Python | Pandas DataFrame.truncate
                                        
                                                                                    
                                                
                                                    Last Updated : 
                                                    21 Feb, 2019
                                                
                                                 
                                                 
                                             
                                                                             
                                                             
                            
                            
                                                                                    
                Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.
Pandas
 DataFrame.truncate() function is used to truncate a Series or DataFrame before and after some index value. This is a useful shorthand for boolean indexing based on index values above or below certain thresholds.
Syntax: DataFrame.truncate(before=None, after=None, axis=None, copy=True)
Parameter :  
before :  Truncate all rows before this index value.
after :  Truncate all rows after this index value.
axis :  Axis to truncate. Truncates the index (rows) by default.
copy :  Return a copy of the truncated section.
Returns : The truncated Series or DataFrame.
Example #1:  Use 
DataFrame.truncate() function to truncate some entries before and after the passed labels of the given dataframe.
            Python3
    # importing pandas as pd
import pandas as pd
# Creating the DataFrame
df = pd.DataFrame({'Weight':[45, 88, 56, 15, 71],
                   'Name':['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'],
                   'Age':[14, 25, 55, 8, 21]})
# Create the index
index_ = pd.date_range('2010-10-09 08:45', periods = 5, freq ='H')
# Set the index
df.index = index_
# Print the DataFrame
print(df)

Now we will use 
DataFrame.truncate() function to truncate the entries before '2010-10-09 09:45:00' and after '2010-10-09 11:45:00' in the given dataframe.
            Python3 1==
    # return the truncated dataframe
result = df.truncate(before = '2010-10-09 09:45:00', after = '2010-10-09 11:45:00')
# Print the result
print(result)

As we can see in the output, the 
DataFrame.truncate() function has successfully truncated the entries before and after the passed labels in the given dataframe.
 
Example #2:  Use 
DataFrame.truncate() function to truncate some entries before and after the passed labels of the given dataframe.
            Python3
    # importing pandas as pd
import pandas as pd
# Creating the DataFrame
df = pd.DataFrame({"A":[12, 4, 5, None, 1], 
                   "B":[7, 2, 54, 3, None], 
                   "C":[20, 16, 11, 3, 8], 
                   "D":[14, 3, None, 2, 6]}) 
# Create the index
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']
# Set the index
df.index = index_
# Print the DataFrame
print(df)

Now we will use 
DataFrame.truncate() function to truncate the entries before 'Row_3' and after 'Row_4' in the given dataframe.
            Python3 1==
    # return the truncated dataframe
result = df.truncate(before = 'Row_3', after = 'Row_4')
# Print the result
print(result)

As we can see in the output, the 
DataFrame.truncate() function has successfully truncated the entries before and after the passed labels in the given dataframe.                                
                                
                            
                                                                                
                                                            
                                                    
                                                
                                                        
                            
                        
                                                
                        
                                                                                    
                                                                Explore
                                    
                                        Python Fundamentals
Python Data Structures
Advanced Python
Data Science with Python
Web Development with Python
Python Practice