\nMultiplying the two arrays:')
print(np.multiply(arr1, arr2))
print('\nDividing the two arrays:')
print(np.divide(arr1, arr2))
Output:
First array:
[[ 0. 1.]
[ 2. 3.]]
Second array:
[12 12]
Adding the two arrays:
[[ 12. 13.]
[ 14. 15.]]
Subtracting the two arrays:
[[-12. -11.]
[-10. -9.]]
Multiplying the two arrays:
[[ 0. 12.]
[ 24. 36.]]
Dividing the two arrays:
[[ 0. 0.08333333]
[ 0.16666667 0.25 ]]
numpy.reciprocal() This function returns the reciprocal of argument, element-wise. For elements with absolute values larger than 1, the result is always 0 and for integer 0, overflow warning is issued. Example:
Python3
# Python code to perform reciprocal operation
# on NumPy array
import numpy as np
arr = np.array([25, 1.33, 1, 1, 100])
print('Our array is:')
print(arr)
print('\nAfter applying reciprocal function:')
print(np.reciprocal(arr))
arr2 = np.array([25], dtype = int)
print('\nThe second array is:')
print(arr2)
print('\nAfter applying reciprocal function:')
print(np.reciprocal(arr2))
Output
Our array is:
[ 25. 1.33 1. 1. 100. ]
After applying reciprocal function:
[ 0.04 0.7518797 1. 1. 0.01 ]
The second array is:
[25]
After applying reciprocal function:
[0]
numpy.power() This function treats elements in the first input array as the base and returns it raised to the power of the corresponding element in the second input array.
Python3
# Python code to perform power operation
# on NumPy array
import numpy as np
arr = np.array([5, 10, 15])
print('First array is:')
print(arr)
print('\nApplying power function:')
print(np.power(arr, 2))
print('\nSecond array is:')
arr1 = np.array([1, 2, 3])
print(arr1)
print('\nApplying power function again:')
print(np.power(arr, arr1))
Output:
First array is:
[ 5 10 15]
Applying power function:
[ 25 100 225]
Second array is:
[1 2 3]
Applying power function again:
[ 5 100 3375]
numpy.mod() This function returns the remainder of division of the corresponding elements in the input array. The function numpy.remainder() also produces the same result.
Python3
# Python code to perform mod function
# on NumPy array
import numpy as np
arr = np.array([5, 15, 20])
arr1 = np.array([2, 5, 9])
print('First array:')
print(arr)
print('\nSecond array:')
print(arr1)
print('\nApplying mod() function:')
print(np.mod(arr, arr1))
print('\nApplying remainder() function:')
print(np.remainder(arr, arr1))
Output:
First array:
[ 5 15 20]
Second array:
[2 5 9]
Applying mod() function:
[1 0 2]
Applying remainder() function:
[1 0 2]
Explore
Python Fundamentals
Python Data Structures
Advanced Python
Data Science with Python
Web Development with Python
Python Practice