@@ -99,7 +99,7 @@ def __init__(
9999 location : Optional [str ] = None ,
100100 credentials : Optional [auth_credentials .Credentials ] = None ,
101101 ):
102- """Retrives Job subclass resource by calling a subclass-specific getter
102+ """Retrieves Job subclass resource by calling a subclass-specific getter
103103 method.
104104
105105 Args:
@@ -388,12 +388,12 @@ def create(
388388 Required. The format in which instances are given, must be one
389389 of "jsonl", "csv", "bigquery", "tf-record", "tf-record-gzip",
390390 or "file-list". Default is "jsonl" when using `gcs_source`. If a
391- `bigquery_source` is provided, this is overriden to "bigquery".
391+ `bigquery_source` is provided, this is overridden to "bigquery".
392392 predictions_format (str):
393393 Required. The format in which Vertex AI gives the
394394 predictions, must be one of "jsonl", "csv", or "bigquery".
395395 Default is "jsonl" when using `gcs_destination_prefix`. If a
396- `bigquery_destination_prefix` is provided, this is overriden to
396+ `bigquery_destination_prefix` is provided, this is overridden to
397397 "bigquery".
398398 gcs_source (Optional[Sequence[str]]):
399399 Google Cloud Storage URI(-s) to your instances to run
@@ -1391,7 +1391,7 @@ def __init__(
13911391
13921392 parameter_spec (Dict[str, hyperparameter_tuning._ParameterSpec]):
13931393 Required. Dictionary representing parameters to optimize. The dictionary key is the metric_id,
1394- which is passed into your training job as a command line key word arguemnt , and the
1394+ which is passed into your training job as a command line key word argument , and the
13951395 dictionary value is the parameter specification of the metric.
13961396
13971397
0 commit comments