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Abstract

Background: Sleep apnea is a respiratory disorder characterized by frequent breathing cessation during sleep. Sleep apnea
severity is determined by the apnea-hypopnea index (AHI), which is the hourly rate of respiratory events. In positional sleep
apnea, the AHI is higher in the supine sleeping position than it is in other sleeping positions. Positional therapy is a behavioral
strategy (eg, wearing an item to encourage sleeping toward the lateral position) to treat positional apnea. The gold standard of
diagnosing sleep apnea and whether or not it is positional is polysomnography; however, this test is inconvenient, expensive, and
has a long waiting list.

Objective: The objective of this study was to develop and evaluate a noncontact method to estimate sleep apnea severity and
to distinguish positional versus nonpositional sleep apnea.

Methods: A noncontact deep-learning algorithm was developed to analyze infrared video of sleep for estimating AHI and to
distinguish patients with positional vs nonpositional sleep apnea. Specifically, a 3D convolutional neural network (CNN)
architecture was used to process movements extracted by optical flow to detect respiratory events. Positional sleep apnea patients
were subsequently identified by combining the AHI information provided by the 3D-CNN model with the sleeping position
(supine vs lateral) detected via a previously developed CNN model.

Results: The algorithm was validated on data of 41 participants, including 26 men and 15 women with a mean age of 53 (SD
13) years, BMI of 30 (SD 7), AHI of 27 (SD 31) events/hour, and sleep duration of 5 (SD 1) hours; 20 participants had positional
sleep apnea, 15 participants had nonpositional sleep apnea, and the positional status could not be discriminated for the remaining
6 participants. AHI values estimated by the 3D-CNN model correlated strongly and significantly with the gold standard (Spearman
correlation coefficient 0.79, P<.001). Individuals with positional sleep apnea (based on an AHI threshold of 15) were identified
with 83% accuracy and an F1-score of 86%.

Conclusions: This study demonstrates the possibility of using a camera-based method for developing an accessible and easy-to-use
device for screening sleep apnea at home, which can be provided in the form of a tablet or smartphone app.
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Introduction

Sleep apnea is a chronic respiratory disorder occurring due to
frequent respiratory airflow reduction during sleep. Cessation
of airflow lasting for more than 10 seconds is called apnea,
whereas partial reduction in airflow by more than 30% for at
least 10 seconds—in association with more than a 3% drop in

blood oxygen saturation level or arousals—is called hypopnea.
Sample images indicating the chest movements during normal
breathing, hypopnea, and apnea are shown in Figure 1. The
apnea-hypopnea index (AHI) is an indicator of the severity of
sleep apnea, which measures the hourly occurrence rate of
apneas and hypopneas [1]. Untreated sleep apnea raises the risk
of hypertension, heart diseases, and stroke [2].

Figure 1. Sample sum of chest and abdomen movements in (A) apnea, (B) hypopnea, and (C) normal breathing.

Positional sleep apnea refers to sleep apnea patients for whom
the AHI in the supine sleeping position is at least 50% higher
than that in the nonsupine sleeping positions [3]. Recent studies
have shown that changing to a lateral sleeping position can
decrease the AHI for patients with positional sleep apnea [4].
This behavioral intervention is known as “positional therapy,”
and is an effective noninvasive and nonpharmaceutical treatment
for those with positional sleep apnea [5].

The current clinical approach to diagnose sleep apnea and to
determine whether or not it is positional is based on

polysomnography (PSG). However, PSG requires connecting
more than 20 sensors to a user, which is inconvenient. A trained
sleep technician manually analyzes recorded PSG signals and
annotates the sleep position overnight. Moreover, PSG is
expensive (>US $400) and has a long waiting time in some
areas (4-36 months in Canada [6]). As a result, up to 85% of
the population at risk of sleep apnea remain undiagnosed [7].
It is therefore useful to investigate screening technologies that
could identify individuals at high risk via a simpler test.
Increasing access to testing, diagnosis, and subsequent treatment
could improve the patient’s quality of life by decreasing
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hypertension and sleepiness, and can also reduce overall health
care costs [8-10].

Researchers have developed several easy-to-use, convenient,
and accessible methods for sleep apnea monitoring. Merchant
et al [11] developed a skin-adhesive patch recording nasal
pressure, blood oxygen saturation, pulse rate, respiratory effort,
sleep time, and body position to estimate the AHI. Ayas et al
[12] evaluated the performance of a wrist-worn device utilizing
a peripheral arterial tonometer, actigraphy, and arterial oxygen
saturation to diagnose sleep apnea. Varon et al [13] introduced
a method for the automatic detection of sleep apnea from
single-lead electrocardiogram by training a least-squares support
vector machines classifier on the features extracted from the
electrocardiogram signal. Several studies estimated AHI and
respiratory events from analyzing tracheal sound or tracheal
movements, or the combination of tracheal sound with oxygen
saturation [14-18]. Lévy et al [19] utilized pulse oximetry to
quantify arterial oxygen saturation and to diagnose sleep apnea.

Although these methods are more convenient than PSG, sensors
attached to the body could potentially disrupt the user’s regular
sleep pattern. Therefore, researchers have continued to develop
noncontact methods to screen individuals at risk of sleep apnea.
For example, we previously developed a deep-learning model
to distinguish between different types of apnea. However, as
the model was not capable of detecting events, we used ground
truth labels for this purpose [20]. Jakkaew et al [21] used a
thermal camera to estimate breathing rate and body movements;
however, they did not analyze the breathing pattern to identify
sleep apnea, and the method was not designed to detect sleep
position. Deng et al [22] used six active infrared cameras and
a Kinect sensor to detect body position and breathing pattern
(abnormal vs normal breathing). However, they did not evaluate
their method in a clinical environment to demonstrate the
performance for the detection of sleep apnea or positional sleep
apnea. In addition, using six cameras and the Kinect will be
difficult to set up in clinical or home settings, which hinders
large-scale adoption. Davidovich et al [23] developed a new
framework to extract the breathing pattern from a piezo-electric
sensor placed under the patient’s mattress through extracting
time and frequency domain features and then calculating the
AHI. Nandakumar et al [24] used a smartphone to emit inaudible
waves and to analyze the waves’ echoes from the user’s body
to detect respiratory events. However, these noncontact methods
did not present cross-validation performance, and due to
restriction in their modalities, they are not able to identify

positional sleep apnea patients, which is crucial for proper
treatment.

To identify patients at risk of sleep apnea and to distinguish
those with positional sleep apnea, an alternative is to use
computer vision and machine-learning techniques. We here
propose a noncontact algorithm that analyzes infrared videos
captured from a participant during sleep to estimate the AHI
and to distinguish patients with positional vs nonpositional sleep
apnea. Specifically, we used a 3D convolutional neural network
(CNN) to analyze movements in infrared videos, to detect
apneas, and to estimate the AHI. In experimental evaluation,
this model outperformed a baseline model that previously
reported state-of-the-art results in noncontact AHI estimation
[25]. We also combined this technique with another CNN-based
approach that detects the sleeping position [26] to calculate the
AHI in different sleeping positions and to identify patients with
positional sleep apnea. The methods and results developed in
this study represent the first noncontact approach to
automatically distinguish positional from nonpositional sleep
apnea.

Methods

Data Collection
The University Health Network Research Ethics Board approved
this study (approval number 13-7210-DE). Participants aged
18 to 85 years and without a history of cardiovascular or renal
diseases were recruited for this study. Participants were recruited
among patients referred for sleep diagnosis at the sleep
laboratory of the Toronto Rehabilitation Institute, University
Health Network. All participants signed a written consent form
before taking part in the study. There were no limitations on
blanket usage, movement, or clothing worn during sleep.

Simultaneously with overnight PSG (Embla s4500) that was
used for a clinical diagnosis of sleep, infrared videos of
participants were recorded at a resolution of 640×480 with 30
frames per second. The participants’ video data were collected
and synchronized with PSG signals all night for 5 (±1) hours
while sleeping in a single session.

The infrared camera (Point Grey Firefly MV, 0.3 MP,
FMVU-03MTM) was mounted approximately 1.5 meters above
the bed. For illumination, a separate infrared light source (Raytec
RM25-F-50) was mounted on the ceiling. A schematic of the
camera setup and sample frame is shown in Figure 2.
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Figure 2. Data collection setup and a sample anonymized image frame on the right. IR: infrared.

Respiratory events (apneas and hypopneas) and sleep positions
(supine, lateral) of the participant throughout the night were
annotated by a trained sleep technician who was blinded to the
study. Since the video data were synchronized with PSG data,
once the technician annotated the PSG data, all video frames
were automatically labeled.

AHI Estimation
The video frames were first downsampled from 30 Hz to 2 Hz
to reduce the computational cost. As breathing frequency is
approximately 0.5 Hz during sleep, the reduced frequency of 2
Hz exceeds the Nyquist rate by a factor of 2. To track respiratory
movements in the infrared video frames, a CNN dense optical
flow (Flownet 2.0 [27]) was used, which provides accurate

optical flow at a fast frame rate. Optical flow extracts movement
in the x (side to side) and y (up and down) directions for each
pixel in one video frame to the next. The minimum duration of
an apnea is 10 seconds. This translates to 20 (or 19 in the worst
case) video frames within the duration of an event. To estimate
respiratory events, a 3D-CNN was trained on a sliding window
of 18 optical flow images (ie, resulting from 19 consecutive
video frames). Infrared videos were captured at a resolution of
640×480 pixels, resulting in optical images with a size of
640×480×2. The architecture of the 3D-CNN that was trained
on the input tensors with a size of 640×480×2×18 is shown in
Multimedia Appendix 1. Sample input and dense optical flow
images are shown in Figure 3.

Figure 3. Sample input and dense optical flow images.

The 3D-CNN was trained with class-weighted cross-entropy
loss (5 for events and 1 for normal) and the Adam optimizer.
An initial value of 0.001 for the learning rate and a batch size
of 25 for 25,000 epochs were chosen. The total number of

parameters in this network was 8,284,265, including 8,281,829
trainable parameters and 2436 nontrainable parameters.
Depending on the sleep apnea severity, respiratory events are
less frequent in comparison to normal breathing; thus, the data
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sets were highly imbalanced. In training time, to balance the
data set, stride lengths of 0.5 and 15 seconds were used for
apneas and normal breathing, respectively. In test time, a stride
length of 0.5 seconds was used to predict the binary label of
normal breathing versus apneas. The threshold of the trained
binary classification (event vs normal) was set to 0.1 to
maximize the area under the curve on the training data.

To estimate the AHI, a linear regression model was trained on
the following three features: (1) the number of detected events,
(2) the total duration of detected events longer than 9 seconds
divided by sleep duration, and (3) sleep duration.

The performance of the 3D-CNN was compared against another
approach developed by our group, which previously
demonstrated state-of-the-art performance in noncontact
vision-based estimation of the AHI [25]. A brief overview of
this baseline approach is presented here. To extract
respiratory-related motion, movements of 768 uniformly
scattered points in the video frames were extracted using a
sparse optical flow. Principal component analysis (PCA) was
applied on the extracted point trajectories over 30-second sliding
windows with a stride of 1 second to compute the predominant
movements, which were associated with breathing during sleep
[28]. This approach was previously validated by Zhu et al [29]
and was shown to accurately track breathing rate in overnight
infrared videos. To identify respiratory events from the
respiratory-related motion, three features were extracted,
including the respiratory rate, average power of respiratory
movement, and total displacement of tracked points. Compared
to normal breathing, the respiratory rate drops during respiratory
events. To extract the respiratory rate, the energy of extracted
respiratory movements was calculated using fast Fourier
transform with a window of 10 seconds. The frequency
associated with the highest energy was then considered as the
respiratory rate. The second feature was the average power of

respiratory movement, which decreases during a respiratory
event. This feature was computed as the mean of absolute
squares of respiratory displacement within a 10-second window.
The last feature was total displacement, which indicates
nonrespiratory movement (eg, arousals), and was determined
by the summation of all of the raw optical flow movements
(before applying PCA). Using these 3 features, a random forest
binary classifier with 50 trees was trained to estimate sleep
apnea events (apneas and hypopneas). Finally, to estimate the
AHI, a linear regression model was trained using 2 features: (1)
the number of predicted sleep apnea events normalized by the
estimated events’duration and (2) the estimated events’duration
normalized by the total sleep duration obtained from the total
recording time.

Detecting Positional vs Nonpositional Sleep Apnea
For sleep position detection, a previously developed algorithm
[26] was used. This method estimates body position (supine vs
lateral) from a video frame using a CNN. Sample supine and
lateral images are shown in Figure 4. This position detector was
applied to the first video frame of each video. After each large
movement (detected by thresholding the total displacement of
tracked featured points extracted by optical flow over 1 second),
the detector was used again to estimate the new sleeping
position. As a result, a body position (supine vs lateral) was
assigned to each video frame during the entire sleeping period.
Once respiratory events and their associated sleep positions
were detected, 6 features were calculated per person: (1) number
of detected events in supine position, (2) number of detected
events in lateral position, (3) total recording time in supine
position, (4) total recording time in lateral position, (5) supine
AHI, and (6) lateral AHI. These features were then used to train
a binary random forest classifier with three trees to distinguish
between positional and nonpositional sleep apnea patients.
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Figure 4. Sample supine (left) and lateral (right) frames.

Validation
Leave-one-person-out cross-validation was used to evaluate the
performance of AHI estimation as well as the performance of
positional vs nonpositional sleep apnea detection algorithms.
Bland-Altman plots and Spearman correlation coefficients were
used to evaluate the performance of AHI estimation. Since an
AHI of 15 is commonly used as a threshold for screening sleep
apnea [30], the algorithm performance on classifying subjects
as having sleep apnea was evaluated based on the threshold of
AHI=15. Confusion matrices, accuracy, precision, recall, and
F1-score measures were used to assess classification

performance. The same measures were used to assess the
performance of positional vs nonpositional sleep apnea
classification.

Results

Demographic information of the 41 individuals (26 men and
15 women) recruited for this study is shown in Table 1. There
were 20 participants with positional sleep apnea, 15 participants
with nonpositional sleep apnea, and 6 participants that only
slept in one position and as such the apnea could not be
identified as either positional or nonpositional.
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Table 1. Participants’ demographic features for apnea-hypopnea index (AHI) estimation (N=41).a

Value, mean (SD)Characteristics

53 (13)Age (years)

30 (7)BMI (kg/m2)

5 (1)Sleep duration (hours)

9 (6)Number of changes in body position

75 (18)Sleep efficiency (%)

15 (7)REMb sleep percentage (%)

68 (16)Mean wake heart rate (bpmc)

67 (16)Mean REM heart rate (bpm)

82 (9)Minimum SaO2
d

94 (3)Mean SaO2

27 (31)AHI (events/hour)

41 (39)Supine AHI (events/hour)

21 (34)Lateral AHI (events/hour)

aParticipants’ information was obtained from the sleep reports of the overnight sleep study annotated by sleep technicians.
bREM: rapid eye movement.
cbpm: beats per minute.
dSaO2: arterial oxygen saturation.

The threshold used in this study for detecting position changes
and ignoring the small movements (eg, breathing or pulse) was
empirically set to 20,000 pixels. The total displacement was
calculated by summing the displacement of all optical flow
feature points [28] over 1 second and was checked against this
threshold.

To evaluate the performance of AHI detection, Figure 5 and
Figure 6 show the scatterplots and Bland-Altman plots between
the estimated AHI and PSG-based AHI for both the 3D-CNN
model and the baseline model (Zhu et al [25]).

Figure 5. Scatterplots of polysomnography (PSG) apnea-hypopnea index (AHI) vs estimated AHI values. The blue and red lines indicate fitted and
unity lines, respectively. CNN: convolutional neural network.
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Figure 6. Bland-Altman plots of apnea-hypopnea index (AHI) estimation algorithms. PSG: polysomnography; Est: estimated; CNN: convolutional
neural network.

The Spearman correlation coefficients (ρ) for AHI estimation
were 0.55 and 0.79 for the baseline and 3D-CNN approach,
respectively (P<.001 in both cases). In addition, the
Bland-Altman plot indicated that our method outperformed the
baseline according to the smaller mean (0.3 vs 8.9) and tighter
95% limits of agreement (ie, a smaller value for 1.96 of the

standard deviation: 40.9 vs 56.5). Confusion matrices and the
performance measures for identifying sleep apnea patients based
on the AHI=15 threshold are shown in Figure 7 and in Table 2,
respectively. The 3D-CNN approach obtained 83% accuracy
and an F1-score of 86%, outperforming the baseline approach,
which obtained an accuracy of 73% and an F1-score of 74%.

Figure 7. Confusion matrices for screening patients with sleep apnea based on the apnea-hypopnea index threshold of 15. CNN: convolutional neural
network.

Table 2. Performance of models on screening patients with sleep apnea.

F1-scoreRecallPrecisionAccuracyMethod

85.7195.4577.7882.933D-CNNa

74.4272.7376.1973.17Baseline (Zhu et al [25])

aCNN: convolutional neural network.

The position detection algorithm estimated the body position
with 83% accuracy, an F1-score of 83%, 77% precision, and
91% recall. The performance of the combination of the position
detection algorithm with AHI detection on patients with

positional sleep is shown in Figure 8. The 3D-CNN model
classified 13 out of 20 patients with positional sleep apnea
correctly. Performance measures for detecting positional vs
nonpositional sleep apnea are presented in Table 3.
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Figure 8. Confusion matrix for identifying positional sleep apnea. CNN: convolutional neural network.

Table 3. Performance of the models in detecting positional vs nonpositional sleep apnea.

F1-scoreRecallPrecisionAccuracyMethod

68.4265.0072.2265.713D-CNNa

41.0340.0042.1134.29Baseline (Zhu et al [25])

aCNN: convolutional neural network.

Discussion

Principal Findings
The main contributions of this study are: (1) the development
and experimental validation of a new noncontact approach to
estimate AHI, and (2) application of this method to
automatically identify individuals with positional sleep apnea.
The newly developed 3D-CNN–based method outperformed
the baseline model in estimating the AHI in infrared video data.
However, it was ~4 times slower than the baseline algorithm.
Nevertheless, the new model could still process 5 hours of sleep
data in ~20 hours. Through combining estimated sleeping
position information with estimated AHI, this is the first
noncontact method that can identify a positional sleep apnea
patient.

The developed algorithm achieved comparable performance to
existing contact methods (eg, those using a single wearable
sensor or a sensor placed under the mattress). For example,
Hafezi et al [15] analyzed tracheal movements captured by an
accelerometer to estimate AHI and to identify patients with
sleep apnea. They reported a Spearman correlation of 0.86
between estimated and ground-truth (PSG) AHI values, and
accuracy and F1-score values of 84% and 82%, respectively,
in detecting individuals with AHI≥15. As such, they achieved
a higher correlation coefficient (0.86 vs 0.79) but a lower
F1-score (82% vs 86%) than our noncontact approach. An
advantage of using a noncontact method over contact-based
approaches is ease of use and convenience. Davidovich et al
[23] used a piezo-electric sensor under a mattress to estimate

the AHI. They obtained an R2 value of 0.86 for AHI estimation,

and accuracy and F1-score values of 88% and 84%, respectively,
in identifying individuals with AHI≥15. Using a camera has the
potential to result in a more accessible assessment technology,
as it can be implemented in the form of a tablet or mobile phone
app.

Limitations
Our study has some limitations. One limitation is the failure of
the event detection algorithm when the participant moved out
of the field of view of the camera or when the room lighting
condition suddenly changed. Another limitation is the small
number of participants (N=41). The algorithm was validated
via leave-one-person-out cross-validation. Future work should
examine the generalizability of these models to data collected
in new environments.

Conclusion and Future Work
This study applied machine learning and computer vision
approaches to develop a CNN-based method to detect respiratory
events in different sleeping positions from data collected via an
infrared camera. This method was validated on data from 41
participants to estimate AHI and to identify patients with
positional sleep apnea.

This model could be used toward the development of affordable
and easy-to-use technologies for screening sleep apnea at home
(eg, in the form of a tablet or smartphone app). Such a system
could help physicians in choosing suitable treatments for sleep
apnea patients. Ultimately, improved treatment will reduce the
consequences of untreated sleep apnea such as car accidents,
heart disease, diabetes, and high blood pressure.
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